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ABSTRACT 
 

Lytic Polysaccharide Monooxygenases (LPMOs) found in fungi, bacteria, and viruses are redox 

enzymes that utilize copper to cleave glycosidic bonds in the recalcitrant crystalline form of 

polysaccharides. Cellulose and chitin are currently classified by CAZy under AA9, AA10, AA11, 

and AA13 families. LPMO’s unusually “flat” and “rigid” active site framework for its catalytic 

activity has been the focus since their discovery in the early 2000s. LPMOs’ molecular 

architecture to bind to cellulose and chitin (and other polymers) is most likely evolved due to the 

presence of a diverse substrate landscape. Here, using structural bioinformatics approach coupled 

with Elastic Network Modeling (ENM), we compare and contrast the structurally similar yet 

sequentially and functionally diverse polysaccharide monooxygenases. The structural dynamics 

studies of AA9, AA10, AA11, and AA13 families indicate that the “rigid” active site is highly 

flexible than previously hypothesized. Also, the loops on the substrate binding side are most 

mobile indicating their role in substrate binding. However, there are crucial dynamical and 

physicochemical differences between the four families that are responsible for their substrate 

specificity. The study also predicts key residues that are possibly responsible for substrate 

specificity and LPMO’s function, in other words towards its allostery. 

 

 

 

 

 

  



 
 

INTRODUCTION 

General Background 

Cellulose, the most abundant polymer found in plant biomass, presents itself as a unique and 

promising solution for solving the energy needs of the human race [1]. While, it is also the most 

recalcitrant polymer, nature has found numerous ways to break it down via cellulases, a broad 

class of enzymes that degrade cellulose [2]. 

Cellulose, a complex carbohydrate, or polysaccharide, consisting of 3,000 or more glucose units 

is the basic structural component of plant cell walls. Cellulose accounts for about 33%of all 

vegetable matter (90% of cotton and 50% of wood are cellulose) and is the most abundant of all 

naturally occurring organic compounds [3].The main ingredient of exoskeletons of arthropods is 

chitin and it is also the main component of the cell wall of fungi. Therefore, from beetles, 

butterflies and lobsters to spiders, crabs, and shrimp have chitin in their protective armors. 

Lytic Polysaccharide Monooxygenases (LPMOs) are a recently discovered class of enzymes 

capable of oxidizing recalcitrant polysaccharides, such as cellulose and chitin. LPMOs found in 

fungi, bacteria, and viruses are redox enzymes that utilize copper to cleave glycosidic bonds in 

the recalcitrant crystalline form of polysaccharides [4]. They are considered to be important 

contributors for the conversion of polymers, where they synergistically act with other enzymes 

for the breakdown of recalcitrant polysaccharides, such as cellulose and chitin [5]. LPMOs have 

a planar binding site because of which their initial discovery in Serratia marcesences made them 

to be classified as chitin binding proteins [6]. However, in recent years LPMOs have been 

identified in various bacteria and other organisms including fungi and viruses. Previously, these 

enzymes were identified as glycoside hydrolase family 61 (GH61) and carbohydrate binding 

module family 33 (CBM33) and now are re-classified as AA9, AA10, AA11, AA13 [7]. As of 

writing this dissertation AA9 consist of 345 sequences, AA10 has 2558 sequences, AA11 has 68 

sequences and AA13 has 16 sequences. 

The core structure of LPMOs is an immunoglobulin like distorted β-sandwich fold [8,9]. It 

consists of antiparallel β-strands, which are connected by loops with different number of α-

helix insertions. They have a flat surface which consists of a divalent copper centre that is 



 
 

 

Figure 1: Schematic representation of LPMO’s and other cellulolytic enzyme’s synergistic 

activity on breaking down the crystalline cellulose. Image adapted from [12]. 

 

 

  



 
 

surrounded by three nitrogens in a T-shaped geometry [9]. The Imidazole side chain and the main 

chain amino group of the N terminal histidine contribute two of its nitrogens and the second 

conserved histidine contributes the third nitrogen. Copper ions reduce dioxygen, which requires 

electrons from an external electron donor, such as a reducing agent that is either provided by the 

substrate or by a cosecreted enzyme called cellobiose dehydrogenase [10]. Figure1 depicts the 

schematic representation of LPMO’s synergism with other enzymes.   

LPMO’s unusually “flat” and “rigid” active site framework for its catalytic activity has been the 

focus since their discovery in the early 2000s [11]. LPMOs’ molecular architecture to bind to 

cellulose and chitin (and other polymers) is most likely evolved due to the presence of a diverse 

substrate landscape [12]. 

Vaaje-Kolstad et al gave the first insight to the different mechanisms of LPMOs by using 

isotropically labeled dioxygen for the overall confirmation of monooxygenases activity on chitin 

[13]. Hemsworth et al and Beeson et al used β-amylase and phosphoric acid swollen cellulose to 

reveal action of different AA families, respectively [12, 13]. As LPMOs are reducing enzymes 

i.e. their main purpose is to abstract oxygen atoms from the substrate. In the first step, it removes 

the hydrogen atom (bound to either C1 or C4) thereby creating an electron imbalance in the 

glycosidic bond, which leads to release of oxygen and breaking of the glycosidic bond. There are 

majorly two type of reactions based on the hydrogen abstraction at the different carbon atom 

positions (either C1 or C4) followed by glycocidic (C-O) bond cleavage, where enzymes 

specifically attacking C1 are called as Type 1 LPMOs and enzymes specifically attacking C4 are 

called as Type 2 LPMOs. If some enzymes do not have a specifically to either C1 or C4, they are 

termed as type 3 LPMOs [14]. 

As shown in the Figure 2 if the hydrogen abstraction is from C1 site it is termed as Type 1 reaction 

and if the hydrogen is abstracted from C4 carbon atom it is called as Type 2 reaction, and if the 

enzyme abstracts oxygen from both the sites or is not specific of where the abstraction is being 

done, then it is called as Type 3 reaction. 

  



 
 

 

Figure 2: Three types of LPMOs classified based on the site of attack. Image adapted from 

[12]. 



 
 

HYPOTHESIS 

In this study we hypothesize the following:  

• As it has been observed, that all the four families of LPMOs have an unusually flat or planar 

surface to bind with crystalline polymers. It has been suggested that there is some degree of 

rigidity associated with the planar surface. We hypothesize that the planar surface is not rigid 

and has its inherent structural dynamics to bind optimally to the crystalline surface. In other 

words the question asked is whether the rigid planar substrate binding surface has any 

flexibility and can it be quantified. 

• In terms of evolution, LPMOs are thought to have evolved in a divergent fashion, where the 

active site residues, specifically the three histidine residues bound to the divalent metal ion, 

are conserved (sequence and structure) across the four families. We hypothesize that there 

are other residues that have possibly coevolved leading to structural and functional 

conservation. In other words, we think that there are residues that play a role in allostery of 

LPMOs. In this study, we have attempted using statistical methods to identify some of the 

residues that influence allostery.  

