EFFECT OF DIFFERENT GROWTH HORMONES AND IN-VITRO PROPAGATION OF STEVIA REBAUDIANA AND QUANTIFICATION OF SECONDARY METABOLITES

Project report submitted in partial fulfillment of the requirement for the

degree of

BACHELOR OF TECHNOLOGY

IN

BIOTECHNOLOGY

By

ANUBHAVI SINGH (151845)

Under the supervision of

Dr. Hemant Sood

Department of Biotechnology and Bioinformatics Jaypee University of Information Technology, Waknaghat, Solan – 173234, Himachal Pradesh May - 2019

TABLE OF CONTENTS

S.no	TOPICS	Page No.
1.	Certificate from Supervisor	3
2.	Declaration	4
3.	Acknowledgement	5
4.	Summary	6
5.	Introduction	7-9
6.	Review of Literature	10-13
6.1	Cultivation and propagation of S. rebaudiana	10
6.2	Phytochemistry of S. rebaudiana	10-11
6.3	Pharmacological properties of S. rebaudiana	11
6.4	Biosynthesis of stevioside	12
6.5	GC analysis	12
6.6	Biotechnological approach on S. rebaudiana	12
6.7	HPLC analysis	13
7.	Aims and Objectives	14
8.	Materials and Methods	15-20
9.	Results	20-65
10	Discussion	66-67
11	Conclusion	67
12	References	68-72

CERTIFICATE

This is to certify that the work titled "Effect of different growth hormones and invitro propagation of Stevia rebudiana and quantification of secondary metabolites" pursued by Anubhavi Singh in partial fulfillment for the award of degree of **B.Tech in Biotechnology** from Jaypee University of Information Technology, Waknaghat has been carried out under my supervision. This work has not been submitted partially or wholly to any another University or Institute for the award of any other degree, diploma or appreciation.

Signature of Supervisor -

Name of Supervisor	- Dr. Hemant Sood (Associate Professor)		
	Department of Biotechnology and Bioinformatics		
	Jaypee University of Information Technology, Waknaghat		
	Distt- Solan, H.P 173234		
E-mail	- hemant.sood@juit.ac.in		
Date	-		

DECLARATION

The report entitled, "Effect of different growth hormones and invitro propagation of Stevia rebaudiana and quantification of secondary metabolites." has been solely submitted to Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat in partial fulfillment for the award of degree of B.Tech in Biotechnology. The work has not been submitted to any other organization for any degree, diploma or appreciation.

The concept and hypothesis behind the research work and experiments were planned and executed under the guidance of my supervisor, **Dr. Hemant Sood** and hence, it's a work of complete originality. Wherever any experimental data or materials (data, analysis, figures, tables, texts, graphs) from other sources has been used, we have given due credit by citing them in text of the thesis.

Signature of Student :

Name of Student	:	Anubhavi Singh
Enrollment No.	:	151845
Date	:	

ACKNOWLEDGEMENT

The success of the project does not lies solely in its end product but the journey lived and the lessons learnt along the way. I extend my first and foremost gratitude to our "Department of Biotechnology and Bioinformatics" for the confidence bestowed upon me and entrusting my project entitled, "Effect of different growth hormones and invitro propagation of Stevia rebudiana and quantification of secondary metabolites."

At this juncture, with proud privilege and profound sense of gratitude I feel honoured in expressing our deepest appreciation to Dr. Hemant Sood for being a lot more than just our supervisor and going beyond the call of duty in our guidance, support, advice and motivation throughout. She has been the source of inspiration of come what may, these issues cannot bring you down. Sincere thanks for making the resources available at the right time and providing your valuable insights.

I acknowledge our indebtedness to Dr. Sudhir Syal (Head, Department of Biotechnology and Bioinformatics, JUIT) for his constant encouragement and faith in me. I would also like to thank Mrs. Mamta Mishra and other staff members for their constant help and support.

Special thanks to my parents for their infinite patience and understanding and lastly but most importantly God, who in His mysterious ways, always made things work out in the end.

In gratitude,

Anubhavi Singh

SUMMARY

Stevia rebaudiana being a natural sweetener, being utilized worldwide in food entities like green teas, syrups, ready to eat meals, etc. The traditional sugar we use in our daily lives can be substituted by Stevia as well.

In this study, we have utilized MS media of varied concentrations and growth hormones, which have enhanced the effect of Stevia, with respect to the composition of growth hormones for callus induction with KN and IBA their concentration being 1:3 (mg/l) and BAP and NAA with a concentration of 0.5 : 2 (mg/l); these conditions have been optimized for shoot regeneration and multiplicity of In-vitro plantlets.

GC analysis was carried for both field grown leaves and in-vitro leaves which reported the presence Diterpene which is an alkaloid. Both sample types were detected with compounds containing Diterpene and Sesquiterpene properties. In one year old field grown shoots, 86 molecules are identified (Table 6), whereas in two month old tissue cultured shoots, 59 molecules were identified (Table 7) in which nalkenes, n-alkanes, fatty acids, terpenes, diterpene, monoterpenes sesquiterpenes were identified.

HPLC was carried out for the estimation of steviol glycoside concentration in field grown tissue and in-vitro grown tissue. The concentration reported in field grown tissues was 0.5287% and in in-vitro grown tissues was 3.5932% for the first time.

We can conclude that these optimized conditions conducted in the laboratory for a period of 1 year, have high significance for commercial purposes.

INTRODUCTION

Stevia rebaudiana originates from the sunflower family [1], it is also known as candy leaf or sweet leaf, and is a member of the family Composite and it is a native to Paraguay [2] [3] also, found in the region of South Africa. (Brazil and Paraguay) [4]

Stevia is an exotic herb that obtains a height of 30.5cm to 80 cm. These aromatic leaves are 2.5 cm long with a distinct midrib. The small tubular flowers have five white petals and are present in terminal clusters; the flowers are usually extracted from the main plant part to improve the flavor of the leaves. Germination from the seedling is difficult hence mostly they are grown from cuttings. The plant requires nutrient rich and well-drained soil which can thrive in warm and humid climates.

<u>Plant Morphology :</u>

Growth Form: Herbaceous plant grows to a height of 1m. A constant in tropical and sub-tropical climates but grown in cooler climatic conditions as well.

Foliage: Leaves are oval and elliptical with minute serrated margins, it is edible in raw form as well, reported to be 25 - 30 times sweeter than table sugar, it is a source of stevioside and rebaudiosides compounds which is used in food and pharmaceutical industries.

Flowers: They are white, small and insignificant, which is formed in clusters of 2 -6 florets; it is a free-flowering plant.

Fruits: It has indehiscent properties and characteristics.

Taxonomy:

The current taxonomic status of the genus Stevia is quite complex due to the generally similar morphology.

Classification of S. Rebaudiana is given below:

Kingdom	Plantae
Clade:	Angiosperms
Clade:	Eudicots

Clade:	Asteroids	
Order:	Asterales	
Family:	Asteraceae	
Genus:	Stevia	
Species:	S. rebaudiana	

Binomial name Stevia rebaudiana

Figure 1. Stevia rebaudiana

Stevia is widely known for its sweet leaves, which produce diterpene glycosides (stevioside and rebaudiosides) which have 250–300 times the sweetness of sugar. It's a medicinal herb, consisting non-caloric sweetening properties, it is an inevitable alternative to sugar as there are millions of diabetics across the globe [5].

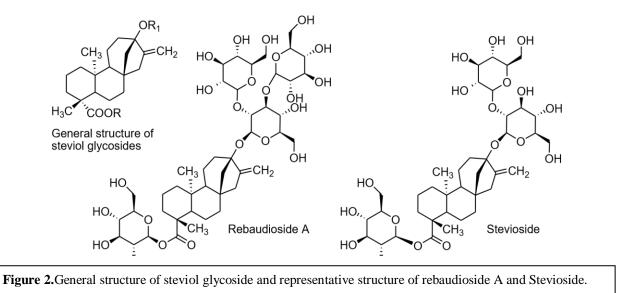
To exploit industrial applications of stevia, its massive scale production is needed. Seed germination is a difficult task as they have a small endosperm and infertile seeds [16,17]. Certain plantlets produce infertile seeds due to incompatibility [19,18]. There are various reports showcasing the conventional propagation methods of Stevia through stem cuttings. The amount of stem cuttings would be voluminous which would be a setback in mass multiplication of plants is. As the origin of plant is diminishing, the conventional methodologies are not full filling for its production on a large scale in the market and fulfill the cane sugar demands around the globe.[20] We see stevia as an alternative to sugar in the Foreseeable future that means almost 40,000 tones stevia is needed to replace artificial sugar and cane sugar through conventional methods but it is still quite impossible to meet the demand. Micropropagation protocols of Stevia have been reported from different explants like a leaf [22, 23, 24], nodal [25, 27,] and shoot tip explants [33,34,35] but production of quality rich herbal source was not highlighted so the present investigation was emphasized on the development of an efficient, reproducible in vitro micro-propagation protocol for high frequency shoot multiplication by using different concentration and combination of the effect was observed in tissue culture and field grown shoots by carrying out GCMS analysis.

REVIEW OF LITERATURE

Stevia leaves are being used by the Guarani people. Traditionally, this plant was being used to sweeten yerba maté and numerous teas; it has also been used in holistic medicines. The plant was initially discovered by a Swiss botanist in 1899 namely, Mosè Giacomo Bertoni (known in Spanish as Moisés Santiago Bertoni). He had announced this discovery of the sweet-tasting plant and had named it Eupatorium rebaudiana. Later with time progressing, Japanese scientists had developed a stevia-derived sweetener, which was a success among people. Despite a few restrictions on the plant due to carcinogenic contents, it was approved by the U.S. Food and Drug Administration (FDA) in 2008. The European Union later made stevia a viable product in 2011.

Cultivation and propagation of Stevia rebaudiana:

It is grown in herbariums and pots in gardens. It tends to produce more flowers and seeds when kept in a sunlit environment. It prefers moist, well-drained and slightly acidic soils (pH 6.1 - 6.5). It can also grow in infertile sandy soils. Plant should be avoided from nitrogen based fertilizers. The sweetness content is higher if the plant is harvested in the morning. The most suitable way to propagate it is by stem cuttings. Black seeds of the plant are reported to germinate better than the smaller tan-colored seeds.


Etymology:

The genus epithet 'Stevia' is named after 16th century Spanish botanist and physician Pedro Jaime Esteve. Species epithet 'rebaudiana' is named after 19th century Paraguayan chemist Oviodio Rebaudi, who had extracted sweet compounds from the plant after isolation for the first time.

Phytochemistry of *Stevia rebaudiana* :

The compounds found in the leaves of Stevia rebaudiana are the sweet tasting diterpenoid glycosides. There are two main glycosides which are of significance to the commercial market, are Stevioside and Rebaudioside A. The other compounds which are of importance include Rebaudioside B to E, Dulcoside A and C. The diterpene glycosides from S. rebaudiana contain a glycoside called steviol (13hydroxy-ent-kaur-16-en-19-oic acid), which differs only in the glycoside constituents that is attached at C-13 and/or C-19.

Stevioside is a core compound in the plant stevia. Its percentage ranges from 5 to 10 percent. Rebaudioside A is the second most common compound that exhibits the sweet taste in stevia, it ranges from 2 to 3 percent. It is reported to have a more pleasant taste than stevioside and is even more water soluble. Rebaudioside B, D, and E might be present in lesser quantities. The two main compounds present in stevia i.e. stevioside and rebaudioside, they were first isolated by two French chemists, Bridel and Lavielle (1931).

Pharmacological properties of Stevia rebaudiana :

A sugar substitute that is used in food entities to enhance the sweet effect in terms of taste. There are various substitutes of sugar available, which could be natural and synthetic. Food additives which are commercially being produced, should be approved by the FDA, and that additive should be categorized under Generally Recognized as Safe (GRAS) list of additives. These substitutes are used by globally for achieving purposes like weight loss, dental care, diabetes and hypoglycemia. The main substitutes available for human use are : aspartame, cyclamate, saccharin and sucralose. Aspartame, was produced from two amino acids namely aspartic acid and phenylalanine. It is about 200 times sweeter than sucrose. The safety and ethical use of aspartame has been studied and experimented extensively on animal studies, clinical and epidemiological research. Aspartame is known to be rapidly hydrolyzed in the small intestines. Additionally, people suffering from the genetic disorder called phenylketonuria should avoid aspartame as they have a reduced ability to metabolize the naturally occurring essential amino acid called phenylalanine. The admissible daily intake value for aspartame is calculated to be 40 mg/kg of the body weight.

Beneficial effects on human health :

Stevia rebaudiana extracts have suggested to have beneficial effects on human health abnormalities like antihypertensive, anti-hyperglycemic, anti-carcinogenic and anti-human rotavirus activities. It also affects the metabolism of glucose and renal function. The requirement of essential oils in our daily life has increased the probability of the usage of stevia extracts in various domains of human life like pharmacy, cosmetics and food and beverage industries. This has made a remarkable research domain available.

Stevia is nutrient-rich in nature. It contains substantial amounts of protein, calcium, phosphorous and few other nutrients. Stevia being a substitute of sugar, its taste has a slower onset and a longer duration than sugar. Some of its extracts might have a bitter or licorice-like aftertaste. The sweet compounds pass through the digestive process of the body without chemically breaking down, thereby making it a safe food substance for human-use. Furthermore, it is a plethora of distinction having commercial and therapeutic value.

GC Analysis :

In recent years, GC-MS has emerged as one of the important techniques in natural products research. Gas chromatography provides a prominent resolution of the components present in a mixture. Identification of the separated compounds can be achieved through their characteristic molecular mass spectra. GC-MS with database search facility and Relative retention indices (RRI) data are very powerful techniques to identify the volatile constituents in herbal drug.

Biotechnological approach on *Stevia rebaudiana* :

The development of methodologies that utilize biotechnology like plant tissue culture, micropropagation, root culture and transformed root culture, they represent an alternative approach for the search of secondary metabolites and they allow genetic stability to occur. Thus, with the development of rapid root growth, it would be possible to obtain sufficient material for the production of extracts for the use of commercial production of compounds of interest.

