
Android Hardware Management

Project Report submitted in partial fulfilment of the requirement for the degree of

Bachelor of Technology.

in

Computer Science & Engineering

under the Supervision of

Mr. Suman Saha

By

Shashank Parmar (121252)

to

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology Waknaghat, Solan-173234,

Himachal Pradesh

i

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Android Hardware

Management” in partial fulfilment of the requirements for the award of the degree of

Bachelor of Technology in Computer Science and Engineering/Information

Technology submitted in the department of Computer Science & Engineering and

Information Technology, Jaypee University of Information Technology Waknaghat is an

authentic record of my own work carried out over a period from August 2015 to May

2016 under the supervision of Mr. Suman Saha (Assistant Professor, Dept. of CSE).

The matter embodied in the report has not been submitted for the award of any other

degree or diploma.

Shashank Parmar

121252

ii

Certificate

This is to certify that project report entitled “Android Hardware Management”,

submitted by Shashank Parmar, 121252 in partial fulfilment for the award of

degree of Bachelor of Technology in Information Technology to Jaypee

University of Information Technology, Waknaghat; Solan has been carried out

under my supervision.

This work has not been submitted partially or fully to any other University or

Institute for the award of this or any other degree or diploma.

Date: Mr. Suman Saha

Assistant Professor

iii

 Acknowledgement

I would like to express my gratitude and appreciation to all those who gave me the perfect

environment for completion of this report. A special thanks to my final year project

supervisor, Mr. Suman Saha, whose stimulating suggestions and encouragement, helped

me to get to the thrust of this topic and understand the importance of the project.

 I would also like to acknowledge with much appreciation the crucial role of the

staff of Computer Laboratory, who provided me with the lab facilities as and when

required. Additionally, I appreciate the guidance given by the panels members especially

during the previous project presentation who made me realize the various dimensions I

was probably missing out and hence, they gave away a room for improvement in the

project.

Again a special thanks to my friends who gave me valuable suggestions regarding

the project.

Date: 30-5-2016 Shashank Parmar

 121252

iv

Table of Contents

S.NO. TITLE PAGE

NO.

1 INTRODUCTION 1

1.1 Android hardware management and HAL 1

1.1.1 Standard HAL structure 2

1.1.2 HAL modules 4

1.2 Need of battery management 4

1.3 Synchronous Charging 5

1.4 Adaptive charging 6

2 LITERATURE REVIEW 7

2.1 Android Smartphone: Battery saving service 7

2.2 Adaptive Battery Management on Smartphones 7

2.3 Energy Management Techniques in Modern Mobile Handsets 9

3 SYSTEM DEVELOPMENT 16

3.1 Methodology Overview 16

3.1.1 Contribution to AOSP 16

3.1.2 Developing an Android Application 16

3.1.3 Developing a desktop Application 17

3.2 Project Design 18

3.3 Implementation 19

3.4 Explanation and Implementation 24

3.5 Explanation : An Exploded View 25

3.5.1 Optimizing battery Life 28

3.5.2 Optimizing for Doze and App Standby 29

3.6 Monitoring the Battery Level and Charging State 34

v

S.NO.

Title

Page No.

4 ANALYSIS AND RESULTS 39

4.1 Ageing of Lithium-ion 39

4.2 Results 44

5 CONCLUSION 46

6 REFERENCES 47

vi

List of Figures

S. NO. FIGURE TITLE PAGE NO.

1 Hal components 1

2 Architecture for adaptive battery management on smartphones 8

3 The desktop application 19

4 The battery status application 21

5 The battery charge control app 22

6 The battery management app 23

7 Doze provides a recurring maintenance window for apps to use

the network and handle pending activities.

31

8 Capacity drop as part of cycling 40

9 Effects on cycle life at elevated charge voltages 44

vii

List of Abbreviations

AOSP - Android Open Source Project

HAL - Hardware Abstraction Layer

OHA - Open Handset Alliance

OEM - Original equipment manufacturer

DRM - Digital rights management

GPS - Global Positioning System

AOT - Ahead-of-Time compiler

ART - Android Runtime

CENS - Centre for Embedded Networked Sensing

OTA - Over-the-air programming

OTG - On The Go

APK - Android application package

viii

Abstract

Android is an open source software stack created for a wide array of devices with

different form factors. The primary purposes of Android are to create an open software

platform available for carriers, OEMs, and developers to make their innovative ideas a

reality and to introduce a successful, real-world product that improves the mobile

experience for users.

This system also makes sure there was no central point of failure, where one industry

player could restrict or control the innovations of any other. The result is a full,

production-quality consumer product with source code open for customization and

porting.

Figure 1. Android stack

Battery life is a perennial user concern. To extend battery life, Android continually adds

new features and optimizations to help the platform optimize the off-charger behaviour of

applications and devices.

ix

Governance Philosophy

Android was further developed by a group of companies known as the Open Handset

Alliance, led by Google. Today, many companies -- both original members of the OHA

and others -- have invested heavily in Android. These companies have allocated

significant engineering resources to improve Android and bring Android devices to

market.

The companies that have invested in Android have done so on its merits because we

believe an open platform is necessary. Android is intentionally and explicitly an open

source -- as opposed to a free software -- effort; a group of organizations with shared

needs has pooled resources to collaborate on a single implementation of a shared product.

The Android philosophy is pragmatic, first and foremost. The objective is a shared

product that each contributor can tailor and customize.

Uncontrolled customization can, of course, lead to incompatible implementations. To

prevent this, the Android Open Source Project also maintains the Android Compatibility

Program, which spells out what it means to be "Android compatible" and what is required

of device builders to achieve that status. Anyone can (and will!) use the Android source

code for any purpose, and we welcome all legitimate uses. However, in order to take part

in the shared ecosystem of applications we are building around Android, device builders

must participate in the Android Compatibility Program.

The Android Open Source Project is led by Google, who maintains and further develops

Android. Although Android consists of multiple subprojects, this is strictly a project

management technique. We view and manage Android as a single, holistic software

product, not a "distribution", specification, or collection of replaceable parts. Our intent is

that device builders, port Android to a device; they don't implement a specification or

curate a distribution.

Android is an open platform which is becoming very popular operating system. Its open

source code is easily handled by the users to get and use new contents and applications on

their handsets. Android is based on Linux kernel. Android device are being activated per

day and power management of these device is becoming an issue. The one problem is

x

common that is Low battery life of the device. It is not a common thing in smartphones.

Now days, more powerful with power consuming technologies like GPS, 3G and 3GS.