• While there are four families of LPMOs and currently 46 3D structures available, an 

exhaustive survey of physicochemical properties has not been conducted. Book et al in 2014 

[9] and Mosses et al in 2016 [10] have shown that electrostatics and aromatic residue’s 

distribution, respectively in LPMOs have a direct relation to substrate interaction. However, 

there are other physicochemical properties which have not been analyzed. Using structural 

bioinformatics approach we attempt to identify other physicochemical properties that may 

shed light on LPMO’s structure and function.  

  



 
 

MATERIALS AND METHODS 

 

Data Retrieval: 

CAZy: 

It is a database of Carbohydrate Active enzymes (CAZy) i.e. information about the enzymes 

involved in the synthesis, transport and metabolism of carbohydrates[17].The database mainly 

includes glycoside hydrolases (assist in hydrolysis of glycosidic bonds in complex sugars), 

glycosyl transferases (catalyse the transfer of saccharide moieties from an activated nucleotide 

sugar to a nucleophilic glycosyl acceptor molecule), polysaccharide lyases (enzyme that catalyses 

the breaking of polysaccharide),carbohydrate esterase (enzymes that split esters into an acid and 

an alcohol) and carbohydrate binding families. As LPMOs are also carbohydrate active enzymes, 

it also comes under CAZy and we have used this database to retrieve the information of the four 



 
 

different families of LPMOs i.e. AA9, AA10, AA11, AA13, which are tabulated in Table 1-4 

[16]. 

Table 1: AA9 structures that were used in this study. 

PDB 

ID 

Uniprot 

Accession 

Organism AA9 PMO 

type 

Citation 

2vtc Q7Z9M7 Trichoderma reesei QM6A ND [17] 

2yet  Thermoascus aurantiacus 3 [17] 

3eii  Thielavia terrestris NRRL 8126 1 [18]  

3eja  Thielavia terrestris NRRL 8126 1 [16] 

3zud  Thermoascus aurantiacus 3 [16] 

4b5q  Phanerochaete chrysosporium K-3 1 [10] 

4d7u Q7SHI8 Neurospora crassa OR74A 2 [19] 

4d7v  Neurospora crassa OR74A 2 [20] 

4eir  Neurospora crassa OR74A 1 [20]. 

4eis  Neurospora crassa OR74A 3 [20] 

4qi8 Q1K4Q1,

Q873G1 

Neurospora crassa OR74A 1 [21] 

5acf  Lentinus similis 2 [21] 

5acg  Lentinus similis 2 [22] 

5ach  Lentinus similis 2 [22] 

5aci  Lentinus similis 2 [22] 

5acj  Lentinus similis 2 [22] 

 

Table 2: AA10 structures that were used in this study. 

PDB 

ID 

Uniprot 

Accession 

Organism AA10 PMO 

type 

Citation 

4x29  Unidentified entomopoxvirus/Melolontha 

melolontha entomopoxvirus(MMEV) 

ND [22] 

4x27  Unidentified entomopoxvirus/Melolontha 

melolontha entomopoxvirus(MMEV) 

ND [22] 

4ow5 Q83389 Unidentified entomopoxvirus/Melolontha 

melolontha entomopoxvirus(MMEV) 

ND [23] 

4yn2  Unidentified entomopoxvirus ND [23] 

4yn1  Anomala cuprea entomopoxvirus CV6M ND [22] 

2xwx Q9KLDS Vibrio cholera O1 biovar EI Tor  

str.N16961 

ND [23] 

4gbo Q47QG3 Thermobifida fusca YX 3 [23] 

5ftz  Streptomyces lividans 1326 3 [24] 

4oy7 Q9RJY2 Streptomyces coelicolor A3(2) 1 [25] 

4oy8  Streptomyces coelicolor A3(2) 3 [26] 

4oy6 Q9RJC1 Streptomyces coelicolor A3(2) 3 [27] 

2lhs  Serratia marcescens BJL200 1 

 

[27] 



 
 

2ben  Serratia marcescens BJL200 1 [27] 

2bem 083009 Serratia marcescens BJL200 1 [28] 

5aa7 C7R4I0 Jonesia denitrificans DSM 20603 1 [29] 

4alt  Enterococcus faecalls v583 1 [29] 

4als  Enterococcus faecalls v583 1 [30] 

4alr  Enterococcus faecalls v583 1 [31] 

4alq  Enterococcus faecalls v583 1 [31] 

4alc  Enterococcus faecalls v583 1 [31] 

4ale  Enterococcus faecalls v583 1 [31]  

4a02 Q838S1 Enterococcus faecalls v583 1 [31] 

5fjq B3PJ79 Cellvibrio japonicas Ueda107 1 [31] 

3uam Q3JY22 Burkholderia pseudomallei ND [32] 

2yoy  Bacillus amyloliquefaciens DSM7 ND [27] 

2yox  Bacillus amyloliquefaciens DSM7 ND [21] 

2yow E1UUV3 Bacillus amyloliquefaciens DSM7 ND [33] 

5IJU Q9F9Q5 Bacillus amyloliquefacens ALKO 2718 ND [33] 

 

Table 3: AA11 structures that were used in this study. 

PDB 

ID 

Uniprot 

Accession  

Organism AA11 PMO 

type 

Citation 

4mah  Aspergillus oryzae RIB40 1 [33] 

4mai  Aspergillus oryzae RIB40 1 [33] 

 

Table 4: AA13 that were used in this study. 

PDB 

ID 

Uniprot 

Accession  

Organism AA13 PMO 

type 

Citation 

4opb Q2U8Y3 Aspergillus oryzae RIB40 1 [33] 



 
 

Protein Data Bank (PDB): 

The respective LPMO structures we have downloaded from Protein Data Bank [34]. 

 

ProDy: 

It is an open-source and free Python package [5]. It is used for protein structural dynamics 

analysis. It is suitable for development of various applications and for the interactive sessions. It 

performs structural and dynamics analysis anisotropic network model (ANM) and gaussian 

network model (GNM) were performed using ProDy. We generated different cross correlation 

maps and different output files using ProDy which were further visualized in VMD. 

Normal mode analysis (NMA) is used for the representation of both the fast and slowest modes 

of a highly complex wired structure, such as a protein or any biomolecules [35]. Previously, such 

simulation was performed by Molecular Dynamics (MD) simulation. Due to high computation 

cost and time involved in a MD simulation, the coarse grained methods are getting more popular. 

While, the MD simulations focus more on exact forces between the atoms and then solve the 

equations in an appropriate manner, NMA approximate the equation for motion of the molecule 

which can be solved in a more exact manner. NMA can be simply described as study of harmonic 

potential wells by using analytical means and within a short time can provide the insight to more 

important dynamics of protein structures [36]. 

