Android Applications

Project report submitted in partial fulfillment of the requirement for the
degree of Bachelor of Technology

in
Computer Science and Engineering
By
(Deepanker Jain(121318))
(Shashwat Singh(123207))
Under the supervision of

Dr. Sakshi Babbar
fo

- YN O,

(A
e “ -
» ¥ B

&~ |
o -
~ -
- -
- =
- -
> -
- >
-
— "‘-‘
o~ -~
- >
r - .3
-~ - e

Juit

Department of Computer Science & Engineering and Information
Technology

Jaypee University of Information Technology Waknaghat, Solan-
173234, Himachal Pradesh

CERTIFICATE

Candidate’s Declaration

| hereby declare that the work presented in this report entitled “Android Applications” in partial
fulfillment of the requirements for the award of the degree of Bachelor of Technology in
Computer Science and Engineering/Information Technology submitted in the department of

Computer Science & Engineering and Information Technology, Jaypee University of Information
Technology Waknaghat is an authentic record of my own work carried out over a period from
August 2015 to May 2016 under the supervision of Dr. Sakshi Babbar, Assistant Professor
(Senior Grade) of CSE Department.

The matter embodied in the report has not been submitted for the award of any other degree or
diploma.

(Student Signature)
Deepanker Jain(121318)
Shashwat Singh(123207)

This is to certify that the above statement made by the candidate is true to the best of my
knowledge.

(Supervisor Signature)

Dr.Sakshi Babbar

Assistant Professor(Senior Grade)
Computer Science Department

Dated:

ACKNOWLEDGEMENT

We would like to express our special thanks of gratitude to our supervisor Dr. Sakshi
Babbar who gave us the golden opportunity to do this wonderful project on Android
Applications, which also helped us in doing a lot of research and we came to know about so
many new things about android. We are really thankful to her.

Date: Name of the students:
Deepanker Jain
Shashwat Singh

CONTENTS

CERTIFICATE. . .o e i
ACKNOWLEDGEMENT ... e i
LIST OF FIGURES. .. il
A B S T R A T L v
1. INTRODUCTION
1.1, INTRODUCTION. ... e, 1
1.2)PROBLEM STATEMENTo 6
L.3)OBIECTIVES. ..o e 6
LAMETHODOLGY ...t 7
L.S)ORGANISATION. .. .ot e 8
2) LITEATURE SURVEY ..ottt 9
3.) SYSTEM DEVLOPMENT ..., 14
4) PERFORMANCE ANALY SIS: ... it 55
5.) CONCLUSION. ...ttt 59
6.) REFERENCES.o 60

S.No.

10.

List of Fiqures

Title
Android Logo
Android Architecture

Android Studio Logo

Architecture of multimedia player software platform

Android media framework

System processes of media player

Android Architecture
System Flow Chart
Media Layer Structure

State Diagram of Audio player

Page No.

11

12

12
13
27
28

34

ABSTRACT

In recent years, the emergence of smart phones has changed the definition of mobile phones. Phone
is no longer just a communication tool, but also an essential part of the people's communication
and daily life. Various applications added unlimited fun for people's lives. It is certain that the
future of the network will be the mobile terminal. Now the Android system in the electronics
market is becoming more and more popular, especially in the smartphone market. Because of the

open source, some of the development tools are free, so there are plenty of applications generated.

So our aim is to develop an android application to give information about the details of
International Conference on Image Information Processing and to develop a media player which

can run almost any media content in any form.

CHAPTER 1: INTRODUCTION

1.1 Introduction

In recent years, the emergence of smart phones has changed the definition of mobile phones. Phone
is no longer just a communication tool, but also an essential part of the people's communication
and daily life. Various applications added unlimited fun for people's lives. It is certain that the
future of the network will be the mobile terminal. Now the Android system in the electronics
market is becoming more and more popular, especially in the smartphone market. Because of the
open source, some of the development tools are free, so there are plenty of applications generated.
This greatly inspired the people to use the Android system. In addition, it provides a very
convenient hardware platform for developers so that they can spend less effort to realize their
ideas. This makes Android can get further development . As the smart phones and Android system
getting popular, the operations like listening to music, watching videos, tweeting and some others
can be moved from the computer to a phone now. The applications on the market today are mostly
commercial applications, and contain a large number of built-in advertising. If the user prefers to
remove the built-in advertising, a certain price must be paid to reach that and this is not convenient.
Meanwhile, because of the unfair competition of IT, many applications built illegal program to
steal user information and cause some damage to user’s personal privacy. Sometimes, users will
pay more attention to the user experience of software. Therefore, the development of the
application can not only be limited to the function, more attention should be paid to the user's
experience. After studying some previous Android applications and access to large amounts of
materials, we utilize the Java language, the Eclipse platform, Android ADT and the Android SDK
to develop these three mobile applications. These systems have a nice interface and smooth
operation. These Apps won’t steal any personal information, but can exclude useless information

and bring a wonderful user experience.

1.1.1 Android

Android is a mobile operating system (OS) currently developed by Google, based on the Linux

kernel and designed primarily for touchscreen mobile devices such as smartphones and tablets.

Android's user interface is mainly based on direct manipulation, using touch gestures that loosely

https://en.wikipedia.org/wiki/Mobile_operating_system
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Touchscreen
https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/Tablet_computer
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/Direct_manipulation_interface

correspond to real-world actions, such as swiping, tapping and pinching, to manipulate on-screen

objects, along with a virtual keyboard for text input. In addition to touchscreen devices, Google

has further developed Android TV for televisions, Android Auto for cars, and Android Wear for
wrist watches, each with a specialized user interface. Variants of Android are also used

on notebooks, game consoles, digital cameras, and other electronics.Initially developed by

Android, Inc., which Google bought in 2005, Android was unveiled in 2007, along with the
founding of the Open Handset Alliance— a consortium of hardware, software, and

telecommunication companies devoted to advancing open standards for mobile devices. As of July
2013, the Google Play store has had over one million Android applications (“apps") published, and
over 50 billion applications downloaded. An April-May 2013 survey of mobile application
developers found that 71% of developers create applications for Android, and a 2015 survey found

that 40% of full-time professional developers see Android as their priority target platform.

CND30ID

Figurel.Android Logo

1.1.2 Android Architecture

We studied the Android system architecture. Android system is a Linux-based system, Use of the
software stack architecture design patterns . As shown in Figure 1, the Android architecture
consists of four layers: Linux kernel, Libraries and Android runtime, Application framework and

Applications [5-8]. Each layer of the lower encapsulation, while providing call interface to the

upper.

https://en.wikipedia.org/wiki/Virtual_keyboard
https://en.wikipedia.org/wiki/Android_TV
https://en.wikipedia.org/wiki/Android_Auto
https://en.wikipedia.org/wiki/Android_Wear
https://en.wikipedia.org/wiki/Laptop
https://en.wikipedia.org/wiki/Video_game_console
https://en.wikipedia.org/wiki/Digital_camera
https://en.wikipedia.org/wiki/Open_Handset_Alliance
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Open_standard
https://en.wikipedia.org/wiki/Google_Play

Home

Applications

Framework

Applications

{

Libraries Android Runtime
= e LAdAbraries
Media j [[L: Core Librarie _DI
Framework st C Dalwil >

Di=splaw
Driver

Linux Kernel

Caume -z

Driver

Figure2. Android Architecture

A) Applications:
Android app will be shipped with a set of core applications including client, SMS program,
calendar, maps, browser, contacts, and others. All these application programs are
developed in Java.

B) Application Framework :
The developer is allowed to access all the API framework of the core programs. The
application framework simplifies the reuse of its components. Any other app can release
its functional components and all other apps can access and use this component (but have
to follow the security of the framework). Same as the users can be able to substitute the

program components with this reuse mechanism

C) Libraries and Android Runtime
The library is divided in to two components: Android Runtime and Android Library.
Android Runtime is consisted of a Java Core Library and Dalvik virtual machine. The
Core Library provides Java core library with most functions. Dalvik virtual machine is
register virtual machine and makes some specific improvements for mobile device.
Android system library is support the application framework, it is also an important link
connecting between application framework and Linux Kernel. This system library is
developed in C or C++ language. These libraries can also be utilized by the different
components in the Android system. They provide service for the developers through the

application framework.

D) Linux Kernel
The kernel system service provided by Android inner nuclear layer is based on Linux 2.6
kernel, Operations like internal storage, process management, internet protocol, bottom-

drive and other core service are all based on Linux kernel.

1.1.3 Software Development Kit(SDK)

A software development kit (SDK or "devkit") is typically a set of software development tools that

allows the creation of applications for a certain software package, software framework, hardware

platform, computer system, video game console, operating system, or similar development

platform. To create applications you have to download this software development kit. For example,
if you want to create an Android app you require an SDK with java programming, for iOS apps
you require an i0OS SDK with swift language, and to develop MS Windows apps you require the
.net language. There are also SDKSs that are installed in apps to provide analytics and data about

activity. Prominent examples include Google and Facebook.

https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Computer_system
https://en.wikipedia.org/wiki/Video_game_console
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Facebook

1.1.4 Android Studio

Android Studiois an integrated development environment (IDE) for developing for

the Android platform. It was announced on May 16, 2013 at the Google 1/0 conference. Android
Studio is freely available under the Apache License 2.0. Android Studio was in early access

preview stage starting from version 0.1 in May 2013, then entered beta stage starting from version
0.8 which was released in June 2014. The first stable build was released in December 2014, starting

from version 1.0. Based on JetBrains' IntelliJ IDEA software, Android Studio is designed

specifically for Android development. It is available for download on Windows, Mac OS

X and Linux, and replaced Eclipse Android Development Tools (ADT) as Google's primary IDE

for native Android application development.

