
“VEHICLE TYPE DETECTION &

LICENSE PLATE EFFECTS TESTBENCH”

Project Report submitted for the degree of

 Bachelor of Technology

In

Computer Science and Engineering

By

Anurag Jain (131272)

Under the supervision of

Mr. Anoop Prabhu

(CTO)

Md. Danish Ansari

(Software Developer)

And

Dr. Milind Padalkar

(Sr. Research Engineer)

To

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology Waknaghat,

Solan-173234, Himachal Pradesh

i

DECLARATION

I, Anurag Jain hereby declare that the work presented in this report entitled

“VEHICLE TYPE DETECTION & LICENSE PLATE EFFECTS TESTBENCH”

in partial fulfillment of the requirements for the award of the degree of Bachelor of

Technology in Computer Science and Engineering submitted in the department of

Computer Science & Engineering and Information Technology, Jaypee University of

Information Technology, Waknaghat is an authentic record of our original work

carried out over a period from February 2017 to June 2017 under the supervision of Mr.

Anoop Prabhu, Md. Danish Ansari and Dr. Milind Padalkar. The matter embodied

in the report has not been submitted to any other Institute for the award of any other

degree or diploma.

Anurag Jain, 131272

This is to certify that the above statement made by the candidate is true to the best of

my knowledge.

Mr. Anoop Prabhu Dr. Milind Padalkar

CTO Sr. Research Engineer

Vehant Technologies Pvt. Ltd. Vehant Technologies Pvt. Ltd.

Md. Danish Ansari

Software Developer

Vehant Technologies Pvt. Ltd.

ii

CERTIFICATE

This is to certify that the project entitled “VEHICLE TYPE DETECTION &

LICENSE PLATE EFFECTS TESTBENCH” submitted by Anurag Jain to Jaypee

University of Information Technology, Waknaghat is a record of bonafide research

work under my supervision and consider it worthy for the award of the degree of

Bachelor of Technology of the Institute.

Mr. Anoop Prabhu Dr. Milind Padalkar

CTO Sr. Research Engineer

Vehant Technologies Pvt. Ltd. Vehant Technologies Pvt. Ltd.

Md. Danish Ansari

Software Developer

Vehant Technologies Pvt. Ltd.

iii

ACKNOWLEDGEMENT

It is my pleasure to be indebted to various people, who directly or indirectly contributed

in the development of this work and who influenced my thinking , behavior and acts

during the course of study.

I am thankful to Mr. Anoop Prabhu, Md. Danish Ansari and Dr. Milind Padalkar for

their support, cooperation, and motivation provided to me during the period for constant

inspiration, presence and blessings. I am privileged to experience a sustained

enthusiasm and involved interest from their side. This fueled my interest even further

and encouraged me to boldly step into what was a totally dark and unexplored expanse

before. I would also like to thank my team-mate and friends who were ready with their

inputs at all times, whether it was an offhand comment to encourage me or a

constructive piece of criticism. Last but not least, I would like to thank Vehant

Technologies and JUIT staff members and the institute, in general, for extending a

helping hand at every juncture of need.

Anurag Jain, 131272

iv

Table of Contents

Chapter Title Page No.

List of Abbreviations vi

List of Figures vii

List of Tables vii

About Company ix

 1 Introduction

1.1 Introduction 1

1.2 Motivation 2

1.3 Problem Statement

 1.3.1 Vehicle Type Detection TestBench 3

 1.3.2 License Plate Effects TestBendh 4

 1.3.3 What we want? 5

 1.3.4 Why LiveView of Camera & recording is required 6

 2 Literature Survey

2.1 Previous works on Type Detection 7

2.2 Super Resolution of Images 8

2.3 Conventional ANPR System 8

 3 System Development

3.1 Software Requirements

 3.1.1 Language Used 10

 3.1.2 Libraries and Software Used 10

 3.1.3 Tools Used 12

3.2 Hardware Requirements 14

3.3 Implementation

 3.3.1 Classification of Vehicles 14

 3.3.2 Different Effects Used & their Parameters 14

 3.3.3 Proposed Approach 18

v

4 Performance Analysis

4.1 Performance Measures 20

4.2 Result Analysis 20

4.3 Output Screenshots

 4.3.1 Vehicle Type Detection TestBench 22

 4.3.2 License Plate Effects TestBench 23

 5 Conclusion

5.1 Conclusion 25

5.2 Future Work 25

References 26

vi

List of Abbreviations

Acronym Definition

 TB TestBech

LP License Plate

ANPR Automatic Licence Plate Recognition

LPR License Plate Recognition

OCR Optical Character Reader

VTD Vehicle Type Detection

AUTOL AUTO Low

AUTOH AUTO High

LMV Low Motor Vehicle

HMV High Motor Vehicle

HMVH HMV High

TWOWH Two Wheeler

TWOWHH Two Wheeler High

TWOWHL Two Wheeler Low

vii

List of Figures

Title Page No.