 Tirion’s “single parameter model” for NMA made the energy potential more simplified which 

explained NMA with uniform harmonic motion [37]. Later, Bahar and co-workers produced a 

much simpler version of NMA i.e. Elastic Network Model (ENM). Gaussian Network Model 

(GNM) was the important part of this model which was developed to study the contribution of 

topological constraints on the collective protein dynamics [38]. In GNM the Cα carbon residues 

were represents as nodes in a polymer network connected by springs, undergoing Gaussian 

distributed fluctuations.  According to GNM, these fluctuations were assumed to be influenced 

by neighbouring atoms and their influence can be measured by the local packing density of 

residues around every single Cα residue [39]. In this, the contacts are represented as springs with 

uniform force constant which has been established by fitting the expression data. In general, the 

springs between the nodes (Cα residue) are connected if they are within 7Å distance [39]. 



 
 

Anisotropic Network Model (ANM) is a modification of GNM, the only difference is that the 

distance in GNM is in the form of vectors whereas the distance in ANM is in scalar form and the 

product of these scalar values results in anisotropic fluctuations by taking the second derivative 

of the potentials with respect to the displacement along any axis in a 3D space. ANM is better 

than GNM in terms of providing dimensionality, and also gives rise to excessively high 

fluctuations because GNM is penalized against any inter-residue fluctuation [40].  Now, as the 

accuracy level of ANM reduces the distance range for residues influencing motions increases and 

is often taken as 13.0Å. Despite of this less accuracy in local relative degrees of flexibility ANM 

is superior for accessing directional mechanism of motion as it has a 3𝑁×3𝑁 Kirchhoff’s matrix 

whereas GNM has 𝑁×𝑁 matrix [41]. 

Structuprint: 

Structuprint is a software tool for two-dimensional representation of protein structures' surfaces. It is 

capable of generating animations or still images. It’s free standalone software which is fully 

automated. The tool comes with a default database of 328 physico-chemical descriptors, which can 

be extended or substituted by user-provided ones [6]. Out of the 328 descriptors, we selected based 

on its ability to distinguish similar structures. 

• ASA- Accessible surface area, first described by Lee & Richards in 1971, is the surface area 

of the biomolecules that is accessible to the solvent. Its measurement is usually described in 

units of square angstrom i.e. standard unit of measurement in microbiology. It uses the rolling 

ball algorithm for the purpose of calculations. This algorithm uses a sphere (of solvent) of a 

particular radius to 'probe' the surface of the molecule. Water accessible surface area 

calculated using a radius of 1.4 ̊ A for the water molecule. A polyhedral representation is used 

for each atom in calculating the surface area. 

• E_ ele- Electrostatic component of the potential energy. It is a potential energy measured in 

joules resulting from conservative Coulomb forces. An object may have electric potential 

energy due to  two key elements: its relative position to other electrically charged objects and 

its own electric charge .The term "electric potential energy" is used to describe the potential 

energy in systems with time variant electric fields while the term "electrostatic potential 

energy" is used to describe the potential energy in systems with time variant electric fields  



 
 

• E_sol - Solvation energy is the amount of energy linked with dissolving a solute in a solvent. 

It has two processes endothermic and exothermic i.e. having positive and negative numbers 

respectively. The energy of solvation is sometimes found by comparing the hydration energy 

i.e. the amount of energy released when the solute particles bond with the solvent and the 

lattice energy i.e. the amount of energy needed to break the bonds of the solute. 

• E- Potential energy. It is a potential energy measured in joules resulting from conservative 

Coulomb forces. An object may have electric potential energy due to two key elements: its 

relative position to other electrically charged objects and its own electric charge. The term 

"electric potential energy" is used to describe the potential energy in systems with time variant 

electric fields while the term "electrostatic potential energy" is used to describe the potential 

energy in systems with time variant electric fields  

• FCharge- Total charge of the molecule (sum of formal charges) is the charge assigned to 

an atom in a molecule. It assumes a chemical bond where electrons are shared equally 

between atoms, regardless of relative electronegativity. The formal charge of any atom in a 

molecule can be calculated by the following equation 

FC=V-N 
𝐵

2
 

where, v= number of valence electrons of the neutral atom isolation. 

N=number of nonbonding valence electrons on this atom in the molecule. 

B=total number of electrons shared in bonds with other atoms in molecule. 

• Glob- Globularity or inverse condition number (smallest eigenvalue divided by the largest 

eigenvalue) of the covariance matrix of atomic coordinates. A value of 1 indicates a perfect 

sphere while a value of 0 indicates a two- or one-dimensional object. 

• KierFlex-Kier molecular flexibility index: (KierA1)(KierA2) it is the measure of molecular 

flexibility which is derived from the Kier alpha modified shape  descriptors   κα
1     and    κα

2 : 

 

                      1k and 2k - Kier shape indices 



 
 

               NSA - the number of non-hydrogen atom in the molecule 

• VSA _ FHYD- Fractional hydrophobic van der Waals surface area. This is the sum of the vi 

such that |qi| is less than or equal to 0.2 divided by the total surface area. The vi are calculated 

using a connection table approximation. 

• TPSA- Polar surface area calculated using group contributions to approximate the polar 

surface area from connection table information only.  

• VSA -Van der Waals surface area. A polyhedral representation is used for each atom in 

calculating the surface area 

• vsurf R- Surface  rugosity. is a measure of small-scale variations of amplitude in the height 

of a surface. 

Statistical Coupling Analysis: 

Coevolved residues 

The correlated mutations refer to the pairs of position with clear pattern of co variation i.e. in any 

particular multiple sequence alignment. The mutation of one residue will be compensated along 

the evolution by the mutation of a neighboring residue. The protein structure can also be predicted 

by the detection of correlated mutations in multiple sequence alignment.  

The method to detect correlated mutations was a weak predictor of proximity between protein 

structures as described by Göbel et al in 1994. Later, the method was improved by combining it 

with other sequence based features like conservation and hydrophobicity. Though, these contacts 

are not very accurate but are very useful in filtering structural models and generating structures 

for ab initio simulation [42]. 

Allostery 

The term allostery can be explained by splitting it in its components, first is “allos” that means 

others and second is “stereos” that refers to solid or any three dimensional structure. Allostery is 

generally defined as any change in the conformation or shape of the molecule. According to this 

definition of allostery there are two central dogmas to it. First, that in the absence of any ligand 

there exist two conformations, which are influenced by the ligand’s equilibrium constant. Second, 

that allostery always means change of shape. As allostery mainly focuses on structure of the 



 
 

molecule and altered by conformational changes but it has seen that dynamic fluctuations also 

play a huge role in allostery. So, currently allostery is considered as thermodynamic phenomena 

and it may or may not be a result of any conformational change and in particular the absence of 

marked shape changes does not imply any allostery.  