The diverse range of wireless interfaces and sensors, and the increasing popularity of

power hungry applications that take advantage of these resources can reduce the battery

life of mobile handhelds to few hours of operation. The research community and

operating system and hardware vendors found interesting optimisations and techniques to

extend the battery life of mobile phones.

1

CHAPTER 1: INTRODUCTION

1.1 Introduction : Android Hardware Management and the

HAL(Hardwar Abstraction Layer)

Android gives you the freedom to implement your own device specifications and drivers. The

hardware abstraction layer (HAL) provides a standard method for creating software hooks

between the Android platform stack and your hardware. The hardware abstraction layer

(HAL) defines a standard interface for hardware vendors to implement and allows Android to

be agnostic about lower-level driver implementations. The HAL allows you to implement

functionality without affecting or modifying the higher level system. HAL implementations

are packaged into modules (.so) file and loaded by the Android system at the appropriate

time.

Figure 1 Hardware abstraction layer (HAL) components

2

You must implement the corresponding HAL (and driver) for the specific hardware your

product provides. HAL implementations are typically built into shared library modules (.so

files). Android does not mandate a standard interaction between your HAL implementation

and your device drivers, so you have free reign to do what is best for your situation.

However, to enable the Android system to correctly interact with your hardware, you must

abide by the contract defined in each hardware-specific HAL interface.

1.1.1 Standard HAL structure

Each hardware-specific HAL interface has properties that are defined in hardware

/libhardware/include/hardware/hardware.h, which guarantee that HALs have a predictable

structure. This interface allows the Android system to load the correct versions of your HAL

modules in a consistent way. There are two general components that a HAL interface

consists of: a module and a device.

A module represents your packaged HAL implementation, which is stored as a shared library

(.so file). It contains metadata such as the version, name, and author of the module, which

helps Android find and load it correctly. The hardware

/libhardware/include/hardware/hardware.h header file defines a struct, hw_module_t that

represents a module and contains information such as the module version, author, and name.

In addition, the hw_module_t struct contains a pointer to another struct,

hw_module_methods_t, that contains a pointer to an "open" function for the module. This

open function is used to initiate communication with the hardware that the HAL is serving as

an abstraction for. Each hardware-specific HAL usually extends the generic hw_module_t

struct with additional information for that specific piece of hardware. For example in the

camera HAL, the camera_module_t struct contains a hw_module_t struct along with other

camera-specific function pointers:

typedef struct camera_module {

 hw_module_t common;

 int (*get_number_of_cameras)(void);

3

 int (*get_camera_info)(int camera_id, struct camera_info *info);

} camera_module_t;

When you implement a HAL and create the module struct, you must name it

HAL_MODULE_INFO_SYM. For instance, here is an example from the Nexus 9 audio

HAL:

struct audio_module HAL_MODULE_INFO_SYM = {

 .common = {

 .tag = HARDWARE_MODULE_TAG,

 .module_api_version = AUDIO_MODULE_API_VERSION_0_1,

 .hal_api_version = HARDWARE_HAL_API_VERSION,

 .id = AUDIO_HARDWARE_MODULE_ID,

 .name = "NVIDIA Tegra Audio HAL",

 .author = "The Android Open Source Project",

 .methods = &hal_module_methods,

 },

};

A device abstracts the actual hardware of your product. For example, an audio module can

contain a primary audio device, a USB audio device, or a Bluetooth A2DP audio device. A

device is represented by the hw_device_t struct. Like a module, each type of device defines a

more-detailed version of the generic hw_device_t that contains function pointers for specific

features of the hardware. For example, the audio_hw_device_t struct type contains function

pointers to audio device operations:

struct audio_hw_device {

 struct hw_device_t common;

 /**

 * used by audio flinger to enumerate what devices are supported by

 * each audio_hw_device implementation.

 *

4

 * Return value is a bitmask of 1 or more values of audio_devices_t

 */

 uint32_t (*get_supported_devices)(const struct audio_hw_device *dev);

 ...

};

typedef struct audio_hw_device audio_hw_device_t;

In addition to these standard properties, each hardware-specific HAL interface can define

more of its own features and requirements. See the HAL reference documentation as well as

the individual instructions for each HAL for more information on how to implement a

specific interface.

1.1.2 HAL modules

HAL implementations are built into modules (.so) files and are dynamically linked by

Android when appropriate. You can build your modules by creating Android.mk files for

each of your HAL implementations and pointing to your source files. In general, your shared

libraries must be named in a certain format, so that they can be found and loaded properly.

The naming scheme varies slightly from module to module, but they follow the general

pattern of:

<module_type>.<device_name>.

1.2 Need of battery management

Android mobile devices provide a balance of good hardware performance with a large user

application market. According to Nielsen, a global marketing research company, Android is

currently the most popular smartphone among users. As the demands on smartphone usage

increase, so do complaints about battery life. Many users would be satisfied if their Android

smartphones simply lasted a full day on a single charge. Many users must carry their chargers

5

with them and recharge several times a day under normal usage. Popular online suggestions

to extend battery lifetime include manually managing hardware components such as GPS,

3G, Wi-Fi, and Bluetooth and turning them off when they are not in use. However, this

approach is wrought with inefficiency and frustration as users struggle to remember when to

have different components on/off or they forget to enable a device they need.

Leaving your devices plugged in at 100 percent is also harmful for battery life.

Battery University says overcharging is not good for the battery: "Avoiding full charge has

benefits, and some manufacturers set the charge threshold lower on purpose to prolong

battery life... Li-ion cannot absorb overcharge, and when fully charged the charge current

must be cut off. A continuous trickle charge would cause plating of metallic lithium, and this

could compromise safety." Also for the developers to test their application they have to plug

in their device to the pc repeatedly this exhausts the device battery life cycles and shortens

the battery life.

1.3 Synchronous Charging

We wish to modify this concept a bit to apply it to mobiles charging from laptops so that

when the mobile is plugged into the laptop both reach the end of their discharge cycles

simultaneously.

Synchronous charging is a rather new concept, when we want multiple devices to charge in

sync so that they exhaust their battery or get fully charged simultaneously.

This will help us in situations where we have both devices as our dependencies.

Many times we end up in a situation in which we need both our devices like when traveling

and we need to use Internet with our mobiles as modems.

Through synchronous charging we will only charge the mobiles from the laptops

battery when our estimated projection of the laptops battery life exceeds that of the mobile.

The processing and calculation of the status of batteries of both the devices will be done

using an application in the android device and the operating system used will be Ubuntu.

6

We will use Ubuntu since it is open-source Operating System and we will have a shell script

available to us so that we can read the laptop's battery status.