 Fig 2.1 Conventional ANPR System 9

Fig 3.1 Approach for License Plate TestBench 18

Fig 3.2 Approach for Vehicle Type Detection TestBench 19

Fig 4.1 Vehicle Type Detect Screen 22

Fig 4.2 Result Screen 22

Fig 4.3 LP Effects Screen 23

Fig 4.4 Super Resolution Screen 23

viii

List of Tables

Title Page No.

 Table 3.1 Parameters of Random Blur 15

Table 3.2 Parameters of Add Shadows 15

Table 3.3 Parameters of Random Scratch 16

Table 3.4 Parameters of Motion Blur 16

Table 3.5 Parameters of Tail Light 16

Table 3.6 Parameters of Erode Numbers 17

Table 3.7 Parameters of Dilate Numbers 17

Table 3.8 Parameters of Suppress Contrast 17

Table 3.9 Parameters of Join Characters 17

Table 3.10 Parameters of Salt & Pepper Noise 18

Table 4.1 Result of VTD Site1 20

Table 4.2 Wrong Detection of VTD Site1 21

Table 4.3 Result of VTD Site2 21

Table 4.4 Wrong Detection of VTD Site2 21

Table 4.5 Output of different Effects 24

ix

ABOUT THE COMPANY

(VEHANT TECHNOLOGIES)

Vehant Technologies formerly known as KritiKal SecureScan, pioneer in indigenously

developed Physical Security, Surveillance and Traffic Monitoring Systems, designed

and developed its state of the art products and solutions to meet the demands of global

standards, features, quality and continuously changing technology. Vehant

Technologies is the KritiKal Group company which was incubated from Indian Institute

of Technology (IIT)-Delhi in the year 2002.

Vehant Technologies is the leading manufacturer of Under Vehicle Scanning Systems

(UVSS) in India and catering the requirements of all verticals. Vehant aims to provide

comprehensive solution to its customers, carry out research and explore technologies in

the area of security, surveillance and monitoring space.

Vehant manufactures its cutting-edge products and solutions for the real world, based

on its deep understanding of global security issues and challenges. Vehant has designed

& developed a range of increasingly integrated security and monitoring products to

create complete solution stack tailored to individual requirements.

Vehicle Type Detection &
License Plate Effects TestBench

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Traffic control and vehicle owner identification has become major problem in

every country. Sometimes it becomes difficult to identify vehicle owner who

violates traffic rules and drives too fast. Therefore, it is not possible to catch and

punish those kinds of people because the traffic personal might not be able to

retrieve vehicle number from the moving vehicle because of the speed of the

vehicle. Due to the unlimited increase of cars and transportation systems which

make it impossible to be fully managed and monitored by humans, examples are so

many like traffic monitoring, tracking stolen cars, managing parking toll, red-light

violation enforcement, border and customs checkpoints.

Therefore, there is a need to develop Automatic Number Plate Recognition

(ANPR) system as a one of the solutions to this problem. There are numerous

ANPR systems available today. These systems are based on different

methodologies but still it is really challenging task as some of the factors like high

speed of vehicle, non-uniform vehicle number plate, language of vehicle number

and different lighting conditions can affect a lot in the overall recognition rate.

Most of the systems work under these limitations.

Video surveillance plays an increasing role in public life. More and more high-

ways, intersections or whole cities use video surveillance in order to regulate the

huge traffic volume. In most cases, an ordinary traffic census system is used which

counts passing vehicles by using infrared or simple computer vision approaches.

Apart from the number of vehicles, it would be interesting to know the type of

vehicle which passed the observation point. This information could greatly

influence decisions made for the traffic system. Highways could be build according

Vehicle Type Detection &
License Plate Effects TestBench

2

to the type of vehicles that will use them. New intersections or traffic lights can be

installed which react intelligently to the currently dominating vehicle types.

My project is to generate a data set which can be used for training purposes and

we can then improve the efficiency of our ANPR modules and Vehicle Type

Detection modules.

1.2 Motivation

For traffic monitoring video surveillance is the best option to use in real time. In

traffic monitoring there are many things to consider like speed violation, red light

crossing or violating any traffic rules. Magnetic loop detectors are used to count the

vehicles that pass over them, but our proposed systems provide much more

different information that will help in smooth traffic control. We need a system

which can detect which vehicle has violated the traffic rules that magnetic loop

detectors can't find. Other useful functionalities like cars, bikes etc can be

differentiated, more traffic components can be observed for violations like crossing

red light, parking in no parking area zone etc. Cameras are less disruptive to install

than loop detectors. To know the detail of vehicle which violated the traffic rule

there is only one element that needs to be known i.e. LICENSE PLATE.

