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                                                                      ABSTRACT  
  

In this project, I have derived a new efficient algorithm with the help of “Liang-

Barsky” line clipping algorithm which can clip any general “Single parameter 

dependent” curve and it is much better than cohen-sutherland line clipping algorithm 

as well as Liang-Barsky line clipping algorithm in terms of cost and efficiency. 

Because if the object, which is to be clipped, is being rendered line by line then at each 

stage we need to calculate point of intersection between clipping window and higher 

order single parametrised curves. Which will involve lots of calculations while finding 

the intersection points so to avoid that, with the help of idea of liang-barsky algorithm 

first, we will be parametrizing the curve and then will restrict it into the clipping 

window by specific boundary conditions. Same concept we will be using for clipping 

the 3-D object against 3-D clipping window and from now we are naming it as clipping 

volume. 
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CHAPTER-1  

INTRODUCTION  
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1.1 Introduction  
  

In computer graphics, clipping is a method to disable or enable some portion of the text, 

images or objects after rendering within a desired region. Mathematically we can easily 

understand the concept of clipping using terminology of constructive geometry. When 

we render any image then it only includes pixels which lies in the intersection between 

the clip region and the scene model. All the lines and surfaces which were outside of 

the view volume should be rejected.  

 

 

To improve performance and efficiency of rendering generally clipping regions are 

specified. A well-chosen clip allows to minimize calculations, related to pixels that the 

user cannot see, to the renderer to save time and energy. Pixels that are outside the clip 

region will not be drawn. More informally, pixels that will not be drawn are called 

“clipped."  

  

 

                        Figure 1. 1 Line Clipping in 2-D Clipping Window  

  

    

  

 

 

https://en.wikipedia.org/wiki/Pixel
https://en.wikipedia.org/wiki/Pixel
https://en.wikipedia.org/wiki/Pixel
https://en.wikipedia.org/wiki/Intersection
https://en.wikipedia.org/wiki/Intersection
https://en.wikipedia.org/wiki/Intersection
https://en.wikipedia.org/wiki/View_volume
https://en.wikipedia.org/wiki/View_volume
https://en.wikipedia.org/wiki/View_volume
https://en.wikipedia.org/wiki/View_volume
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In the viewing pipeline, we need only those portion of the picture which are within the 

clipping window (it may be 2-D or 3-D). for 2-D objects we use the term “clipping 

window” and for 3-D we may use “clipping volume”. Clipping algorithms are to be 

applied in world coordinate so that using viewing pipeline we project only desired 

portion on device coordinate. Alternatively, the world coordinate part mapped to device 

coordinate first, or normalized device coordinate, then clipped w.r.t. the boundaries of 

viewport.  

 

2-D Viewing Pipeline: - 

 

                         Figure 1. 2 Flow Chart of 2-D Viewing Pipelining 

 

• Model / Object Coordinates: - 

This is the coordinate system where individual objects are designed which are to 

be used to make world coordinates. 

• World Coordinates: - 

This is the coordinate system where individual objects are integrated to make a 

proper scene. 
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• Viewing Coordinates: - 

From world coordinate we move the scene into the coordinate of camera called 

viewer’s coordinate. 

• Normalized Coordinates: - 

As we know when we take any picture or video from camera then it should be 

platform independent so for this purpose we use normalized coordinates system. 

• Device Coordinates: - 

After normalized coordinates we map the picture or video to specific device 

coordinates. 

 

 

 

Figure 1. 3 Viewport Coordinates 

 

Type of Clipping: - 

 

• Line Clipping: -   

        Already described. 

 

• Polygon Clipping: -   

Here we retain the portion of polygon which lies inside the clipping window 

against which we want to clip. 
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Figure 1. 4 Polygon Clipping 

 

• Text Clipping: -   

Here we retain the portion of text which lies inside the clipping window against 

which we want to clip. 