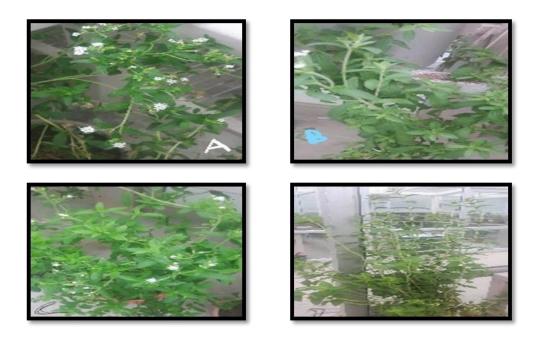
Considering the results from previous studies on *Stevia rebaudiana* that has been reported by numerous research groups S. rebaudiana in the form of in-vitro represent a biotechnological alternative for obtaining the metabolites.

HPLC Analysis : .

The applications of high performance liquid chromatography in food entities and technology involves an analytical and quantitative testing of the products like plant extracts and gives an assurance of product quality with increased productivity and concentration. It is used for the analysis of components in raw and processed products. [45]

7: AIMS AND OBJECTIVES:

Thus taking into consideration high demand of *Stevia* raw material worldwide, occurrence of species in Paraguay and their inherent difficulties in cultivation, over exploitation from native population, this study has been proposed to investigate the possibilities to enhance the production of bioactive compounds stevioside and rebaudiosides. The proposed study has following objectives:


Objectives :

- To study the effect of growth hormones in callus induction of *Stevia rebudiana*.
- To study direct and indirect organogenesis responses in Stevia rebudiana.
- Quantification of secondary metabolite in *Stevia rebaudiana*

8: METHODS AND MATERIAL:

Selection of plant material :

Six month Stevia rebaudiana plants were procured from the nursery and authenticated from UHF, Nauni having UHF-Herbarium number 13585 and maintained in the glass-house of Jaypee University of Information Technology, Waknaghat, H.P., and India under natural light conditions.

Figure 2 : Four different strains of Stevia rebaudiana

Media Preparation and Culture Conditions :

MS media (Murashige and Skoog 1962) supplemented with different concentration of growth hormones have been tested for establishment of a culture (Table 1), sucrose (30 g/L) and agar (9 g/L) as a gelling agent. The pH was adjusted to 5.7 using 0.1 N HCl and 0.1 N NaOH and 50 ml of media was dispensed in each jar prior to autoclaving at 121 C, 15 lb. inch-2 pressure for 20 min. The cultures were kept at $25 \pm 2^{\circ}$ C, with 70 % relative humidity, 16 h day/8 h night photoperiod at a photosynthetic photon flux density of 40 l mol m-2 s-1 provided by cool white fluorescent tubes (Philips, India) with sub culturing after every 4 weeks in a plant tissue culture chamber.

 Table 1: MS media supplemented with different concentrations of growth hormones for callus induction

 in Stevia rebudiana. (For 4 different strains of Rebaudiana)

MS medium	IBA	TDZ	KN	IAA	BAP	2,4, D	NAA
label	(mg/l)						
CS1	3		1				
CS2	1		3				
CS3			1	3			
CS4					0.5		2
CS5	0.5					2	0.5
CS6	0.5	1					
CS7	1	1.5					
CS8	1.5		3		1		
CS9	3		1				
CS10					1		2
CS11	0.5						2

Table 2: MS media supplemented with different concentrations of growth hormones for Direct Organogenesis in Stevia Rebaudiana (for four different strains of S. rebaudiana)

MS	IBA(mg/l)	IAA(mg/l)	Kinetin(mg/l)	BAP(mg/l)	2,4-	NAA(mg/l)	TDZ(mg/l)
Media					D(mg/l)		
label							
D01	1		0.5				
DO2	2		1				
DO3	3		1				
D04		2	1				
D05		3	1				
D06				0.5		1	
D07					1		
D08				1		2	
D09			1				2

Surface Sterilization of explants

4 different strains of stevia rebaudiana (A, B, C, D) were taken from nursery; used as explant that was surface sterilized and cultured.

Leaves and nodal explants were washed with distilled water to remove dirt and debris, and then explants were washed with 2 % (v/v) detergent solution Teepol (Qualigen, India). Thereafter, it was surface sterilized with 0.5% (w/v) Bavistin (BASF, India Ltd.) and 0.1 % (w/v) Mercuric Chloride (Merck, India) followed by 4-5 washings with autoclaved distilled water in laminar air flow. Explants were cut into small segments by following protocol as mentioned by Sood et al 2009, 2010.

Direct Organogenesis

4 different strains of stevia rebaudiana (A, B, C, D); used as explants, that were surface sterilized and cultured. Small Incisions were given to the surface sterilized explants. These explants were cultured on MS media comprising of different growth hormone concentrations as stated above in Table2. The cultures were kept in the growth chambers for 20-25 days. The cultures were incubated at 25 ± 2 °C, with 70 % relative humidity, 16 h day/8 h night photoperiod at photosynthetic photon flux density of 40 1 mol m-2 s-1 provided by cool white fluorescent tubes (Philips, India) with sub culturing after every 4 weeks in a plant tissue culture chamber.

Callus Induction and Regeneration

4 different strains of stevia rebaudiana (A, B, C, D); used as explant, that were surface sterilized and cultured. Small Incisions were given to the surface sterilized explants. These explants were cultured on MS media comprising of different growth hormone concentrations as stated above in Table1. The cultures were kept in the growth chambers for 20-25 days. The cultures were incubated at 25 ± 2 °C, with 70 % relative humidity, 16 h day/8 h night photoperiod at photosynthetic photon flux density of 40 l mol m-2 s-1 provided by cool white fluorescent tubes (Philips, India) with sub culturing after every 4 weeks in a plant tissue culture chamber .Data would be collected for percentage of callus induction and number of days. The callus mass were cultured on shoot regeneration MS media comprising of different growth hormone concentrations as stated in Table 3. Proliferated multiple shoots were subculture on the same media to improve the number of shoots generation per shoot. Data would be gathered up for number of shoots formed per callus and days to form shoot and shoot length.

 Table 3: MS media supplemented with different concentrations of growth hormones for shoot

 regeneration from callus. (For four Different Strains of S. rebaudiana)

MS medium label	KN (mg/l)	IBA	IAA (mg/l)	BAP (mg/l)	NAA (mg/ml)
		(mg/l)			
SR1	1	3			
SR2	0.5	2.0			
SR3	1		3		
SR4	0.5		2		
SR5	0.5		1		
SR6	0.5			2	
SR7	0.5			1	
SR8				1	0.5
SR9				1	2
SR10				0.5	1

Different extraction of Stevia rebaudiana:

• Plant Tissue Homogenization

Fresh leaves are dried and grinded to fine particles. 50 ml of solvent is added to the flask and it is shaken vigorously for 5-10 minutes. Extract is filtered out and centrifugation is done for clarity of sample.

• Serial exhaustive extraction

A range of solvents from polar (methanol) to non-polar(hexane) is taken to ensure wide polarity range of compound extracted. Filtration is done after every 2 hours to with a change in the solvent.

• Maceration

Coarsely powdered plant is kept in contact with a solvent plugged into a flask. Frequent agitation is done until the soluble matter is dissolved completely.

Sample preparation for Gas Chromatography –Mass Spectroscopy

• Plant material and extraction

Two months old in vitro grown Stevia rebaudiana shoots labels as 2D sample and Greenhouse grown shoots were label as 4D sample. Each sample of *Stevia rebaudiana* shoots (100gm) were taken and dried

for 17 days under a temperature of 25 degree Celsius. After drying, the leaves were lyophilized using a lyophilized. Similarly with 1A and 1A-R for strain A extraction were prepared.

The extraction from shoots of Stevia rebaudiana were carried out by [42] done using various solvents. The most yield producing technique being ethyl acetate extraction. The preparation of ethyl acetate extract is done by heating the dried leaves of Stevia rebaudiana with ethyl acetate at boiling temperature. Ethyl acetate has biological characteristics which include low toxicity and medium polarity hence it the most preferred solvent. After heating the sample with the solvent, it is then filtered and freeze dried for later use. The samples are filtered using a Membrane filter (2 μ m.)

Gas Chromatography – Mass spectroscopy

The analyses were executed on a Shimadzu QP-2010 Plus with Thermal Desorption System TD 20 equipment with flame ionization detector and split/split less injector was at 290°C and samples were injected using Auto sampler (1µl) with a split ratio 1:10. Capillary columns were used Rxi 5 ms (15m* 0.25 mm, with film thickness of 0.25 µm) Restek. The temperature program was raised from 80°C (1 min) up to 300°C at the rate 5°C/min, and the total run time was 49.98 minute. Helium was used a carrier gas at a flow rate of 5°C/min. Detector temperature was set at 310°C. To make the flame, hydrogen gas flow, 40ml/min, and air gas flow, 400mL/min and the carrier gas were He (45 ml/minute).In the analysis of samples were done by GC-2010 and GC program, the operating conditions were: column Oven temperature (50.0°C), Injection Temperature (260°C); Injection mode was split type Flow control mode was the linear velocity type (39.9cm/Sec); pressure (69kPa), total flow (16.3ml/min) and column flow (1.21ml/min) and run time (49.98 min); the carrier gas was helium at a constant flow of 1.1cc /minute. Ionization was performed by electrons at 70 EV: The scan range was 3333.start time was 4min and end time (49.98 minute); start m/z (40.00) and end m/z (650.00) with equilibrium time 0.5 minute. There was Ion Source temperature (230°C), Interface Temp (270°C), Solvent Cut Time (3.5 min). Detector Gain Mode was relative and threshold was 1000. GC solution software was used for data collection and calculation of all parameters.

Ouantification by High Performance Liquid Chromatography

Fresh plantlets of *S. rebaudiana* were gently uprooted from jars and crushed in liquid nitrogen which produced a powdered sample of 100grams. This powdered sample was mixed with 10ml of 70% methanol as solvent. The samples were vortexed followed by sonication for 10 minutes. They were filtered using a 0.22 μ m filter (Millipore). Analytical quantification of steviol glycosides from the extracts of powdered plant material. [44] Quantification was done on Waters HPLC system equipped with Waters 515 HPLC pumps, Autosampler, photodiode array detector and Empower software. Waters reverse phase C18 column (4.6mm x 250mm, 5 μ m) was used as the stationary phase and 10 μ l

of sample was injected into it with the mobile phase for analysis of secondary metabolite. The mobile phase was a mixture of MilliQ water (65%) and acetonitrile (35%), pH of 2.75 acidified by HCl. The linear gradient at a flow rate of 1 ml/min was equilibrated for 30 minutes at 210nm wavelength keeping the temperature at 25°C. The cycle time of analysis was 30 minutes. The solvents used for analysis were; Solvent A (ACN: water in the ratio of 65:35) and Solvent B (Methanol: water were in the ratio of 70:30).

9: <u>RESULT:</u>

• Direct Organogenesis

Best result for direct Organogenesis was seen in MS medium supplemented with growth hormones with a ratio of somehow different for different strain A,B,C,D as shown table [4,5,6,7] maximum shoot primordial were observed within 13 days in the media brought up above from nodal, internodes explants .After 6 days of incubation new shoots generation starts on most of the nodal explants was observed . The effect of different concentration of auxin and Cytokines combination on shoot formation, length of shoot, Number of shoots in stevia rebaudiana .For the Shoot generation or direct organogenesis nodes, internodes were cultured on MS medium supplemented with different concentration of different growth hormones. The nodes and internodes gives differential response to different PGRs combinations.

 Table 4: Direct Organogenesis of Strain A of S. rebaudiana on MS medium supplemented with different growth hormones.

Media Label	No of days to start	Percent of shoot	No. of Shoot
	shoot regeneration	formation	primordial
DO1	$16 \text{ days} \pm 2 \text{ days}$	82%	4 shoots
DO2	$17 \text{ days} \pm 2 \text{ days}$	68%	5 shoots
DO3	13 days ± 2 days	72%	7 shoots
DO4	$15 \text{ days} \pm 2 \text{ days}$	64%	4 shoots
DO5	$18 \text{ days} \pm 2 \text{ days}$	54%	5 shoots
DO6	20 days± 2 days	62%	6 shoots

DO7	19 days ± 2 days	71%	5 shoots
DO8	$21 \text{ days} \pm 2 \text{ days}$	76%	4 shoots
DO9	$18 \text{ days} \pm 2 \text{ days}$	82%	5 shoots

*Percent of shoot formation (%) = No of shoot Produced / total no explants $\times 100$

Table 5: Direct Organogenesis of Strain B of S. rebaudiana on MS medium supplemented with different growth hormones.

Media Label	No of days to start	Percent of shoot	No. of Shoot
	shoot regeneration	formation	primordial
DO1	17 ± 2 days	82%	4 shoots
DOI	17 ± 2 days	0270	1 5110015
DO2	16 ± 2 days	68%	5 shoots
DO3	14± 2 days	72%	7 shoots
203	1 - - augs	/ 2 / 0	. 5110005
DO4	18 ± 2 days	64%	4 shoots
DO5	21 ± 2 days	54%	5 shoots
DO6	20 ± 2 days	62%	6 shoots
DO7	19± 2 days	71%	5 shoots
DO8	18 ± 2 days	76%	4 shoots
DO9	17± 2 days	82%	5 shoots

*Values are the mean of three replicates each with 25 explants

*Percent of shoot formation (%) = No of shoot Produced / total no explants $\times 100$

Table 6: Direct Organogenesis of Strain C of S. rebaudiana on MS medium supplemented with
different growth hormones.

Media Label	No of days to start	Percent of shoot	No. of Shoot
	shoot regeneration	formation	primordial
DO1	18± 2 days	70%	4 shoots

DO2	17± 2 days	76%	5 shoots
DO3	24± 2 days	58%	4 shoots
DO4	22± 2 days	68%	4 shoots
DO5	23± 2 days	78%	5 shoots
DO6	17± 2 days	82%	6 shoots
DO7	24± 2 days	72%	5 shoots
DO8	22± 2 days	54%	4 shoots
DO9	27± 2 days	28%	5 shoots

*Percent of shoot formation (%) = No of shoot Produced / total no explants $\times 100$

Table 7: Direct Organogenesis of Strain D of S. rebaudiana on MS medium supplemented with different growth hormones.