A
Figure3.Android Studio Logo

1.2 Problem Statement:

1.2.1 To develop an android application to give information about the details of International
Conference on Image Information Processing. This application will allow all users to
receive all kinds of information regarding ICIIP such as Program schedule, Keynote
Speakers, Important Dates, etc. User can access this application anywhere and anytime
using his or her Smartphone.

1.2.2 Many users like to watch video and listen to music using their mobile phone, but the media
player has many limitations. With a rapid development of communication and network,
multimedia based technology is adopted in media player. So our aim is to develop a

media player which can run almost any media content in any form.

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Google_I/O
https://en.wikipedia.org/wiki/Apache_License
https://en.wikipedia.org/wiki/JetBrains
https://en.wikipedia.org/wiki/IntelliJ_IDEA
https://en.wikipedia.org/wiki/Windows
https://en.wikipedia.org/wiki/Mac_OS_X
https://en.wikipedia.org/wiki/Mac_OS_X
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Eclipse_(software)#Eclipse_ADT_.28Android_Development_Tools.29

1.3 Objective
There are 5 objectives in this project:
1. To setup Android software development Kit.

2. To write a program that can do various tasks such as running media(audio & video),

displaying information, sending notifications, Bitmapping, asynchronous multi-tasking.

3. Crash handling and debugging.

4. Generating signed APK.

5. Upload application on Google Playstore.

1.4 Methodology

This project is made by using Android studio, Virtual emulator and Photoshop. The
programming languages used for building the application are Java, XML and C++.
User interface is handled using XML codes. Backend programming is handled mainly through

set of java codes. Native libraries are accessed through set of predefined C++ codes.

The other libraries required are:

e Android SDK tools

e Android SDK platform tools

e Android SDK build tools

e SDK platform

e ARM EABI v7a System Image

e Intel x86 Atom_64 System Image
e Google APIs

e Google APIs ARM EABI v7a System Image

e GPU Debugging tools

e Android Support Library

e Google play services

e Google USB drivers

e Google Web drivers

¢ Intel x86 Emulator Acclerator(HAXM installer)

1.5 Organization:

As an overview, the structure of this report is organized as follows:

Chapter 1 Describes a general introduction of the project, problem statement project aims and

project scope.

Chapter 2 Provides details literature review that includes an introduction to some basic concepts
and a survey of existing works in the areas of developing the android application. This chapter
explains in detail all the researches, studies, theories and gathering that have been make throughout

the project.

Chapter 3 Discusses the system and design of the project which provides a detailed description

of the design to develop an application.

Chapter 4 Discusses about the result and Screenshots.

Chapter 5 Concludes the project and gives suggestions for future work.

CHAPTER 2 : LITERATURE REVIEW

Paper 1: Research and Development of Mobile Application for
Android Platform

The authors in [1] have tested the app in three environments including hardware, software and
network. Test hardware environment is Lenovo Y460 laptop and millet M1 phone; software
environment is windows 7 and phone system environment is android 4.0.3. Network environment
is China Mobile which is 10M broadband, WIFI LAN and China Mobile GPRS network.By testing
each function on mobile phone and the computer simulator, the result showed that video player
and audio player run well and no advertising. Sina weibo client can successfully complete
OAuth2.0 certificate authority and login and collect the basic data of the user information from
sina server and no redundant information. Expected effect is achieved after testing all the functions.
They says that since the Weibo client has to access to the network, when tested on an android
phone, the performance under the environment of WIFI network and mobile 2G GPRS network

can meet the expected requirements.

Paper 2: Research on Development of android Applications.

This article [2] gives a detailed introduction of android application framework and the working
principal of android applications. Finally, a music player on the android platform was put forward

as an example to illustrate this mechanism.

Paper 3: The android Application Development College Challenge

The authors in [3] say that android application development college challenge has only been held
two times, but it greatly encourages and promotes the creativity of the college students. With more
and more competitive teams participating the contest, it will be harder to win an award. However,
many exciting applications will be presented in the contest. This challenge gives us an opportunity
to learn about that a lot of ideas we think about can be implemented on android platform. At the
same time, the contest provides a stage for android developer to discuss and communicate with
each other. This can effectively promote the development of android and attract more software

engineers to develop applications on android platform.

Paper 4: A model driven approach for android applications development

This paper [4] proposes a MDE approach for android applications development, which addresses
how to model specific aspects of android applications, as intent and a data/service request, using
standard UML notations. Moreover, it supports static and behavioral code generation from UML
class and sequence diagrams, according to the rules imposed by the android platform. To
demonstrate our approach, a case study was conducted, in which an android application was
modeled in UML and code was generated from it. To generate code, the extension of GenCode
was used. However, the actual version of GenCode tool that supports the proposed approach, only
made an automatic transformation from UML class and sequence diagrams to the target android
Java code, without consider any optimization in the generated code. As future work, we plan to
extend this tool in order to consider the good practices for android development , and thus

generating efficient code.

Paper 5: Design of Android based Media Player
This paper[5] proposes that many users like to watch video by a mobile phone, but the media
player has many limitations. With a rapid development of communication and network,

multimedia based technology is adopted in media player. Different approaches of media player

shown in this paper are plug-in extension technology, multimedia based on hierarchy, media player
based on file browser, media player based on FFmpeg (Fast Forward Moving Picture Expert

Group), media player based on file server.

|
|
| JAWVA
Media Appcation : Layer
I
I
: |
Android Media Java API |
|
—————————————————— . . i
| C/CH+
libmedia_ini.so libruntime.so : Lo =l

libmedia.so libmediaplayerservice.so

|
l ; p Bindgr

MediaPlayerlnterface

worbis [libopencoreplay

codec enso

I
|
|
| midifile
|
I
1

Figure 4. Architecture of multimedia player software platform

Android edia dMediaP]3:-.-'|:r

L

LY ianELr----.._,_ ,/"_‘\llibmr:d[a_jni.sn
Machine - -b:H\'jH] ¥

¥

libimediaservice,
S0

libmediaso [1% > l,

libopencoreplay
er.50

Figure 5. Android media framework

J: MNaim Menu

I
.

l Recently played list

fost often played list

Aldl music

: e Play time descendimg Hits descending
= Al music list 3 . g > * = > :
music list music list

L

Scleet songs™

< ALl music list 5

Figure 6. System processes of media player

Paper 6: The Android - A Widely Growing Mobile Operating System With its Mobile based
Applications[6]

Android operating system is one of the most widely used mobile Operating System these days and also
enhancing its use for making betterment in different areas of life. Android mobile operating system is based
on the Linux kernel and is developed by Google and primarily designed for smartphones and tablets.
Android Operating System consist of four main layers, the specifying architecture is given in this paper.
The advanced Smart applications of android in mobile, real-time and wireless sensor network are widening
their service areas. Android is a disruptive technology, which was introduced initially on mobile handsets,
but has much wider potential. In this paper we are studying, one of the smart and enhancing Android
operating system application which are based on Automated and tracking from remote distance. These
application helps students, teachers, parents, patients and users of home appliance as anytime and anywhere
basis. Being part of today’s advance world, using fastest acceptable and mobile Android Operating System
it’s possible to develop automated attendance system, secure transferring of medical data and automated

home appliance monitoring system.

Package Manager

Surface Manager

OpenGL | ES

SGL

Display
Driver

Keypad Driver

Android Architecture

APPLICATIONS

Contacts Phone

APPLICATION FRAMEWORK

Window Content View
Manager Providers System

Resource Location Notification
Manager Manager Manager

LIBRARIES ANDROID RUNTIME

Media Core Libraries

reual
Freelype Machine

SSL

LiNuUX KERNEL

Flash Memory Binder (IPC)

Camera Driver s il

- . Audio Power
WiFi Driver Drivers Management

Figure 7.Android Architecture

CHAPTER 3:SYSTEM DEVELOPMENT

3.1 Designing navigation drawer

To add a navigation drawer, declare wer user interface with aDrawerLawet object as the root view
of werlawet. Inside theDrawerLawet, add one view that contains the main content for the screen
(wer primary lawet when the drawer is hidden) and another view that contains the contents of the

navigation drawer.

For example, the following lawet uses a DrawerLawet with two child views: a FramelLawet to
contain the main content (populated by a Fragment at runtime), and a ListView for the navigation

drawer.

<FrameLawet
android:id="@-+id/content_frame"
android:lawet_width="match_parent"
android:lawet_height="match_parent"/>

<ListViewandroid:id="@+id/left_drawer"
android:lawet_width="240dp"
android:lawet_height="match_parent"
android:lawet_gravity="start"
android:choiceMode="singleChoice"
android:divider="@android:color/transparent"

android:dividerHeight="0dp"

android:background="#111"/>

This lawet demonstrates some important lawet characteristics:

http://developer.android.com/reference/android/support/v4/widget/DrawerLayout.html
http://developer.android.com/reference/android/support/v4/widget/DrawerLayout.html
http://developer.android.com/reference/android/support/v4/widget/DrawerLayout.html
http://developer.android.com/reference/android/widget/FrameLayout.html
http://developer.android.com/reference/android/app/Fragment.html
http://developer.android.com/reference/android/widget/ListView.html

e The main content view (the FramelLawet above) must be the first childin
the DrawerLawet because the XML order implies z-ordering and the drawer must be on top of

the content.