1.4 Adaptive charging

Other battery management techniques in market adaptive fast charging (or rapid charging,

quick charging, turbo charging) quick charging allows you to dump a lot of power into your

battery by using higher-than-normal voltage until it reaches what's called "saturation" -

usually around 60-80% charge depending on how the phone's power management is

configured.

At that point, the phone's power controller scales back the amount of power it's

receiving and your phone will begin to charge more and more slowly as it approaches 100%.

This is where the "adaptive" language comes - quick charging allows your phone to

intelligently scale the amount of power it takes from the charger based on the current charge

state of the battery.

So, how do you know if your phone supports quick charging? You'll need to do some

research on the web. You're going to have to consult Qualcomm's Quick Charge website or

your device manufacturer if you want to know for sure without actually trying a quick

charger. There are lists of phones with this technology out there - Qualcomm has a very good

one that you can find it shouldn't be difficult information to find. Just remember that Quick

Charge 2.0, quick charging, fast charging, adaptive fast charging, and turbo charging - they're

all usually going to be referring to the same thing.

7

CHAPTER 2: LITERATURE REVIEW

2.1 Title: Android Smartphone: Battery saving service

Saving power of Smartphone's battery becomes an important because of appearance of

applications and technologies that consume more power such as GPS and Wi-Fi. This paper

reports on development and evaluation of an Android service to save power, it tries to utilizes

Smartphone idle times to stop technologies such as Wi-Fi and Bluetooth and application that

may consume battery power; this service reads settings, configured by user, and

stops/resumes technologies and application accordingly when events such as Screen goes

off/on, Wi-Fi signal becomes weak or not exist, and when user goes to non-covered area. The

idea behind this service is to increase battery life by stopping power-consuming while user

does not use application and technologies. An empirical study has been conducted to evaluate

the effectiveness of this service on Android Smartphone. The result shows there is a slight

increase in battery life.

 2.2 Title: Adaptive Battery Management on Smartphones

Overview

Modern mobile phones are not single-purpose devices anymore. But rather, they are multi-

functional programmable computers. Users run a plethora of applications in addition to voice

calling on their smartphones. Significant diversity in usage habits combined with the

diversity in hardware platforms makes battery life of smartphones unpredictable. If batteries

lasted long enough, unpredictability would not have been a serious concern. However, the

linear battery improvements are no match for the rate of new features and applications on

smartphones. As a result, the average battery life time of smartphones gets shorter on each

new generation of smartphones in the market.

8

In addition, many pervasive computing applications, such as those developed at CENS, have

components that continuously run in the background. Such applications are particularly

power consuming. Unlike traditional fully interactive applications, users do not have direct

control over the resource consumption of background tasks.

Therefore, many users are usually startled by their smartphone's short battery life when

running CENS applications. In this work we introduce a new system to give users control

over their phone's battery life. We do so by CENS applications, which run in the background

and consume significant power, adaptive to usage and context.

Figure 2 Architecture for adaptive battery management on smartphones

9

Approach

Four approaches to managing power consumption to minimize user surprises can be

considered:-

• Most systems leave battery management entirely to applications. Most commercial mobile

platforms such as Android and Symbian follow this approach.

• The opposite of the previous approach is managing energy as a primary system resource.

Applications can consume only what is allocated to them by the OS. ECO System and Cinder

are re- search operating systems that follow this approach.

• A third approach to guaranteeing a reasonable battery life is limiting the amount of work

that applications can do without the user's direct control. For example, the iPhone OS does

not allow arbitrary background jobs by limiting multitasking.

• Our approach that we propose in this work combines the best of the first and second

approaches.

Managing energy consumption at the highest layer, i.e. applications, is more effective. The

application can make better choices to trade off accuracy and performance with energy. On

the other hand, applications lack a global view of the system. Specially, effective battery

management requires knowledge of other applications workload, something that applications

do not expose to others for a good reason.

2.3 Title: Energy Management Techniques in Modern Mobile Handsets

The state of the art of lithium-ion batteries clearly indicates that energy efficiency must be

achieved both at the hardware and software level

10

Introduction

Today’s mobile phones are equipped with a wide range of sensing, computational, storage

and communication resources that bootstrapped the birth of rich mobile applications such as

location aware services and mobile social networks. However, those applications can

potentially reduce the battery life of mobile handsets to few hours of operation.

Unfortunately, battery technologies have not experienced the same evolution as the rest of

hardware components in mobile handsets. Most mobile phones are powered by lithium-ion

batteries that can provide many times the energy of other types of batteries in the same

fraction of space. However, the state of the art in battery technology shows that the only

alternative left at the moment to extend the battery life of mobile phones is reducing the

power consumption at the hardware level and designing more energy efficient applications

and operating systems.

As we have mentioned in the introduction, power-efficiency in mobile systems can be

achieved at different levels. Hence, the survey is structured following taxonomy of the papers

under study based on the type of optimisation they are proposing. This classification is as

follows:

•

Energy aware operating systems

The main question about energy efficiency in mobile devices is who should be responsible

for energy management? Applications or operating system?

Probably the right answer is both. At the operating system level, the main idea is to reduce

energy consumption by unifying resource and energy management and by leveraging

collaboration between applications and operating system.

11

In fact, a key part of energy-efficient resources and energy management is having a good

understanding of how resources are demanded by users and applications in the system. This

section describes some attempts towards energy aware mobile operating systems, energy-

efficient resource management and resource profilers.

•

Energy measurements and power models

Understanding how energy is being consumed by the hardware components is essential in

order to design energy-aware systems. This section describes some:

•

Users’ interaction with applications and computing resources

Battery lifetime has become one of the top usability issues of mobile systems. Hence,

improving battery lifetime is highly related to a better understanding of how users interact

with their battery and their resources. Any energy-aware system must be able to know when,

where and how the user drains the battery and when there will be future charging

opportunities. This section comprises different papers trying to understand battery charging

cycles and users’ resource demands.

•

Wireless interfaces and protocol optimisations

Wireless interfaces are major power consumers on mobile systems. There are multiple ways

of making wireless interfaces more efficient at every layer of the protocol stack (also cross-

layer optimisations) by taking advantage of the different power states. However, they usually

require application, operating system and network infrastructure cooperation. As we have

12

already mentioned in the introduction, discussing new wireless interfaces and link layer

optimizations are not within the scope of this survey.

•

Sensors optimisations

Location-aware applications became one of the most popular services in mobile systems. A

mobile device has sensors such as GPS, network-based positioning systems and

accelerometer for location with different resolutions and power demands. As a result, there is

a trade-off between energy-consumption and accuracy. This section discusses solutions to

minimise the energy consumption of continuous sensing at the software level.