Media Label	No of days to start	Percent of shoot	No. of Shoot				
	shoot regeneration	formation	primordial				
DO1	15± 2 days	86%	4 shoots				
DO2	16± 2 days	88%	5 shoots				
DO3	17± 2 days	96%	8 shoots				
DO4	19± 2 days	84%	4 shoots				
DO5	17± 2 days	75%	5 shoots				
DO6	17± 2 days	78%	6 shoots				
DO7	15± 2 days	90%	5 shoots				
DO8	18± 2 days	82%	4 shoots				
D09	18± 2 days	71%	4 shoots				

*Values are the mean of three replicates each with 25 explants

*Percent of shoot formation (%) = No of shoot Produced / total no explants $\times 100$

Callus Induction

Best results for callus induction was seen in MS medium supplemented with growth hormones with a ratio of IAA (3 mg/L) and Kinetin (1 mg/L) as shown in — Fig. 1B and Table 3 100% callusing was observed within 20 -25 days in the media brought up above from leaf explants. After 10 days of incubation, enlargement of most of the leaf explants was observed. The effect of different concentrations of auxin and cytokinin combination on percent callus formation, callus color, callus texture and callus growth in Stevia rebaudiana. For the induction of callus tissues, nodal and leaf segments were cultured on MS medium supplemented with different concentration of five PGR namely, IAA, NAA, 2, 4-dichlorophenoxyacetic acid (2, 4-D), BAP and KN, TDZ. The nodal and leaf segments gave a differential response to different PGR combinations. Morphogenetic differentiation of leaf segments started within 15–25 days after culture and made light green compact callus tissue. Here, maximum (100%) leaf explants produced callus in the media having 1.0 mg/l KN + 3.0 mg/l IAA. In case of leaf segment initiation of callus formation took place within 15 - 20 days of incubation. Calli were green compact from the leaf segment showed better response then in callus formation from internodal segments in different combinations.

Table 8: Callus induction tissue from the nodal and leaf segments of S. rebaudiana on MS medium supplemented with different growth hormones. For strain A

Label	IB	TD	K	Ι	В	2,4,	NA	Parameters	for callus	inductio	on		
	А	Ζ	Ν	Α	А	D	А	Number	Percent	Call	Callus color	Callus	Callus
	(mg	(m	(m	Α	Р	(mg/	(mg	of days	explant	us		texture	growth
	/1)	g/L	g/	((m	ml)	/l)	for calli	S	form			
)	L)	m	g/			formatio	forming	ation			
				g/	ml			n	Calli	(%)			
				1))				(Initiati				
									on				
									Freq)				
CS1	3		1					15 -20	90%	90%	Green	Compa	+++
								days				ct	
CS2	1		3					18-20	89%	89%	Light Green	Compa	+++
								days				ct	
CS3			1	3				15-17	100%	100	Light Green	Comp	+++++
								days		%		act	
CS4					0.		2	18-20	9%	90%	Green	Granula	++++
					5			days				r	
CS5	0.5					2	0.5	20-22	80%	80%	Yellowish green	Granula	+++
								days				r	
CS6	0.5	1						18-20	70%	70%	Yellowish green	Granula	++
								days				r	
007	1	1.5						15-	800/	200/	Vallassiah anan	Caracte	
CS7	1	1.5						15- 17days	80%	80%	Yellowish green	Granula r	+++
								-					
CS8	1.5		3		1			18-20	80%	80%	Green	Compa	+++
								days				ct	
CS9	3		1					15-	90%	90%	Green	Compa	++++
								17days				ct	
CS10					1		2	20-	60%	60%	White	Granul	+
								22days				ar	
CS11	0.5						2	18-20	80%	80%	Yellowish green	Granul	+++
								days				ar	

*Values are the mean of three replicates each with 25 explants

Table 9: Callus induction tissue from the nodal and leaf segments of S. rebaudiana on MS medium supplemented with different growth hormones. For strain B

Label	IB	TD	K	Ι	В	2,4,	NA	Parameters	for callus	inductio	on		
	А	Ζ	Ν	Α	А	D	А	Number	Percent	Call	Callus color	Callus	Callus
	(mg	(m	(m	А	Р	(mg/	(mg	of days	explant	us		texture	growth
	/1)	g/L	g/	((m	ml)	/1)	for calli	S	form			
)	L)	m	g/			formatio	forming	ation			
				g/	ml			n	Calli	(%)			
				1))				(Initiati				
									on				
									Freq)				
CS1	3		1					20±2days	74%	74%	Green	Compa	+++
												ct	
CS2	1		3					21±	89%	89%	Light Green	Compa	+++
								2days				ct	
CS3			1	3				19±	86%	86%	Light Green	Compa	+++++
								2days				ct	
CS4					0.		2	17 ±	90%	90%	Green	Granu	++++
					5			2days				lar	
CS5	0.5					2	0.5	22 ±	65%	65%	Yellowish green	Granul	+++
								2days				ar	
CS6	0.5	1						19±	70%	70%	Yellowish green	Granul	++
								2days				ar	
CS7	1	1.5						17±	80%	80%	Yellowish green	Granul	+++
								2days				ar	
CS8	1.5		3		1			20	80%	80%	Green	Compa	+++
								±2days				ct	
CS9	3		1					19±2days	90%	90%	Green	Compa	++++
												ct	
CS10					1		2	20	60%	60%	White	Granul	+
								±2days				ar	
CS11	0.5						2	20±2	72%	72%	Yellowish green	Granul	+++
								days				ar	

*Values are the mean of three replicates each with 25 explants

Table 10: Callus induction tissue from the nodal and leaf segments of *S. rebudiana* on MS medium supplemented with different growth hormones. For strain C

Label	IB	TD	K	Ι	В	2,4,	NA	Parameters	for callus	inductio	on		
	А	Ζ	Ν	Α	Α	D	А	Number	Percent	Call	Callus color	Callus texture	Callus
	(mg	(m	(m	А	Р	(mg/	(mg	of days	explant	us			growth
	/l)	g/L	g/	((m	ml)	/1)	for calli	S	form			
)	L)	m	g/			formatio	forming	ation			
				g/	ml			n	Calli	(%)			
				1))				(Initiati				
									on				
									Freq)				
CS1	3		1					20±2	86%	86%	Green	Compact	+++
								days					
CS2	1		3					19±	70%	68%	Light Green	Compact	+++
								2days					
CS3			1	3				17 ±	92%	89%	Green	Compact	+++++
								2days					
CS4					0.		2	20±2	90%	90%	Green	Granular	++++
					5			days					
CS5	0.5					2	0.5	22±2	80%	76%	Yellowish green	Granular	+++
								days					
CS6	0.5	1						18±2days	70%	70%	White	Granular	++
CS7	1	1.5						17±2days	80%	75%	Yellowish green	Granular	+++
CS8	1.5		3		1			20	74%	72%	Green	Compact	+++
								±2days					
CS9	3		1					17±2days	90%	82%	Green	Compact	++++
CS10					1		2	20±	60%	58%	White	Granular	+
								2days					
CS11	0.5						2	18±2days	80%	80%	Yellowish green	Granular	+++

*Values are the mean of three replicates each with 25 explants

Table11: Callus induction tissue from the nodal and leaf segments of *S. rebudiana* on MS medium supplemented with different growth hormones. For strain D

Label	IB	TD	K	Ι	В	2,4,	NA	Parameters	for callus	inductio	on		
	А	Ζ	Ν	Α	А	D	А	Number	Percent	Call	Callus color	Callus	Callus
	(mg	(m	(m	Α	Р	(mg/	(mg	of days	explant	us		texture	growth
	/1)	g/L	g/	((m	ml)	/l)	for calli	S	form			
)	L)	m	g/			formatio	forming	ation			
				g/	ml			n	Calli	(%)			
				1))				(Initiati				
									on				
									Freq)				
CS1	3		1					15±2days	90%	90%	Green	Compa	+++
												ct	
CS2	1		3					18±2days	89%	89%	Light Green	Compa	+++
												ct	
CS3			1	3				15±2day	100%	100	Light Green	Comp	+++++
								s		%		act	
CS4					0.		2	18±2days	9%	90%	Green	Granul	++++
					5							ar	
CS5	0.5					2	0.5	20±2days	80%	78%	Yellowish green	Granul	+++
												ar	
CS6	0.5	1						18±2	70%	70%	Yellowish green	Granul	++
								days				ar	
CS7	1	1.5						15±2days	80%	80%	Yellowish green	Granul	+++
												ar	
CS8	1.5		3		1			18±2days	80%	80%	Green	Compa	+++
												ct	
CS9	3		1					15±2days	90%	90%	Green	Compa	++++
												ct	
CS10	1				1		2	20±2days	60%	60%	White	Granul	+
												ar	
CS11	0.5						2	18±2days	80%	80%	Yellowish green	Granul	+++
												ar	

*Values are the mean of three replicates each with 25 explants

Shoot Regeneration

Developed calli culture in regeneration media where the best results for shoot regeneration i.e. 5-6 shoot primordia was obtained on MS medium containing IBA (3 mg/L) and KN (1 mg/L) and BAP (1.5 mg/l) within 15-20 days as shown in —Fig.1 and Table 4. Plant growth regulator in different combination induced shoots ranging from 2.4 - 5.1cm with a shoot length ranging from 3.25 - 11.30 cm. Shoot initiation were observed in the concentration of IBA 3 mg/L and Kinetin 1.0 mg/L. The maximum shoot formation was observed in medium containing IBA (3 mg/l) + BAP (1.5mg/L) + KN (1mg/l). Maximum number of shoots, buds and rapid elongation achieved on 1mg/ml BAP+ 1mg/ml IAA which is on the pattern of shoot formation achieved by Sweety and Mujumdar et al. (2016) in Stevia but it slow rate and less growth so optimized media for our study is IBA (3 mg/L) and KN (1 mg/L) and BAP (1.5mg/ml).

 Table 12: Shoot regeneration in S. rebaudiana on MS medium supplemented growth hormones for Strain

 A

Label	KN	IBA	IAA	BAP	NAA				
	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/ml)	No. Of	Percent	% of	% of calli
						days for	of	explant	forming
						multiple	Shoot	showing	multiple
						shoot	formation	proliferation	shoot
						formation			formation
S 1	1	3				20 - 25	80%	85%	80%
						days			
S2	0.5	2				19-	70%	73%	70%
						23days			
S 3	1		3			20 - 25	80%	84%	80%
						days			
S4	0.5		2			18-22	65%	70%	65%
						days			
S5	2		1			20-24	70%	75%	70%
						days			
S6	1	3		1.5		15-	90%	95%	90%
						20days			
S 6	0.5	1		2		20-23	75%	80%	75%

					days			
S 7	2		1		18-	85%	80%	85%
					20days			
S 8			1	0.5	20-22	80%	84%	80%
					days			
S 9			1	2	18 - 21	80%	85%	80%
					days			
S10			0.5	1	20-25	70%	75%	70%
					days			

Table 13: Shoot regeneration in S. rebaudiana on MS medium supplemented growth hormones for Strain B

Label	KN	IBA	IAA	BAP	NAA				
	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/ml)	No. Of	Percent	% of	% of calli
						days for	of	explant	forming
						multiple	Shoot	showing	multiple
						shoot	formation	proliferation	shoot
						formation			formation
S 1	1	3				21 - 25	80%	85%	80%
						days			
S2	0.5	2				18-	70%	73%	70%
						23days			
S 3	1		3			20 - 23	80%	84%	80%
						days			
S4	0.5		2			18-21	65%	70%	65%
						days			
S5	2		1			20-22	70%	75%	70%
						days			
S6	1	3		1.5		15-	90%	85%	90%
						18days			

S7	0.5	1	2		20- 22days	75%	80%	75%
S8	2		1		18- 22days	85%	80%	85%
S9			1	0.5	20-24	80%	84%	80%
S10			1	2	days 18 -	80%	85%	80%
S11			0.5	1	20days 20-25	70%	75%	70%
					days			

*percent of shoot formation= no of shoot formation/total no of explants on same medium ×100

*percentage of explant showing proliferation= no of shoot proliferated/total no of shoot formation×100

*percentage of calli forming multiple shoot formation= no of shoot generation from calli /total number of callus $\times 100$

Table 14: Shoot regeneration in S. rebaudiana on MS medium supplemented growth hormones for Strain C

Label	KN	IBA	IAA	BAP	NAA				
	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/ml)	No. Of	Percent	% of	% of calli
						days for	of	explant	forming
						multiple	Shoot	showing	multiple
						shoot	formation	proliferation	shoot
						formation			formation
S 1	1	3				20 - 25	80%	85%	80%
						days			
S2	0.5	2				19-	70%	73%	70%
						23days			
S 3	1		3			20 - 25	80%	84%	80%
						days			
S4	0.5		2			18-22	65%	70%	65%

						days			
S5	2		1			20-24	70%	75%	70%
						days			
S6	1	3		1.5		15-	90%	95%	90%
						20days			
S 7	0.5	1		2		20-23	75%	80%	75%
						days			
S 8	2			1		18-	85%	80%	85%
						20days			
S9				1	0.5	20-22	80%	84%	80%
						days			
S10				1	2	18 - 21	80%	85%	80%
						days			
S 11				0.5	1	20-25	70%	75%	70%
						days			

Table 15: Shoot regeneration in S. rebaudiana on MS medium supplemented growth hormones for Strain D

Label	KN	IBA	IAA	BAP	NAA				
	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/ml)	No. Of	Percent	% of	% of calli
						days for	of	explant	forming
						multiple	Shoot	showing	multiple
						shoot	formation	proliferation	shoot
						formation			formation
S 1	1	3				20 - 22	80%	80%	80%
						days			
S2	0.5	2				19-	70%	73%	70%
						21days			
S 3	1		3			20 - 25	80%	84%	80%
						days			
S4	0.5		2			18-22	65%	70%	65%
						days			

S5	2		1			18-24	70%	75%	70%
						days			
S6	1	3		1.5		15-	91%	91%	86%
						20days			
S 7	0.5	1		2		21-23	75%	80%	75%
						days			
S 8	2			1		22-	85%	80%	85%
						25days			
S 9				1	0.5	20-22	82.6%	84%	80%
						days			
S10				1	2	18 - 23	75.8%	85%	80%
						days			
S11				0.5	1	20-24	68%	75%	70%
						days			

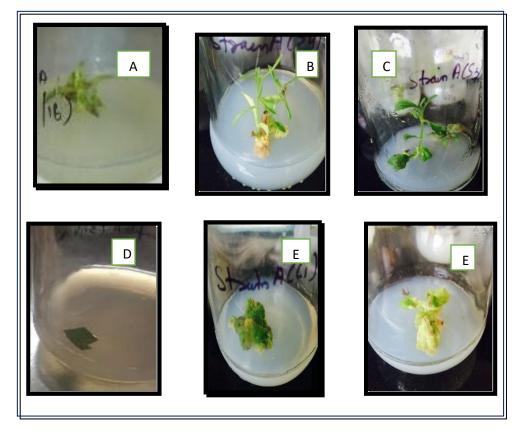


Figure 4: *Stevia rebaudiana* strain A (A, B&C) direct organogenesis and (D, E & F) Indirect Organogenesis.