 

Figure 1.5 Text Clipping 
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1.2 Problem Statement  
  

In this project, we are trying to derive a new algorithm by modifying Liang-Barsky’s 

line clipping algorithm into a general (single-parameterized) curve clipping algorithm.   

  

             As we know there are many clipping algorithms such as Liang-Barsky line clipping 

algorithm, Cohen-Sutherland line clipping algorithm, Nicholl-Lee-Nic-holl Line 

Clipping algorithm, Sutherland-Hodgeman polygon Clipping algorithm and many 

more. But they all involve lot of calculation as compare to our new derived algorithm 

if we go for any arbitrary 2-D shaped curve. Once we derive this, we will be trying the 

same for 3-D Clipping window.   

  

  

 

Figure 1.6 General Curve in Clipping Volume  
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1.3   Objectives  
  

  

Figure 1.7 Circle inside the clipping volume  

  

  

Now in the above picture we need to clip the circle against this rectangular clipping 

window. it could be done using line clipping algorithm by rendering the above window 

line by line. As you can see by doing so lots of calculation will be involved because 

circle is 2nd order curve. So here we are trying to derive and algorithm which can clip 

such an arbitrary and more complex shapes in minimum calculations and less efforts.  

  

   Once we derive this, we will be trying the same against 3-D Clipping volume.  
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1.4   Methodology  
  

 

    Figure 1. 8 Higher order Curve in Clipping Volume  

  

  

  

For clipping above shape from clipping window if we use line clipping algorithm it will 

involve lots of calculation. So, to avoid that we need to parametrize the above curve 

and restrict the parametrized coordinate within the clipping window. By doing so we 

get the extreme values of the parameter and by using these parameters we get the 

required coordinates to clip the shape easily.  

  

 Using this method, we can clip off many more complex shapes with less efforts and 

minimum cost.  
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CHAPTER-2  

LITERATURE SURVEY  
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2.1 Point Clipping Algorithm:  

Let there be a point having coordinates P (a, b). Now we want to clip it w.r.t. the 

given clipping window. We must accept (enable) only those points which will lie 

inside the clipping window else reject (disable) all other points.  

  

 

       Figure 2.1 2-D clipping window  

  

Algorithm:  

Point P (a, b) will be accepted if,  

𝒙𝒘𝒎𝒊𝒏 ≤ 𝒂 ≤ 𝒙𝒘𝒎𝒂𝒙  && 𝒚𝒘𝒎𝒊𝒏 ≤ 𝒃 ≤ 𝒚𝒘𝒎𝒂𝒙   

Both the inequalities should hold simultaneously.  

  

Otherwise point will be disabled.   

  

Same concept we will be using in our modifying algorithm and for 

3-D point against 3-D clipping volume as well.   
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2.2 Cohen Sutherland Line Clipping Algorithm:  

This is one of the line clipping algorithm where we divide 2-Dimensional space into 9 

different regions as shown in picture below. Region of interest or clipping window will 

always be shown in the centre.  

  

 

                                    Figure 2.2 Divided region around clipping window   

  

 
  

Figure 2.3 Bit-Code for divided region   
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We have created 9 regions. 1 inside and 8 outside region.  

  

 Now we have given the line which we need to clip against the given rectangular 

clipping window. We will assign both the end of the given line by their bit-code.  

  

(xmin, xmax, ymin and ymax).  

  

If x < xmin, bit number 1 will be set.  

If x > xmax, bit number 2 will be set.  

If y < ymin, bit number 3 will be set.  

If y > ymax, bit number 4 will be set.  

  

  

 
  

  

Figure 2.4 Cohen-Sutherland test cases   
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Total 3 possibilities can be listed –  

 

1. Perform Bitwise OR operation from the both end points of line. If it is equals to 0000 it 

means both the ends were completely inside of the clipping window. Complete line will 

be retained.   

2. Perform Bitwise AND operation from the both end points of line. If it is not equals to 

0000 it means line is completely outside of the clipping window. Complete line will be 

rejected.   