•

Computation off-loading

Cloud computing is opening new possibilities to mobile systems in many ways. Computation

off-loading has been shown to be effective for extending the computational power and

battery life of resource-restricted devices since the late 90s. In fact, even modern mobile

operating systems rely more and more on online services running in the cloud.

Remote execution allows migrating computation from battery-powered mobile

devices to wall-powered, higher performance machines hosted somewhere on the Internet.

However, there are factors such as network state that can clearly affect its performance. This

section covers the most relevant works about computation off-loading in mobile devices from

an energy perspective.

13

The need of energy-awareness in mobile OS

The concept of an energy-aware operating system has been proposed in the late 90s with

energy-aware operating systems for laptops like Odyssey and ECO System. In 2000, Ellis

pointed up that energy should be considered as a first-class resource in addition to the

traditional OS perspective of maximizing performance. Although this topic has been almost

abandoned during the mid-2000, it has regained researchers’ attention recently due to the

energy limitations of current smartphones in which power-hungry applications (or even

malware) can reduce the battery life of the handset to few hours of operation. This was the

motivation behind mobile energy-aware operating systems for mobile handsets such as

Cinder and ErdOS.

There are two opposite propositions about how and by whom energy-aware policies

in mobile devices should be performed. On the one hand, some authors suggest that

applications must adapt dynamically to energy limitations as in Chameleon [19] but this

approach lacks of a central entity responsible for monitor all the resources consumption

caused by other applications. On the other hand, other researchers suggest that resources and

energy management should be entirely done at the operating system. However, this solution

can present scalability problems. Both Odyssey and ECO System present an intermediate

solution. They follow a hybrid approach in which both applications and operating system

collaborate to reduce the power consumption in a mobile phone. Ideally, the operating

system must know applications’ resource demands and the available energy resources until

the next charging opportunity to reduce the power consumption while maximising user

experience. However, new programming models, schedulers, energy measurement tools,

resource profilers and power-based APIs must be developed in order to support software-

level energy management.

14

Conclusion

Mobile handsets are still power-hungry devices despite the tremendous efforts done by

hardware manufacturers and operating system vendors in the last years. Modern mobile

platforms such as Androids are built as modifications of general-purpose operating systems

which do not consider energy-efficiency as a key performance goal. In fact, modern handsets

incorporate power-hungry hardware resources such as touchscreen displays and location

sensors, and they support Internet data services so they are always connected to the network.

All these resources bootstrapped a rich ecosystem of mobile applications but their design is

clearly driven by usability factors rather than energy efficiency. Since the mid-90s,

researchers have been emphasizing the need of considering energy as a fundamental system

resource in mobile devices. In this survey, we covered the most relevant articles about

energy-efficient resource management in mobile systems that can be implemented in current

mobile handsets.

We classified the papers in six categories based on the type of optimisation they

propose: operating system and efficient resource management, energy measurements and

power models, users’ interaction with mobile resources, wireless interfaces and sensors

management, and finally, we talked about the new opportunities that process and system

migration to the cloud can offer. As far as we know, this is the first survey about mobile

green computing in the last decade and we strongly believe that some of the improvements

highlighted in this survey will be part of future mobile OS design.

Managing mobile resources from an energy-efficient perspective without diminishing the

user experience is clearly one of the most challenging problems in mobile computing now a

days. Power management considerations often require certain actions to be deferred, avoided

or slowed down to prolong battery life. It can even require changing dynamically the power

states of the hardware components and applications behaviour depending on the available

resources. However, these techniques can impact the user experience with the handsets.

15

Moreover, limitations such as the lack of energy-aware support from hardware components

make this problem even harder to solve. Hardware manufacturers do not offer enough

information about the energy consumption in runtime to the operating system and

applications. Many power-hungry resources are embedded in the same chipset as in modern

ARM-based chips and the system do not have enough visibility about the power consumption

and the power modes of the different resources available in the device. Consequently, most

of the works rely on energy measurements obtained with external multimeters or with

inaccurate power models obtained from linear regression techniques.

On the other hand, mobile operating systems must take advantage of all the

possibilities they have to save energy. As we can currently see in modern platforms and

applications, the dependency on cloud services is becoming more necessary for different

purposes such as storage and computation offloading. However, we strongly believe that

collaborative mechanisms for sharing resources opportunistically with co-located devices

using low-power local wireless connectivity can have two immediate benefits. Firstly,

devices can save important amounts of energy and secondly, they can improve the user

experience and quality of service by enabling access to remote resources that might not be

available locally. Nevertheless, the characteristics of current local wireless interfaces such as

Bluetooth make supporting this feature difficult. Mobile computation should not be limited

exclusively to the local device and, as a result, resources management should be distributed

and collaborative within groups of collocated devices. This approach will need to face new

trust schemes, access control policies, security mechanisms, privacy and possibly incentive

schemes while trying to minimise the negative impact of users’ mobility.

16

CHAPTER 3: System Development

3.1 Methodology Overview

• Make a contribution to AOSP

• Make an android application

• Make a desktop application

3.1.1 Contribution to AOSP

 The original plan was to contribute to AOSP using a .mk file.

 This file then transforms into a .so file which is an importable module.

3.1.2 Developing an Android Application

 Develop an android app to test if our theory of effective battery management is

viable.

 Develop an application to check battery statistics by reading an internal file and

broadcasting it on an app.

 Develop the main application which stops the USB charging by modifying an internal

file.

 Develop another application which manages the Bluetooth, Wi-Fi , GPS and data

connection when the battery level decreases below a particular point or as required by

the user.

17

3.1.3 Developing a Desktop Application

 Develop a desktop app instead to cut the power source from the usb port.

 This gives us new opportunities as well as creates new problems.

Limitations for these above methods

• The first method is the best but there is resource gap and other uncertainties

• There are two fronts to tackle this…

• The first being kivy, but the documentation on using pygenius is unclear

• In case of the second method which would be a straight forward android app

we lack a rooted device with an older kernel(2.6.32 for Linux).

Fact: Even though Ubuntu and Android are for different hardware specifications and use

different machine languages. There are still marked similarities between the two, for example

file system and hierarchy.

Therefore problems on both platforms tend to mirror each other.

In case of the third solution we are having problems finding a way to turn off power for ports

as it is variable for different machines and kernel versions.

18

3.2 Project Design

The above mentioned problems played a major role in shaping the design of our current

application.

• We made a skeleton android app that uses root privileges to change values in specific

position in the android system.