We have an application which detects the license plate. The algorithm that we

have can detect 80% of vehicle license plate. So, how to know that how many are

missing and how to add them? The License plate number detected is correctly

interpreted in only 80% of the cases, so how to improve this? One thing that comes

in mind that one has to manually review the video frame by frame and add the data

for those vehicles in database. It is obvious that it will take a lot of time. So, these

are the reasons that motivated me to do this project. To save manual labour and

time we can save those frames for which license plate was not detected. Now, one

can know with just one click that which vehicle was not detected by license plate

detector.

Despite the large amount of literature on vehicle detection and tracking, there

has been relatively little work done in the field of vehicle classification. This is

Vehicle Type Detection &
License Plate Effects TestBench

3

because vehicle classification is an inherently hard problem. Moreover, detection

and tracking are simply preliminary steps in the task of vehicle classification. Given

the wide variety of shapes and sizes of vehicles within a single category alone, it is

difficult to categorize vehicles using simple parameters. This task is made even

more difficult when multiple categories are desired. In real-world traffic scenes,

occlusions, shadows, camera noise, changes in lighting and weather conditions, etc.

are a fact of life. In addition, stereo cameras are rarely used for traffic monitoring.

This makes the recovery of vehicle parameters – such as length, width, height etc,

even more difficult given a single camera view. The inherent complexity of stereo

algorithms and the need to solve the correspondence problem makes them

unfeasible for real-time applications.

For the type detection of the vehicles we have a module written, but this module

is not tested. So for the testing purposes and increase the efficiency, either we

manually feed the system with images or a traffic recording and the result for each

transaction is tested and accuracy is computed manually or we can just make use of

a GUI application which can classify the results in different segments on one click

and accuracy can then be checked and results can be interpreted for improvement.

1.3 Problem Statement

1.3.1 Vehicle Type Detection TestBench

To classify the vehicles is very important for the traffic monitoring

systems. For example, at the time of speed violation there is different speed

limit for different classes of the vehicles and of we are trying to combine the

speed violation detection and automatic challan generation system, then this

would create a lot of difficulties. If this happens and a vehicle passes by

with a speed of 60 kmph which is a violation for a HMV vehicle like truck

or bus and normal for a LMV vehicle like Car or Jeep. So, what to do now?

Generate the challan or not. To handle such problem we can make a person

sit and let him validate for all such cases whether to generate the challan or

not. But this will increase human labour and it will be time consuming. If

Vehicle Type Detection &
License Plate Effects TestBench

4

our systems are intelligent enough to detect the type of vehicle we can

directly generate the challan for such cases.

 Our build module for Vehicle Type Detection has not been tested yet. So

to know about the efficiency of this module and do other useful work with

the data related to this we require a TestBench application.

1.3.2 License Plate Effects TestBench

In traffic monitoring there are a lot of violations to monitor like red light

crossing, speed violation and other traffic violations. To know the detail of

vehicle which violated the traffic rule there is only one element that needs to

be known i.e. LICENSE PLATE. So License Plate Number becomes the

most important parameter in traffic monitoring. So we cannot afford any

kind of errors in reading the license plate number of the vehicles.

Suppose a vehicle with license number RJ14CQX252 make a violation

and our ANPR wrongly interprets it as RJ14COX252 and we generate a

challan corresponding to the detected license number, then this can cause a

problem for an innocent person and the defaulter will not get punished.

Let’s take another case in which the detected license plate number is so

wrong that it does not exist. So in all such cases what to do?

Our already written module of ANPR works with an accuracy of 80%.

We are aiming to improve this accuracy. For doing this we are trying to

impose different effects on the license plate images available to us and make

them diverse enough i.e. a variety of bad kind of images which we can come

across in real world. Then these images will be used to improve our

modules.

Also we have some Low Resolution images of the License Plate and

ANPR make faults with them, for this we are trying to convert the Low

Resolution images to High resolution images and improve the accuracy. For

generating this data set we require a TestBench application.

Vehicle Type Detection &
License Plate Effects TestBench

5

1.3.3 What we want?

For Vehicle Type Detection TestBench:

Input: A camera device or a video.

Output: A TestBench application with following features:

1. To run the Vehicle Type Detection module on the recording and

create the transactions and save in a directory. The application

should be compatible with all types of camera like backfly camera,

syn camera and ip camera.

2. To load the generated transactions one by one on the screen with the

transaction image and details. Also provide the user to correct the

Vehicle Type if it is wrongly detected.

3. To classify all the transactions according to the type detected and

modified by the user i.e. save records on each Vehicle type in their

corresponding directories.

4. Show the total accuracy of the module and accuracy of each type for

analysis that what are the areas we need to improve.

5. Result Screen showing the pie chart of each Vehicle type and its

segments depicting what percent of total records of that type are

detected as which type.

6. Export the table showing the detailed analysis of accuracy.

For License Plate Effects TestBench:

Input: A directory with images of different License Plate.

Output: A TestBench application with following features:

1. Give user an option to choose one of the all effects to modify the

image.

2. Give user the option to set the required parameters for the effect

chosen.