3. Else line will be partially inside and partially outside of the clipping window in this case 

we need to find out the intersection point by solving line equation with the equation of 

the clipping window simultaneously and retain the required line.  

 

 

 

Figure 2.5 Cohen-Sutherland Examples   
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2.3 Liang-Barsky Line Clipping Algorithm:  

This is one of the more efficient algorithm than Cohen Sutherland line clipping 

algorithm and many others. Here we have used the concept of parametrization. 

Firstly, we parametrized the line and restricted the parametrized point within the 

clipping window and solve the inequality to find out which portion of the line we 

need to enable and which portion we need to disable. This algorithm can be 

extended against 3-D clipping volume as well.   

  

  

 

 

Figure 2.6 Parametrized 2-D line    

  

  

  

  

As we can see from the picture that we want to clip the line having both the end 

points are (x1, y1) & (x2, y2).  If we parametrize this line by assuming parameter 

t=0 at P (x1, y1) and t=1 at Q (x2, y2). Then,  

X=x1+(x2-x1) *t  

Y=y1+(y2-y1) *t  
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Algorithm:   

• Set t1=0 and t2=1  

• XWmin ≤ x1+(x2-x1) *t ≤ XWmax  

• YWmin ≤ y1+(y2-y1) *t ≤YWmax  

 •  Rewrite the above inequalities in the form 𝑡𝑃𝑘 ≤ 𝑞𝑘    

  

  

So, 𝑡𝑃𝑘 ≤ 𝑞𝑘 where k=1, 2, 3, 4  

Case 1) if 𝑃𝑘 = 0 then line will go parallel to coordinate axis. • 

 𝑞𝑘 >0 line will be inside the clipping window  
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Figure 2.7 Test Case-1   

  

 •  𝑞𝑘 <0 line will be outside the clipping window  

  

  

   Figure 2.8 Test Case-2   

  

   Case 2) if 𝑃𝑘 < 0, t1=max (0, qk/pk) and t2=1  
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Figure 2.9 Test Case-3   

  

 

  

Figure 2.10 Test Case-4   

  

Case 3) if 𝑃𝑘 > 0, t2=min (1, qk/pk) and t1=0  

  



 

xviii 

 

 
  

  

Figure 2.11 Test Case-5   

  

  

  

  

 

Figure 2.12 Test Case-6  
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2.4 Line Clipping Algorithm for 3D Space  

This paper has proposed another line cutting calculation for 3D space against a 

cuboid which isn't produced dependent on Cohen-Sutherland or Liang-Barsky line 

cutting calculations. The proposed calculation depends on a recently proposed 

basic hypothesis created utilizing essential numerical ideas. All most all the 3D line 

cut-out calculations include three stages to check whether a line section lies totally 

inside the cut-out volume or lies totally outside the cut-out volume or convergence 

estimations when it isn't totally inside or outside. The proposed calculation doesn't 

pursue these means. The calculation was tried for an enormous number of irregular 

line fragments and the outcomes demonstrated that the new 3D space line cutting 

calculation performs superior to the Cohen-Sutherland 3D line section calculation 

as far as reality.  

This paper says that in 3-D space, using liang-barsky clipping algorithm we can’t 

clip the line but using the same concept we will clip not only the line but any 

general 2-D curve.   

 

 

Figure 2.13 Clipping of 3-D Line  
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 2.5 Comparison among Various Line Clipping Algorithm  

In this paper, I have read the comparison among various well-known clipping 

algorithm line Nicholl Lee Nicholl clipping algorithm and all mentioned above. 

 

 

 Here we have seen the comparison of various Line clipping algorithms based on its 

working principles. One method for improving the efficiency of a clipping algorithm 

is to minimize the repetition of algorithm. Here region codes are being used to 

identify the position of line. Another algorithm minimizes intersection calculations. 