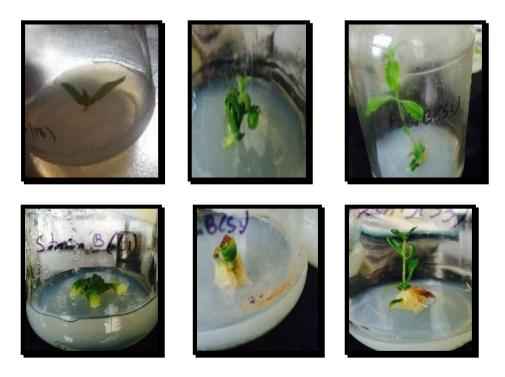


Figure 5: *Stevia rebaudiana* strain B (A, B &C) direct organogenesis and (D,E & F) Indirect Organogenesis.

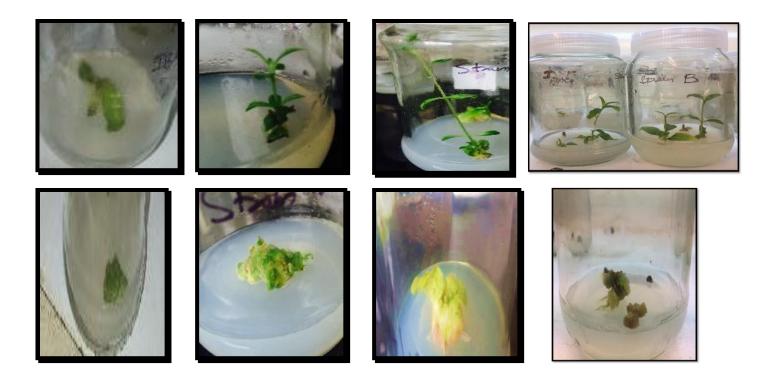
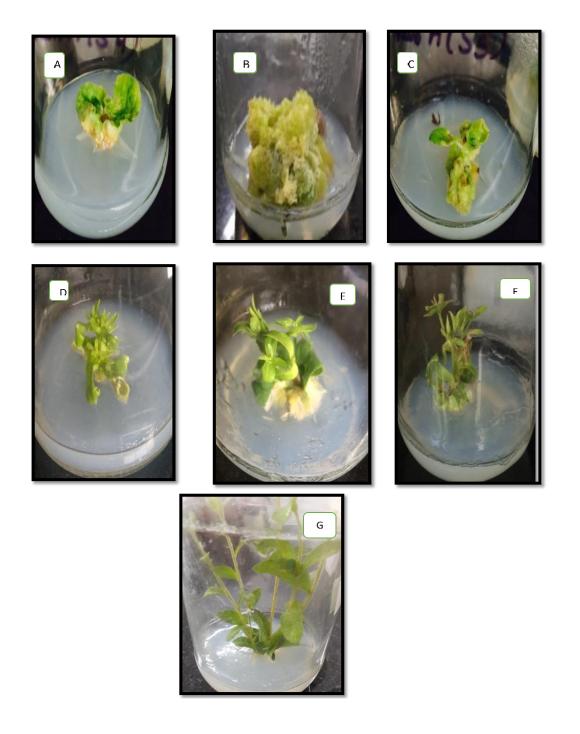



Figure 6: Stevia rebaudiana strain C direct organogenesis and Indirect Organogenesis.

Figure 7: **Callus induction and shoot regeneration of** *Stevia rebaudiana* for strain D (A & B) Callus obtained on MS medium 3mg/l IAA+ 1 mg/ml KN within 17 days (C&D) Micro shoot formation in MS supplemented with 3mg/l kN+1mg/l BAP +1.5 mg/l IBA (E) Shoot growth after 15 days (F) 30 days old plantlet G) Two month old plantlets of *Stevia rebaudiana*.

GCMS Result

The GC-MS analysis has shown the presence of different phyto chemical compounds in the ethyl acetate extract of Stevia rebaudiana was carried out to observe that in-vitro grown young shoots of 2 months old culture are at par with the quality wise as compare to one year old shoot. A total of 86 compounds was identified, representing 100% of total ethyl acetate extract composition. From the results, it is evident that stevia rebaudiana contains various phyto component.

The GCMS Analysis of ethyl acetate extract shows the chromatographic profile of in vitro and in vivo culture of S. rebaudiana. As cultures show a complex mixture of compounds with fragmentation of longipinnate derivatives, labdenes, flavonoids, sterols, triterpenoids, monoterpenes like Geraniol, 2-berene, carvacrol. Sesquiterpenes were olopenone, T-Murolol, alpha-cubene and diterpene was neophyladiene, phytol, organic acids, monosaccharide and inorganic salts. Using ethyl extract n-alkene, n-alkanes, fatty acids, alcohols, terpenes were identified using GCMS.

Alpha-beta- selling, aroma dendrene, alpha-morphine, linden isomer are the starting material for the synthesis of fragrances and flavonoids. In one year old field grown shoots (4D) 86 molecules are identified(Table 6), whereas in two month old tissue cultured shoots (2D) 59 molecules were identified(Table 7) in which n-alkenes, n-alkanes, fatty acids, terpenes, diterpene, monoterpenes sesquiterpenes were identified. The results pertaining to GC-MS analysis of the ethyl acetate extract of *Stevia rebaudiana* leads to the identification of number of compounds. The compounds were identified through NSIT and Whiely library of mass spectrometry attached with GC. The GCMS spectrum confirmed the presence of various components with different retention times as shown in Fig 2 for 4D sample and in Fig 3 for 2D sample .The mass spectrometer analyzes the compounds eluted at different times to identify the nature and structure of the compound's giving rise to appearance of peaks at different m/z ratios. These mass spectra are fingerprint of compound which can be identified from the data library.

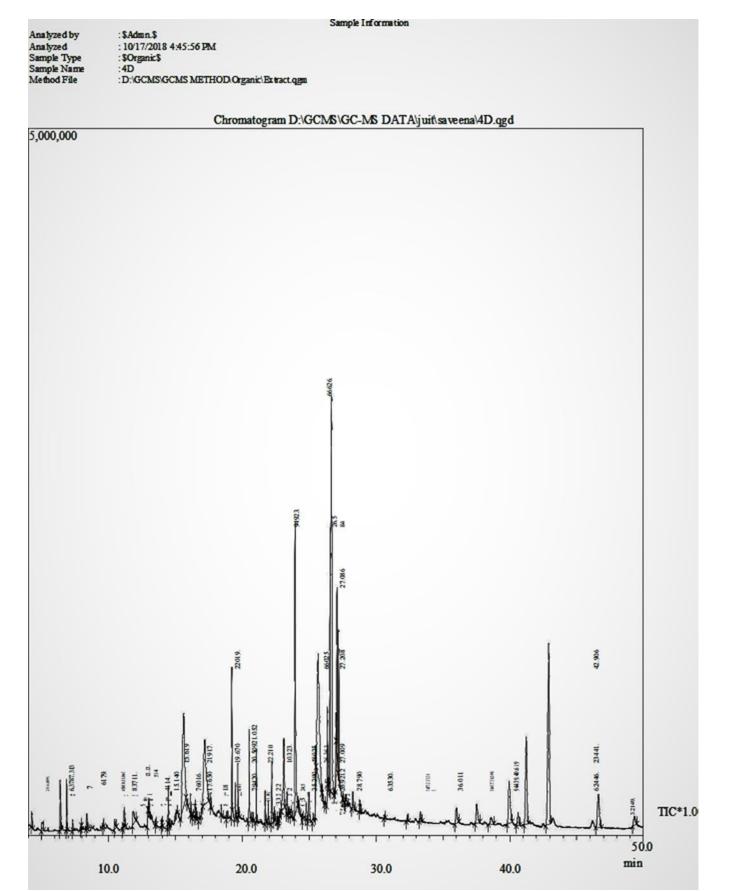


Figure 8: GC MS chromatogram for field grown plant extract (4D sample) of S. rebaudiana

Table 16: Bioactive compounds in field grown plant extract (4D sample) of S. rebaudiana

					Molecul	Molecular	Compound
	Retention	Peak	Area		ar	formula	nature
Peak	Time	Area	%	Name of the compound	weight		
				2-Propanone, 1,1-	118	C5H10O5	Terpene
1	4.253	479261	0.44	dimethoxy-; Pyrolidine			
				PROPANE, 1,1-	146	C8H18O2	Organic
				DIETHOXY-2-METHYL-			coumpound
2	5.109	466412	0.43	; DIETHYL ACETAL			
				Bicyclo[3.1.0]hex-2-ene,	136	C10H16	Alkene
				2-methyl-5-(1-			
		127739		methylethyl)-; ALPHA-			
3	6.378	1	1.17	THUJENE			
				Butane, 1,1-diethoxy-3-	160	C9H20O2	Organic
4	6.873	639086	0.59	methyl-			coumpound
				BICYCLO[3.1.0]HEXAN	136	C10H16	Terpene
				E, 4-METHYLENEs-1-(1-			
				METHY; beta phellandren			
5	7.313	166437	0.15	;EINESE,SABINENE			
				dl-Threo-pentonic acid,	238	C13H18O4	Cyclic
				2,5-dideoxy-4-O-			monoterpen
				(phenylmethyl)-, m;			e
				Tphaniene ;BETA-			
6	7.930	36276	0.03	PHELLANDREN			
				BICYCLO[4.1.0]HEPT-3-	136	C10H16	Monoterpen
				ENE, 3,7,7-TRIMETHYL-			e
7	7.990	63005	0.06	;3-CARENE			
				CYCLOHEXENE, 1-	136	C10H16	Monoterpen
				METHYL-4-(1-			e
				METHYLETHENYL)			
8	8.367	422438	0.39	;BETA-LIMONENE			
9	9.617	81917	0.08	Alpha terpenolinene	136	C10H16	TERPEN
				4H-Pyran-4-one, 2,3-	144	C6H8O4	ALCHOL
10	10.450	335799	0.31	dihydro-3,5-dihydroxy-6-			

				methyl-;4-HPYRAN-4-OH			
				.betaD-Glucopyranoside,	176	C7H12O5	Carbohydrat
11	11.063	117606	0.11	methyl 3,6-anhydro-			Е
				BENZOIC ACID, 2-	152	C8H8O3	Ester
				HYDROXY-, METHYL			
12	11.184	462635	0.43	ESTER,BETULA OIL			
					126	C6H6O3	Organic
13	11.837	699022	0.64	5-Hydroxymethylfurfural			coumpound
					186	C12H2O6	Primary
14	12.937	235448	0.22	2,3-Dimethyl-3-decanol			alchol
				1,2-	222	C12H14O4	Ester
				BENZENEDICARBOXY			
				LIC ACID,			
				MONOBUTYL			
				ES;MONOBUTYL			
15	13.014	347236	0.32	PHTHALATE			
				PHENOL, 2-METHOXY-	164	C10H12O2	Flavinol
				4-(2-PROPENYL)-			
16	13.514	82697	0.08	;EUGENOL ACETATE			
				DECANOIC ACID,	200	C12H24O2	Ester
17	13.972	71350	0.07	ETHYL ESTER			
				2,4-DIISOPROPENYL-1-	204	C15H24	Alken
				METHYL-1-			
				VINYLCYCLOHEX;BET			
18	14.017	73030	0.07	A ELEMEN			
				1-(2-METHYLENE-	172	C12H12O	Organic
				1PHENYLCYCLOPROPY			oxidant
				L)ETHAN ;			
				ERYTHRITOL			
19	14.417	29212	0.03	TETRAACETATE			
					204	C15H24	Sequiterpen
				BETA –			e
20	14.476	483880	0.44	CARYOPHYLLENE			
21	14.578	80357	0.07	2-NORPINENE, 2,6-	204	C15H24	Sequiterpen

				DIMETHYL-6-(4-			E
				METHYL-3-			
				PENTE;TRANS ALPHA			
				BERGAMOTENE			
				4-(2,6,6-TRIMETHYL-	190	C13H180	SEQUITER
				1,3-CYCLOHEXADIEN-			PENE
				1-YL)-3-B;DEHYDRO-			
22	15.140	80313	0.07	BETA-IONONE			
					180	C6H12O6	Monosaccha
		757773					rides
23	15.619	2	6.96	D-Allose			
				9-OCTADECENOIC	282	C18H34O2	FATTY
				ACID (Z)-;9-			ACID
24	15.898	58631	0.05	OCTADECENOIC ACID			
				1,6,10-Dodecatrien-3-ol,	222	C15H26O	MONOTER
				3,7,11-trimethyl-, (E)-			PENE
25	16.150	272387	0.25	;NEROLIDOL			
				Isopropylphosphonic acid,	266	C13H28FO28	Ester
				fluoroanhydryde-, decyl			
26	16.299	104264	0.10	ester			
				HEXADECANOIC ACID,	284	C18H36	Ester
27	16.485	184666	0.17	ETHYL ESTER			
					220	C15H24O	SEQUITER
28	16.561	147959	0.14	Caryophyllene oxide			PENE
				3,9-Epoxy-p-mentha-	150	C10H14O	Terpene
				1,8(10)-			
				diene;ROSEFURAN,ALP			
29	16.760	46478	0.04	HA-NAGINATENE			
				[1R-	326	C18H31ClOSi	ALCHOL
				(1.ALPHA.,4.BETA.,5.BE			
				TA.)]-[5-(5-CHLORO-			
				4,7,7-;3-			
30	16.950	107866	0.10	METHYLNONAN-3-OL			
31	17.219	593569	5.45	1,3,4,5-	192	C7H12O6	FATTY