3. Show the Original image of the License plate and the after effect

image, so that comparison can be made.

4. Save option to save the after effect image.

Vehicle Type Detection &
License Plate Effects TestBench

6

1.3.4 Why LiveView of Camera and recording is required?

Earlier video were not analyzed onsite, video stored on local storage

attached with camera are carried to company. Videos were preprocessed

with different libraries like FFMPEG but there was no user friendly

application to carry all these processes. After the video was properly made

then it was analyzed by us not the users i.e. Traffic policeman. All the data

and information were provided by us. Also with this recording we can

generate required License Plate Images for our analysis.

Vehicle Type Detection &
License Plate Effects TestBench

7

Chapter 2

LITERARTURE SURVEY

2.1 Previous works on Type Detection

Peijin Ji, Lianwen Jin and Xutao Li used a partial Gabor filter bank for vision

based vehicle type classification [3]. They extracted features from both edge images

and grey images from the side view of the car by using a partial Gabor filter bank

and different sampling methods. The dimension of the feature space was reduced by

using Principal Component Analysis. A minimum distance classifier derived from

the Bayes' decision theory was used to classify the vehicle into five different

categories: Sedan, van, hatchback sedan, bus and van truck. They ran experiments

with a testing database of total 1196 vehicle side views and achieved a maximum

recognition accuracy of 95.17%.

Peter Shin, Hector Jasso, Sameer Tilat, Neil Cotofana and Tony Fountain from

the Department of Structural Engineering at the University of California used strain

histories from installed bridge-deck panels and tried to classify the passing vehicles

using Naive Bayesian, a Neural Network and a Support Vector Machine at a time

[4]. They collected strain histories from 2100 vehicles, normalized them and trained

the different analytical methods by using about 400 vehicles from each of the five

categories: Small vehicle, medium truck, bus, 3-axle truck and combination truck.

In their experiments, they achieved a recognition accuracy of 94.8% by using the

Support Vector Machine technique.

Thiang, Resmana Lim and Andre Teguh Guntoro described car recognition of

various car types during daylight and at night based on Gabor wavelets [5]. They

extracted Gabor features and created a database of four template images for each

vehicle category (sedan, van, pickup). They matched an input image by computing

the similarity value to each template. The class of the template with the highest

Vehicle Type Detection &
License Plate Effects TestBench

8

similarity value was chosen. In their experiment, they used the side view of 44

unknown vehicles. Their system achieved an average recognition rate of 93.88%.

2.2 Super Resolution of Images

With the advent of modern electronic gadgets like PDAs, cellular phones, and

digital cameras, the scope of document imaging has increased. Document image

analysis systems are becoming increasingly visible in everyday life. For instance,

one may be interested in processing, storing, understanding a class of document

images obtained by cellular phones [9]. Processing challenges in this class of

documents are considerably different from the conventional scanned document

images. Many of this new class of documents are characterized by low resolution

and poor quality making the immediate recognition practically impossible. Super

resolution provides an algorithmic solution to the resolution enhancement problem

by exploiting the image specific apriori information.

Super-resolution of low resolution document images is becoming an important

pre-requisite for design and development of robust document analysis systems.

Large scale camera based book scanners employed in digital libraries could get

benefited from resolution enhancement to obtain high OCR accuracies. It is also

true with the text embedded in natural scenes, which could be used for indexing

their images. Digital video compression algorithms can also benefit from the

successful text resolution expansion techniques. Videos are often indexed and

retrieved based on embedded text information. The text observed in broadcast

videos is often low in resolution. Without enhancement, a simple binarization could

completely remove many strokes. In these conditions, it is virtually impossible to do

character recognition as most of the OCRs are designed to work at reasonably high

resolutions. Resolution enhancement algorithm increase spatial resolution, while

maintaining the difference between text and background. It can further assist the

recognition in low-resolution text images.

2.3 Conventional ANPR System

 In last few years, ANPR or license plate recognition (LPR) has been one of the

useful approaches for vehicle surveillance. It is can be applied at number of public

Vehicle Type Detection &
License Plate Effects TestBench

9

places for fulfilling some of the purposes like traffic safety enforcement, automatic

toll text collection, car park system and Automatic vehicle parking system. ANPR

algorithms are generally divided in four steps as shown in figure.

Fig 2.1 Conventional ANPR System

Vehicle Image Capture: In this stage, using motion module we identify that a

vehicle is there and capture its full image.

Number Plate Detection: In this stage, the location of the license plate is identified

and the output of this stage will be a sub-image that contains only the license plate.

Character Segmentation: This stage is meant for segmentation of the characters

from the plate. The output of this stage is a set of monochrome images for each

candidate character in plate.

Character recognition: The goal of this stage is to recognize and classify the

binary images that contain characters received from the previous one. After this

stage every character must have a label and an error factor, and this error factor if

greater than a predefined value will be used to reject false characters accidently

passed from the previous steps. For the sake of classification, some features must be

collected from the characters.