• We made the gui on a desktop app since it facilitates faster programming and grants

flexibility.

• We connect these two in a way that allows us to turn off usb charging while still

maintaining a possibility of data transfer.

19

3.3 Implementation

Desktop application:

• Technologies used were python, kiwi, sub-process and executor are the main

packages.

• In this desktop app we retrieved pc battery data and bind or unbind the usb port

power.

Figure 3 The desktop application

20

Android application:

• Technologies used were java, eclipse helios and android sdk.

• In this application we retrieved phone’s battery data.

• Rooted the phone using towel root and super user. This gave access to the android file

system. In the following folder /sys /class /power_supply /battery/ and make changes

to two directories battery and usb.

• Create another application that manages the power consuming components even

when the android device is lying idle.

21

Figure 4 The battery status application

22

Figure 5 The battery charge control app

23

Figure 6 The battery management app

24

3.4 Explanation and Implementation

Implementation: Linux side

On Linux Terminal:

achyut@achyut-Inspiron-3537:~$ upower -e (--enumerate)

bash: syntax error near unexpected token `('

achyut@achyut-Inspiron-3537:~$ upower -e

/org/freedesktop/UPower/devices/line_power_ACAD

/org/freedesktop/UPower/devices/battery_BAT1

achyut@achyut-Inspiron-3537:~$ upower -i /org/freedesktop/UPower/devices/battery_BAT1

 Native-path: BAT1

 Vendor: SDI

 Model: DELL G019Y375

 Serial: 64D8

 Power supply: yes

 Updated: Friday 18 December 2015 10:56:57 PM IST (1921 seconds ago)

 Has history: yes

 Has statistics: yes

 Battery present: yes

25

 Rechargeable: yes

 State: fully-charged

 Energy: 43.4121 Wh

 Energy-empty: 0 Wh

 Energy-full: 43.4121 Wh

 Energy-full-design: 65.49 Wh

 Energy-rate: 0.0111 W

 Voltage: 12.618 V

 Percentage: 100%

 Capacity: 66.2881%

 Technology: lithium-ion

3.5 Explanation: An exploded view

So the important part is how does it all connect?

Think of the internal structure of Android as having only two parts. Those two parts of

Android would be:

Interfaces which consists of:

Accessories

26

Audio

Bluetooth

Camera

DRM

Graphics

Input

Media

Sensors

Storage

TV

Core Technologies which consist of:

ART and Dalvik

Configuration

Data Usage

Debugging

Device Administration

HAL File Reference

OTA Updates

27

Power

Testing Infrastructure

Within the core technologies we will be concentrating on power:

Power Management

Component Power

Device Power

Power Values

Battery Use

And further within power on power management and device power.

The Interface is the one that contains HAL, and as explained in the introduction its only an

interface that defines structures that helps control the hardware, but there is only so much you

can do to improve an interface, so what do we mean when we say that we want to "improve

the HAL layer of android"?

We mean that we want to improve on the functions interacting with the HAL on the android

side and those would be the core technologies, since the implementation of HAL and the

Hardware itself are dependent on the manufacturer. But this is only our perspective of how

we understand things; somebody else may tell you a different view while meaning the same

thing the entire time.

28

3.5.1 Optimizing Battery Life

Dependencies and prerequisites

 Experience with Intents and Intent Filters

For your app to be a good citizen, it should seek to limit its impact on the battery life of its

host device. After this class you will be able to build apps that modify their functionality and

behaviour based on the state of the host device.

By taking steps such as disabling background service updates when you lose connectivity, or

reducing the rate of such updates when the battery level is low, you can ensure that the

impact of your app on battery life is minimized, without compromising the user experience.

Lessons

Optimizing for Doze and App Standby

Learn how to test and optimize your app for the power-management features

introduced in Android 6.0 Marshmallow.

Monitoring the Battery Level and Charging State

Learn how to alter your app's update rate by determining, and monitoring, the current

battery level and changes in charging state.

Determining and Monitoring the Docking State and Type

Optimal refresh rates can vary based on how the host device is being used. Learn how

to determine, and monitor, the docking state and type of dock being used to affect

your app's behaviour.

29

Determining and Monitoring the Connectivity Status

Without Internet connectivity you can't update your app from an online source. Learn

how to check the connectivity status to alter your background update rate. You'll also

learn to check for Wi-Fi or mobile connectivity before beginning high-bandwidth

operations.

Manipulating Broadcast Receivers On Demand

Broadcast receivers that you've declared in the manifest can be toggled at runtime to

disable those that aren't necessary due to the current device state. Learn to improve

efficiency by toggling and cascading state change receivers and delay actions until the

device is in a specific state.

3.5.2 Optimizing for Doze and App Standby

In this part

1. Understanding Doze

1. Doze restrictions

2. Adapting your app to Doze

2. Understanding App Standby

3. Using GCM to Interact with Your App

4. Support for Other Use Cases

5. Testing with Doze and App Standby

30

1. Testing your app with Doze

2. Testing your app with App Standby

6. Example Use Cases for Whitelisting

Starting from Android 6.0 (API level 23), Android introduces two power-saving features that

extend battery life for users by managing how apps behave when a device is not connected to

a power source. Doze reduces battery consumption by deferring background CPU and

network activity for apps when the device is unused for long periods of time. App Standby

defers background network activity for apps with which the user has not recently interacted.

Doze and App Standby manage the behaviour of all apps running on Android 6.0 or higher,

regardless whether they are specifically targeting API level 23. To ensure the best experience

for users, test your app in Doze and App Standby modes and make any necessary

adjustments to your code. The sections below provide details.

Understanding Doze

If a user leaves a device unplugged and stationary for a period of time, with the screen off,

the device enters Doze mode. In Doze mode, the system attempts to conserve battery by

restricting apps' access to network and CPU-intensive services. It also prevents apps from

accessing the network and defers their jobs, syncs, and standard alarms.

Periodically, the system exits Doze for a brief time to let apps complete their deferred

activities. During this maintenance window, the system runs all pending syncs, jobs, and

alarms, and lets apps access the network.

31

Figure 7 Doze provides a recurring maintenance window for apps to use the network and

handle pending activities.

At the conclusion of each maintenance window, the system again enters Doze, suspending

network access and deferring jobs, syncs, and alarms. Over time, the system schedules

maintenance windows less and less frequently, helping to reduce battery consumption in

cases of longer-term inactivity when the device is not connected to a charger.

As soon as the user wakes the device by moving it, turning on the screen, or connecting a

charger, the system exits Doze and all apps return to normal activity.