		8		TETRAHYDROXY-			ACID
				CYCLOHEXANECARBO			
				XYL;CHINIC ACID			
				2-Propenoic acid, tridecyl	254	C16H30	FATTY
32	17.650	200231	0.18	ester			ACID
				01297107001	280	C15H20O5	TERPEN
				TETRANEURIN - A –			
				DIOL;9-			
33	18.429	182551	0.17	OCTADECENOIC ACID			
				2,3-Bis(1-	179	C12H21N	Terpene
				methylallyl)pyrrolidine;De			
34	18.851	192946	0.18	hydrovomifolid			
		158669			278	C20H38	DITERPEN
35	19.220	8	1.46	Neophytadiene			Е
				3,7,11,15-Tetramethyl-2-	296	C20H40O	DITERPEN
36	19.476	476567	0.44	hexadecen-1-ol ;Phytol			E
					278	C20H38	DITERPEN
37	19.670	574441	0.53	Neophytadiene			E
				Benzoic acid, 2-hydroxy-,	228	C14H12O3	Benzyl ester
38	19.743	114418	0.11	phenylmethyl ester			
		146559			256	C16H32O2	FATTY
39	20.509	1	1.35	n-Hexadecanoic acid			ACID
				HEPTADECANOIC	298	C19H38O2	Ester
40	20.794	101065	0.09	ACID, ETHYL ESTER			
				1H-Naphtho[2,1-b]pyran,	290	C19H34O	Diterpene
				3-ethenyldodecahydro-			alc0hol
41	21.052	876348	0.81	3,4a,7,7,10;sclareol			
					242	C16H34O	TERPEN-
42	21.709	637554	0.59	1-Hexadecanol			ALCHOL
				2-HEXADECEN-1-OL,	296	С20Н	Primary
				3,7,11,15-			alchol
43	21.942	429823	0.39	TETRAMETHYL-, [R-[R			
		132592		cis,cis,cis-7,10,13-	234	C16H26O	Unsaturated
44	22.210	6	1.22	Hexadecatrienal			fatty

							aldehyde
					284	C18H36O2	FATTY
45	22.413	237798	0.22	Octadecanoic acid			ACID
				1-Cyclohexene-1-	166	C11H18O	Aldehyde
				acetaldehyde, 2,6,6-			
46	22.606	61019	0.06	trimethyl-			
				1,3-PROPANEDIOL, 2-	232	C10H20N2O4	Ester
				METHYL-2-(1-			
				METHYLPROPYL);			
				choloromethyl-			
47	22.733	88023	0.08	2chlorododecanoate			
				8-	289	C16H19NO4	Methyl ester
				AZABICYCLO[3.2.1]OC			
				TANE-2-CARBOXYLIC			
48	22.813	229554	0.21	ACID,;8-azabicycl			
				1H-Benzocyclohepten-7-	222	C15H26O	Sesquiterpen
		284307		ol, 2,3,4,4a,5,6,7,8-			ids
49	23.103	5	2.61	octahydro-1,1,4;globulol			
				1H-Benzocyclohepten-7-	222	C15H260	KETONE
				ol, 2,3,4,4a,5,6,7,8-			
				octahydro-			
50	23.350	469621	0.43	1,1,4;duvatrendiol			
				2-METHYL-4-(2,6,6-	208	C14H240	ALKALYN
				TRIMETHYL-1-			Е
				CYCLOHEXEN-1-			
51	23.470	93793	0.09	Y;13,15-octaosadiyne			
				1,4-Methanoazulen-7-ol,	222	C15H26O	Terpene,
				decahydro-1,5,5,8a-			Primary
52	23.654	296799	0.27	tetramethyl-, [1			alcohol
				17.betaHydroxy-6.alpha	378	C24H42O3	Acidmethyl
		698387		pentyl-4-nor-3,5-			ester
53	23.949	2	6.42	secoandrostan-3			
				2,2,6-TRIMETHYL-1-(3-	222	C14H22O2	Sesquiterpen
54	24.217	262261	0.24	METHYL-BUTA-1,3-			oid enone

				DIENYL)-			
				7;aristolenepoxide			
					290	C20H34O	Tetraprenylt
55	24.505	93043	0.09	Thunbergol			oluquinols
56	24.776	441759	0.41	1-Heptatriacotanol	536	C37H76O	Fatty alchol
				Acetic acid, 1-[2-(2,2,6-	250	C16H26O2	Ester
		119340		trimethyl-			
57	24.988	4	1.10	bicyclo[4.1.0]hept-1-yl)-et			
					236	C15H24O2	Sesquiterpen
58	25.290	232415	0.21	Corymbolone			Е
					290	C20H34O	Tetraprenylt
59	25.480	729807	0.67	Thunbergol			oluquinols
				1,1,4A,7-	222	C15H26O	Sesuiterpene
				TETRAMETHYL-			
		953834		2,3,4,4A,5,6,7,8-			
60	25.660	2	8.77	OCTAHYDRO;widdrol			
				1-Naphthalenepropanol,	308	C20H36O2	Sesquiterpen
				.alphaethenyldecahydro-			e
61	25.991	245463	0.23	2-hydroxy;Widdrol			
62	26.183	44084	0.04	DIOCTYL PHTHALATE	390	C24H38O4	Diester
		166100			290	C20H34O	Tetraprenylt
63	26.363	4	1.53	Thunbergol			oluquinols
				1H-	222	C15H26O	Tannin
				BENZOCYCLOHEPTEN-			
		712542		7-OL, 2,3,4,4A,5,6,7,8-			
64	26.584	6	6.55	OCTA			
		145288			222	C15H26O	Ether
65	26.666	97	13.35	8-propoxycedrane			
				1-	274	C19H30O	Primary
				PHENANTHRENEMETH			alcohol
				ANOL, 7-ETHENYL-			
66	26.921	105434	0.10	1,2,3,4,4			
					290	C20H34O	tetraprenylto
67	27.009	800174	0.74	Thunbergol			luquinols

		270293			208	C14H24O	tetraprenylto
68	27.086	9	2.48	Thunbergol			luquinols
		303180			318	C20H30O3	Steviol
69	27.208	8	2.79	Hydroxydehydrostevic acid			
					290	C20H34O	tetraprenylto
70	27.522	109717	0.10	Thunbergol			luquinols
71	27.661	81447	0.07	Eicosanoid	282	C20H42	Fatty acids
				3.alpha.,4.alpha.,9.beta.,11-	252	C15H24O3	Alchol
72	27.770	319240	0.29	Diepoxymuurolan-10-ol			
					290	C20H34O	tetraprenylto
73	28.269	593651	0.55	Thunbergol			luquinols
					410	C30H50	Triterpene
74	28.790	189433	0.17	Squalene			
					424	C28H56O2	Ester
75	30.635	70728	0.06	Myristyl myristate			
				Stigmasta-5,22-dien-3-ol,	454	C13H50O2	Alkaloid
76	32.347	158363	0.15	acetate, (3.beta.)-			
77	33.313	326424	0.30	dlalphaTocopherol	430	C29H50O2	Vitamin E
					412	C29H48O	Steroid
78	36.011	812668	0.75	Stigmasterol			derivative
		113047		STIGMAST-5-EN-3-OL,	414	C29H50O	PRIMARY
79	37.514	7	1.04	(3.BETA.)-;Beta- sitosterol			ALCHOL
					424	C30H48O	Sesquiterpen
80	38.598	461389	0.42	Globulol			oids
		280539			442	C30H50O2	Sterols
81	39.944	8	2.58	Lanosteryl acetate			
					468	C12H52O2	Methyl
82	40.619	649821	0.60	Methyl commate A			coumpound
				4,4,6A,6B,8A,11,11,14B-	424	C30H48O	Ethyl
		446232		OCTAMETHYL-			coumpound
83	41.234	6	4.10	1,4,4A,5,6,6A,6B			
		103780			442	C30H50O2	Triterpene
84	42.906	60	9.54	Betulin			
85	46.624	228701	2.10	Betulinaldehyde	440	C30H48O2	Aldehyde

		1					
				Isobutyric acid, tridecyl	270	C17H34O2	Ester
86	49.321	611805	0.56	ester			
		108818					
		420	100.00				

Sample Information

 Analyzed by
 :\$Admn.\$

 Analyzed
 :10/17/2018 7:59:51 PM

 Sample Type
 :\$Organic\$

 Sample Name
 :2D

 Method File
 :D:\GCMS\GCMS METHOD\Organic\Extract.qgm

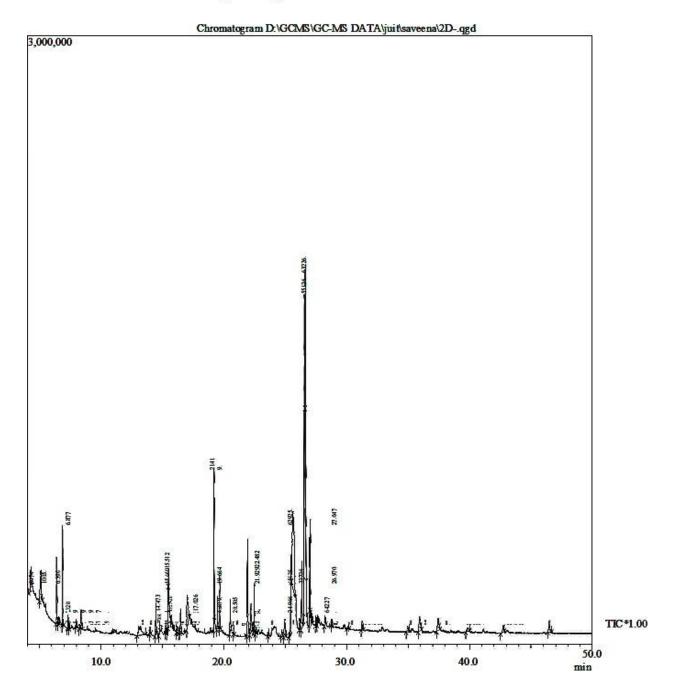


Figure 9: GC MS chromatogram for tissue cultured plant extract (2D sample) of *S. rebaudiana*

Table 17: Bioactive compounds in tissue cultured plant extract (2D sample) of S. rebaudiana

Peak	Retention		Area		Chemical	M.weight	Compound nature
#	Time	Area	%	Name	Formula		
		46518			C5H10O3	118	Carboxylic acid
1	4.307	7	1.56	2-Propanone, 1,1-dimethoxy-			
		79547		Propane, 1,1-diethoxy-2-	C8H18O2	146	Organic coumpound
2	5.100	0	2.67	methyl-			
				Bicyclo[3.1.0]hex-2-ene, 2-	C10H16	136	Monoterpene
		11205		methyl-5-(1-methylethyl)-			
3	6.390	66	3.76	carenen			
		11524		BICYCLO[3.1.1]HEPT-2-ENE,	C10H16	136	Terpene
4	6.540	5	0.39	2,6,6-TRIMETHYL-			
		94102			C9H20O2	160	Acetyl
5	6.877	9	3.16	Butane, 1,1-diethoxy-3-methyl-			
		15305		BICYCLO[3.1.0]HEXANE, 4-	C10H16	136	Terpene
6	7.320	4	0.51	METHYLENE-1-(1-METHY			
				BICYCLO[3.1.1]HEPTANE,	C10H16	136	Terpene
7	7.423	65002	0.22	6,6-DIMETHYL-2-METHYL			
		14334		BICYCLO[4.1.0]HEPT-3-ENE,	C10H16	136	Terpene
8	7.999	2	0.48	3,7,7-TRIMETHYL-			
				BENZENE, 1-METHYL-3-(1-	C10H14	134	Diterpene
9	8.267	60823	0.20	METHYLETHYL)-			
				CYCLOHEXENE, 1-	C10H16	136	Monoterpene
		35067		METHYL-4-(1-			
10	8.379	0	1.18	METHYLETHENYL); Linonen			
		72616		1-Nitrobetad-	C13H17NO1	363	Acetate
11	13.220	8	2.44	arabinofuranose, tetraacetate	1		
		10531		UNDECANOIC ACID, ETHYL	C13H26O2	214	Ester
12	13.987	1	0.35	ESTER			
<u> </u>		35416		BICYCLO[7.2.0]UNDEC-4-	C15H24	204	Terpene
13	14.473	8	1.19	ENE, 4,11,11-TRIMETHYL-8-			
<u> </u>		14460			C15H24	204	Sesquiterpenes
14	14.773	7	0.49	(E)betaFamesene			

		11981		1,6-CYCLODECADIENE, 1-	C15H24	204	Sesquiterpene
15	15.263	5	0.40	METHYL-5-METHYLENE-8-			
				2-PENTENEDINITRILE, 2-	C11H17N3	191	
16	15.380	38421	0.13	[(1,1-DIMETHYLETHYL)AMI			
				Cyclohexane, 1-ethenyl-1-	C15H24	204	Phenylpropenes
		23895		methyl-2-(1-methylethenyl)-4-			
17	15.460	8	0.80	(1-			
		17572		Phenol, 3,5-bis(1,1-	C14H220	206	Alkylphenols
18	15.512	6	0.59	dimethylethyl)-			
		16408			C7H14O7	210	Saccharide
19	15.720	3	0.55	d-Gluco-heptulosan			
		10368			C15H26O	222	Terpene
20	16.153	3	0.35	Nerolidol			
				1,2-	C13H15ClO4	270	
				BENZENEDICARBOXYLIC			Ester
21	16.340	64610	0.22	ACID, DIETHYL ESTER			
		34940			C12H14O4	222	Diterpene
22	16.488	3	1.17	DIETHYL PHTHALATE			
		11226		1,3,4,5-TETRAHYDROXY-	C7H12O6	192	Carboxyl Acids
23	17.026	86	3.77	CYCLOHEXANECARBOXYL	,		
		11399			C20H40O	296	
24	19.214	59	3.83	Neophytadiene			Terpene
		31096			C20H40O	296	Terpene
25	19.468	0	1.04	Neophytadiene			
		42837		3,7,11,15-Tetramethyl-2-	C22H42O2	338	Diterpene alchol
26	19.664	3	1.44	hexadecen-1-ol			
		40367			C16H32O2	256	Fatty acid
27	20.505	1	1.35	n-Hexadecanoic acid			
		12421		HEPTADECANOIC ACID,	C19H3802	298	
28	20.788	0	0.42	ETHYL ESTER			Ester
		12837			C20H40O	296	Diterpen
29	21.929	39	4.31	Phytol			
		63618		cis,cis,cis-7,10,13-	C16H26O	234	Unsaturated fatty
30	22.206	7	2.13	Hexadecatrienal			Acids
31	22.365	43488	0.15	(3E,7E,11E)-1-Isopropyl-	C20H34O	290	Diterpenoid