Vehicle Type Detection &
License Plate Effects TestBench

10

Chapter 3

SYSTEM DEVELOPMENT

3.1 Software Requirements

3.1.1 Language Used

The module is purely written in C++ programming language, following the

Organization’s proper coding conventions and object oriented paradigm.

3.1.2 Libraries and Software Used

 OpenCV 2.24

OpenCV stands for Open Source Computer Vision Library. It is an open-

source BSD-licensed library that includes several hundreds of computer

vision algorithms. The document describes the so-called OpenCV 2.x API,

which is essentially a C++ API, as opposite to the C-based OpenCV 1.x API.

It does automatic memory management. It automatically allocates memory

to output data. OpenCV uses saturation arithmetic to deal with processing of

image pixels that are often encoded in a compact, 8- or 16-bit per channel.

It’s true that templates make working easy but sometimes it dramatically

increases the compilation time and size. It has its own error handling to

signal critical errors.

 Glade

Glade is a Research & Development tool to enable quick & easy

development of user interfaces for the GTK+ toolkit and the GNOME

desktop environment. The Glade application allows us to layout widgets on

screen and then save an XML description of the arrangement. Our

application can then use the Gtk::Builder API to load that XML file at

runtime and obtain a pointer to specifically named widget instances. We can

use C++ code to instantiate and arrange widgets. The user interfaces

Vehicle Type Detection &
License Plate Effects TestBench

11

designed by glade are saved in XML file and by using Gtkbuilder GTK+

objects can be loaded by applications dynamically as needed.

Glade has the following advantages:

1. Less C++ code is required.

2. UI changes can be seen more quickly, so UIs are able to improve.

3. Designers without programming skills can create and edit UIs.

 FFMPEG

FFmpeg is the leading multimedia framework which is able to transcode,

decode, encode, demux, mux, stream, filter and play pretty much anything

that humans and machines have created. It supports the most obscure ancient

formats up to the cutting edge. No matter if they were designed by some

standards committee, the community or a corporation. It is also highly

portable: FFmpeg runs, compiles, and passes our testing infrastructure FATE

across Linux, Microsoft Windows, Mac OS X, the BSDs, Solaris, etc. under

a wide variety of build environments, machine architectures, and

configurations. The different libraries that it contains are libavcodec,

libavutil, libavformat, libavfilter, libavdevice, libswscale and libswresample

which can be used by many applications.

 Libavcodec is a library containing decoders and encoders for

audio/video codec’s.

 Libavformat is a library containing demuxers and muxers for

multimedia container formats.

 Libswscale is a library performing highly optimized image scaling

and color space/pixel format conversion operations.

 Linux CentOS

CentOS Linux is a Linux distribution derived from the Red Hat

Enterprise Linux. Because it is free, CentOS Linux is widely popular with

Linux users, web hosts and small businesses. Linux is a very hands-on

operating system. We use linux because it is very secure and has a very good

directory structure. Also while programming in linux environment we can

Vehicle Type Detection &
License Plate Effects TestBench

12

set the environment variables at any time from outside the program code,

which becomes very useful.

 PostregSQL

It is an object-relational database management system (ORDBMS) based

on POSTGRES, Version 4.2, developed at the University of California at

Berkeley Computer Science Department.

 It supports a large part of the SQL standard and offers many modern

features: complex queries, foreign keys, triggers, updatable views,

transactional integrity, and multiversion concurrency control. PostgreSQL

can be extended by the user in many ways, for example by adding new data

types, functions, operators, aggregate functions, index methods and

procedural languages.

And because of the liberal license, PostgreSQL can be used, modified,

and distributed by anyone free of charge for any purpose, be it private,

commercial, or academic.

3.1.3 Tools Used

 Vim Editor

Vim editor is used for programming on CentOS. Vim is stable and is

continuously being developed to become even better.

Among its features are:

 persistent, multi-level undo tree

 extensive plug-in system

 support for hundreds of programming languages and file formats

 powerful search and replace

 integrates with many tools

 GDB

GDB is used for debugging. GDB stands for GNU Debugger. It allows you

to know what going inside your program while it executes or what other

programs are doing when it crashed.

Vehicle Type Detection &
License Plate Effects TestBench

13

GDB can do four main kinds of things (plus other things in support of these)

to help you catch bugs in the act:

 Start your program, specifying anything that might affect its

behavior.

 Add conditional break.

 Examine what has happened, when your program has stopped.

 Alter variables in your program, so you can experiment with

correcting the effects of one bug and go on to learn about another.

 Doxygen

Doxygen is the de facto standard tool for generating documentation from

annotated C++ sources. It is a tool for writing software reference

documentation. The documentation is written within code, and is thus

relatively easy to keep up to date. Doxygen can cross reference

documentation and code, so that the reader of a document can easily refer to

the actual code.