To achieve this goal an efficient clipping algorithm is presented here. One is on the 

basis of testing x-y plane to reduce intersection calculation. Our algorithm with 

reducing these calculations can avoid the repetition of these algorithms. 
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CHAPTER-3  

System Development   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xxii 

 

 

3.1 OpenGL: Open Graphics Library(OpenGL) is an API (Application Programming  

Interface) which is cross platform and cross language. It’s used for rendering 2-D or 3-D 

pictures (Vector Graphics).  

 OpenGL is an advancing API. New forms of the OpenGL details are consistently 

discharged by the Khronos Group, every one of which stretches out the API to help 

different new highlights. The subtleties of every variant are chosen by agreement between 

the Group's individuals, including illustrations card producers, working framework 

planners, and general innovation organizations, for example, Mozilla and Google.  

  

  

  

 

Fig 3.1 OpenGL 
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3.2 API for 2D/3D Graphics: 
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CHAPTER-4 

Algorithms 
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In this project, we are deriving a new algorithm so that we would be able to clip 

any general (single parametrized) 2-D curve against 2-D clipping window as well 

as against 3-D clipping volume.  

  

4.1 Clipping circular shape against 2-D Clipping window  

  

Suppose we want to clip the given 2-D arbitrary shape whose equation is already            

given, 

    

 
  

Figure 4.1 Circle before clipping  

  

Here we want to clip the circular part which is inside the clipping window.  

It’s given that circle having centre: (a, b) and radius 3 unit. Equation 

of circle: (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 9… (1)  

Equation of boundaries of clipping window are given as x=xmin, x=xmax, 

y=ymin, y=ymax  
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Here if you notice that if we use normal line clipping algorithm then it will 

involve lot of calculations so we will be doing using modified clipping 

algorithm.  

  

Parametrization of circle: x=a+3cos𝜃 

and y=b+3sin𝜃  

Algorithm:  

Solve following inequality simultaneously to find all the desired value of 

𝜃1 and 𝜃2 in for which circle lies inside the clipping window.  

1. XWmin≤ a + 3cos𝜃 ≤XWmax  

2. YWmin≤ b + 3sin𝜃 ≤YWmax  

3. 0≤ 𝜃 ≤ 2𝜋  

4. After solving this we get two values of 𝜃 called 𝜃1 and 𝜃2, and for 

each value we get one corresponding point on circle. Between 

both these points where 𝜃1 ≤ 𝜃 ≤ 𝜃2 we retain the curve and rest 

of the curve will be removed.  

 

   Figure 4.2 Circle after clipping   
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4.2 Clipping 3-D line against 3-D Clipping volume  

  

Let’s take another example where we are clipping a 3-D line against clipping volume 

(Cuboid).  

  

Consider a 3-D line passing through a cuboid as shown in figure and we want to clip the 

portion which is inside the clipping volume.  

  

  

 

                                               Figure 4.3 3-D line before clipping  

  

Let’s parametrize the line as,  

  

x=x1+(x2-x1)*t  

  

y=y1+(y2-y1)*t  

  

z=z1+(z2-z1)*t  

  

it’s given that equation of boundaries of clipping volume are x=xmin, x=xmax, y=ymin, 

y=ymax, z=zmin, z=zmax.  

  

For clipping the line inside the volume all these inequalities should hold simultaneously.  

  

• xmin≤x1+(x2-x1) *t≤xmax  

• ymin≤y1+(y2-y1) *t≤ymax  

• zmin≤z1+(z2-z1) *t≤zmax  
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 •  0≤ 𝑡 ≤ 1  

After solving these inequalities, we will get the two boundary values of t1 and t2. Put 

these values in the parametrized equation to get the coordinates of the required line and 

join to obtain it.  

  

Figure 4.4 3-D line after clipping  
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4.3 Clipping Parabolic Shape against 2-D Clipping Window  

  

  

Let’s take few more examples for better understanding.  