				4,8,12-trimethylcyclotetradeca-			
				3,7,			
				9,12-Octadecadienoic acid	C16H28O	236	Carboxylic acid
32	22.427	51429	0.17	(Z,Z)-			
		35650		(2E,6E)-9-(3,3-DIMETHYL-2-	C21H30OS	330	Ester
33	22.482	7	1.20	OXIRANYL)-3,7-DIMETHY			
				1-Cyclohexene-1-acetaldehyde,	C10H15BrO	230	Aldehyde
34	22.594	42347	0.14	2,6,6-trimethyl-			
35	23.634	48089	0.16	NONANE, 3,7-DIMETHYL-	C13H28	184	Hydrocarbons
		15583		Heptadecane, 2,6,10,15-	C29H60	408	Methyl derivative
36	24.692	6	0.52	tetramethyl-			
		45098		2,4,5,5,8A-PENTAMETHYL-	C14H24O	208	Carboxylic Acid
37	24.966	6	1.51	4A,5,6,7,8,8A-HEXAHYDRO			
				7-	C12H18O	178	Alkane
38	25.317	53692	0.18	Octylidenebicyclo[4.1.0]heptane			
		52211		1,1,4A,7-TETRAMETHYL-	C16H26O	222	Sesquiterpene
39	25.456	8	1.75	2,3,4,4A,5,6,7,8-OCTAHYDRO			
		41268		1H-BENZOCYCLOHEPTEN-	C16H26O2	250	Volatile
40	25.629	66	13.85	7-OL, 2,3,4,4A,5,6,7,8-OCTA			Coumpound
				1,2-	C24H38O4	390	Ester
		12783		BENZENEDICARBOXYLIC			
41	26.165	2	0.43	ACID, DIISOOCTYL ESTer			
		98788			C20H34O2	306	Tetraprenyltoluquino
42	26.337	0	3.32	Thunbergol			Ls
		34607		1H-BENZOCYCLOHEPTEN-	C16H26O2	250	Volatile coumpound
43	26.551	84	11.61	7-OL, 2,3,4,4A,5,6,7,8-OCTA			
		29305		1H-BENZOCYCLOHEPTEN-	C15H26O	222	Volatile coumpound
44	26.632	26	9.83	7-OL, 2,3,4,4A,5,6,7,8-OCTA			
		74917			C15H26O	222	Tetraprenyltoluquino
45	26.970	0	2.51	Thunbergol			ls
				4-(5,5-	C22H36O2	332	Ketone
		93337		DIMETHYLSPIRO[2.5]OCT-			
46	27.047	1	3.13	4-YL)-2-BUTANONE			
47	27.135	89572	0.30	Thunbergol	C15H24O	220	Tetraprenyltoluquino

							Ls
					C15H26O	290	Tetraprenyltoluquino
48	27.494	85613	0.29	Thunbergol			ls
					C24H49I	464	Acyclic
49	27.642	83230	0.28	2-methyloctacosane			Hydrocarbon
				4-(2,2,6-Trimethyl-	C15H26O	222	
		17278		bicyclo[4.1.0]hept-1-yl)-butan-			Ketone
50	28.221	7	0.58	2-one			
51	28.768	73178	0.25	Squalene	C30H50	410	Terpen
					C21H42O2	326	
				EICOSANOIC ACID,			Ester
52	30.141	50493	0.17	METHYL ESTER			
		15451			C30H60O2	452	Organic coumpound
53	31.246	9	0.52	Octacosyl acetate			
		14656			C30H60O2	452	Organic coumpound
54	34.953	1	0.49	Octacosyl acetate			
		52921			C29H48O	412	Sterol
55	35.925	8	1.78	Stigmasterol			
		48558			C29H50O	414	Terpene
56	37.443	2	1.63	.gammaSitosterol			
		16765			C20H34O	290	Tetraprenyltoluquino
57	39.863	9	0.56	Thunbergol			ls
		22438		1,4-Dimethyl-7-(prop-1-en-2-	C15H26O	222	Primary alchol
58	42.737	9	0.75	yl)decahydroazulen-4-ol			
		24953		LUP-20(29)-ENE-3,28-DIOL,	C30H50O2	442	Alchol
59	46.471	3	0.84	(3.BETA.)-			
		29798					
		381	100.00				

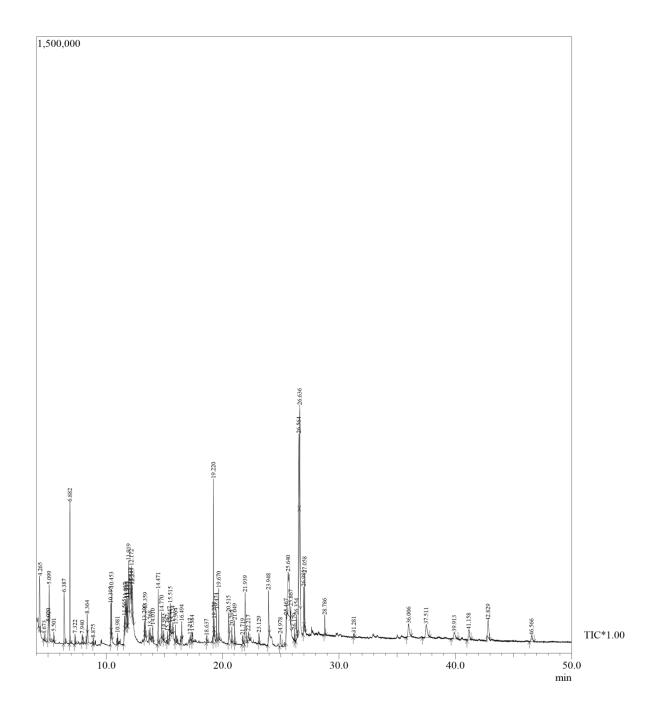


Figure 10: GC MS chromatogram for tissue cultured plant extract (1A sample) of *S. rebaudiana*

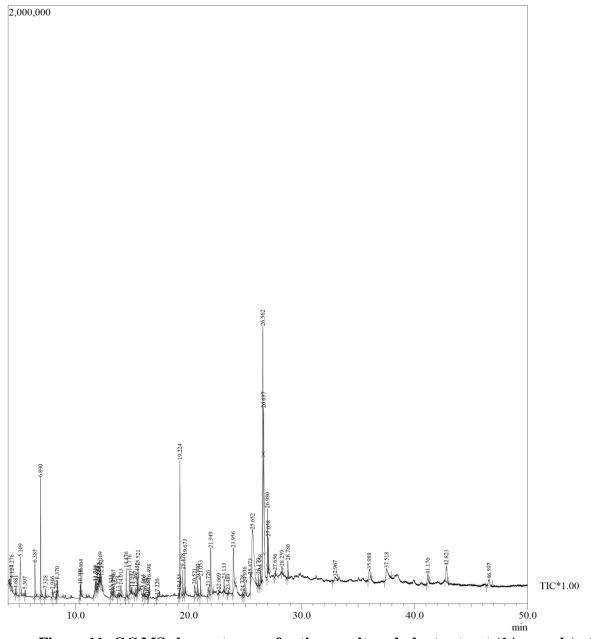


Figure 11: GC MS chromatogram for tissue cultured plant extract (1A sample) of *S. rebaudiana*

Table 18 : Bioactive compounds in tissue cultured plant extract (2D sample) of S. rebaudiana

Peak	Retention	Area	Area	Name	Chemical	Molecular	Compound
	Time		%		Formula	Weight	Nature
1	4.265	470441	3.51	2-Propanone, 1,1-dimethoxy-	C5H10O3	118	Fatty Acid
	<u> </u>		++	ACETIC ACID, 1-METHYLETHYL	C5H10O2	102	Ester
2	4.673	27763	0.21	ESTER			
3	5.020	66317	0.50	ETHANE, 1,1,1-TRINITRO-	C2H3N3O6	165	Ether
4	5.099	222269	1.66	Propane, 1,1-diethoxy-2-methyl-	C8H18O2	146	Ether
5	5.501	28570	0.21	1-BUTANOL, 3-METHYL-, ACETATE	C7H14O2	130	Ester
		+	++	5-ISOPROPYL-2-	C10H16	136	Monoterpene
6	6.387	472130	3.52	METHYLBICYCLO[3.1.0]HEX-2-ENE			
7	6.882	698020	5.21	Butane, 1,1-diethoxy-3-methyl-	C9H20O2	160	Ether
		+	+	BICYCLO[3.1.0]HEXANE, 4-	C10H16	136	Monoterpene
8	7.322	51746	0.39	METHYLENE-1-(1-METHY			
9	7.940	90096	0.67	Butane, 1-chloro-4-(1-ethoxyethoxy)-	C8H17ClO2	180	Ether
		+	+	CYCLOHEXENE, 1-METHYL-4-(1-	C10H16	136	Monoterpene
10	8.364	112953	0.84	METHYLETHENYL)			
			++	BICYCLO[3.1.0]HEX-2-ENE, 2-	C10H16	136	Monoterpene
11	8.875	30194	0.23	METHYL-5-(1-METHYL			
12	10.395	141868	1.06	6-Octenal, 3,7-dimethyl-, (R)-	C10H18O	154	Ketone
13	10.453	187697	1.40	6-Octenal, 3,7-dimethyl-, (R)-	C10H18O	154	Ketone
			+	3-CYCLOHEXEN-1-OL, 4-METHYL-1-(1-	C10H18O	154	Ketone
14	10.981	40328	0.30	METHYLETHY			
15	11.565	129497	0.97	Citronellol	C10H20O	156	Monoterpene
16	11.637	172232	1.29	3,7-DIMETHYL-7-OCTEN-1-OL #	C10H20O	156	Monoterpene
17	11.744	42747	0.32	2,6-Octadienal, 3,7-dimethyl-, (Z)-	C10H16O	152	Monoterpene
18	11.817	121576	0.91	2,6-Octadienal, 3,7-dimethyl-, (Z)-	C10H16O	152	Monoterpene

	<u> </u>		,Ţ	2,6-OCTADIEN-1-OL, 3,7-DIMETHYL-,	C10H18O	154	Monoterpene
19	11.919	415724	3.10	(E)-			
	+	++	 	4-Hexen-1-ol, 5-methyl-2-(1-	C10H18O	154	Monoterpene
20	12.137	24612	0.18	methylethenyl)-, (R)-			
21	12.172	90363	0.67	2,6-Octadienal, 3,7-dimethyl-, (E)-	C10H16O	152	Monoterpene
22	12.255	252675	1.89	Citral	C10H16O	152	Monoterpene
23	13.290	54926	0.41	6-Octen-1-ol, 3,7-dimethyl-, acetate	C12H22O2	198	Carboxylic Ester
	<u> </u>	+			C12H22O2	198	Carboxylic
24	13.359	147601	1.10	6-Octen-1-ol, 3,7-dimethyl-, acetate			Ester
				2,6-OCTADIEN-1-OL, 3,7-DIMETHYL-,	C12H20O2	196	Carboxylic
25	13.768	74451	0.56	ACETATE			Ester
26	14.010	97587	0.73	Ethyl cyclohexanepropionate	C11H20O2	184	Ester
			·	BICYCLO[7.2.0]UNDEC-4-ENE, 4,11,11-	C15H24	204	Sesquiterpene
27	14.471	282436	2.11	TRIMETHYL-8-			
28	14.770	125206	0.93	(E)betaFamesene	C15H24	204	Sesquiterpene
29	14.943	41691	0.31	Bicyclo[2.2.1]heptane, 7,7-dimethyl-2-	C10H16	136	Monoterpene
27	14.743	41071	0.51	methylene-			
		C0101		1,6-CYCLODECADIENE, 1-METHYL-5-	C15H24	204	Sesquiterpene
30	15.262	59181	0.44	METHYLENE-8-			
31	15.447	47645	0.36	GERMACRENE B	C15H24	204	Sesquiterpene
32	15.515	137207	1.02	Phenol, 3,5-bis(1,1-dimethylethyl)-	C14H22O	206	Aromatic
			İ	4-[(2,3,5,6-	C15H23N3O2S2	341	Aromatic
				TETRAMETHYLPHENYL)SULFONYL]-			Ether
33	15.724	71052	0.53	2-BU			
				BENZENE, 1,2,3-TRIMETHOXY-5-(2-	C12H16O3	208	Aromatic
34	15.964	89419	0.67	PROPENYL)-			Ether

35	16.494	105305	0.79	DIETHYL PHTHALATE	C12H14O4	222	Aromatic
36	17.217	41000	0.31	2-Heptene, 5-ethyl-2,4-dimethyl-	C11H22	154	Diterpene
37	17.384	82959	0.62	1-NAPHTHALENOL, 1,2,3,4,4A,7,8,8A- OCTAHYDRO-1,	C15H26O	222	Lipid
38	18.637	17308	0.13	2,3-DEHYDROALPHA ISOMETHYLIONONE	C14H20O	204	Ester
39	19.220	577529	4.31	Neophytadiene	C20H38	278	Diterpene
40	19.278	40932	0.31	(2E)-3,7,11,15-TETRAMETHYL-2- HEXADECENE #	C20H40	280	Diterpene
41	19.474	132062	0.99	Neophytadiene	C20H38	278	Diterpene
42	19.670	213247	1.59	3,7,11,15-Tetramethyl-2-hexadecen-1-ol	C20H40O	296	Diterpene
43	20.515	179520	1.34	HEXADECANOIC ACID	C16H32O2	256	Carboxylic Acid
44	20.795	67787	0.51	ETHYL PENTADECANOATE	C17H34O2	270	Ester
45	21.049	84061	0.63	1H-Naphtho[2,1-b]pyran, 3- ethenyldodecahydro-3,4a,7,7,10	C20H34O	290	Ether
46	21.719	56915	0.42	1-UNDECANOL	C11H24O	172	Alkane
47	21.939	397655	2.97	Phytol	C20H40O	296	Alkane
48	22.217	82946	0.62	Cyclooctane-1,4-diol, cis	C8H16O2	144	Alkane
49	23.129	40514	0.30	LABDA-8(17),13E-DIEN-15-OIC ACID	C20H32O2	304	Diterpene
50	23.948	402450	3.00	Androstane-3,17-diol, 17-methyl-, (3.beta.,5.alpha.,17.beta.)-	C20H34O2	306	Alkane
51	24.978	133432	1.00	2,6,10,14-HEXADECATETRAEN-1-OL, 2,6,10,14-TETRA			Isoprenoid
52	25.467	106622	0.80	13-TETRADECEN-2-YN-1-OL	C14H24O	208	Aromatic
53	25.640	1075024	8.02	1,1,4A,7-TETRAMETHYL-	C15H26O	222	Sesquiterpene