Doze restrictions

The following restrictions apply to your apps while in Doze:

 Network access is suspended.

32

 The system ignores wake locks.

 Standard AlarmManager alarms (including setExact() and setWindow()) are

deferred to the next maintenance window.

o If you need to set alarms that fire while in Doze, use

setAndAllowWhileIdle() or setExactAndAllowWhileIdle().

o Alarms set with setAlarmClock() continue to fire normally — the system

exits Doze shortly before those alarms fire.

 The system does not perform Wi-Fi scans.

 The system does not allow sync adapters to run.

 The system does not allow JobScheduler to run.

Doze checklist

o If possible, use GCM for downstream messaging.

o If your users must see a notification right away, make sure to use a GCM high

priority message.

o Provide sufficient information within the initial message payload, so

subsequent network access is unnecessary.

o Set critical alarms with setAndAllowWhileIdle() and

setExactAndAllowWhileIdle().

o Test your app in Doze.

http://developer.android.com/reference/android/app/AlarmManager.html
http://developer.android.com/reference/android/app/AlarmManager.html#setExact%28int,%20long,%20android.app.PendingIntent%29
http://developer.android.com/reference/android/app/AlarmManager.html#setWindow%28int,%20long,%20long,%20android.app.PendingIntent%29
http://developer.android.com/reference/android/app/AlarmManager.html#setAndAllowWhileIdle%28int,%20long,%20android.app.PendingIntent%29
http://developer.android.com/reference/android/app/AlarmManager.html#setExactAndAllowWhileIdle%28int,%20long,%20android.app.PendingIntent%29
http://developer.android.com/reference/android/app/AlarmManager.html#setAlarmClock%28android.app.AlarmManager.AlarmClockInfo,%20android.app.PendingIntent%29
http://developer.android.com/reference/android/content/AbstractThreadedSyncAdapter.html
http://developer.android.com/reference/android/app/job/JobScheduler.html
http://developer.android.com/reference/android/app/AlarmManager.html#setAndAllowWhileIdle%28int,%20long,%20android.app.PendingIntent%29
http://developer.android.com/reference/android/app/AlarmManager.html#setExactAndAllowWhileIdle%28int,%20long,%20android.app.PendingIntent%29

33

Adapting your app to Doze

Doze can affect apps differently, depending on the capabilities they offer and the services

they use. Many apps function normally across Doze cycles without modification. In some

cases, you must optimize the way that your app manages network, alarms, jobs, and syncs.

Apps should be able to efficiently manage activities during each maintenance window.

Doze is particularly likely to affect activities that AlarmManager alarms and timers manage,

because alarms in Android 5.1 (API level 22) or lower do not fire when the system is in

Doze.

To help with scheduling alarms, Android 6.0 (API level 23) introduces two new

AlarmManager methods: setAndAllowWhileIdle() and setExactAndAllowWhileIdle().

With these methods, you can set alarms that will fire even if the device is in Doze.

Note: Neither setAndAllowWhileIdle() nor setExactAndAllowWhileIdle() can fire

alarms more than once per 15 minutes per app.

The Doze restriction on network access is also likely to affect your app, especially if the app

relies on real-time messages such as tickles or notifications. If your app requires a persistent

connection to the network to receive messages, you should use Google Cloud Messaging

(GCM) if possible.

To confirm that your app behaves as expected with Doze, you can use adb commands to

force the system to enter and exit Doze and observe your app’s behaviour.

http://developer.android.com/reference/android/app/AlarmManager.html
http://developer.android.com/reference/android/app/AlarmManager.html
http://developer.android.com/reference/android/app/AlarmManager.html#setAndAllowWhileIdle%28int,%20long,%20android.app.PendingIntent%29
http://developer.android.com/reference/android/app/AlarmManager.html#setExactAndAllowWhileIdle%28int,%20long,%20android.app.PendingIntent%29
http://developer.android.com/reference/android/app/AlarmManager.html#setAndAllowWhileIdle%28int,%20long,%20android.app.PendingIntent%29
http://developer.android.com/reference/android/app/AlarmManager.html#setExactAndAllowWhileIdle%28int,%20long,%20android.app.PendingIntent%29

34

3.6 Monitoring the Battery Level and Charging State

In this section

1. Determine the Current Charging State

2. Monitor Changes in Charging State

3. Determine the Current Battery Level

4. Monitor Significant Changes in Battery Level

5. Intents and Intent Filters

When you're altering the frequency of your background updates to reduce the effect of those

updates on battery life, checking the current battery level and charging state is a good place

to start.

The battery-life impact of performing application updates depends on the battery level and

charging state of the device. The impact of performing updates while the device is charging

over AC is negligible, so in most cases you can maximize your refresh rate whenever the

device is connected to a wall charger. Conversely, if the device is discharging, reducing your

update rate helps prolong the battery life.

Similarly, you can check the battery charge level, potentially reducing the frequency of—or

even stopping—your updates when the battery charge is nearly exhausted.

35

Determine the Current Charging State

Start by determining the current charge status. The BatteryManager broadcasts all battery

and charging details in a sticky Intent that includes the charging status.

Because it's a sticky intent, you don't need to register a BroadcastReceiver—by simply

calling registerReceiver passing in null as the receiver as shown in the next snippet, the

current battery status intent is returned. You could pass in an actual BroadcastReceiver

object here, but we'll be handling updates in a later section so it's not necessary.

IntentFilter ifilter = new IntentFilter(Intent.ACTION_BATTERY_CHANGED);

Intent batteryStatus = context.registerReceiver(null, ifilter);

You can extract both the current charging status and, if the device is being charged, whether

it's charging via USB or AC charger:

// Are we charging / charged?

int status = batteryStatus.getIntExtra(BatteryManager.EXTRA_STATUS, -1);

boolean isCharging = status == BatteryManager.BATTERY_STATUS_CHARGING ||

 status == BatteryManager.BATTERY_STATUS_FULL;

// How are we charging?

int chargePlug = batteryStatus.getIntExtra(BatteryManager.EXTRA_PLUGGED, -

1);

boolean usbCharge = chargePlug == BatteryManager.BATTERY_PLUGGED_USB;

boolean acCharge = chargePlug == BatteryManager.BATTERY_PLUGGED_AC;

Typically you should maximize the rate of your background updates in the case where the

device is connected to an AC charger, reduce the rate if the charge is over USB, and lower it

further if the battery is discharging.

http://developer.android.com/reference/android/os/BatteryManager.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html

36

Monitor Changes in Charging State

The charging status can change as easily as a device can be plugged in, so it's important to

monitor the charging state for changes and alter your refresh rate accordingly.