The current definition of allostery is broader than the earlier one. This definition of allostery 

classifies the allosteric proteins into three types, Type I: consists of the proteins that the allosteric 

changes are governed by entropy, Type II:  includes the allosteric proteins whose allostery is 

governed by enthalpy as well as entropy, Type III: includes allosteric proteins that show allostery 

strongly influenced by enthalpy only. It has been seen that under suitable environment conditions 

the increase or decrease in catalytic activities controls the proteins and ligand transport and also 

coordinates enzymatic and signaling pathways. This current view of allostery has vast 

implications in identifying new allosteric switches and drug targets [44]. 

Statistical Coupling analysis (SCA) 

It is a method for the analysis of coevolution of amino acids explaining the structural basis for 

allostery. The basic concept of SCA is that if there are some relevant relationships between two 

amino acids, then they must have coevolved irrespective of the mechanism of their evolution. 

SCA contributes to two main findings about proteins: 1) most of the amino acids in protein 

molecules have evolved almost independently, showing a very weak coupling among them, 2) a 

small amount of amino acids have strongly coevolved and termed as sectors. These sectors are 

associated with conserved functional properties like allosteric regulation, catalysis, signal 

transduction etc. In a single protein more than single sector can also occur, which shows that the 

different phenotypes have evolved independently. Hence, sectors represent the fundamental units 

that have conserved structure. These proteins display the capacity for evolving novel allosteric 

regulation and communication. Sectors wire the active site to the multiple distant surface 

positions, representing “hot-spots” for the emergence of allosteric control in proteins [44].  

In case of LPMOs the active site residues specifically histidines are conserved across the four 

families. We have used SCA to see whether, there are other residues (apart from the active site) 

that have possibly coevolved leading to structural and functional conservation? If so, are there 

residues that play a role in allostery of LPMOs? 



 
 

In SCA, we consider four positions as i, j, k, l of a hypothetical protein and corresponding multiple 

sequence alignment of the protein family having sufficiently large and diverse protein molecules. 

From the analysis we can easily derive two things. First, if out of the four considered sites one 

site, i neither contributes to the folding nor to the function of the protein, then the corresponding 

amino acid frequencies in the MSA should be unconstrained so should use their mean values in 

all proteins. On the other hand, if sites j, k, and l are making some contribution, these sites should 

have a deviated distribution of amino acids from the mean values and the amount of their 

deviation will provide a quantitative measure of the evolutionary conservation. Second, if two 

sites, i and j are functionally related to each other then, they must exhibit mutual evolutionary 

constraint between these sites, which means that the distribution of residues at site j should 

depend on those at site i [45]. 

In SCA, first we perform multiple sequence alignment of the protein sequences from AA10 

family (2558 sequences) with an identity cut-off of 90%, which resulted in 143 sequences. Then, 

we converted the MSA file in .free format and loaded it into the MATLAB. The .free format was 

checked to include the sequence corresponding to Serratia marcescens’ AA10 structure (pdb id: 

2bem). To ensure better results we truncated off the residues with gap frequency greater than 

20% first, then we look at the uniform or homogeneous distribution of residues among proteins. 

Then we do the sector identification, calculating the correlations among the top eigenmodes of 

SCA position correlation matrix. If the sequences are highly clustered then, the sector 

identification can also be guided by the patterns divergence. Then, we compute the similarity 

matrix using sim_seq(algn) function generating a correlation matrix and a histogram inferring the 

same results. We can also generate the matrix of covariance, it will predict the same information 

but scaling of both will be different. After that, we measure the degree of positional conservation 

by an information theoretic quantity called as Global Kullback-Lieber relative entropy which can 

be given as𝐷(𝑓(𝑎, 𝑖)||𝑞(𝑎)), capturing the divergence among the observed frequency of 

sequence amino acids and frequency given in non-redundant database. The function cons.m 

calculates this frequency and gives us a 20×𝑁 position matrix of relative entropies. Then we 

perform the SCA which gives us positional correlation matrix and a sequence correlation matrix 

and shows the similarity among the AA10 family, showing that the proteins of AA10 family are 

biased towards more conserved positions. After completing the SCA calculations and generating 

different variables we do spectral decomposition, in which we analyze the Cp matrix generated 



 
 

in SCA. This analysis is carried out to check the existence of non-trivial correlations between 

positions indicates that treating the amino acids as the basic units of proteins is not the most 

informative representation. We should rather use reparameterization of the protein in which the 

units of proteins are the collective groups of amino acids that coevolving as per the positional 

correlation matrix and are called "sectors”. In this reparameterization, first we do the eigenvalue 

decomposition which mathematically transforms a current representation of a system in which 

variables are correlated into new variables having the property of being uncorrelated to each 

other, and are more informative. 

The original matrix is written as a product of three matrices: X=VDV', where D is a diagonal 

matrix of eigenvalues and columns of V contain the associated eigenvectors. For the SCA 

positional correlation matrix, each eigenvector represents a weighted combination of sequence 

positions i.e. an eigenmode and the associated eigenvalue indicates the statistical importance of 

that mode. Then, we see that how many of the derived eigenvalues are statistically significant. 

To ensure this, we compare the spectral decomposition for the actual alignment with that for 

many instances of randomized alignments, where the amino acids are scrambled independently 

down each column.  This manipulation removes all functional correlations and retains only the 

spurious correlations that are possible due to finite sampling.  The function spectral_decomp.m 

carries out this calculation and returns a structure with the eigenvalue decomposition of actual 

and randomized alignments and makes a plot of the eigenspectra. Then we mapped the retrieved 

sectors to the structure of Serratia marcescens’ (pdb id: 2bem) in PyMOL to understand the 

spatial arrangement of the residues predicted from SCA. 



 
 

RESULTS AND DISCUSSION 

Multiple structure alignment 

We have superposed structures for the three families of LPMO in PyMOL software using the 

command “align all” and calculated RMSD the values. It is the measure of the average distance 

between the atoms. RMSD is inversely proportional to the structural similarity of the proteins 

i.e., greater the RMSD less similar the structures are vice versa. 

Table 5: Root Mean Square Deviation values of structural superposition. (a) For AA9 the 

reference structure is 2bem, (b)For AA10 the reference structure is 2bem (c) For AA11 the 

reference structure is 4MAH. 