« The main content view is set to match the parent view's width and height, because it represents

the entire Ul when the navigation drawer is hidden.

e The drawer view (the ListView) must specify its horizontal gravity with
the android:lawet_gravityattribute. To support right-to-left (RTL) languages, specify the value
with "start" instead of "left" (so the drawer appears on the right when the lawet is RTL).

e The drawer view specifies its width in dp units and the height matches the parent view. The
drawer width should be no more than 320dp so the user can always see a portion of the main

content.

Initialize the Drawer List

In wer activity, one of the first things to do is initialize the navigation drawer's list of items. How
we do so depends on the content of wer app, but a navigation drawer often consists of a ListView,

so the list should be populated by an Adapter (such as ArrayAdapter or SimpleCursorAdapter).

For example, here's how we can initialize the navigation list with a string array:
mPlanetTitles=getResources().getStringArray(R.array.planets_array);

mDrawerLawet=(DrawerLawet)findViewByld(R.id.drawer_lawet);
mDrawerList=(ListView)findViewByld(R.id.left_drawer);

mDrawerList.setAdapter(newArrayAdapter<String>(this,

R.lawet.drawer _list_item,mPlanetTitles));

mDrawerL.ist.setOnltemClickListener(newDrawerltemClickListener());

http://developer.android.com/reference/android/widget/FrameLayout.html
http://developer.android.com/reference/android/support/v4/widget/DrawerLayout.html
http://developer.android.com/reference/android/widget/ListView.html
http://developer.android.com/reference/android/widget/ListView.html
http://developer.android.com/reference/android/widget/Adapter.html
http://developer.android.com/reference/android/widget/ArrayAdapter.html
http://developer.android.com/reference/android/widget/SimpleCursorAdapter.html
http://developer.android.com/guide/topics/resources/string-resource.html#StringArray

This code also calls setOnltemClickListener() to receive click events in the navigation drawer's

list. The next section shows how to implement this interface and change the content view when

the user selects an item.

Handle Navigation Click Events
When the user selects an item in the drawer's list, the system calls onltemClick() on

theOnltemClickListener given to setOnltemClickListener().

What we do in the onltemClick() method depends on how we've implemented wer app structure.
In the following example, selecting each item in the list inserts a different Fragment into the main

content view (theFrameLawet element identified by the R. id.content frame ID):

privateclassDrawerltemClickListenerimplementsListView.OnltemClickListener{
@Override
publicvoidonltemClick(AdapterView parent,Viewview,int position,long id){

selectltem(position);

privatevoidselectltem(int position){
Fragmentfragment=newPlanetFragment();
Bundleargs=newBundle();
args.putint(PlanetFragment. ARG_PLANET _NUMBER, position);
fragment.setArguments(args);

FragmentManagerfragmentManager=getFragmentManager();
fragmentManager.beginTransaction()

replace(R.id.content_frame, fragment)

http://developer.android.com/reference/android/widget/AdapterView.html#setOnItemClickListener(android.widget.AdapterView.OnItemClickListener)
http://developer.android.com/reference/android/widget/AdapterView.OnItemClickListener.html#onItemClick(android.widget.AdapterView<?>, android.view.View, int, long)
http://developer.android.com/reference/android/widget/AdapterView.OnItemClickListener.html
http://developer.android.com/reference/android/widget/AdapterView.html#setOnItemClickListener(android.widget.AdapterView.OnItemClickListener)
http://developer.android.com/reference/android/widget/AdapterView.OnItemClickListener.html#onItemClick(android.widget.AdapterView<?>, android.view.View, int, long)
http://developer.android.com/design/patterns/app-structure.html
http://developer.android.com/reference/android/app/Fragment.html
http://developer.android.com/reference/android/widget/FrameLayout.html

.commit();

mDrawerList.setltemChecked(position,true);
setTitle(mPlanetTitles[position]);

mDrawerLawet.closeDrawer(mDrawerL.ist);

@Override

publicvoidsetTitle(CharSequence title){
mTitle= title;
getActionBar().setTitle(mTitle);

Listen for Open and Close Events

To listen for drawer open and close events, call setDrawerL istener() on wer DrawerLawet and pass

it an implementation of DrawerLawet.DrawerListener. This interface provides callbacks for

drawer events such asonDrawerOpened() and onDrawerClosed().

However, rather than implementing the DrawerLawet.DrawerListener, if wer activity includes

the action bar, we can instead extend the ActionBarDrawerToggle class.

The ActionBarDrawerToggle implementsDrawerLawet.DrawerListener so we can still override

those callbacks, but it also facilitates the proper interaction behavior between the action bar icon

and the navigation drawer (discussed further in the next section).

As discussed in the Navigation Drawer design guide, we should modify the contents of the action

bar when the drawer is visible, such as to change the title and remove action items that are

contextual to the main content. The following code shows how we can do so by

overriding DrawerLawet.DrawerListener callback ~ methods with an instance of

the ActionBarDrawerToqgle class:

http://developer.android.com/reference/android/support/v4/widget/DrawerLayout.html#setDrawerListener(android.support.v4.widget.DrawerLayout.DrawerListener)
http://developer.android.com/reference/android/support/v4/widget/DrawerLayout.html
http://developer.android.com/reference/android/support/v4/widget/DrawerLayout.DrawerListener.html
http://developer.android.com/reference/android/support/v4/widget/DrawerLayout.DrawerListener.html#onDrawerOpened(android.view.View)
http://developer.android.com/reference/android/support/v4/widget/DrawerLayout.DrawerListener.html#onDrawerClosed(android.view.View)
http://developer.android.com/reference/android/support/v4/widget/DrawerLayout.DrawerListener.html
http://developer.android.com/guide/topics/ui/actionbar.html
http://developer.android.com/reference/android/support/v4/app/ActionBarDrawerToggle.html
http://developer.android.com/reference/android/support/v4/app/ActionBarDrawerToggle.html
http://developer.android.com/reference/android/support/v4/widget/DrawerLayout.DrawerListener.html
http://developer.android.com/design/patterns/navigation-drawer.html
http://developer.android.com/reference/android/support/v4/widget/DrawerLayout.DrawerListener.html
http://developer.android.com/reference/android/support/v4/app/ActionBarDrawerToggle.html

@Override
publicvoidonCreate(BundlesavedInstanceState){
super.onCreate(savedInstanceState);

setContentView(R.lawet.activity _main);

mTitle=mDrawerTitle=getTitle();
mDrawerLawet=(DrawerLawet)findViewByld(R.id.drawer_lawet);
mDrawerToggle=newActionBarDrawerToggle(this,mDrawerLawet,

R.drawable.ic_drawer,R.string.drawer_open,R.string.drawer_close){

publicvoidonDrawerClosed(View view){
super.onDrawerClosed(view);
getActionBar().setTitle(mTitle);
invalidateOptionsMenu(); }

publicvoidonDrawerOpened(ViewdrawerView){
super.onDrawerOpened(drawerView);
getActionBar().setTitle(mDrawerTitle);

invalidateOptionsMenu(); }
¥
mDrawerLawet.setDrawerListener(mDrawerToggle);
}
@Override

publicbooleanonPrepareOptionsMenu(Menu menu){
booleandrawerOpen=mDrawerLawet.isDrawerOpen(mDrawerL.ist);
menu.findltem(R.id.action_websearch).setVisible('drawerOpen);

returnsuper.onPrepareOptionsMenu(menu);

3.2 Creating another activity
Respond to the Send Button
1. In Android Studio, from the res/lawet directory, edit thecontent_my.xml file.
2. Add the android:onClick attribute to the <Button>element.
res/lawet/content_my.xml
<Button
android:lawet_width="wrap_content"
android:lawet_height="wrap_content"

android:text="@string/button_send"

android:onClick="sendMessage"/>

The android:onClick attribute’s value, "sendMessage", IS the name of a method in wer

activity that the system calls when the user clicks the button.

3. In the java/com.shashwat.iciip directory, open the MainActivity.java file.
4. Within the MainActivity class, add the sendMessage() method stub shown below.
MainActivity.java

publicvoidsendMessage(View view){

¥

In order for the system to match this method to the method name given to android:oncClick,

the signature must be exactly as shown. Specifically, the method must:

o Be public

o Have avoid return value

http://developer.android.com/reference/android/view/View.html#attr_android:onClick
http://developer.android.com/reference/android/widget/Button.html
http://developer.android.com/reference/android/view/View.html#attr_android:onClick
http://developer.android.com/reference/android/view/View.html#attr_android:onClick

o Have a View as the only parameter (this will be the View that was clicked)

Next, we’ll fill in this method to read the contents of the text field and deliver that text to another
activity.

Build an Intent

1. In MainActivity.java, inside the sendMessage() method, create an Intent to start an activity
calledDisplayMessageActivity with the following code:

java/com.shashwat.iciip/MainActivity.java

publicvoidsendMessage(View view){

Intentintent=newIntent(this,DisplayMessageActivity.class);

}

The constructor used here takes two parameters:

o A Context as its first parameter (thisis used because the Activity class is a subclass
of Context)

o The Class of the app component to which the system should deliver the Intent (in this case,
the activity that should be started)

Android Studio indicates that we must import the Intent class.