The BatteryManager broadcasts an action whenever the device is connected or disconnected

from power. It's important to receive these events even while your app isn't running—

particularly as these events should impact how often you start your app in order to initiate a

background update—so you should register a BroadcastReceiver in your manifest to listen

for both events by defining the ACTION_POWER_CONNECTED and

ACTION_POWER_DISCONNECTED within an intent filter.

<receiver android:name=".PowerConnectionReceiver">

 <intent-filter>

 <action android:name="android.intent.action.ACTION_POWER_CONNECTED"/>

 <action

android:name="android.intent.action.ACTION_POWER_DISCONNECTED"/>

 </intent-filter>

</receiver>

Within the associated BroadcastReceiver implementation, you can extract the current charging

state and method as described in the previous step.

public class PowerConnectionReceiver extends BroadcastReceiver {

 @Override

 public void onReceive(Context context, Intent intent) {

 int status = intent.getIntExtra(BatteryManager.EXTRA_STATUS, -1);

 boolean isCharging = status ==

BatteryManager.BATTERY_STATUS_CHARGING ||

 status == BatteryManager.BATTERY_STATUS_FULL;

http://developer.android.com/reference/android/os/BatteryManager.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html

37

 int chargePlug = intent.getIntExtra(BatteryManager.EXTRA_PLUGGED,

-1);

 boolean usbCharge = chargePlug ==

BatteryManager.BATTERY_PLUGGED_USB;

 boolean acCharge = chargePlug ==

BatteryManager.BATTERY_PLUGGED_AC;

 }

}

Determine the Current Battery Level

In some cases it's also useful to determine the current battery level. You may choose to

reduce the rate of your background updates if the battery charge is below a certain level.

You can find the current battery charge by extracting the current battery level and scale from

the battery status intent as shown here:

int level = batteryStatus.getIntExtra(BatteryManager.EXTRA_LEVEL, -1);

int scale = batteryStatus.getIntExtra(BatteryManager.EXTRA_SCALE, -1);

float batteryPct = level / (float)scale;

38

Monitor Significant Changes in Battery Level

You can't easily continually monitor the battery state, but you don't need to.

Generally speaking, the impact of constantly monitoring the battery level has a greater

impact on the battery than your app's normal behavior, so it's good practice to only monitor

significant changes in battery level—specifically when the device enters or exits a low

battery state.

The manifest snippet below is extracted from the intent filter element within a broadcast

receiver. The receiver is triggered whenever the device battery becomes low or exits the low

condition by listening for ACTION_BATTERY_LOW and ACTION_BATTERY_OKAY.

<receiver android:name=".BatteryLevelReceiver">

<intent-filter>

 <action android:name="android.intent.action.ACTION_BATTERY_LOW"/>

 <action android:name="android.intent.action.ACTION_BATTERY_OKAY"/>

 </intent-filter>

</receiver>

It is generally good practice to disable all your background updates when the battery is

critically low. It doesn't matter how fresh your data is if the phone turns itself off before you

can make use of it.

39

CHAPTER 4: Analysis and Results

4.1 Ageing of Lithium-ion

The lithium-ion battery works on ion movement between the positive and negative

electrodes. In theory such a mechanism should work forever, but cycling, elevated

temperature and aging decrease the performance over time. Manufacturers take a

conservative approach and specify the life of Li-ion in most consumer products as being

between 300 and 500 discharge/charge cycles.

Evaluating battery life on counting cycles is not conclusive because a discharge may vary in

depth and there are no clearly defined standards of what constitutes a cycle (BU-501: Basics

About Discharging). In lieu of cycle count, some device manufacturers suggest battery

replacement on a date stamp, but this method does not take usage into account. A battery

may fail within the allotted time due to heavy use or unfavourable temperature conditions;

however, most packs last considerably longer than what the stamp indicates.

The performance of a battery is measured in capacity, a leading health indicator. Internal

resistance and self-discharge also play roles, but these are less significant in predicting the

end of battery life with modern Li-ion.

Figure 1 illustrates the capacity drop of 11 Li-polymer batteries that have been cycled at a

Cadex laboratory. The 1,500mAh pouch cells for mobile phones were first charged at a

current of 1,500mA (1C) to 4.20V/cell and then allowed to saturate to 0.05C (75mA) as part

of the full charge saturation. The batteries were then discharged at 1,500mA to 3.0V/cell, and

the cycle was repeated. The expected capacity loss of Li-ion batteries was uniform over the

delivered 250 cycles and the batteries performed as expected.

40

Figure 8: Capacity

drop as part of

cycling. Eleven new

Li-ion were tested on a

Cadex C7400 battery

analyzer. All packs

started at a capacity of

88–94% and decreased

to 73–84% after 250

full discharge cycles.

The 1500mAh pouch

packs are used in

mobile phones.

Although a battery should deliver 100 percent capacity during the first year of service, it is

common to see lower than specified capacities, and shelf life may contribute to this loss. In

addition, manufacturers tend to overrate their batteries, knowing that very few users will do

spot-checks and complain if low. Not having to match single cells in mobile phones and

tablets, as is required in multi-cell packs, opens the floodgates for a much broader

performance acceptance. Cells with lower capacities may slip through cracks without the

consumer knowing.

Similar to a mechanical device that wears out faster with heavy use, the depth of discharge

(DoD) determines the cycle count of the battery. The smaller the discharge (low DoD), the

longer the battery will last. If at all possible, avoid full discharges and charge the battery

more often between uses. Partial discharge on Li-ion is fine. There is no memory and the

battery does not need periodic full discharge cycles to prolong life. The exception may be a

41

periodic calibration of the fuel gauge on a smart battery or intelligent device. (BU-603: How

to Calibrate a ―Smart‖ Battery)

Table 2 compares the number of discharge/charge cycles Li-ion can deliver at various DoD

levels before the battery capacity drops to 70 percent. All other variables such as charge

voltage, temperature and load currents are set to average default settings.

Depth of discharge Discharge cycles Table 1: Cycle life as a

function of depth of

discharge.

A partial discharge reduces

stress and prolongs battery life.

Elevated temperature and high

currents also affect cycle life.

100% DoD

50% DoD

25% DoD

10% DoD

300–500

1,200–1,500

2,000–2,500

3,750–4,700

Lithium-ion suffers from stress when exposed to heat, so does keeping a cell at a high charge

voltage. A battery dwelling above 30°C (86°F) is considered elevated temperature and for

most Li-ion a voltage above 4.10V/cell is deemed as high voltage. Exposing the battery to

high temperature and dwelling in a full state-of-charge for an extended time can be more

stressful than cycling. Table 3 demonstrates capacity loss as a function of temperature and

SoC.