  

We are going to clip a parabola against a two-dimensional clipping window.  

  

Consider a parabola 𝑦2 = 4𝑎𝑥 is passing through a clipping window having boundary lines 

are x=xmin, y=ymin, x=xmax and y=ymax as shown in figure.  

  

  

 
                                           Figure 4.5 Parabola before clipping  

  

  

  

Parametrization of parabola:  𝑦2 = 4𝑎𝑥  

  

x= a𝑡2 y=2at  
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for clipping the parabola following inequalities holds true simultaneously.  

  

• xmin≤a𝑡2 ≤xmax  

• ymin≤2at≤ymax  

•    0≤ 𝑡 ≤ 1  

From above three inequalities we get two boundary values of t say t1 and t2. Ultimately you 

get the points in-between which parabola need to be retained.  

  

 
  

Figure 4.6 Parabola after clipping  
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 4.4 Clipping Elliptical Shape against 2-D Clipping Window 

 

Let’s assume an elliptical shape which we want to clip against a particular clipping 

window. 

 

Consider an ellipse 
𝑥2

22
+

𝑦2

102
=1 and we want to clip this against the clipping 

window as shown in figure. 

 

 
 

                             Figure 4.7 Elliptical shape before clipping  

 

  

Algorithm:  

Parametrization of Ellipse: 
𝑥2

22
+

𝑦2

102
=1 

 

 𝑥 = 2 cos 𝑢  & 𝑦 = 10 sin 𝑢  

 

        For clipping the ellipse, following inequalities must hold simultaneously.  

   

i 𝑥𝑚𝑖𝑛 ≤ 2 cos 𝑢 ≤ 𝑥𝑚𝑎𝑥 

 

ii 𝑦𝑚𝑖𝑛 ≤ 10 sin 𝑢 ≤ 𝑦𝑚𝑎𝑥 
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iii 0 ≤ 𝑢 ≤ 2𝜋 

 

After solving these three inequalities simultaneously we get four values of 𝑢 say  

 

𝑢1, 𝑢2, 𝑢3, 𝑢4.   

 

 
 

                             Figure 4.8 Elliptical shape after clipping  

 

 Put these four parameters in parametric equations and obtain all four 

coordinates and with the help of this obtain the clipped ellipse.  
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4.5 Clipping Spherical Shape against 3-D Clipping Volume 

 

Let’s assume a spherical shape which we want to clip against clipping volume. 

 

Consider a sphere of radius r having equation: 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2  

 

 

                        Figure 4.9 Spherical shape before clipping 

  

Algorithm:  

Let’s Parametrize the sphere as 

𝑥 = 𝑟 sin 𝑎  𝑐𝑜𝑠𝑏,  

𝑦 = 𝑟 𝑠𝑖𝑛 𝑎 sin 𝑏, 

            𝑧 = 𝑟 cos 𝑎. 

 

For clipping this shape against the given clipping volume, following inequalities 

must holds simultaneously. 

 

i. 𝑥𝑚𝑖𝑛 ≤ 𝑟 sin 𝑎  𝑐𝑜𝑠𝑏 ≤ 𝑥𝑚𝑎𝑥 

 

ii. 𝑦𝑚𝑖𝑛 ≤ 𝑟 sin 𝑎  𝑠𝑖𝑛𝑏 ≤ 𝑦𝑚𝑎𝑥 
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iii. 𝑧𝑚𝑖𝑛 ≤ cos 𝑎 ≤ 𝑧𝑚𝑎𝑥 

 

 

 

iv. 0 ≤ 𝑏 ≤ 2𝜋 

 

v. 0 ≤ 𝑎 ≤ 𝜋 

 

By solving all the five inequalities we will get the condition for desired clipped 

sphere as shown below. 