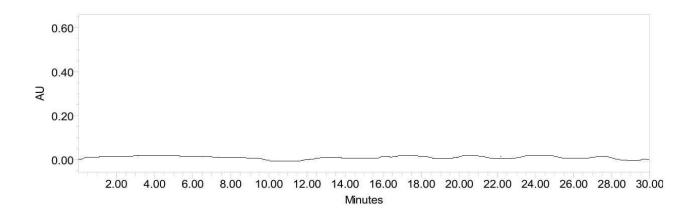
		, 		2,3,4,4A,5,6,7,8-OCTAHYDRO	Τ		
54	25.867	86635	0.65	2- PHENANTHRENECARBOXALDEHYDE, 1,2,3,4,4A,4B	C19H30O3	306	Diterpene
55	26.179	55586	0.41	1,2-BENZENEDICARBOXYLIC ACID	C24H38O4	390	Carboxylic Acid
56	26.354	200912	1.50	1H-Benzocyclohepten-7-ol, 2,3,4,4a,5,6,7,8-octahydro-1,1,4	C15H26O	222	Aromatic
57	26.564	1098847	8.20	1H-BENZOCYCLOHEPTEN-7-OL, 2,3,4,4A,5,6,7,8-OCTA	C15H26O	222	Aromatic
58	26.636	1096307	8.18	1H-BENZOCYCLOHEPTEN-7-OL, 2,3,4,4A,5,6,7,8-OCTA	C15H26O	222	Aromatic
59	26.981	208900	1.56	Thunbergol	C20H34O	290	Diterpenoid
60	27.058	247793	1.85	Thunbergol	C20H34O	290	Diterpenoid
61	28.786	121620	0.91	Squalene	C30H50	410	Terpene
62	31.281	28062	0.21	Cycloundecane, 1,1,2-trimethyl-	C14H28	196	Acyclic Olefins
63	36.006	255345	1.91	1-Heptatriacotanol	C37H76O	536	Fatty Alcohol
64	37.511	311971	2.33	1-Heptatriacotanol	C37H76O	536	Fatty Alcohol
65	39.913	148083	1.11	Methanol, [6,8,9-trimethyl-4-(1-propenyl)- 3-oxabicyclo[3.3.	C15H24O2	236	Sesquiterpene
66	41.158	179702	1.34	24-Noroleana-3,12-diene	C29H46	394	Aromatic
67	42.829	286744	2.14	1,4-Dimethyl-7-(prop-1-en-2- yl)decahydroazulen-4-ol	C15H26O	222	Sesquiterpene
68	46.566	115031	0.86	1,2-Pentanediol, 5-(6-bromodecahydro-2- hydroxy-2,5,5a,8a-	C20H35BrO3	402	Isoprene
		13397026	100.00				

Table 19 : Bioactive compounds in tissue cultured plant extract (2D sample) of S. rebaudiana

Peak	Retention	Area	Area	Name	Chemical	Molecular	Nature
	Time		%		Formula	Weight	
1	4.127	36992	0.24	Butanoic acid, heptyl ester	C11H2202	186	Ester
2	4.276	295543	1.89	2-Propanone, 1,1-dimethoxy	C5H10O3	118	Ketone
3	4.681	44902	0.29	ACETIC ACID, 1- METHYLETHYL ESTER	C5H10O2	102	Ester
4	5.109	674478	4.31	Propane, 1,1-diethoxy-2-methyl-	C8H18O2	146	Ether
5	5.507	34016	0.22	1-BUTANOL, 3-METHYL-, ACETATE	C7H14O2	130	Ester
6	6.385	435234	2.78	5-ISOPROPYL-2- METHYLBICYCLO[3.1.0]HEX-2- ENE	C10H16	136	Monoterpene
7	6.890	731341	4.67	Butane, 1,1-diethoxy-3-methyl	C9H20O2	160	Ether
8	7.328	55234	0.35	CYCLOHEXENE, 3- METHYLENE-6-(1- METHYLETHYL	C10H16	136	Monoterpene
9	7.946	49489	0.32	Butane, 1-chloro-4-(1-ethoxyethoxy	C8H17ClO2	180	Ether
10	8.283	28362	0.18	BICYCLO[4.1.0]HEPT-3-ENE-2- THIOL, 3,7,7-TRIMETHY	C10H16S	168	Monoterpene
11	8.370	101158	0.65	CYCLOHEXENE, 1-METHYL-4-	C10H16	136	Monoterpene

				(1-METHYLETHENYL			
12	10.396	68993	0.44	6-Octenal, 3,7-dimethyl-, (R)-	C10H18O	154	Monoterpene
13	10.464	130233	0.83	6-Octenal, 3,7-dimethyl-, (R)-	C10H18O	154	Monoterpene
14	11.739	133930	0.86	Citral	C10H16O	152	Monoterpene
15	11.831	79823	0.51	Citral	C10H16O	152	Monoterpene
16	11.933	77524	0.50	Citronellol	C10H20O	156	Monoterpene
17	12.067	45495	0.29	(3,5-DIMETHYL-1H-PYRAZOL- 1-YL)(2,2-DIOXIDO-2LA	C6H9N5O2	183	Aromatic
18	12.169	102705	0.66	Citral	C10H16O	152	Monoterpene
19	12.272	154032	0.98	2,6-Octadienal, 3,7-dimethyl-, (E)-	C10H16O	152	Monoterpene
20	13.123	41056	0.26	1,2,3-Propanetriol, 1-acetate	C5H10O4	134	Ester
21	13.291	22625	0.14	6-OCTEN-1-OL, 3,7-DIMETHYL-, ACETATE	C12H22O2	198	Ester
22	13.367	89063	0.57	6-OCTEN-1-OL, 3,7-DIMETHYL-,	C12H22O2	198	Ester

				ACETATE			
23	13.774	55622	0.36	2,6-OCTADIEN-1-OL, 3,7-	C12H20O2	196	Aromatic
				DIMETHYL-, ACETATE			
24	14.013	139378	0.89	(Z)- Ethyl cyclohexanepropionate	C11H20O2	184	Ester
25	14.476	219630	1.40	BICYCLO[7.2.0]UNDEC-4-ENE,	C15H24	204	Sesquiterpene
				4,11,11-TRIMETHYL-8-			
26	14.947	32340	0.21	1,3,6-OCTATRIENE, 3,7-	C15H24	204	Sesquiterpene
				DIMETHYL-, (E)-			
27	15.267	54599	0.35	1,6-CYCLODECADIENE, 1-	C10H16	136	Monoterpene
				METHYL-5-METHYLENE-8-			
28	15.452	94349	0.60	GERMACRENE B	C15H24	204	Sesquiterpene
29	15.521	184967	1.18	Phenol, 3,5-bis(1,1-dimethylethyl)-	C15H24	204	Sesquiterpene
20	15.064	22126	0.01		<u></u>	206	
30	15.964	33136	0.21	Benzene, 1,2,3-trimethoxy-5-(1-	C14H22O	206	Aromatic
				propenyl)-, (E)-			
31	16.165	32592	0.21	6,9-PENTADECADIEN-4-OL, 3-	C10H17Br	217	Monoterpene
				BROMO-, [S-[R*,S*-(Z,Z)			
32	16.380	25911	0.17	3H-PYRAZOLE, 4-(3,5-	C15H27BrO	302	Sesquiterpene
				DIHYDRO-3,3,5,5-TETRAMETH			


33	16.498	117381	0.75	DIETHYL PHTHALATE	C12H14O4	248	Ester
34	17.220	32121	0.21	Cyclohexane, bromo-	C6H11Br	163	Reactive
							Halide
35	19.153	29582	0.19	2,3,4-Trimethyl-1-pentanol	C8H18O	130	Sesquiterpene
36	19.224	670502	4.28	Neophytadiene	C20H38	278	Diterpene
37	19.478	164571	1.05	Neop	C20H38	278	Diterpene
				hyta			
				diene			
38	19.673	237105	1.51	3,7,11,15-Tetramethyl-2-	C20H40O	296	Diterpene
				hexadecen-1-ol			
39	20.521	118621	0.76	HEXADECANOIC ACID	C16H32O2	256	Carboxylic
40	20.800	92596	0.59	HEPTADECANOIC ACID,	C19H38O2	298	Ester
				ETHYL ESTER			
41	21.053	112208	0.72	1H-Naphtho[2,1-b]pyran, 3-	C20H34O	290	Ether
				ethenyldodecahydro-3,4a,7,7,10			
42	21.726	102498	0.65	PHOSPHONIC ACID,	C20H40O	296	Ester
				DIOCTADECYL ESTER			
44	22.669	22085	0.14	HEPTADECANOIC ACID,	C19H38O2	298	Ester
				ETHYL ESTER			
45	23.133	80762	0.52	1H-Naphtho[2,1-b]pyran-8(4aH)-	C20H32O2	304	Diterpene

				one, 3-ethenyldecahydro-3			
16	22,400	20456	0.10		COMONIOS	1.00	
46	23.489	30456	0.19	ETHANAMINE, 2,2'- OXYBIS[N,N-DIMETHYL-	C8H20N20	160	Ether
47	23.956	632535	4.04	Oxandrolone	C19H30O3	306	Ester
	20.000	002000		Oxandroione		200	
48	24.778	33041	0.21	Undec-10-ynoic acid, 4-methyl-2-	C17H30O2	266	Ester
40	24.770	55041	0.21	pentyl ester	01/115002	200	LSUI
49	24.976	213358	1.36	2,4-PENTADIEN-1-ONE, 4-	C15H22O	218	Aromatic
				METHYL-1-(2,3,3-TRIMETHY			
50	25.473	85464	0.55	1-(3-DIMETHYLAMINO-	C21H24N2O	400	Aromatic
				PROPYL)-3-HYDROXY-5-(4-M	4S		ketone
51	25.652	2092397	13.3	1,1,4A,7-TETRAMETHYL-	C15H26O	222	Sesquiterpene
			6	2,3,4,4A,5,6,7,8-OCTAHYDRO			
52	26.179	84642	0.54	1,2-BENZENEDICARBOXYLIC	C24H38O4	390	Ester
				ACID, DIISOOCTYL ES			
53	26.358	169567	1.08	1H-Benzocyclohepten-7-ol,	C15H26O	222	Sesquiterpene
				2,3,4,4a,5,6,7,8-octahydro-1,1,4			

26.562 26.637 26.980 27.058 27.656	2013324 707775 416149 216163 46428	12.8 6 4.52 2.66 1.38	1H-BENZOCYCLOHEPTEN-7- OL, 2,3,4,4A,5,6,7,8-OCTA 1H-BENZOCYCLOHEPTEN-7- OL, 2,3,4,4A,5,6,7,8-OCTA Thunbergol	C15H26O C15H26O C20H34O	222 222 222 290	Sesquiterpene Sesquiterpene
26.980 27.058	416149 216163	4.52 2.66	1H-BENZOCYCLOHEPTEN-7- OL, 2,3,4,4A,5,6,7,8-OCTA			Sesquiterpene
27.058	216163			C20H34O	200	
		1.38			290	Diterpenoid
27.656	46428	1	Thunbergol	C20H34O	290	Diterpenoid
	10120	0.30	Heneicosane	C21H44	296	Ether
28.259	112746	0.72	Methyl-3,4,6-tri-O-methyl-4-O- (methyl-2,3,4-tri-O-methyl.al	C20H36O12	468	Ether
21.786	158662	1.01	Squalene	C30H50	410	Terpene
32.967	119069	0.76	Fumaric acid, 4-heptyl tridecyl ester	C24H44O4	396	Ester
35.988	317001	2.02	RETINAL	C20H28O	284	Ketone
37.518	493067	3.15	3-METHYL-5-(2,6,6- TRIMETHYL-1-CYCLOHEXEN- 1-Y	C15H24O	220	Sesquiterpene
	21.786 32.967 35.988	21.786 158662 32.967 119069 35.988 317001	21.786 158662 1.01 32.967 119069 0.76 35.988 317001 2.02	21.786 158662 1.01 Squalene 22.967 119069 0.76 Fumaric acid, 4-heptyl tridecyl ester 35.988 317001 2.02 RETINAL 37.518 493067 3.15 3-METHYL-5-(2,6,6-TRIMETHYL-1-CYCLOHEXEN-	21.786 158662 1.01 Squalene C30H50 22.967 119069 0.76 Fumaric acid, 4-heptyl tridecyl ester C24H44O4 35.988 317001 2.02 RETINAL C20H28O 37.518 493067 3.15 3-METHYL-5-(2,6,6- TRIMETHYL-1-CYCLOHEXEN- C15H24O	1.11 1.11

64	41.176	192497	1.23	24-Noroleana-3,12-diene	C29H46	394	Aromatic
65	42.823	400704	2.56	LUP-20(29)-ENE-3,28-DIOL,	C30H50O2	442	Triterpene
				(3.BETA.)-			
66	46.597	198341	1.27	6-epi-shyobunol	C15H26O	222	Sesquiterpene
		1565731	100.				
		2	00				

HPLC Result

Figure 12: HPLC chromatogram of Blank

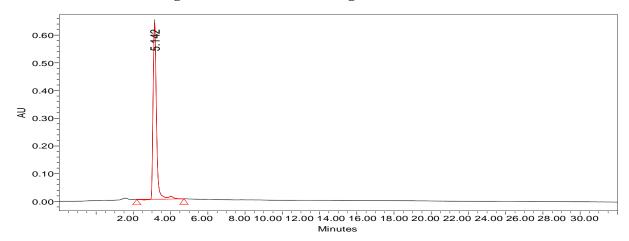
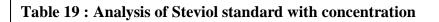



Figure 13 : HPLC chromatogram of standard of Steviol

Retention	Area	% Area	Height	% Height	Concentration
Time					
5.142	8122090	100.0	635642	100.0	0.2

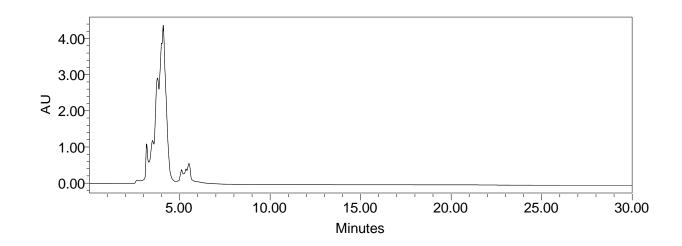


Figure 14 : HPLC chromatogram of Field grown (FG) extract

Retention	Area	% Area	Height	% Height	Concentration
Time					
2.372	343820	5.89	32597	11.19	0.5287

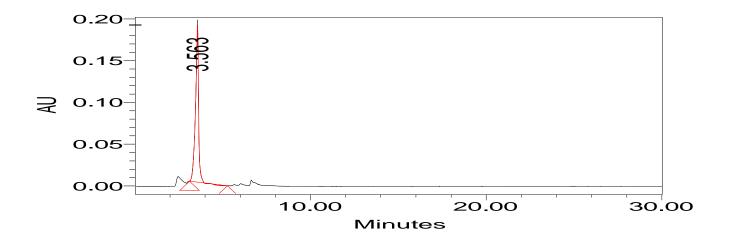


Figure 15 : HPLC chromatogram of In-vitro grown (IG) extract

 Table 21 : Analysis of In-vitro grown extract with concentration

Retention	Area	% Area	Height	% Height	Concentration
Time					
3.563	2334798	100.0	187052	100.0	3.5932

10: DISCUSSION

For the indirect organogenesis of *Stevia rebaudiana* two types of explants sources are used, i.e. internodal segment and the leaf segments were used as cultures that's been maintained at 25 ± 2^{0} C, with 70 % relative humidity. 16 h day/8 h night photoperiod at a photosynthetic photon flux density of 40 l mol m-2 s-1 provided by cool white fluorescent tubes (Philips, India) with sub culturing after every 3- 4 weeks in a plant tissue culture chamber. Best results were shown by leaf segments 100% of the segments were established in the MS media with different concentration of growth regulators as well as 95 % callus induction were reported.