Doxygen can help us in three ways:

1. It can generate an on-line documentation browser (in HTML) and/or

an off-line reference manual from a set of documented source files.

There is also support for generating output in RTF (MS-Word),

PostScript, hyperlinked PDF, compressed HTML, and UNIX man

pages. The documentation is extracted directly from the sources,

which makes it much easier to keep the documentation consistent

with the source code.

2. We can configure doxygen to extract the code structure from

undocumented source files. This is very useful to quickly find your

way in large source distributions. Doxygen can also visualize the

relations between the various elements by means of include

dependency graphs, inheritance diagrams, and collaboration

diagrams, which are all generated automatically.

3. We can also use doxygen for creating normal documentation.

http://www.stack.nl/~dimitri/doxygen/manual/starting.html#extract_all

Vehicle Type Detection &
License Plate Effects TestBench

14

3.2 Hardware Requirements

The minimum hardware requirement specification for developing this project is as

follows:

Processor : Core i3

RAM : 4GB or more

 Hard Disk : 10GB or more

 Monitor : Standard Color Monitor

 Keyboard : Standard Keyboard

 Mouse : Standard Mouse

3.3 Implementation

3.3.1 Classification of Vehicles

We use vehicle dimensions to classify vehicles into four different

categories. We use deep learning approach to detect the vehicle type. For

the detection we make use of motion parameters of the vehicle and its

dimensions and compare it with the values and the category in which the

parameters fall in is the result.

 The four broadly made categories are: AUTO, CAR, TWO WHEELER

and BUS/TRUCK. These categories are then sub categorized on the basis of

the position of the License Plate position either on the upper half (high) or

the lower half (low).

3.3.2 Different Effects Used & their Parameters

In my project, we have used eleven different kinds of Effects which adds

different kinds of artefacts to the original License Plate Image and these

different effects uses different parameters and have their default values set,

Vehicle Type Detection &
License Plate Effects TestBench

15

if the user is not satisfied with the output image corresponding to the default

parameters, user can change the parameter values accordingly.

1) Random Blur

It adds undesired artefacts to the image and makes the text on the image

blur, making it some difficult to read for the system to interpret it. This

effect is used because sometimes the images of the License plate we

capture are not clear enough and contains some undesired artefacts.

Parameter Details Range Step
Default

Value

Kernel

Size

It is the size of square in

pixels whose areas average

intensity is calculated for

comparison.

3-35 2 7

Block Size

It is the size of square in

pixels whose area is to be

blurred.

1-25 2 5

Percent

(1 – Percent Value), the

total points of the images to

be blurred.

0-1 0.01 0.80

Table 3.1 Parameters of Random Blur

2) Add Shadows

This effect adds shadow to the license plate as many a times due to the

shade of nearby objects the License plate has the effect of shadow. So

we want to handle all such cases.

Parameter Details Range Step
Default

Value

Location

The side of the image from

where shadow is applied.

(0-Top, 1-Right, 2-Bottom

& 3-Left)

0-3 1 0

Strength

How dark or light the

shadow should be. (0 :

Absolute Dark & 1 :

Absolute Light)

0-1 0.1 0.50

Percent 1
The ratio of length of side1

till where the shadow falls.
0-1 0.01 0.20

Percent 2
The ratio of length of side2

till where the shadow falls.
0-1 0.01 0.10

Table 3.2 Parameters of Add Shadows

Vehicle Type Detection &
License Plate Effects TestBench

16

3) Random Scratch

This effect makes a scratch on the image due to which some characters

of the License number are not continuous and a portion leaving two

parts of the characters. Our system should be able to handle all such

cases.

Parameter Details Range Step
Default

Value

Length
The length of the scratch to

be made on image.
0-150 1 50

Intensity
How dark or light the

scratch should be.
0-255 1 128

Table 3.3 Parameters of Random Scratch

4) Motion Blur

Sometimes due to the speed of the vehicle we are not able to capture the

clear image of the License plate and get some stretched image which is

called as motion blur. With this effect we will generate data set for these

cases.

Parameter Details Range Step
Default

Value

Length
The length, how much the

text stretch due to motion.
1-35 2 9

Theta
The angle in which the

motion happens.
0-360 45 0

Table 3.4 Parameters of Motion Blur

5) Tail Light

Mostly at the night time we switch on the tail light of our vehicles, due to

which a lot of times the License number becomes difficult to read. With

different strengths of the tail light we will generate cases of this type.

Parameter Details Range Step
Default

Value

Strength

Describes the power with

which the tail light makes

impact on the numbers.

0-15 0.5 7

Table 3.5 Parameters of Tail Light

Vehicle Type Detection &
License Plate Effects TestBench

17

6) Erode Numbers

This effect makes the characters thin and light.

Parameter Details Range Step
Default

Value

Size Size of the resulting square. 0-15 1 2

Table 3.6 Parameters of Erode Numbers

7) Dilate Numbers

This effect makes the characters very strong i.e. fat.