 

                        Figure 4.10 Spherical shape after clipping 
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CHAPTER-5 

 Result and Performance Analysis  
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5.1 Result 

 
                         

                               Figure 5.1 Clipped Line against a rectangular clipping window 

 

 

5.2 Conclusion  

So, after finding a beautiful approach for clipping any general (single 

parameter dependent curve) we have reduced our calculations and 

performance time. When we take pictures from our camera then it 

converts from world coordinates to viewing coordinates but as we know 

sometimes we don’t want full picture to be projected on device 

coordinates through viewing pipeline so we need to clip the original 

image. one simple way is to render line by line but when curves, that to 

be clipped, are complex then this approach is very lengthy and time 

taking. So, in this project we have clipped so many 2-D or 3-D curves 

/lines with our new approach successfully.    
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5.2 Future Work:  

  

Lists of things for future work:  

• To improve its performance, we will try to optimize this 

algorithm as much as we can  

• To learn more about another graphics software where I can 

use this algorithm   

• Implementation of this logic in various other field of graphics. 
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      Appendix – I 
 

Code: 
 
#include<stdio.h> 
#include<conio.h> 
float min(float a, float b, float c); 
float max(float a, float b, float c); 
float main() 
{   float i, t, t1, t2,j,x1,y1,x2,y2, xwmin, xwmax, ywmin, ywmax,t3,t4, x1n,y1n,x2n,y2n 
, c1=0,c2=1; 
printf("Enter x1:\n"); 
scanf("%f",&x1); 
printf("Enter y1:\n"); 
scanf("%f",&y1); 
printf("Enter x2:\n"); 
scanf("%f",&x2); 
printf("Enter y2:\n"); 
scanf("%f",&y2); 
printf("Enter the window xwmin,xwmax,ywmin,ywmax respectively:\n"); 
scanf("%f \t %f \t %f \t %f",&xwmin,&xwmax,&ywmin,&ywmax); 
 
printf("Initial point is: (%f,%f)\n",x1,y1); 
printf("Final point is: (%f,%f)\n",x2,y2); 
 
    for(i=1;i<=100;i++) 
    { 
       for(j=1;j<=100;j++) 
       { 
        if(x1+(i/j)*(x2-x1)==xwmin) 
        t1=i/j; 
 
        if(x1+(i/j)*(x2-x1)==xwmax ) 
        t2=i/j; 
       } 
    } 
 
     for(i=1;i<=100;i++) 
    { 
       for(j=1;j<=100;j++) 
       { 
        if(y1+(i/j)*(y2-y1)==ywmin) 
        t3=i/j; 
 
 
        if(y1+(i/j)*(y2-y1)==ywmax) 
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        t4=i/j; 
       } 
    } 
 
  t1 =  max(t1,t3, c1); 
  t2 = min(t2,t4, c2); 
 /*if(t3>=t1) 
    { 
       t1==t3; 
    } 
    if(t2>=t4) 
    { 
        t2==t4; 
    }*/ 
 
    printf("t1 is %f\n",t1); 
     printf("t2 is %f\n",t2); 
 
 
 
 
     printf("***** After Cliping ****** \n"); 
 
     x1n=x1+(t1*(x2-x1)); 
     y1n=y1+(t1*(y2-y1)); 
 
     x2n=x1+(t2*(x2-x1)); 
     y2n=y1+(t2*(y2-y1)); 
 
     printf("Initial point is: (%f,%f)\n",x1n,y1n); 
     printf("Final point is: (%f,%f)\n",x2n,y2n); 
     getch(); 
} 
 
float min(float a, float b, float c) 
{ 
    float temp; 
    if(a<b) 
           temp=a; 
        else temp=b; 
 
        if(temp<c) 
            temp=temp; 
            else temp=c; 
 
        return temp; 
} 
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float max(float a, float b, float c) 
{ 
    float temp; 
    if(a<b) 
        temp=b; 
        else temp=a; 
        if(temp<c) 
            temp=c; 
            else temp=temp; 
 
        return temp; 
}  
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