GCMS carried out the chemical profiling of plants called Stevia rebaudiana produces, as its main secondary metabolite diterpene glycosides (steviol) which are natural sweeteners. As a sweetener it advantage that as a terpene it doesn't cause allergic reaction unlike most peptide sweeteners. The presence of chlorogenic acids and flavonoid glycosides in stevia leaves gives the plant additional health benefits, and it could as well affect its organoleptic properties. Identification of the compounds was achieved by using NSIT and Wiley Libraries and Comparisons of retention time.

Lipids and Volatile terpenes were determined by subjecting non polar solvent extracts of stevia leaves to GCMS. *Stevia rebaudiana* plants that mainly contained the sesquiterpenes – betacaryophyllene, trans beta farnesense, alpha humulene, delta cadinene, caryophyllene oxide, nerolidol and an unidentified alcohol. There were a few monoterpenes: linalool, terinen-4-oland alpha terpineol.[10] Main components were Caryophyllene oxide and Spathulenol, making up 43% of the overall content. Signal et al [11] studied the makeup of the essential oil of the aerial parts of five different Stevia rebaudiana genotypes from Brazil and Paraguay cultivated in the coastal region of Tuscany (Italy). In the investigated extract, the main components were diterpenes, of which the most abundant was austro inulin. The other labdanic

diterpene represented in a high level was phenol. Significant portions of the contents of nonpolar components belonged to hydrocarbons n-tetracosane and n-pentacosane.

So far no report is available where comparison of between metabolites profiling in in-vitro shoots and field grown shoots of Stevia was carried out. So this GCMS analysis gives us clear idea that these in-vitro shoots are good alternative of field grown shoots which could meet the industrial demand.

HPLC was carried out for the quantification of secondary metabolites in steviol glycoside. The concentration of the plant extract was correlated with the standard of the steviol. The sample was obtained from field grown plants and in-vitro grown plants of *Stevia rebaudiana*. The conditions provided to the In-vitro plants effect the biosynthesis and accumulation of steviol in the respective tissues of the plant as reported by D.Bergs et al[45]. The amount notified in field grown samples of stevia rebaudiana which is 0.004 mg/ml. In the estimated samples in the mentioned study carried out at JUIT plant tissue culture lab has 125 folds higher concentration than the reported samples.

11: CONCLUSION

The present study optimized the culture conditions for the production of tissue culture shoots of *Stevia* within two months duration which can be quality wise comparable to one year field grown plants. Through GC analysis, the study helped in exploring the metabolites concentration in field grown plants and In-vitro grown plants which confirms us that optimized culture conditions are beneficial for the metabolite accumulation and biosynthesis. HPLC was used for estimating the concentration of steviol glycosides, to help us to conclude the key marker compound in both field grown and in-vitro plant extract. This study has reported for the first time about the concentration present in Field grown plant extract was 0.5287 mg/ml and for In-vitro plant extract the concentration is 3.5932 mg/ml of steviol glycoside. Hence these culture conditions provided in the laboratory can be utilized for commercial purposes like bulk production of natural sweetener in food entities.

12: <u>REFERENCES</u>

[1] Swati Madan, Sayeed Ahmeed ,G.N.Singh ,Kanchan Kholi, Yatendra kumar ,Raman Singh Stevia rebaudiana (Bert.)Bertoni –A Review in Indian Journal of Natural Products and Resources , 2010, pp. 267-286.

[2] Raji Akintunde Abdullatef - Studies on Effects on Vegetative Traits in Stevia rebaudiana Bertoni(Compositae) in International Journal of Biology. 2012, pp. 146-153.

[3] Aleksandra Luwanska, Aleksandra Perz, Grazyna Mankowska, karolina Wielgus - Application of invitro stevia (Stevia rebaudiana Bertoni) cultures in Obtaining steviol glycosides rich material; Herba Polonica : Institue of Natural Fibres and Medicinal Plants. Vol. 61. 2015, pp. 50-63.

[4] Bharat P., Virendra Y., AmritaK. Love S. and Binny T., (2013) Stevia: Prospects As an emerging Natural Sweetner;International Journal of Pharmaceuticals and Chemical Sciences.

[5] WHO - Diabetes fact sheet N 312 August [online] available: https: //www.who.int/mediacentre/Factsheet/fs312/en/%20%20%. 2018

[6] Chan P, Xu DY, Liu JC, Chen YJ, Tomlinson B, Huang WP, Cheng JT - The effect of stevioside on blood pressure and plasma catecholamines in spontaneously hypertensive rats.; Elsevier. Life Sciences, Vol.63. Issue 19. 1998, pp. 1679-1684.

[7] Balandrin MJ, Klocke JA - Medicinal, aromatic and industrial materials from plants. University of Utah Research Park, Salt Lake City, USA.; Springer. Medicinal and Aromatic Plants, Vol.4. 1988

[8] Lailerd, N.,Saengsirisuwan, V.,Sloniger,J.A.,Toskulkao,C.,Henriksen, E.J : Effects of stevioside on glucose transport activity in insulin sensitive and insulin-resistant rat skeletal muscle.Elsevier. Metabolism, Vol.53. Issue.1. 2004, pp.101-107

[9] Pande, S. S. And P Gupta - Plant tissue culture of stevia rebaudiana (Bertoni): A review: Journal of Pharmacognosy and phytotherapy. Vol.5(1), 2013, pp. 26-33.

[10] Alan T - Stevia, glycemic index and hypertension. Journal of Phytomedicine. Vol.41. 2002, pp. 9-14.

[11] Anbazhagan M, Kalpana M, Rajendran R, Natarajan V, Dhanavel D - In vitro production of *Stevia rebaudiana* Bertoni. Emir. J. Food Agriculture. Vol.22(3) 2010, pp.216-222.

[12] FDA GRAS notification database stevia search in FDA GRAS Database Accessed on 9 September 2018

[13] Balwinder Singh, Jaspreet Singh., Amritpal Kaur - Agro-production, Processing and Utilization of *Stevia rebaudiana* as Natural Sweetner; Journal of Agricultural Engineering and Food Technology. Vol.1, Number 1; 2014, pp. 28-31.

[14] Brandle, Jim (2004) FAQ – Stevia, Nature's natural low caloric sweetner .Agriculture and Agri Food Canada. [Online] Available: http://res2.agr.ca/London/faq/stevia_e.htm.

[15] Ahmed MB, Salahin M, Karim R, Razvy MA, Hannan MM, Sultana R, Hossain M, Islam R
- An Efficient Method for in vitro Clonal Propagation of a Newly Introduced Sweetener Plant (*Stevia rebaudiana Bertoni*.) in Bangladesh. ; American-Eurasian Journal of Scientific Research Vol.2 (2). 2007, pp. 121-125.

[16] Ashok Kumar Yadav, S.Singh, D.Dhyani, P.S.Ahuja - A Review on the improvement of Stevia [*Stevia rebaudiana* (bertoni)]; Canadian Journal of Plant Scien ces. Vol.91. 2011, pp. 1-27.

[17] Ali Haji Mohammadi, Reza Zarghami, Ali Kashani, Hossen Heydri Sharifabad and Ghorban Nour Mohammadi - Effect of Different Hormonal Treatment *on Stevia rebaudiana* bertoni Micropropagation. ; Pakistan Journal of Biological Sciences. Vol. 20(9). 2017, pp. 457-464.

[**18**] Khalil SA, Zamir R & Ahmed N - Selection of suitable propagation method for consistent plantlet production in stevia rebaudiana bertoni. ; Saudi Journal of Biological Science. Vol. 21, Issue 6. 2014, pp. 566-573.

[**19**] Julia Naranjo, OsmanFernadez Betin, Aura Ines urea Trujillo,ricardo Callesjas Posada,Lucia Atehortua graces - Effect of Genotype on the in vitro Regeneration of *Stevia rebaudiana* Via Somatic Embryogenesis.; Acta Biologica Colombiana. Vol.21 (1). 2016, pp. 87-98.

[20] B.Ahmed, M.hossain, R.islam, A.Kumar saha, A.Mandal - A Review on NaturalSweetner Plant –Stevia having Medicinal and Commercial importance. Bangladesh online journal; Agronomy Gazette: A Voice of Croatian Agronomist Society. Vol. 73, Number 1-2. 2011, pp. 75-92.

[21] Gupta, P., S Sharmaand .S.saxena, (2010) callusing in *Stevia rebaudiana* (natural sweetner) for steviol glycoside production .international Journal of. Agricultural.Biological .Sciences,

[22] SivaramL, Mukundan U.(2003)IN vitro cultures Studies *on Stevia rebaudiana* vitro cell Dev Biol –plant 2003;39(5):520-523

[23] Tware, A.S, D.S Mukadam, A.M.Chavan and S.D. Taware, (2010)Comparative studies of in vitro and in vivo grown plants and callus of stevia rebaudiana (bertoni).Int.J.INtegr.Biol.9:10-15.

[24] Ahmed,M.B.,M. salahin,R karim, M.A. Razvy and M.M.Hannan et al (2007) An efficient method for in vitro clonal propagation of a newly introduced sweetner plant in bangladesg Ameurasian J.Sci Res 2:121-125

[25] RafiqM., M...U.Dahot, S.M.Mangrio, H.A Naqvi and I .A.Qarshi, (2007.)In vitro Clonal propagation and Biochemical analysis of field established stevia rebaudiana bertoni. pak J.Bot ., 39; 2467-2474

[26] Uddin,M.S., M>S>H. Chowdhury ,M.M.M.H khan M.B.Uddin , R.Ahmed and M.A.Baten ,(2006)In vitro propagation of stevia rebaudiana berti in Bangladesh ,Afr.J.BIotechnoly., 5:1238-1240

[27] ThiyagarajanM. Venkatachalam P. (2012) large scale in vitro propagation of stevia rebaudian a (berti) for commercial application: pharamaceutically important and antidiabetic medicinal herb.ind.crops pvt ltd 37(1); 111-117

[28] Hassanen SA, rasha MA, Khalil. (2013)Biotechnological Studies for improving of stevia (*Stevia rebaudiana* bertoni) in vitro plantlets. Middle East J Sci Res 2013, 14(1):93-106.

[29] Mishra P, singh R, kumar U, Prakash V (2010) *Stevia rebaudiana* – A magic sweetner.Global J Biotechnol Biochem.5 (1):62-74

[**30**] Munoz –concha D, Mayes S, Ribas G, Davey M.(2012) somatic embryogenesis from zygotic embryo and shoot tips of the chielea tree Gomortega Keule. Plant Cell tissue Organ Cult 2012; 109(1):123-130

[**31**] Y . tamura: s nakamura , H Fukui and M.Tabata (1986) Clonal propagation of *Stevia rebaudiana bertoni* by stem tip culture , plant cell reports3(1)183-185

[**32**] P jairkar, M.K. chandravanshi, N.P. Shukla and N.N Mahrota (2009)Mass production of a economically important Medicinal plants *Stevia rebaudiana* using in vitro propagation techniques, Journal of medicinal plants research 3(4), 266-270

[33] Javed S,NazS,Ilyas S & MAteen B,(2013) establishment of honey crop (*Stevia rebaudiana*)in hot semi-arid climate .J anim Plant Sci ,23 108

[34] DAS A, Gantait & Mateen B, (2012) Micropropagation of an elite medicinal plant *Stevia rebaudiana bert*. Int J AgricRes, 5 (40)

[**35**] Singh P , Diwedi P & Atri N, In vitro shoot regeneration of *Stevia rebaudiana* through callus and nodal segments INt J Agric Environ Biotechnol,5(2012)101

[**36**] Aleksandra Luwanska, Aleksandra perz ,Grazyana Mankowska, Karolina Wielgus(2015) Application of In vitro stevia (*Stevia rebudiana Bertoni*) cultures in obtaining steviol glycoside rich material.

[**37**] S. S. Pande* and Priyanka Gupta (2013) Plant tissue culture of *Stevia rebaudiana (Bertoni)*: A review Journal of pharmacognsy and phytotherapy.

[**38**] Ashok K Yadav, S.singh, D.Dhyani, P.S Ahuja (2010) A review on the improvement of stevia [*Stevia rebudiana (bertoni*)] ;Herba polonica

[39] Sweety Mujumdar, Md Mahbubur Rahman (2016) Micropropagation of *Stevia rebaudiana* Bertoni. Through direct and indirect organogenesis; journal of innovations in pharmaceuticals and Biological Sciences.

[40] SD and Rao GP (2005) Stevia: the herbal sugar of the 21st centuary, sugar techno.7:17-24

[**41**] Med. Aromat. Plant 4:1-36.Brandle JE, Rosa N (1992). Heritability for yield, leaf: stem ratio and stevioside content estimated from landrace cultivar of *Stevia rebaudiana*. Can. J. Plant Sci. 72:1263-1266.

[42] Kwang Jinn Lee, Na-Young Song, You Chang Oh, Won-Kyung Cho (2014) Isolation and Bioactivity Analysis of Ethyl Acetate Extract from Acer tegmentosum Using In Vitro Assay and On-Line Screening HPLC-ABTS+ System Journal of Analytical Methods in Chemistry

[43] H.Sood, R.S.Chauhan.(2010) Development of a low cost micro propagation technology for an Endangered medicinal herb (Picrorhiza Kurroa) of North western Himalayas", Journal of Plant sciences.

[44] D.Bergs, B.Burghoff, M.Joehnck, G.Martin and G.Schembecker, "Fast and Isocratic HPLC-methid for steviol gylcosides analysis from *Stevia rebaudiana* leaves", Journal of Consumer Protection and Food Safety; vol:7, I:2, p.No 147-154 (2012).

[45] Food analysis by HPLC; Leo M.L. Nollet