2. At the top of the file, import the Intent class:

MainActivity.java
importandroid.content.Intent;

3. Inside the sendMessage() method, use findViewByld() to get the EditText element.

MainActivity.java

publicvoidsendMessage(View view){

Intentintent=newIntent(this,DisplayMessageActivity.class);

http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Context.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/content/Context.html
http://developer.android.com/reference/java/lang/Class.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/app/Activity.html#findViewById(int)
http://developer.android.com/reference/android/widget/EditText.html

EditTexteditText=(EditText)findViewByld(R.id.edit_message);
}

4. At the top of the file, import the EditText class.

In Android Studio, press Alt + Enter (option + return on Mac) to import missing classes.

5. Assign the text to a local message variable, and use the putExtra() method to add its text value
to the intent.

MainActivity.java

publicvoidsendMessage(View view){
Intentintent=newIntent(this,DisplayMessageActivity.class);
EditTexteditText=(EditText)findViewByld(R.id.edit_message);
String message =editText.getText().toString();
intent.putExtra(EXTRA_MESSAGE, message);

An Intent can carry data types as key-value pairs called extras. The putExtra() method takes the

key name in the first parameter and the value in the second parameter.

6. At the top of the MyActivity class, add the EXTRA_MESSAGE definition as follows:

MainActivity.java

publicclassMyActivityextendsAppCompatActivity{
publicfinalstaticString EXTRA_MESSAGE ="shashwat.com.iciip. MESSAGE";

For the next activity to query the extra data, we should define the key for wer intent's extra
using a public constant. It's generally a good practice to define keys for intent extras using wer
app's package name as a prefix. This ensures the keys are unique, in case wer app interacts with

other apps.

http://developer.android.com/reference/android/widget/EditText.html
http://developer.android.com/reference/android/content/Intent.html#putExtra(java.lang.String, android.os.Bundle)
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html#putExtra(java.lang.String, android.os.Bundle)

7. In the sendMessage() method, to finish the intent, call the startActivity() method, passing it

thelntent object created in step 1.

With this new code, the complete sendMessage () method that's invoked by the Send button now

looks like this:

MainActivity.java

publicvoidsendMessage(View view){
Intentintent=newIntent(this,DisplayMessageActivity.class);
EditTexteditText=(EditText)findViewByld(R.id.edit_message);
String message =editText.getText().toString();
intent.putExtra(EXTRA_MESSAGE, message);
startActivity(intent);

The system receives this call and starts an instance of the Activity specified by the Intent. Now we

need to create the DisplayMessageactivity class in order for this to work.

Create the Second Activity
1. In Android Studio, in the java directory, select the package, com.mycompany.iciip, right-

click, and select New > Activity > Blank Activity.
2. In the Choose options window, fill in the activity details:
o Activity Name: DisplayMessageActivity
o Lawet Name: activity_display_message
o Title: My Message
o Hierarchical Parent: com.mycompany.myfirstapp.MyActivity
o Package name: com.mycompany.myfirstapp

Click Finish.

http://developer.android.com/reference/android/app/Activity.html#startActivity(android.content.Intent)
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/content/Intent.html

3. Open the DisplayMessageActivity.java file.

The class already includes an implementation of the required onCreate() method. We update

the implementation of this method later.

If we're developing with Android Studio, we can run the app now, but not much happens. Clicking
the Send button starts the second activity, but it uses a default "Hello world" lawet provided by the

template. We'll soon update the activity to instead display a custom text view.

Receive the Intent
Every Activity is invoked by an Intent, regardless of how the user navigated there. We can get
the Intentthat started wer activity by calling getintent() and retrieve the data contained within the

intent.
1. In the mainactivity directory, edit the DisplayMessageActivity.java file.

2. Get the intent and assign it to a local variable.

Intentintent=getIntent();

3. At the top of the file, import the Intent class.

4. Extract the message delivered by MyActivity with the getStringExtra() method.

String message =intent.getStringExtra(MyActivity. EXTRA_MESSAGE);

Display the Message
1. Inthe res/lawet directory, edit the content_display _message.xml file.

2. Add an android:id attribute to the RelativeLawet. We need this attribute to reference the object

from wer app code.

<RelativeLawetxmlns:android="http://schemas.android.com/apk/res/android"

http://developer.android.com/reference/android/app/Activity.html#onCreate(android.os.Bundle)
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/app/Activity.html#getIntent()
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html#getStringExtra(java.lang.String)

android:id="@-+id/content">

</RelativeLawet>

Switch back to editing DisplayMessageActivity.java.

In the onCreate() method, create a TextView object.

TextViewtextView=newTextView(this);

Set the text size and message with setText().

textView.setTextSize(40);
textView.setText(message);

. Add the TextView to the RelativeLawet identified by R.id.content.

RelativeLawetlawet=(RelativeLawet)findViewByld(R.id.content);
lawet.addView(textView);

. At the top of the file, import the TextView class.

In Android Studio, press Alt + Enter (option + return on Mac) to import missing classes.

http://developer.android.com/reference/android/app/Activity.html#onCreate(android.os.Bundle)
http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/TextView.html#setText(char[], int, int)
http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/RelativeLayout.html
http://developer.android.com/reference/android/widget/TextView.html

3.3 Video Player

Video Player is achieved through the Android Studio platform.It begins with the study of operating

mechanism, Android platform media layer structure, xml customizable interface, Content

Providers achieves file scanning to get a list of media files, MediaPlayer class, file parsing, Surface

Flinger interface. After that, we could develop an Android-based mobile video player. Realize

media library, video player, file opening, audio, video, photographs and other functions. Figure

below is system flow chart.

the Xml tile defin
(Included in the
Framewaorlk

ition interface
application
|:I_\.-'I.!r':|

.

File list
Content
(ITncluded in the

Framework

abtained through the
Providers

application
layer)

I

Using multimedia framework for wvideo
File plavback

(ITncluded in the Libraries laver)

Figure 8.System Flow Chart

The software interface is defined through XML files. XML layout files control view, is not only

simple, but also isolated the View control logic from Java code and controlled by inserted into

XML files. Reflects the MV C principle in a better way and also reflects the principle of

separation of logic and views. This software obtains the list of media files by scanning through

Content Providers. Content Providers is recognized as a bridge between the data storing and

searching across programs. The function is to achieve data sharing among different Apps, it is

the only way to share data with other apps. Figure below shows the media layer structure.

APP (Jawva)

IMNI Clibmedia_jni.so)

l

libmedia.so

AudioFlinger

mediaplayerserver |

l AudioFlinger

-
mediaplayer interface ‘

OpenCore |
Player |

MDD Player] | Vorbis Player J

Figure 9.Media Layer Structure

The upper applications of Android-MediaPlayer are implemented by JAVA, realized logic
processing. JAVA program realizes the playback of video file and online video by calling the
underlying media library libmedi.so through JNI interface. MediaPlayer can be roughly divided
into two parts at run time: Client and Server. They are running in two separated processes. Binder
used between them to achieve IPC communication. Mediaplayerservice in Figure 3 is a server-
side implementation repository. MediaPlayer calls media playback capabilities provided by
Opencore to implement video file playback, Opencore responsible media file format parsing,
decoding audio and video data, and outputs the media data. Opencore calls SurfaceFlinger
interface to realize the showing of video data and by applying AudioFlinger interface to realize the
playback of audio data.

In the Android media layer, the most important class is MediaPlayer. MediaPlayer class and its

associated structures are shown in Figure below.

Vitamio is an open multimedia framework for Android, with hardware accelerated decoder and
renderer. Vitamio can play 720p/1080p HD mp4,mkv,m4v,mov,flv,avi,rmvb,rm,ts,tp and many
other video formats in Android and iOS. Almost all popular streaming protocols are supported
by Vitamio, including HLS(m3u8), MMS, RTSP, RTMP, and HTTP.

Integrating SDK into your application

Create a New Android project
import vitamiolibrary.jar into your applicaiton project /libs directory
Add libvitamio.so into your application project /libs directory

Copy the recourse like class,picture from Demo into app project

Initializing vitamio SDK

/[set the video cache path
if (DeviceUtils.isZte()) {
if(Environment.getExternalStoragePublicDirectory(Environment. DIRECTORY_ DCIM).exists()) {
Vitamio.setVideoCachePath(Environment.getExternalStoragePublicDirectory
(Environment.DIRECTORY _DCIM) + "/Camera/VitamioDemo/");
}else {
Vitamio.setVideoCachePath(Environment.getExternalStoragePublicDirectory
(Environment.DIRECTORY _DCIM).getPath().replace(*'/sdcard/", "/sdcard-ext/")

+"/Camera/VitamioDemo/");

}
}else {

Vitamio.setVideoCachePath(Environment.getExternalStoragePublicDir ectory
(Environment.DIRECTORY _DCIM) + "/Camera/VitamioDemo/");

}
/lopen log output,FFmpeg output into logcat

Vitamio.setDebugMode(true);

/linitializing Vitamio SDK is essential

Vitamio.initialize(this);

Initializing MediaRecorder

mMediaRecorder = new MediaRecorder();

mMediaRecorder.setOnErrorListener(this);

if (NetworkUTtils.isWifiAvailable(this)) {
mMediaRecorder.setVideoEncodingBitRate(MediaRecorder.VIDEO_BITRAT E_MEDIUM);
//800 Bit rate on Wifi
Yelse{
mMediaRecorder.setVideoEncodingBitRate(MediaRecorder.VIDEO_BITRATE_NORMAL);
// 600 bit rate on 2G/3G