 

 

 

  

PDB ID RMSD 

2YET 0.546 

3EII 1.024 

3EJA 0.975 

3ZUD 0.584 

4B5Q 1.031 

4D7U 0.791 

4D7V 0.812 

4EIR 0.829 

4EIS 0.765 

4QI8 1.010 

5ACF 1.065 

5ACG 1.057 

5ACH 1.014 

5ACI 0.993 

5ACJ 1.043 

PDB ID RMSD 

2BEN 0.303 

2LHS 1.273 

2XWX 0.491 

2YOW 0.445 

2YOX 0.474 

2YOY 0.440 

3UAM 0.700 

4A02 0.880 

4ALC 0.673 

4ALE 0.688 

4ALQ 0.686 

4ALR 0.686 

4ALS 0.688 

4ALT 0.674 

4GBO 1.636 

4OW5 16.995 

4OY6 4.726 

4OY7 1.859 

4OY8 4.778 

4X27 16.990 

4X29 16.973 

4YN1 7.545 

4YN2 7.482 

5AA7 0.737 

5FJQ 0.837 

5FTZ 0.796 

PDB ID RMSD 

4MAI 0.083 



 
 

 

Figure 3: Structural superimposition of (a) AA9, (b) AA10, and (c) AA11 structures.  

  



 
 

Elastic Network Models 

Gaussian Network Model (GNM) is a model that stores the normal mode data describing the 

intrinsic dynamics of the protein structure and Kirchoff matrix that will be obtained. It is used for 

the observation of global dynamic behavior. The parameter cut off distance is generally used to 

build the network to determine whether the residues are in contact or not. The fluctuations 

obtained from GNM are illustrated in a single dimension space (N).The graph retrieved has node 

index on the x-axis and B-factor values on the y-axis. The information retrieved from the graph 

is the correlation of the theoretical and experimental B-factors. 

Table 6: GNM B-factor correlation values for (a)AA9, (b)AA10, (c)AA11, and (d)AA13 

PDB ID B-FACTOR 

2VTC 0.68 

2YET 0.67 

3EII 0.57 

3EJA 0.49 

3ZUD 0.70 

4B59 0.83 

4D7U 0.42 

4D7V 0.35 

4EIR 0.75 

4EIS 0.57 

4QI8 0.64 

5ACF 0.61 

5ACG 0.54 

5ACH 0.45 

5ACI 0.63 

5ACJ 0.59 

(a) 

 

 

 

PDB ID B-FACTOR 

2BEM 0.63 

2BEN 0.27 

2LHS NAN 

2XWX 0.32 

2YOY 0.40 

2YOW 0.40 

2YOX 0.28 

3UAM 0.67 

4A02 0.32 



 
 

4ALC 0.52 

4ALE 0.52 

4ALQ 0.52 

4ALR 0.53 

4ALS 0.52 

4ALT 0.52 

4GBO 0.36 

4OW5 0.70 

4OY6 0.62 

4OY7 0.70 

4OY8 0.60 

4X27 0.67 

4X29 0.62 

4YN1 0.57 

4YN2 0.64 

5AA7 0.57 

5FJQ 0.52 

5FTZ 0.50 

5IJU 0.55 

(b) 

 

 

 

 

(c) 

 

PDB ID B-FACTOR 

4OPB 0.52 

(d) 

Kundu et al have showed that GNM models are more reliable if they have a B-factor correlation 

of theoretical vs. experimental of 0.58 [41]. From the GNM results, we identified nine structures 

in AA9 (pdb id: 2vtc, 2yet, 3zud, 4b5q, 4eir, 4cib, 5acf, 5aci, and 5acj) and 9 structures of AA10 

(pdb id: 2bem, 3uam, 4ow5, 4oy6, 4oy7, 4oy8, 4x29, 4yn2, and 4yn1) which has a B-factor 

correlation value of 0.58 or above. In the case of AA11 there is only one structure (pdb id: 4mah). 

However, the structure in AA13 had a β-factor correlation of 0.52. The selected 19 structures 

were analyzed filter by building ANM models. 

Anisotropic Network Model (ANM) is a model for normal mode analysis of proteins. It is used 

for exploring the relation between function and dynamics for many proteins. It is essentially an 

ENM for the Cα atoms with a step function for the dependence of the force constants on the inter-

particle distance. To explain the internal motions of a protein subject to a harmonic potential it 

PDB ID B - FACTOR 

4MAH 0.72 

4MAI 0.49 



 
 

represents the biological macromolecule as an elastic mass-and-spring network ANM is an 

extension of the GNM to three coordinates per atom, thus accounting for directionality. ANM 

calculates the direction of fluctuations and magnitudes in 3N space. It provides the directional 

motions collectively that are useful in a protein both functionally and biologically. The graphical 

result obtained from ANM is different for each structure which represents residues on the x-axis 

and y –axis which illustrates the red regions as positive correlation and blue region shows 

negative cross correlation. The correlation values within each mode ranges from −1.0 to 1.0 

corresponding to positive and negative correlation, respectively. Figure 4 shows the cross 

correlation information of nine AA9 structures. These 9 structures were shortlisted as the GNM 

B-factor correlation had a value of 0.58 or higher, as suggested by Kundu et al [41]. Figure 5 

shows the cross correlation information of nine AA10 structures. These 9 structures were 

shortlisted on the basis of GNM B-factor correlation, where they had a value of 0.58 or higher. 

Figure 6 shows the cross correlation map of 4mah as it is the side structure but had a higher B-

factor cross correlation.  

Based on the ANM results depicted for 9 AA9 structures (Figure 7), in the case of 2yet and 2vtc 

the planar surface shows flexibility at the loop regions where the tyrosine residues are present 

that aid in substrate binding. Looking at the first three slowest modes the loops seem to be in a 

push-pull motion helps the protein to move across the crystalline surface of polymers. 

In comparison the other AA9 structures (3zud, 4eir, 4b5q, 4qi8, 5acf, 5aci, and 5acj) have surface 

flexibility concentrated on one “side” of the protein. 

In all the nine AA9 proteins the active site area consisting of His-His-Tyr/Phe residues show least 

flexibility. The results indicate that in AA9 the planar surface interacting with the substrate is not 

rigid and the loop regions have coordinated motions for LPMO to bind on a flat crystalline 

surface. 

In the 9 structures of the aa10 the loop regions on the substrate binding site are most mobile in 

all the three slowest modes. Interestingly, these motions are relatively closer to the active site 

region compared to AA9. In 4oy6, 4x27, 4oy7, 4x29, and 4yn2 show slightly different motions 

in the loop regions away from the active site. It is highly possible that the loops away from the 

active site incorporate allosteric behavior of LPMOs while binding to the substrate. 



 
 

 

Figure 4: Cross correlation map for AA9 in all modes having B-factor greater than 0.58. 

These values are in accordance with the average correlation coefficient value for GNM, 

i.e. 0.58 [41]. 