Parameter Details Range Step
Default

Value

Size Size of the resulting square. 0-15 1 2

Table 3.7 Parameters of Dilate Numbers

8) Suppress Contrast

Sometimes the contrast of the image is not good, so using this effect we

can shift the contrast of the image as per our needs.

Parameter Details Range Step
Default

Value

Minimum

Value

The minimum intensity

visible on the image.
0-255 1 25

Maximum

Value

The maximum intensity

visible on the image.
0-255 1 100

Table 3.8 Parameters of Suppress Contrast

9) Join Characters

This is seen many a times that characters on the License plate are joined

and the system can get confused and can read two joined characters as

one and interpret it wrong. So we are generating these cases.

Parameter Details Range Step
Default

Value

Size

The size to which random

data squares are to be

scaled to.

1-25 2 5

Percent

The value by which data

points are to be spread (1-

Precent Value).

0-1 0.01 0.50

Table 3.9 Parameters of Join Characters

Vehicle Type Detection &
License Plate Effects TestBench

18

10) Salt & Pepper Noise

This effect is used to generate cases when noise enters the channel and

disturbs the camera image.

Parameter Details Range Step
Default

Value

Percent

The percent of total pixels

of image whose intensities

are to be reverted.

0-1 0.01 0.35

Table 3.1 Parameters of Salt & Pepper Noise

11) Compression Artefacts

This effect compresses the image data using some compression techniques.

3.3.3 Proposed Approach

For License Plate TestBench:

Fig 3.1 Approach for License Plate TestBench

Vehicle Type Detection &
License Plate Effects TestBench

19

For Vehicle Type Detection TestBench:

Fig 3.2 Approach for Vehicle Type Detection TestBench

Vehicle Type Detection &
License Plate Effects TestBench

20

Chapter 4

PERFORMANCE ANALYSIS

4.1 Performance Measures

For Vehicle Type Detection the performance measures will be Total Accuracy

Percentage and the Accuracy percentage of individual type. Also False Positive for

each vehicle type will be calculated, which will become one of the most important

performance measures.

For License Plate Effects and Super Resolution performance measures will be

percentage of after effect images which are good after the Super Resolution and the

accuracy percentage of the ANPR module with these images.

4.2 Result Analysis

The Vehicle Type Detection TestBench has been used to find out the accuracy

and do the analysis on different set of Data from different sites.

The Results achieved after running the module on data of syn camera of Site1

for time duration of 11am to 7pm are shown below:

Result

S.NO Vehicle Total Accuracy (%)

1 AUTOL 91 1.1

2 AUTOH 65 67.69

3 LMV 2003 86.22

4 HMV 146 83.56

5 HMVH 0 0

6 TWOWH 317 91.48

7 TWOWHH 81 3.7

8 TWOWHL 2 50

Table 4.1 Result of VTD Site1

Vehicle Type Detection &
License Plate Effects TestBench

21

Wrong Detected Distribution %

S.N

O
Vehicle

HM

V

HMV

H

AUTO

L

LM

V

TWOW

H

TWOW

HL

TWOWH

H

1 AUTOL 27.5 13.19 0
52.7

5
0 5.49 0

2 AUTOH 1.54 15.38 1.54 3.08 0 7.69 3.08

3 LMV 6.69 6.94 0 0 0 0.15 0

4 HMV 0 10.96 0 5.48 0 0 0

5 TWOWH 0 5.99 0.63 0.32 0 0.63 0.95

6
TWOWH

H
0 25.93 1.23 0 66.67 2.47 3.7

7
TWOWH

L
0 50 0 0 0 0 0

Table 4.2 Wrong Detection of VTD Site1

The Results achieved after running the module on data of syn camera of Site2

for time duration of 11am to 4pm are shown below:

Result

S.NO Vehicle Total Accuracy (%)

1 AUTOL 44 2.5

2 AUTOH 9 22.22

3 LMV 516 91.75

4 HMV 48 93.48

5 HMVH 2 100

6 TWOWH 77 96

7 TWOWHH 15 0

8 TWOWHL 0 0

Table 4.3 Result of VTD Site2

Wrong Detected Distribution %

S.N

O
Vehicle

HM

V

HMV

H

AUTO

H

AUTO

L

LM

V

TWOW

H

TWOWH

L

1 AUTOL 32.5 12.5 5 0 40 0 7.5

2 AUTOH 0 44.44 0 0
11.1

1
0 22.22

3 LMV 3.81 4.02 0 0 0 0 0.42

4 HMV 0 4.35 2.17 0 0 0 0

5 HMVH 0 0 0 0 0 0 0

6 TWOWH 0 4 0 0 0 0 0

7
TWOWH

H
0 50 0 0 0 50 0

Table 4.4 Wrong Detection of VTD Site2

Vehicle Type Detection &
License Plate Effects TestBench

22

4.3 Output Screenshots

4.3.1 Vehicle Type Detection TestBench

Fig 4.1 Vehicle Type Detect Screen

Fig 4.2 Result Screen

Vehicle Type Detection &
License Plate Effects TestBench

23

4.3.2 License Plate Effects TestBench

Fig 4.3 LP Effects Screen

Fig 4.4 Super Resolution Screen

Vehicle Type Detection &
License Plate Effects TestBench

24

Sr.