}

String recordFile = Vitamio.getVideoCachePath() + System.currentTimeMillis();

/I + Constants. RECORD_VIDEO_EXT,;

mMediaRecorder.setOutputDirectory(recordFile);

/[set the output path

mMediaRecorder.setSurfaceView(mSurfaceView);

mMediaRecorder.setCameraFilter(MediaRecorder. CAMERA_FILTER_NO);

Ilreset filter

mMediaRecorder.prepare();

Post-progressing

UtillityAdapter provide FFmpegRun to executive FFmpeg command.
API Description

1. Recording

[** Video Bit rate 400kbps */

public static final int VIDEO_BITRATE_LOW = 400;

[** Video Bit rate 600kbps */

public static final int VIDEO_BITRATE_NORMAL = 600;
[** Video bit rate 800kbps(default) */

public static final int VIDEO_BITRATE_MEDIUM = 800;

/** Video bit rate 1024kbps */

public static final int VIDEO_BITRATE_HIGH = 1024,

[* set bit rate, parameter range between 400~2014. Proposal to set 800K in Wifi, 600 in other condition.*/
public void setVideoEncodingBitRate(int bitRate)

/* change the front-facing camera and rear camera, rear camera is default */

public void switchCamera()

/* toggle the flash light, closed default */

public boolean toggleFlashMode()

/**

* Set Video temporary cache folder

*

*@ param key video output name, unique in the same contents. Generally will get the system local time
*@param path folder path

*@return record information object

*/

public MediaObject setOutputDirectory(String key, String path)
[* support front-facing camera or not */

public static boolean isSupportFrontCamera()

* recording finished,start to transcode into mp4 temporary files */
public boolean startEncoding()

[* start preparation */

public void prepare()

[* start to record,return the video partitioning information , it pairs with method stop() */

public MediaPart start()

[* Stop recording . it pairs with method start(), support section shooting many times. */
public void stop()

/* Recording finished, release recourses. */public void release()

2. MediaRecorderFilter

/** no filter */

public static final String CAMERA_FILTER_NO =",

/** blackwhite filter*/

public static final String CAMERA_FILTER_BLACKWHITE = "blackWhite™;
[** sharpen filter */

public static final String CAMERA_FILTER_SHRRPEN = "pro";

[**old film filter*/

public static final String CAMERA_FILTER_OLD_PHOTQOS = "oldFilm";
/*neon lights filter*/

public static final String CAMERA_FILTER_NEON_LIGHT = "edge";
[** anti-color filter */

public static final String CAMERA_FILTER_ANTICOLOR = "antiColor™";
[** trough filter */

public static final String CAMERA_FILTER_THROUGH = "radial;

[** mosaic filter*/

public static final String CAMERA_FILTER_MOSAICS = "earlyBird";
/** reminiscence filter*/

public static final String CAMERA_FILTER_REMINISCENCE = "lomo™;

3. FFEmpeqUtils FFmpeqg Utility Classes

/** Volume 100% */

public static final float AUDIO_VOLUME_HIGH = 1F;

/** Volume 66% */

public static final float AUDIO_VOLUME_MEDIUM = 0.66F;
/** Volume 33% */

public static final float AUDIO_VOLUME_LOW = 0.33F;

/** Volume closed */

public static final int AUDIO_VOLUME_CLOSE = 0;

/**

* video screenshot

*

* @param videoPath video path

* @param outputPath screenshot output path

* @param wh screenshot size,such as 84*84

* @param ss screenshot start time

* @return

*/

public static boolean captureThumbnails(String videoPath, String outputPath, String wh, String ss)

/**

* transcoding
*

* @param mMediaObject Video data object storage , including theme, video clips.

* @param targetPath target path

* @param videoWidth video width

* @param complexWatermark complex theme or not (preview page and theme music)

* @return

*/

public static boolean videoTranscoding(MediaObject mMediaObject, String targetPath, int videoWidth, boolean

/**

* transfer picture into video (used as import picture)
*/
public static boolean convertimage2Video(MediaPart part)

4. Underlying Utility Classes

/**

* execute FFmpeg commands

*

(134

* @param strtag The unique identification of task. It will be run as blocked if marked as “”” or
NULL, otherwise will be run as asynchronous.

* @param strcmd string command

* @return return executed results

*/

public static native int FFmpegRun(String tag, String cmd);

[** get current transcoding completion time */

public static native int FFmpegVideoGetTransTime(int flag);

[** get current video rotation information */

public static native int VideoGetMetadataRotate(String filename);

3.4 AUDIO PLAYER

MediaPlayer class can be used to control playback of audio files and streams.

State Diagram

Playback control of audio/video files and streams is managed as a state machine. The following
diagram shows the life cycle and the states of a MediaPlayer object driven by the supported
playback control operations. The ovals represent the states a MediaPlayer object may reside in.
The arcs represent the playback control operations that drive the object state transition. There are
two types of arcs. The arcs with a single arrow head represent synchronous method calls, while

those with a double arrow head represent asynchronous method calls.

release()
CnErrerListener. enErrer()

—
prepare Async()

OnPreparedListener. onFPrepared() prepare()

\ seekTo()

Looping = true &&
playback completes

reset()

setDataSource()

seekTo()fpause()

stop()

Loopmg — false &&
onCompletion() mvoked on

CnCempletienListener
start()
fﬂote fom beginning)

seekTol)

FlaybackC cmplete

Figure 10.State Diagram of audio player

From this state diagram, one can see that a MediaPlayer object has the following states:

« When a MediaPlayer object is just created using new or after reset() is called, it is in
the Idle state; and after release() is called, it is in the Endstate. Between these two states is the
life cycle of the MediaPlayer object.

o There is a subtle but important difference between a newly constructed MediaPlayer object
and the MediaPlayer object after reset() is called. It is a programming error to invoke
methods such
as getCurrentPosition(), getDuration(), getVideoHeight(), getVideoWidth(),setAudioStrea

mType(int), setLooping(boolean), setVVolume(float,

float), pause(), start(), stop(), seekTo(int), prepare() orprepareAsync() in the Idle state for

both cases. If any of these methods is called right after a MediaPlayer object is

constructed, the user supplied callback method OnErrorListener.onError() won't be called

https://developer.android.com/reference/android/media/MediaPlayer.html#reset()
https://developer.android.com/reference/android/media/MediaPlayer.html#release()
https://developer.android.com/reference/android/media/MediaPlayer.html#reset()
https://developer.android.com/reference/android/media/MediaPlayer.html#getCurrentPosition()
https://developer.android.com/reference/android/media/MediaPlayer.html#getDuration()
https://developer.android.com/reference/android/media/MediaPlayer.html#getVideoHeight()
https://developer.android.com/reference/android/media/MediaPlayer.html#getVideoWidth()
https://developer.android.com/reference/android/media/MediaPlayer.html#setAudioStreamType(int)
https://developer.android.com/reference/android/media/MediaPlayer.html#setAudioStreamType(int)
https://developer.android.com/reference/android/media/MediaPlayer.html#setLooping(boolean)
https://developer.android.com/reference/android/media/MediaPlayer.html#setVolume(float, float)
https://developer.android.com/reference/android/media/MediaPlayer.html#setVolume(float, float)
https://developer.android.com/reference/android/media/MediaPlayer.html#pause()
https://developer.android.com/reference/android/media/MediaPlayer.html#start()
https://developer.android.com/reference/android/media/MediaPlayer.html#stop()
https://developer.android.com/reference/android/media/MediaPlayer.html#seekTo(int)
https://developer.android.com/reference/android/media/MediaPlayer.html#prepare()
https://developer.android.com/reference/android/media/MediaPlayer.html#prepareAsync()

by the internal player engine and the object state remains unchanged; but if these methods
are called right after reset(), the user supplied callback method OnErrorListener.onError()
will be invoked by the internal player engine and the object will be transfered to

the Error state.

o Itis also recommended that once a MediaPlayer object is no longer being used,
call release() immediately so that resources used by the internal player engine associated
with the MediaPlayer object can be released immediately. Resource may include singleton
resources such as hardware acceleration components and failure to call release() may cause
subsequent instances of MediaPlayer objects to fallback to software implementations or
fail altogether. Once the MediaPlayer object is in the End state, it can no longer be used

and there is no way to bring it back to any other state.

o Furthermore, the MediaPlayer objects created using new is in the Idle state, while those
created with one of the overloaded convenient createmethods are NOT in the Idle state. In

fact, the objects are in the Prepared state if the creation using create method is successful.

In general, some playback control operation may fail due to various reasons, such as
unsupported audio/video format, poorly interleaved audio/video, resolution too high,
streaming timeout, and the like. Thus, error reporting and recovery is an important concern
under these circumstances. Sometimes, due to programming errors, invoking a playback
control operation in an invalid state may also occur. Under all these error conditions, the
internal player engine invokes a user supplied OnErrorListener.onError() method if an
OnErrorListener has been registered beforehand

via setOnErrorListener(android.media.MediaPlayer.OnErrorListener).

o Itis important to note that once an error occurs, the MediaPlayer object enters
the Error state (except as noted above), even if an error listener has not been registered by

the application.

o Inorder to reuse a MediaPlayer object that is in the Error state and recover from the

error, reset() can be called to restore the object to its Idlestate.

o Itis good programming practice to have your application register a OnErrorListener to

look out for error notifications from the internal player engine.

https://developer.android.com/reference/android/media/MediaPlayer.html#reset()
https://developer.android.com/reference/android/media/MediaPlayer.html#release()
https://developer.android.com/reference/android/media/MediaPlayer.html#release()
https://developer.android.com/reference/android/media/MediaPlayer.html#setOnErrorListener(android.media.MediaPlayer.OnErrorListener)
https://developer.android.com/reference/android/media/MediaPlayer.html#reset()

o lllegalStateException is thrown to prevent programming errors such as

calling prepare(), prepareAsync(), or one of the overloadedsetDataSource methods in an

invalid state.