 
 

 

Figure 5: Cross correlation map for A10 having B-factor greater than 0.5. These values 

are in accordance with the average correlation coefficient value for GNM, i.e. 0.58 [41]. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: First three slowest modes of AA9 (A) Top view showing the active site residues as 

spheres with planar surface (B) Side view. The first three slowest modes are plotted using 

NMwiz of VMD visualization tool. The protein is shown as Cα trace, where the region 

colored red are most mobile and the regions colored blue are least mobile. The first slowest 

mode is represented with orange arrows, the second slowest mode is represented with 

yellow arrows, and the third slowest mode is represented with green arrows. The histidines 

and tyrosine/phenylalanine in the active site are shown as red spheres. 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: First three slowest modes of AA10 (A) Top view showing the active site residues 

as spheres with planar surface (B) Side view. The first three slowest modes are plotted using 

NMwiz of VMD visualization tool. The protein is shown as Cα trace, where the region 

colored red are most mobile and the regions colored blue are least mobile. The first slowest 

mode is represented with orange arrows, the second slowest mode is represented with 

yellow arrows, and the third slowest mode is represented with green arrows. The histidine 

and tyrosine/phenylalanine in the active site are shown as red spheres. 



 
 

Physico-chemical properties 

Structuprint can describe total of 328 properties and out of these properties we have considered 

only 11 properties. Figure 8 shows the variations on the basis of water accessible surface area 

for AA9 structures. It is calculated using a radius of 1.4Å for water molecule. The results depict 

that most of the structures of AA9 were lying between the range 217-306 which infers that the 

residues have less accessibility to the water molecule whereas some of them showed higher 

values ranging upto 395 which infers that some of the structures were having more accessibility 

to the water molecule. Figure 9 shows the electrostatic potential energy as calculated by 

Structuprint for AA9 structures. Electrostatic potential energy used to describe the potential 

energy in systems with time variant electric fields. Its scale reads −38 to 38 with a red to blue 

scale representing the negative and positive electrostatic potential respectively. The graphs have 

varying abundance of negative electrostatic potential energy. 

Figure 10 shows the plots for solvation energy i.e. the process of attraction and association of 

molecules of a solvent with molecules or ions of a solute or the amount of energy linked with 

dissolving a solute in a solvent. The results depict that some of the structures of AA9 have more 

solvation energy ranging from -110 to -56 and most of them had large negative values ranging 

from -164 to -110. Figure11 shows the potential energy calculated for AA9 structures. The 

potential energy is measured in joules resulting from conservative Coulomb forces. Its scale 

ranges from −64 to 64. All structures have a net negative potential energy. Figure 12 shows the 

total charge of the molecule (sum of formal charges).  It is the charge assigned to an atom in a 

molecule. The red dots in the graph illustrate the presence of the total negative charge and the 

blue dots illustrate the presence of the total positive charge. Its scale ranges from -1 to 1. Some 

of the protein structures have more total negative charge than that total positive charge and vice 

versa. Figure13 shows the globularity i.e. inverse condition number (smallest eigenvalue divided 

by the largest eigenvalue) of the covariance matrix of atomic coordinates. A value of 1 indicates 

a perfect sphere while a value of 0 indicates a two- or one-dimensional object. It tells us about 

the degree of spherical or globe nature of the protein surface. Most of the values were ranging 

between 0 and 0.5 on a scale of 0 to 1.0.Figure 14 shows the Kier-Flex molecular flexibility 

index which is derived from the Kier alpha modified shape descriptors. Most of the values were 

ranging between 1.0 and 3.5 only few of them were in the range of 3.5 and 6.0. 



 
 

 

Figure 8: Plots showing Accessible Surface Area of 16 structures of AA9 calculated by 

Structuprint. 

 

  



 
 

 

Figure 9: Plots showing electrostatic energy of 16 structures of AA9 calculated by 

Structuprint. 

  



 
 

 

 

Figure 10: Plots showing solvation energy of 16 structures of AA9 calculated by 

Structuprint. 

  



 
 

 

Figure 11: Plots showing potential energy of 16 structures of AA9 calculated by 

Structuprint. 

  



 
 

 

Figure 12: Plots showing formal charge of 16 structures of AA9 calculated by 

Structuprint. 

  



 
 

 

Figure 13: Plots showing globularity of 16 structures of AA9 calculated by Structuprint. 

  



 
 

 

Figure 14: Plots showing Kier molecular flexibility of 16 structures of AA9 calculated by 

Structuprint. 

  



 
 

 

Figure 15 shows fractional van der waals i.e. This is the sum of the vi such that |qi| is less than 

or equal to 0.2 divided by the total surface area. The vi are calculated using a connection table 

approximation. Values ranging between 91.5 and 147.0 were more than values ranging from 36.0 

to 91.5.  

Figure 16 shows total polar surface area which is area of a molecule defined as the surface sum 

over all polar atoms, primarily oxygen and nitrogen. It has scale ranging from 56 to 134. Most of 

the proteins have values ranging from 56 to 95 but there are few families with more values 

ranging from 95 to 134. Figure 17 shows the van der waals surface area i.e.  A polyhedral 

representation is used for each atom in calculating the surface area. The results depict that most 

of the structures of AA9 were lying between the range 159.5-226.0 on a scale of 93.0-226.0. 

Figure18 shows the rugosity i.e. is a measure of small-scale variations of amplitude in the height 

of a surface. Values ranging from 1.0-1.5 were more comparatively to the values under the range 

1.5-2.0 on a scale of 1.0-2.0. Figure 19 shows the variations on the basis of water accessible 

surface area for AA10 structures. It is calculated using a radius of 1.4Å for water molecule. The 

results depict that most of the structures of AA10 were lying between the range 217-306 which 

infers that the residues have less accessibility to the water molecule whereas some of them 

showed higher values ranging up to 395 which infers that some of the structures were having 

more accessibility to the water molecule. Figure 20 shows the electrostatic potential energy as 

calculated by Structuprint for AA10 structures. Electrostatic potential energy used to describe the 

potential energy in systems with time variant electric fields. Its scale reads −38 to 38 with a red 

to blue scale representing the negative and positive electrostatic potential respectively. The 

graphs have varying abundance of negative electrostatic potential energy. 

Figure 21 shows the plots for solvation energy i.e. the process of attraction and association of 

molecules of a solvent with molecules or ions of a solute or the amount of energy linked with 

dissolving a solute in a solvent. The results depict that some of the structures of AA10 have more 

solvation energy ranging from -110 to -56 and most of them had large negative values ranging 

from -164 to -110. Figure 22 shows the potential energy calculated for AA10 structures. The 

potential energy is measured in joules resulting from conservative Coulomb forces. Its scale 



 
 

ranges from −64 to 64. All structures have a net negative potential energy. Figure 23 shows the 

total charge of the molecule (sum of formal charges).  It is the charge assigned to an atom in a  

 

Figure 15: Plots showing fractional hydrophobic van der Waals surface area of 16 

structures of AA9 calculated by Structuprint. 

  



 
 

 

Figure 16: Plots showing total polar surface area of 16 structures of AA9 calculated by 

Structuprint. 