42

Temperature 40% charge
100%

charge
Table 2: Estimated

recoverable capacity when

storing Li-ion for one year

at various temperatures.

Elevated temperature hastens

permanent capacity loss. Not all

Li-ion systems behave the

same.

0°C

25°C

40°C

60°C

98%

96%

85%

75%

94%

80%

65%

60%

(after 3

months)

Most Li-ions charge to 4.20V/cell, and every reduction in peak charge voltage of 0.10V/cell

is said to double the cycle life. For example, a lithium-ion cell charged to 4.20V/cell typically

delivers 300–500 cycles. If charged to only 4.10V/cell, the life can be prolonged to 600–

1,000 cycles; 4.0V/cell should deliver 1,200–2,000 and 3.90V/cell should provide 2,400–

4,000 cycles.

On the negative side, a lower peak charge voltage reduces the capacity the battery stores. As

a simple guideline, every 70mV reduction in charge voltage lowers the overall capacity by 10

percent. Applying the peak charge voltage on a subsequent charge will restore the full

capacity.

In terms of longevity, the optimal charge voltage is 3.92V/cell. Battery experts believe that

this threshold eliminates all voltage-related stresses; going lower may not gain further

benefits but induce other symptoms.

43

Table 4 summarizes the capacity as a function of charge levels. (All values are estimated;

Energy Cells with higher voltage thresholds may deviate.)

Charge level

(V/cell)

Discharge

cycles

Capacity at

full charge

Table 3: Discharge cycles and

capacity as a function of

charge voltage limit. Every

0.10V drop below 4.20V/cell

doubles the cycle but holds less

capacity. Raising the voltage

above 4.20V/cell would

shorten the life.

Guideline: Every 70mV drop

in charge voltage lowers the

usable capacity by 10%.

[4.30]

4.20

4.10

4.00

3.92

[150 – 250]

300 – 500

600 – 1,000

1,200 – 2,000

2,400 – 4,000

~[114%]

100%

~86%

~72%

~58%

Most chargers for mobile phones, laptops, tablets and digital cameras charge Li-ion to

4.20V/cell. This allows maximum capacity, because the consumer wants nothing less than

optimal runtime. Industry, on the other hand, is more concerned about longevity and may

choose lower voltage thresholds. Satellites and electric vehicles are such examples.

For safety reasons, many lithium-ions cannot exceed 4.20V/cell. (Some NMC are the

exception.) While a higher voltage boosts capacity, exceeding the voltage shortens service

life and compromises safety. Figure 5 demonstrates cycle count as a function of charge

voltage. At 4.35V, the cycle count of a regular Li-ion is cut in half.

44

Figure 9:

Effects on cycle

life at elevated

charge

voltages. Higher

charge voltages

boost capacity

but lowers cycle

life and

compromises

safety.

Besides selecting the best-suited voltage thresholds for a given application, a regular Li-ion

should not remain at the high-voltage ceiling of 4.20V/cell for an extended time. The Li-ion

charger turns off the charge current and the battery voltage reverts to a more natural level.

This is like relaxing the muscles after a strenuous exercise.

4.2 Results

• We constructed our concept of synchronous charging after reading many reports,

surveys and research papers.

• There was no conclusive evidence with us that would confirm that our current

concept is applicable as well as feasible.

• We made a flowchart that would lead us to our goal:

– Application

– Gather data

45

– Android Application

– Gather data

– Make a library

– Contribute to AOSP

• /sys/class/power_supply/battery/ which gives some info/control over charging issues.

In particular there is charging_enabled which gives the current state (0 not charging, 1

charging) and may be writable on some phones

• $adb shell

• $ cat /sys/class/power_supply/battery/charging_enabled

• 1

• There is also a file charger_control which sounds promising and is writable by root.

• There are different drivers for battery associated with different android versions and

manufacturers.

• e.g. /sys/module/msm_battery/parameters/usb_chg_enable

• Root access is also required to modify these system files programmatically.

In the end our concept of not charging through USB worked fine on devices with root

privileges. The other two concepts of doze and sleep in our application were really

successful.

46

CHAPTER 5: CONCLUSION

During the course of this project, we understood the role of the Open Handset Alliance,

Android governance, the Android work-flow and the process of contributing code, how to

root and what it means to root an Android handset. In particular we learned of Android's

battery management system and its various intricacies. We mapped out multiple solutions to

the problem of Android battery life and battery health. During our research of the android

framework and working of its open-source segment we located a repository on Github that

would allow us to turn On or Off the battery charging of the connected handset.

There were three possible solutions to the problem:

1) Make a contribution to AOSP and have it pulled.

2) Make an android app and use this to optimize battery charging (Requires us to root

handset)

3) Make a desktop app instead to cut USB power Off from the source.

The first method is the best but there is a resource gap and other uncertainties, we are

currently making progress on the other two front but not without barriers:

In the third solution we have a problem finding a way to turn off power for usb ports, its

variable for different machines and largely hardware dependent.

We are actively working on two fronts on the second solution, while using kivy the

documentation on using Pygenius for to import the git repository is unclear, whereas on

android we lack a device we can root. But with the course of the project we were successful

in implementing our concept on various devices with specific kernels and root privileges.

47

REFERENCES

Papers:

[1] Adaptive Battery Management on Smartphones - Deborah Estrin, Faculty, PI

Hossein Falaki, Ramesh Govindan

[2] An Efficient Energy Management System for Android Phone - Young-Seol Lee and

Sung-Bae Cho

[3]Energy-Aware Computing for Android Platforms - Hung-Ching Chang & Abhishek R

Agrawal, Department of Computer Science, Virginia Tech.

[4] Android Smartphone: Battery saving service - International Conference on Research and

Innovation in Information Systems

Web Links:

[1] http://research.cens.ucla.edu/urban/2011/part04.pdf [2] https://ieeeplore.ieee.org

[2]

http://www.cl.cam.ac.uk/~nv240/papers/IEEE_EnergyManagementTechniques_Survey.pdf

[3] http://scape.cs.vt.edu/wp-content/uploads/2012/08/ITJ12_Android_Energy-Aware.pdf

[4] http://www.embedded.com/design/power-optimization/4438556/USB-battery-charging-

protocols-Android-based-design

[5] http://superuser.com/questions/460721/charging-mobile-through-laptop-any-ill-effects

[6] http://www.extremetech.com/computing/115251-how-usb-charging-works