« Calling setDataSource(FileDescriptor), or setDataSource(String), or setDataSource(Context,

Uri), or setDataSource(FileDescriptor, long, long),

or setDataSource(MediaDataSource) transfers a MediaPlayer object in the Idle state to

the Initialized state.
o An lllegalStateException is thrown if setDataSource() is called in any other state.

o Itis good programming practice to always look out
for Illegal ArgumentException and IOException that may be thrown from the

overloadedsetDataSource methods.
« A MediaPlayer object must first enter the Prepared state before playback can be started.

o There are two ways (synchronous vs. asynchronous) that the Prepared state can be
reached: either a call to prepare() (synchronous) which transfers the object to
the Prepared state once the method call returns, or a call

to prepareAsync() (asynchronous) which first transfers the object to the Preparing state

after the call returns (which occurs almost right way) while the internal player engine
continues working on the rest of preparation work until the preparation work completes.
When the preparation completes or when prepare() call returns, the internal player engine
then calls a user supplied callback method, onPrepared() of the OnPreparedL.istener
interface, if an OnPreparedListener is registered beforehand

via setOnPreparedL istener(android.media.MediaPlayer.OnPreparedL.istener).

o Itis important to note that the Preparing state is a transient state, and the behavior of
calling any method with side effect while a MediaPlayer object is in the Preparing state is

undefined.

o An lllegalStateException is thrown if prepare() or prepareAsync() is called in any other

state.

https://developer.android.com/reference/android/media/MediaPlayer.html#prepare()
https://developer.android.com/reference/android/media/MediaPlayer.html#prepareAsync()
https://developer.android.com/reference/android/media/MediaPlayer.html#setDataSource(java.io.FileDescriptor)
https://developer.android.com/reference/android/media/MediaPlayer.html#setDataSource(java.lang.String)
https://developer.android.com/reference/android/media/MediaPlayer.html#setDataSource(android.content.Context, android.net.Uri)
https://developer.android.com/reference/android/media/MediaPlayer.html#setDataSource(android.content.Context, android.net.Uri)
https://developer.android.com/reference/android/media/MediaPlayer.html#setDataSource(java.io.FileDescriptor, long, long)
https://developer.android.com/reference/android/media/MediaPlayer.html#setDataSource(android.media.MediaDataSource)
https://developer.android.com/reference/android/media/MediaPlayer.html#prepare()
https://developer.android.com/reference/android/media/MediaPlayer.html#prepareAsync()
https://developer.android.com/reference/android/media/MediaPlayer.html#prepare()
https://developer.android.com/reference/android/media/MediaPlayer.html#setOnPreparedListener(android.media.MediaPlayer.OnPreparedListener)
https://developer.android.com/reference/android/media/MediaPlayer.html#prepare()
https://developer.android.com/reference/android/media/MediaPlayer.html#prepareAsync()

o While in the Prepared state, properties such as audio/sound volume,
screenOnWhilePlaying, looping can be adjusted by invoking the corresponding set

methods.

o To start the playback, start() must be called. After start() returns successfully, the
MediaPlayer object is in the Started state. isPlaying() can be called to test whether the
MediaPlayer object is in the Started state.

o While in the Started state, the internal player engine calls a user supplied
OnBufferingUpdateListener.onBufferingUpdate() callback method if a
OnBufferingUpdateL.istener has been registered beforehand
via setOnBufferingUpdateL istener(OnBufferingUpdateL istener). This callback allows

applications to keep track of the buffering status while streaming audio/video.
o Calling start() has not effect on a MediaPlayer object that is already in the Started state.

« Playback can be paused and stopped, and the current playback position can be adjusted.
Playback can be paused via pause(). When the call topause() returns, the MediaPlayer object
enters the Paused state. Note that the transition from the Started state to the Paused state and
vice versa happens asynchronously in the player engine. It may take some time before the
state is updated in calls to isPlaying(), and it can be a number of seconds in the case of

streamed content.

o Calling start() to resume playback for a paused MediaPlayer object, and the resumed
playback position is the same as where it was paused. When the call to start() returns, the

paused MediaPlayer object goes back to the Started state.
o Calling pause() has no effect on a MediaPlayer object that is already in the Paused state.

o Calling stop() stops playback and causes a MediaPlayer in
the Started, Paused, Prepared or PlaybackCompleted state to enter the Stopped state.

o Once in the Stopped state, playback cannot be started until prepare() or prepareAsync() are

called to set the MediaPlayer object to the Preparedstate again.

o Calling stop() has no effect on a MediaPlayer object that is already in the Stopped state.

https://developer.android.com/reference/android/media/MediaPlayer.html#start()
https://developer.android.com/reference/android/media/MediaPlayer.html#start()
https://developer.android.com/reference/android/media/MediaPlayer.html#isPlaying()
https://developer.android.com/reference/android/media/MediaPlayer.html#setOnBufferingUpdateListener(android.media.MediaPlayer.OnBufferingUpdateListener)
https://developer.android.com/reference/android/media/MediaPlayer.html#start()
https://developer.android.com/reference/android/media/MediaPlayer.html#pause()
https://developer.android.com/reference/android/media/MediaPlayer.html#pause()
https://developer.android.com/reference/android/media/MediaPlayer.html#isPlaying()
https://developer.android.com/reference/android/media/MediaPlayer.html#start()
https://developer.android.com/reference/android/media/MediaPlayer.html#start()
https://developer.android.com/reference/android/media/MediaPlayer.html#pause()
https://developer.android.com/reference/android/media/MediaPlayer.html#stop()
https://developer.android.com/reference/android/media/MediaPlayer.html#prepare()
https://developer.android.com/reference/android/media/MediaPlayer.html#prepareAsync()
https://developer.android.com/reference/android/media/MediaPlayer.html#stop()

o The playback position can be adjusted with a call to seekTo(int).

o Although the asynchronuous seekTo(int) call returns right way, the actual seek operation
may take a while to finish, especially for audio/video being streamed. When the actual
seek operation completes, the internal player engine calls a user supplied
OnSeekComplete.onSeekComplete() if an OnSeekCompleteListener has been registered
beforehand via setOnSeekCompleteListener(OnSeekCompleteL istener).

o Please note that seekTo(int) can also be called in the other states, such
as Prepared, Paused and PlaybackCompleted state.

o Furthermore, the actual current playback position can be retrieved with a call
to getCurrentPosition(), which is helpful for applications such as a Music player that need

to keep track of the playback progress.
e When the playback reaches the end of stream, the playback completes.

o If the looping mode was being set to truewith setLooping(boolean), the MediaPlayer

object shall remain in the Started state.

o If the looping mode was set to false , the player engine calls a user supplied callback
method, OnCompletion.onCompletion(), if a OnCompletionListener is registered

beforehand via setOnCompletionListener(OnCompletionListener). The invoke of the

callback signals that the object is now in the PlaybackCompleted state.

o While in the PlaybackCompleted state, calling start() can restart the playback from the

beginning of the audio/video source.

interface MediaStore.Audio.AlbumColumns

Columns representing an album

Class MediaStore.Audio.Albums
Contains artists for audio files

https://developer.android.com/reference/android/media/MediaPlayer.html#seekTo(int)
https://developer.android.com/reference/android/media/MediaPlayer.html#seekTo(int)
https://developer.android.com/reference/android/media/MediaPlayer.html#setOnSeekCompleteListener(android.media.MediaPlayer.OnSeekCompleteListener)
https://developer.android.com/reference/android/media/MediaPlayer.html#seekTo(int)
https://developer.android.com/reference/android/media/MediaPlayer.html#getCurrentPosition()
https://developer.android.com/reference/android/media/MediaPlayer.html#setLooping(boolean)
https://developer.android.com/reference/android/media/MediaPlayer.html#setOnCompletionListener(android.media.MediaPlayer.OnCompletionListener)
https://developer.android.com/reference/android/media/MediaPlayer.html#start()
https://developer.android.com/reference/android/provider/MediaStore.Audio.AlbumColumns.html
https://developer.android.com/reference/android/provider/MediaStore.Audio.Albums.html

interface MediaStore.Audio.ArtistColumns

Columns representing an artist

Class MediaStore.Audio.Artists
Contains artists for audio files

interface = MediaStore.Audio.AudioColumns

Columns for audio file that show up in multiple tables.