  



 
 

 

Figure 17: Plots showing van der waals surface area of 16 structures of AA9 calculated by 

Structuprint. 

  



 
 

 

Figure 18: Plots showing surface rugosity of 16 structures of AA9 calculated by 

Structuprint. 

 

 

  



 
 

Figure 19: Plots showing Accessible Surface Area of 27 structures of AA10 calculated by 

Structuprint. 

Figure 20: Plots showing electrostatic energy of 27 structures of AA10 calculated by 

Structuprint. 

 

  



 
 

 

Figure 21: Plots showing solvation energy of 27 structures of AA10 calculated by 

Structuprint. 

 

Figure 22: Plots showing potential energy of 27 structures of AA10 calculated by 

Structuprint. 



 
 

molecule. The red dots in the graph illustrate the presence of the total negative charge and the 

blue dots illustrate the presence of the total positive charge. Its scale ranges from -1 to 1. Some 

of the protein structures have more total negative charge than that total positive charge and vice 

versa. Figure 24 the globularity i.e. Globularity or inverse condition number (smallest eigenvalue 

divided by the largest eigenvalue) of the covariance matrix of atomic coordinates. A value of 1 

indicates a perfect sphere while a value of 0 indicates a two- or one-dimensional object. Most of 

the values were ranging between 0 and 0.5 on a scale of 0 to 0.5. Figure 25 shows the Kier-Flex 

molecular flexibility index which is derived from the Kier alpha modified shape descriptors. 

Most of the values were ranging between 1.0 and 3.5 only few of them were in the range of 3.5 

and 6.0. Figure26 shows the fractional van der waals surface area this is the sum of the vi such 

that |qi| is less than or equal to 0.2 divided by the total surface area. The vi is calculated using a 

connection table approximation. Most of the values were ranging between 34.0 and 91.5 only 

few of them were in the range of 91.0 and 147.0 on the scale of 34.0 to 91.5. Figure 27 shows 

total polar surface area which is area of a molecule defined as the surface sum over all polar 

atoms, primarily oxygen and nitrogen. It has scale ranging from 56 to 134. Most of the proteins 

have values ranging from 56 to 95 but there are few families with more values ranging from 95 

to 134. Figure 28 shows the Van der Waals surface area of AA9 structures. A polyhedral 

representation is used for each atom in calculating the surface area. The results depict that most 

of the structures of AA10 were lying between the range 93- 226. Figure 29 shows the rugosity 

i.e. the individual plots for AA11 structures are shown in Figure 30 (pdb id: 4mah) and Figure 31 

(pdb id: 4mai), respectively. They show that these two structures have similar trend among the 

eleven properties analyzed using Structuprint. 

The individual plots for AA11 structures are shown in Figure 30 (pdb id: 4mah) and Figure 31 

(pdb id: 4mai), respectively. They show that these two structures have similar trend among the 

eleven properties analyzed using Structuprint. 

  



 
 

Figure 23: Plots showing formal charge of 27 structures of AA10 calculated by 

Structuprint. 

Figure 24: Plots showing globularity of 27 structures of AA10 calculated by Structuprint. 

 

  



 
 

 

Figure 25: Plots showing Kier molecular flexibility of 27 structures of AA10 calculated by 

Structuprint. 

 

Figure 26: Plots showing Fractional hydrophobic van der Waals surface area of 27 

structures of AA10 calculated by Structuprint. 



 
 

 

Figure 27: Plots showing total polar surface area of 27 structures of AA10 calculated by 

Structuprint. 

 

Figure 28: Plots showing van der waals surface area of 27 structures of AA10 calculated 

by Structuprint.  



 
 

Figure 29: Plots showing surface rugosity of 27 structures of AA10 calculated by 

Structuprint.  

 

 

 

 

 

 



 
 

 

Figure 31: Plots of AA11 structure (pdb id: 4mai) for eleven properties calculated by 

Structuprint 

  



 
 

 

Prediction of residues involved in Allostery  

In Statistical coupling analysis, we observed the conserved residues. Figure 32 is showing the 

similarity matrix of different sequences of AA10 family and a histogram for the same. We could 

have derived the covariance matrix too but we are majorly focusing on similarity here. The 

histogram shows significantly narrow distribution with mean pairwise identity between sequence 

of about 22% and range of 10-40% suggesting most sequences are equally dissimilar.  Figure 33 

shows the positional conservation and as we had larger number of sequences as compared to the 

length of the sequence, the results are significant showing positional conservation at places other 

than histidines. Then we extracted eigenvectors and figure 34a) shows top three eigenvectors 

plotted in 3D space.  Figure 34 b) shows them separately in 2 dimensional space and figure 34 c) 

shows the sequence correlation plotted against potential correlation of AA10 sequences in 3D 

space. In figure 34 d) different sectors, as already explained earlier, are defined according to two 

different cut-offs. Then after defining the sectors we mapped them with the 2BEM structure in 

PyMOL and Figure 35 is showing a) the side view of the structure and b) the top view of the 

same. It confirms that there are residues (glutamic acid, alanines, tryptophans etc.) other than 

histidines which might be contributing towards the allostery of the structure.   

  



 
 

 

Figure 32: Sequence Correlations of AA10 A) histogram of the similarities between pairs 

of sequences, B) The similarly matrix 

 

Figure 33: Positional Conservation AA10 



 
 

 

Figure 34(A): 3-D plots of the top three eigenvectors 

 

Figure 34(B): 2-D Plots of the top three eigenvectors 

 

  



 
 

 

 

Figure 34(C): Mapping Sequence correlation by positional correlation of AA10 

 

 

Figure 34(D): Defining Sectors according to the top Eigen mode vectors of AA10 

 

  



 
 

 

 

 

 

Figure 35: (A) Side view by Statistical Coupling Analysis (SCA) and (B) Top view of 

residues that are predicted. 



 
 

CONCLUSIONS 

• The Elastic network models indicate dynamics at the substrate binding side. 

• The cross-correlation maps show complex interplay of other residues towards substrate 

binding 

• There are differences within the families in terms of physiochemical properties, such as 

Formal Charge. 

• Statistical Coupling Analysis show that there are residues on the nonsubstrate binding side 

that possibly impart allostery 
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APPENDIX 

• First add the path. 

 

addpath C:\Users\133812\Desktop\SCA5_forDist\sca5 

clear; close all 

 

• Alignment loading and conditioning. 

 

[labels_seq,algn_full]=get_seqs('AA10.free'); 

N_seq=size(algn_full,1); 

cut_off=.2; 

fraq_gaps=sum(isletter(algn_full)==0)/N_seq; 

algn=algn_full(:,fraq_gaps<cut_off); 

N_pos=size(algn,2); 

pdb_id='2bem'; chain='A';    

pdb=pdbread(['' pdb_id '.pdb']); 

 

• Sequence similarity matrix. 