No.

Effect

Used
Original Image

Parameters

Value
After Effect Image

1
Random

Blur

Kernel Size

Block Size

Percent

9

7

0.80

2
Add

Shadow

Location

Strength

Percent 1

Percent 2

3

0.3

0.66

0.10

3
Random

Scratch

Length

Intensity

 50

225

4
Motion

Blur
Length

Theta

5

135

5
Tail

Light Strength 5.50

6
Erode

Numbers
Size 2

7
Dilate

Numbers
Size 4

8
Suppress

Contrast

Min. Val.

Max. Val.

18

54

9
Join

Characters

Size

Percent

7

0.50

10

Salt &

Pepper

Noise
Percent 0.35

Table 4.5 Output of different Effect

Vehicle Type Detection &
License Plate Effects TestBench

25

Chapter 5

CONCLUSION

5.1 Conclusion

There cannot be always a perfect algorithm when it comes to open ended

problems like in our case of Vehicle Type Detection and License Plate number

reading or recognition because of a very large number of factors on which they

depend. All we can try is to make our algorithms more and more near to perfect.

The algorithm we have used in Vehicle Type detection is one of the best in this

business but it still have some exceptions/cases where it is not able to find the

correct type in the image. Also the best algorithm is used for ANPR but still we are

having cases where we are not getting accurate results. Each algorithm yields good

results in different cases. Cases need to be studied more and more efficient

algorithm should be found. Recording has some limitations, clipping errors comes

and recorded video is interleaved. The quality of recorded video is to be improved.

This application can contribute more to improvisation of algorithm. With changing

parameters that affect the performance of detection algorithm, we can list down

those parameters. The videos recorded from traffic can be classified as day, night

and videos having only bikes or cars or trucks. With some parameters enable the

result gets improved but run time increases. Going through R&D using this

application we can suggest that what parameters are to be set on a given type video

condition.

5.2 Future Scope

 We would like to process and train the data produced by applying different

effects on the LP images and find out the results of ANPR.

 Find out the areas of improvement with the classified data and try to

improve the accuracy of our modules.

 Export Site transactions directly to the TestBench for analysis.

Vehicle Type Detection &
License Plate Effects TestBench

26

References

[1] “Glade and Gtk::Builder", Developer.gnome.org, 2017. [Online]. Available:

https://developer.gnome.org/gtkmm-tutorial/stable/chapter-builder.html.

[Accessed: 15- Feb- 2017].

[2] Programming with gtkmm, 1st ed. Boston, USA: Free Software Foundation,

2002, pp. 15-166, 172-207.

[3] M. Lades, J.C. Vorbruggen, J. Buhmann, J. Lange, C. von der Malsburg, R.P.

Wurtz, and W. Konen. Distortion invariant object recognition in the dynamic

link architecture. Computers, IEEE Transactions on, 42(3):300 311, Mar 1993.

[4] Peter Shin, Hector Jasso, Sameer Tilak, Neil Cotofana, Tony Fountain, Linjun

Yan, Mike Fraser, and Ahmed Elgamal. Automatic vehicle type classification

using strain gauge sensors. Pervasive Computing and Communications

Workshops, 2007. PerCom Workshops '07. Fifth Annual IEEE International

Conference on, pages 425_428, March 2007.

[5] T.R. Lim and A.T. Guntoro. Car recognition using gabor filter feature extraction.

Circuits and Systems, 2002. APCCAS '02. 2002 Asia-Pacific Conference on,

2:451_455 vol.2, 2002.

[6] "Doxygen: Main Page", Stack.nl, 2017. [Online]. Available:

http://www.stack.nl/~dimitri/doxygen/. [Accessed: 15- Feb- 2017].

[7] S. Gupte, O. Masoud, R. Martin and N. Papanikolopoulos, "Detection and

classification of vehicles", IEEE Transactions on Intelligent Transportation

Systems, vol. 3, no. 1, pp. 37-47, 2002.

[8] C. Patel, D. Shah and A. Patel, "Automatic Number Plate Recognition System

(ANPR): A Survey", International Journal of Computer Applications, vol. 69,

no. 9, pp. 21-33, 2013.

[9] A. K. Jain. Fundamentals of Digital Image Processing. Prentice Hall, 1989.

[10] J. Banerjee and C. V. Jawahar, "Super-Resolution of Text Images Using

Edge-Directed Tangent Field," 2008 The Eighth IAPR International

Workshop on Document Analysis Systems, Nara, 2008, pp. 76-83.

doi: 10.1109/DAS.2008.26.