Class MediaStore.Audio.Genres
Contains all genres for audio files

interface MediaStore.Audio.GenresColumns

Columns representing an audio genre

Class MediaStore.Audio.Media

Class MediaStore.Audio.Playlists
Contains playlists for audio files

interface MediaStore.Audio.PlaylistsColumns

Columns representing a playlist

Class MediaStore.Audio.Radio

MediaStore.Audio()

staticString keyFor(String name)
Converts a name to a "key" that can be used for grouping, sorting and searching.

https://developer.android.com/reference/android/provider/MediaStore.Audio.ArtistColumns.html
https://developer.android.com/reference/android/provider/MediaStore.Audio.Artists.html
https://developer.android.com/reference/android/provider/MediaStore.Audio.AudioColumns.html
https://developer.android.com/reference/android/provider/MediaStore.Audio.Genres.html
https://developer.android.com/reference/android/provider/MediaStore.Audio.GenresColumns.html
https://developer.android.com/reference/android/provider/MediaStore.Audio.Media.html
https://developer.android.com/reference/android/provider/MediaStore.Audio.Playlists.html
https://developer.android.com/reference/android/provider/MediaStore.Audio.PlaylistsColumns.html
https://developer.android.com/reference/android/provider/MediaStore.Audio.Radio.html
https://developer.android.com/reference/android/provider/MediaStore.Audio.html#MediaStore.Audio()
https://developer.android.com/reference/java/lang/String.html
https://developer.android.com/reference/android/provider/MediaStore.Audio.html#keyFor(java.lang.String)
https://developer.android.com/reference/java/lang/String.html

Features

1.Equalizer

An Equalizer is used to alter the frequency response of a particular music source or of the main

output mix.

An application creates an Equalizer object to instantiate and control an Equalizer engine in the
audio framework. The application can either simply use predefined presets or have a more

precise control of the gain in each frequency band controlled by the equalizer.

The methods, parameter types and units exposed by the Equalizer implementation are directly
mapping those defined by the OpenSL ES 1.0.1 Specification
(http://www.khronos.org/opensles/) for the SLEqualizerltf interface. Please refer to this

specification for more details.

To attach the Equalizer to a particular AudioTrack or MediaPlayer, specify the audio session 1D

of this AudioTrack or MediaPlayer when constructing the Equalizer.

interface = Equalizer.OnParameterChangeListener

The OnParameterChangeL.istener interface defines a method called by the Equalizer when a paran

Class Equalizer.Settings

The Settings class regroups all equalizer parameters.

creating an equalizer

Equalizer equalizer = new Equalizer(0,mediaplayer.getAudioSessionld());
equalizer.setEnabled(true);

equalizer.getNumberOfBands();

https://developer.android.com/reference/android/media/audiofx/Equalizer.OnParameterChangeListener.html
https://developer.android.com/reference/android/media/audiofx/Equalizer.Settings.html

equalizer.getNumberOfPresets();

2.Voice search

public class MainActivity extends SherlockActivity {

private SlidingMenu slidingMenu;

private SlidingMenu slidingMenuRight;

private String mFilterArraysl];

public long lastScrollTime=0; /** En son kaydirma ne zaman yapildi*/

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

public boolean onCreateOptionsMenu(Menu menu) {

/[Create the search view

SearchView searchView = new
SearchView(getSupportActionBar().getThemedContext());

searchView.setQueryHint("Search...");

menu.add("Search")
.setlcon(R.drawable.ic_search_inverse)
.setActionView(searchView)
.setShowAsAction(Menultem.SHOW_AS_ACTION_IF_ROOM |
Menultem.SHOW_AS_ACTION_COLLAPSE_ACTION_VIEW);
return true;
}

by

Mainfest

<activity
android:name="com.paea.bcp.MainActivity"
android:label="@string/app_name" >
<intent-filter>
<action android:name="com.paea.bcp.MainActivity" />
<category android:name="android.intent.category. DEFAULT" />
<action android:name="android.intent.action.SEARCH" />
</intent-filter>
</activity>

3.Cross fade

private Runnable mUpdateTimeTask = new Runnable() {
public void run() {

long totalDuration = 0;
long currentDuration = 0;

if(musicPlayer.isPlaying()) {
totalDuration = musicPlayer.getDuration();
currentDuration = musicPlayer.getCurrentPosition();

/I Updating progress bar
int progress = (utils.getProgressPercentage(currentDuration, totalDuration));
trackPb.setProgress(progress);

if ("trackDownloaded && currentDuration > 100) {
Log.i(TagsContainer.MUSIC_PLAYER_TAG,"next track download started");
trackDownloaded = true;
new TrackLoader().execute();

¥

long crossFadeValue = currentDuration + CROSSFADE_DURATION;

if (crossFadeValue > totalDuration && !fadeStarted && currentDuration > 100) {
fadeStarted = true;
crossFade();

¥

// Running this thread after 100 milliseconds

}
mHandler.postDelayed(this, 100);

}
}

Crossfade's functions look like this:

private void crossFade() {

fadeOut(musicPlayer, CROSSFADE_DURATION);

fadeIn(musicPlayer2, CROSSFADE_DURATION);
}

public void fadeOut(final MediaPlayer _player, final int duration) {
final float deviceVolume = getDeviceVolume();
final Handler h = new Handler();
h.postDelayed(new Runnable() {
private float time = duration;
private float volume = 0.0f;

@Override
public void run() {
if (_player.isPlaying())
_player.start();
// can call h again after work!
time -= 100;
volume = (deviceVVolume * time) / duration;
_player.setVolume(volume, volume);
if (time > 0)
h.postDelayed(this, 100);
else {

_player.stop();
_player.release();

}
}, 100); // 1 second delay (takes millis)

by

public void fadeln(final MediaPlayer _player, final int duration) {
final float deviceVolume = getDeviceVolume();
final Handler h = new Handler();
h.postDelayed(new Runnable() {
private float time = 0.0f;

4.Fade on play/pause

One way to do it is to use MediaPlayer.setVolume(right, left) and have these values decrement

after every iteration.

float volume = 1;
float speed = 0.05f;

public void FadeOut(float deltaTime)

{
MediaPlayer.setVolume(volume, volume);
volume -= speed* deltaTime

}
public void Fadeln(float deltaTime)

{
MediaPlayer.setVolume(volume, volume);
volume += speed™* deltaTime

5.Shake Control
package com.grifball.info;
import com.grifball.info.ShakeDetector.OnShakeL istener;

import android.app.Activity;

import android.content.Context;

import android.hardware.Sensor;

import android.hardware.SensorManager;
import android.media.MediaPlayer;
import android.os.Bundle;

public class HammerActivity extends Activity {

private ShakeDetector mShakeDetector;
private SensorManager mSensorManager;

/I Declare the MediaPlayer object
private MediaPlayer mMediaPlayer;

@Override

public void onCreate(Bundle savedlInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.nammer_page);

/I ShakeDetector initialization
mSensorManager = (SensorManager) getSystemService(Context. SENSOR_SERVICE);

mShakeDetector = new ShakeDetector();

mShakeDetector.setOnShakeL.istener(new ShakeDetector.OnShakeListener() {
public void onShake() {
/I Initialize media player
mMediaPlayer = MediaPlayer.create(HammerActivity.this, R.raw.hammer);

/I Add OnCompletionListener to release the
mMediaPlayer.setOnCompletionListener(new MediaPlayer.OnCompletionListener() {
@Override
public void onCompletion(MediaPlayer mp) {
mMediaPlayer.release();

b
mMediaPlayer.start();
;

@Override
protected void onResume() {
super.onResume();
mSensorManager.registerListener(mShakeDetector,
mSensorManager.getDefaultSensor(Sensor. TYPE_ACCELEROMETER),
SensorManager.SENSOR_DELAY_Ul);

by

@Override

protected void onPause() {
mSensorManager.unregisterListener(mShakeDetector);
super.onStop();

i

This is my ShakeDetector code.

package com.grifball.info;

import android.hardware.Sensor;

import android.hardware.SensorEvent;

import android.hardware.SensorEventListener;
import android.hardware.SensorManager;

[**Listener that detects shake gesture.
*/
public class ShakeDetector implements SensorEventListener {

/** Minimum movement force to consider. */
private static final int MIN_FORCE = 10;

/**Minimum times in a shake gesture that the direction of movement needs tochange.
*/
private static final int MIN_DIRECTION_CHANGE = 3;

[** Maximum pause between movements. */
private static final int MAX_PAUSE_BETHWEEN_DIRECTION_CHANGE = 200;

/** Maximum allowed time for shake gesture. */
private static final int MAX_TOTAL_DURATION_OF_SHAKE = 400;

/** Time when the gesture started. */
private long mFirstDirectionChangeTime = 0;

/** Time when the last movement started. */
private long mLastDirectionChangeTime;

/** How many movements are considered so far. */
private int mDirectionChangeCount = 0;

[** The last x position. */
private float lastX = 0;

[** The last y position. */
private float lastY = 0;

[** The last z position. */
private float lastZ = 0;

/** OnShakeListener that is called when shake is detected. */
private OnShakeListener mShakeListener;

[**Interface for shake gesture.
*/
public interface OnShakeL.istener {

[**Called when shake gesture is detected.
*/
void onShake();

}

public void setOnShakeL istener(OnShakeL.istener listener) {

mShakeL.istener = listener;

¥

@Override

public void onSensorChanged(SensorEvent se) {
/I get sensor data
float x = se.values[SensorManager.DATA_X];
float y = se.values[SensorManager.DATA_Y];
float z = se.values[SensorManager.DATA_Z];

/[calculate movement
float totalMovement = Math.abs(x +y + z - lastX - lastY - lastZ);

if (totalMovement > MIN_FORCE) {

/I get time
long now = System.currentTimeMillis();