 

[S]=sim_seq(algn); 

listS=nonzeros(triu(S,1)); 

h_seqsim=figure; clf;  

set(h_seqsim,'Units','normalized','Position',[0 0.3 0.9 

0.5],'Name','Sequence Correlations: PDZ'); 

subplot(1,2,1);hist(listS,N_pos/2); 

xlabel('Pairwise SeqID','FontSize',14,'FontWeight','bold');  

ylabel('number','FontSize',14,'FontWeight','bold'); grid on 

figure(h_seqsim);  

subplot(1,2,2); imshow(S,[0 1],'InitialMagnification','fit'); 

colormap(jet); colorbar; 

title('SeqID', 'FontSize',12,'FontWeight','bold'); 

 

• Positional conservation. 

 

[D_glo]=cons(algn); 

h_D=figure; set(h_D,'Units','normalized','Position',[0 0.6 0.4 

0.4],'Name','Positional Conservation');clf 

subplot(2,1,1);hist(D_glo,25); grid on; 

xlabel('Dconservation)','FontSize',10,'FontWeight','bold');  

ylabel('number','FontSize',10,'FontWeight','bold'); 

subplot(2,1,2);bar([1:numel(ats)],D_glo,'k'); grid on; 

axis([0 numel(ats)+1 0 4]); 

set(gca,'XTick',[1:10:numel(ats)]); 

set(gca,'XTickLabel',ats([1:10:numel(ats)])); 

xlabel('position (2bem 

numbering)','FontSize',10,'FontWeight','bold'); 

ylabel('D_i(conservation)','FontSize',10,'FontWeight','bold'); 

 

 



 
 

• SCA calculations. 

[AA10sca]=sca5(algn); 

 

• Spectral (or eigenvalue) decomposition. 

[spect]=spectral_decomp(AA10sca,100); 

• Structure of top eigenmodes. 

 

h_3Dtopmodes=figure; 

set(h_3Dtopmodes,'Units','normalized','Position',[0 0.7 0.3 

0.4],'Name','Top Eigenmodes - 3D'); clf;  

scatter3(spect.evpos(:,1),spect.evpos(:,2),spect.evpos(:,3),'ko','S

izeData', 50, 'MarkerFaceColor','b'); 

az=136;el=20;view(az,el); 

xlabel('ev 1','FontSize',12,'FontWeight','b'); 

ylabel('ev 2','FontSize',12,'FontWeight','b'); 

zlabel('ev 3','FontSize',12,'FontWeight','b'); 

 

• 2D plots of top three modes: 

 

h_2Dtopmodes=figure; 

set(h_2Dtopmodes,'Units','normalized','Position',[0 0 1.0 

0.4],'Name','Top Eigenmodes-2D'); clf;  

subplot(1,3,1); 

scatter(spect.evpos(:,1),spect.evpos(:,2),'ko','SizeData', 50, 

'MarkerFaceColor','b'); 

xlabel('ev 1','FontSize',12,'FontWeight','b');ylabel('ev 

2','FontSize',12,'FontWeight','b'); 

subplot(1,3,2); 

scatter(spect.evpos(:,1),spect.evpos(:,3),'ko','SizeData', 50, 

'MarkerFaceColor','b'); 

xlabel('ev 1','FontSize',12,'FontWeight','b');ylabel('ev 

3','FontSize',12,'FontWeight','b'); 

subplot(1,3,3); 

scatter(spect.evpos(:,2),spect.evpos(:,3),'ko','SizeData', 50, 

'MarkerFaceColor','b'); 

xlabel('ev 2','FontSize',12,'FontWeight','b');ylabel('ev 

3','FontSize',12,'FontWeight','b'); 

 

• A mapping between positional and sequence correlations. 

 

[U,sv,V]=svd(AA10sca.pwX); 

N_min=min(N_seq,N_pos); 

Pi=U(:,1:N_min)*V(:,1:N_min)'; 

U_p=Pi*spect.evpos; 

h_SectSeq=figure; set(h_SectSeq,'Units','normalized','Position',[0 

0.1 0.6 0.4],'Name','Mapping Seq Correlations by Positional 

Correlations'); clf;  

h_SectSeq(1)=subplot(1,2,1) 



 
 

scatter3(spect.evpos(:,1),spect.evpos(:,2),spect.evpos(:,3),'ko','S

izeData', 50, 'MarkerFaceColor','b'); 

az=58;el=30;view(az,el); 

xlabel('ev 1','FontSize',12,'FontWeight','b'); 

ylabel('ev 2','FontSize',12,'FontWeight','b'); 

zlabel('ev 3','FontSize',12,'FontWeight','b'); 

h_SectSeq(2)=subplot(1,2,2) 

scatter3(U_p(:,1),U_p(:,2),U_p(:,3),'ko','SizeData', 50, 

'MarkerFaceColor','b'); 

az=58;el=30;view(az,el); 

xlabel('Seq 1','FontSize',12,'FontWeight','b'); 

ylabel('Seq 2','FontSize',12,'FontWeight','b'); 

zlabel('Seq 3','FontSize',12,'FontWeight','b'); 

 

• Sector definition. 

h_secdef=figure; 

set(h_secdef,'Units','normalized','Position',[0 1 .5 

0.3],'Name','Top Eigenmode'); clf; 

p_cutoff=0.8; 

secpos = []; 

histogram of the data 

xhist=[0:.01:.4]; % make bins for the histogram based on the full 

range of the data 

[yhist]=hist(spect.evpos(:,1),xhist); 

bar(xhist,yhist./N_pos,'k');hold on;grid on 

 

• distribution fitting 

 

pd=fitdist(spect.evpos(:,1),'lognormal'); 

x_dist=[min(xhist):(max(xhist)-min(xhist))/100:max(xhist)]; 

area_hist=N_pos*(xhist(2)-xhist(1)); % for proper scaling of the 

pdf 

pdf_jnk=pdf(pd,x_dist); 

scaled_pdf=area_hist.*pdf_jnk; 

plot(x_dist,scaled_pdf./N_pos,'r-','LineWidth',1.5); 

 

• here, we make the cdf, and define sectors: 

 

cdf_jnk=cdf(pd,x_dist); 

clear sec cutoff_ev 

[jnk,x_dist_pos_right]=min(abs(cdf_jnk-(p_cutoff))); 

cutoff_ev = x_dist(x_dist_pos_right)'; 

 

• we obtain the indices of sector positions given the cutoffs 

 

[sec.def] = find(spect.evpos(:,1)>cutoff_ev); 

sprintf('%g+',str2num(char(ats(sec.def)))) 

sec.cutoff=cutoff_ev; 

figure(h_secdef); line([cutoff_ev cutoff_ev],[0 

max(yhist)/N_pos],'LineWidth',1,'LineStyle','--

','Color','b');sec.col=2/3; 



 
 

 