/[store first movement time

if (mFirstDirectionChangeTime ==0) {
mFirstDirectionChangeTime = now;
mLastDirectionChangeTime = now;

by

/I check if the last movement was not long ago
long lastChangeWasAgo = now - mLastDirectionChangeTime;
if (lastChangeWasAgo < MAX_PAUSE_BETHWEEN_DIRECTION_CHANGE) {

/[store movement data
mLastDirectionChangeTime = now;
mDirectionChangeCount++;

/I store last sensor data
lastX = x;
lastY =v;
lastZ = z;

/I check how many movements are so far
if (mDirectionChangeCount >= MIN_DIRECTION_CHANGE) {

/I check total duration

long totalDuration = now - mFirstDirectionChangeTime;

if (totalDuration < MAX_TOTAL_DURATION_OF_SHAKE) {
mShakeL.istener.onShake();
resetShakeParameters();

¥

¥

¥

}
} else {

resetShakeParameters();

ks
ks

[**Resets the shake parameters to their default values.
*/
private void resetShakeParameters() {
mFirstDirectionChangeTime = 0;
mDirectionChangeCount = 0;
mLastDirectionChangeTime = 0;
lastX = 0;
lastY = 0;
lastZ = 0;
}

@Override
public void onAccuracyChanged(Sensor sensor, int accuracy) {

¥

OnCompletionListener code. package com.grifball.info;

import android.media.MediaPlayer;

p

p

ublic class OnCompletionListener {

ublic void onCompletion(MediaPlayer mp) {
// TODO Auto-generated method stub

6.Sleep timer

e Create one service, which is going to be used for countdown of time.

e By default android broadcasts one intent call ACTION_TIME_TICK at every minute
Register that intent in your service.

e Increment your count at every minute.

public int onStartCommand (Intent intent, int flags, int startld)

{

context.registerReceiver(new TickReceiver(), new
ntentFilter(Intent ACTION_TIME_TICK));

public class TickReceiver extends BroadcastReceiver {

@Override
public void onReceive(Context context, Intent intent) {
if(intent.getAction().compareTo(Intent. ACTION_TIME_TICK) == 0){
count++;
if(count==5 && (PlayActivity.mediaPlayer!=null)){
PlayActivity.mediaPlayer.stop();
PlayActivity.mediaPlayer.release();

¥
¥

}
PlayActivity.java

static MediaPlayer mediaPlayer;

@Override
public void onCreate(){
super.onCreate();

mediaPlayer=new MediaPlayer();

mediaPlayer.setDataSource(YOUR_PATH);
mediaPlayer.prepare();

mediaPlayer.exception();

Intent Servicelntent=new Intent(this, TimeCounterService.class);

StartService(Servicelntent);

3.5 System Requirements For Android Studio
WINDOWS
e Microsoft® Windows® 8/7/Vista (32 or 64-bit)

2 GB RAM minimum, 4 GB RAM recommended

e 400 MB hard disk space

e Atleast 1 GB for Android SDK, emulator system images, and caches
e 1280 x 800 minimum screen resolution

« Java Development Kit (JDK) 7

o Optional for accelerated emulator: Intel® processor with support for Intel® VT-X, Intel®
EM64T (Intel® 64), and Execute Disable (XD) Bit functionality.

Mac OS X

Mac® OS X® 10.8.5 or higher, up to 10.9 (Mavericks)

e 2 GB RAM minimum, 4 GB RAM recommended
e 400 MB hard disk space
e At least 1 GB for Android SDK, emulator system images, and caches

e 1280 x 800 minimum screen resolution

e Java Runtime Environment (JRE) 6
o Java Development Kit (JDK) 7

o Optional for accelerated emulator: Intel® processor with support for Intel® VT-X, Intel®
EMG64T (Intel® 64), and Execute Disable (XD) Bit functionality

Linux

e« GNOME or KDE desktop

e GNU C Library (glibc) 2.15 or later

e 2 GB RAM minimum, 4 GB RAM recommended

e 400 MB hard disk space

o Atleast 1 GB for Android SDK, emulator system images, and caches
e 1280 x 800 minimum screen resolution

e Oracle® Java Development Kit (JDK) 7

Mobile Recquirements To Run Application
e Android OS 4.0 or above
e 512MB RAM

e Screen Size 3.5 inch or above

CHAPTER 4: PERFORMANCE ANALYSIS

A)Screenshots of Conference Application

=D :
5,9 B [¢ 1 2 1l T2 1:59 am w650 [& Q2 il & 1:57 am
= ICIIP2K15 H T
Iciip
Y L/\ 205 THAD INTERNATINAL CONFERINCE OF A
K c G IMAGE INFORMATION PROCESSING IEEE
4 December 21- 24, 2015 nute! S
K] i I Llp Jaypee University of Information Technology g/ mn"é‘élrgﬂly ICIIP-2015
!Il_ \/ Woknoghat, District Son, near Shimia, Himachal Profesh, INDIA JUIT

Registration and Paper Submission is now closed

The ICIIP (International Conference on
Image Information Processing)
conference has been a biennial

Conference at Jaypee University of
Information Technology, Waknaghat,

Important Dates

Registration

Solan, H.P, India since 2011 with Gallitor
sponsorship of IEEE. The conference has
become a platform for Computer Science Committees
researchers from India and abroad to
exchange research results and ideas Keynote Speakers

on the foundations and applications of

Image Processing and related areas. Sponsaretip Optione

Technical Tracks:

Travel and Accomodation

1- Image Processing
2- Computer Graphics
3- Pattern Recognition
4- Computer Vision
More Info

po) 0O (]

5,9 = [& [T w50 E [¢ T & il T 1:58 am

< Registration

< Contact

REGISTRATION POLICY Conference will be held at :

Jaypee University Of Information Technology,
Waknaghat, P.0. Waknaghat, Teh Kandaghat,

At least one author per paper has to register for the Distt. Solan,
Conference. The registered author must present the (H.P), India

paper in the conference for getting the paper to be PIN-173 234
published in IEEE Xplore. Otherwise your paper will Ph: +91 -1792-257999
be removed from the conference proceedings. +91-1792 -245371

Paper Registration Fee:

1. Indian Author : 7500 INR
2. Indian StudentAuthor : 5000 INR
3. Foreign Author : 650 USD

4. Foreign Student Author : 400 USD
5. Listener: Non-Author/Co- : 2500 INR

Tutorial registration fee:

Indian Delegates : 1800 INR
Foreign Delegates : 200 USD

Late Registration:

Fax: 01792-245362
For all your queries, please send a mail to :
iciip2015@gmail.com.

Like us on FACEBOOK

Follow us on

Those who do not register by 20th November 2015
may register by paying late fee as under in addition

po} O

a po) @] a

B)Screenshots Of Media Player

All These Things |

Bullet For My Valentine

'

What Goes Wolfmother

Justin Timberlake Wolfmother

WWW.iIMTMUSIC.N
Yves V & Felguk Hardwell

FIREE

Tap Five
Play 8-bit themed watch and tap game!

DOWNLOAD 11

8:48

~All These Things |
({ 8 Bullet For My Valentine

<unknown> .

Speak now Abu Gosh
Bubble

Acid for Nothing
1200 Micrograms

Afrojack - Rock The House

<unknown>

All These Things | Hate
Bullet For My Valentine

Avicii___Dear_Boy__Lyrics_video

<unknown>

Tap Five
DOWNLOAD 13
Play 8-bit themed watch and tap game!

CHAPTER 5: CONCLUSION

Android as a full, open and free mobile device platform, with its powerful function and good user
experience rapidly developed into the most popular mobile operating system. This report gives an
overview of the different challenges and issues faced in android app development The experience

of developing an android app is quite challenging, motivating as well as satisfying.

This report shows an approach for designing of media player. Media player should consider the
improvement in scenario such as decode efficiency needs to be improved, synchronization between
multiple media streams, and display of the original data. Use of FFmpeg decode library seems to
be an alternative method. Research shows FFmpeg supports most media formats which gives a
high decode efficiency. Different approaches that can be considered are plug-in extension
technology, multimedia based on hierarchy, media player based on file browser, media player

based on FFmpeg, media player based on file server, etc.

There is a vast scope of improvement in this field.

REFRENCES

[1] Ma, Li, Lei Gu, and Jin Wang. "Research and Development of Mobile Application for android
Platform."” (2014).

[2] Liu, Jianye, and Jiankun Yu. "Research on Development of android Applications.” Fourth

International conference on Intelligent Networks and Intelligent Systems. 2011.

[3] Peng, Bin, Jinming Yue, and Chen Tianzhou. "The android Application Development College

Challenge.” High Performance Computing and Communication & 2012 IEEE 9th International
Conference on Embedded Software and Systems (HPCC-ICESS), 2012 IEEE 14th International
Conference on. IEEE, 2012

[4] Parada, Abilio G., and Lisane B. de Brisolara. "A model driven approach for android
applications development.” Computing System Engineering (SBESC), 2012 Brazilian Symposium
on. IEEE, 2012.

[5] Nikhil S. Sakhare , R. W. Jasutkar. “Design of Android based Media Player”. International
Journal of Science and Research (IJSR), India Online ISSN: 2319-7064, February 2013.

[6] Amit M. Farkade, Miss. Sneha. R. Kaware. “The Android - A Widely Growing Mobile
Operating System With its Mobile based Applications” International Journal of Computer Science

and Mobile Applications, Vol.3 Issue. 1, January- 2015, pg. 39-45

