

GENERALIZATION OF LIANG-BARSKY LINE

CLIPPING ALGORITHM

Project report submitted in partial fulfilment of the requirement for the degree of

BACHELOR OF TECHNOLOGY

IN

 COMPUTER SCIENCE & ENGINEERING

By

SACHIN GUPTA

(161211)

UNDER THE SUPERVISION OF

Prof. KARANJEET SINGH

(HOD, MATHEMATICS DEPARTMENT)

 to

Department of Computer Science & Engineering and Information Technology

 JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,

WAKNAGHAT, SOLAN - 173234

HIMACHAL PRADESH

i

 DECLARATION

I hereby declare that the work presented in this report entitled “ Generalization of

Liang-Barsky Line Clipping Algorithm” in partial fulfilment of the requirements

for the award of the degree of Bachelor of Technology in Computer Science and

Engineering/Information Technology submitted in the department of Computer

Science & Engineering and Information Technology, Jaypee University of

Information Technology Waknaghat is an authentic record of my own work carried

out over a period from August 2019 to May 2020 under the supervision of Prof. Dr.

Karanjeet Singh (HOD, Mathematics Department).

The matter embodied in the report has not been submitted for the award of any other

degree or diploma.

(Candidate Signature)

Sachin Gupta

Roll. No.- 161211

This is to certify that the above statement made by the candidate is true to the best of

my knowledge.

(Supervisor Signature)

Prof. Dr. Karanjeet Singh

(HOD, Mathematics Department)

ii

 ACKNOWLEDGEMENT

We express our deepest gratitude for having an opportunity to continue our

project work with the Department of Mathematics and Computer Science

Engineering at Jaypee University of Information Technology, Waknaghat,

Solan, H. P. We gratefully acknowledge to Prof. Dr. Satya Prakash Ghrera,

HOD, CSE for his valuable support and suggestions. We express our deepest

gratitude and special thanks to our supervisor Prof. Karanjeet Singh for his

keen interest in our project, took time out to hear, guide and keep us on the

correct path, giving necessary advice and guidance to carry out our project

work. His prompt inspirations, timely suggestions with kindness, enthusiasm

and dynamism had been solely and mainly responsible for our deep interest in

our project works.

iii

 TABLE OF CONTENT

Content Page No.

CHAPTER-1: INTRODUCTION 1

1.1 Introduction 2

1.2 Problem Statement 6

1.3 Objectives 7

1.4 Methodology

8

CHAPTER-2: LITRETURE SURVEY 9

2.1 Point Clipping Algorithm 10

2.2 Cohen Sutherland Line Clipping Algorithm 11

2.3 Liang-Barsky Line Clipping Algorithm 14

2.4 Line Clipping Algorithm for 3-D Space

2.5 Comparison among various Line Clipping Algorithm

19

20

CHAPTER-3: SYSTEM DEVELOPMENT 21

 3.1. OpenGL

 3.2 API for 2D/3D Graphics

 22

 23

CHAPTER-4: ALGORITHMS 24

 4.1. Clipping Circular Shape Against 2-D Clipping Window 25

 4.2. Clipping 3-D Line Against 3-D Clipping Volume 27

 4.3. Clipping Parabolic Shape Against 2-D Clipping Window

 4.4 Clipping Elliptical Shape Against 2-D Clipping Window

 4.5 Clipping Spherical Shape against 3-D Clipping Volume

 29

 31

 33

CHAPTER-5: RESULT AND PERFORMANCE ANALYSIS 35

 5.1. Result 36

 5.2. Conclusion

 5.3 Future Work
36

37

REFERENCES 38

iv

 LIST OF FIGURES

 Figure Page

 1.1 Line Clipping in 2-D Clipping Window 2

 1.2 Flow Chart of 2-D Viewing Pipelining 3

 1.3 Viewport Coordinates 4

 1.4 Polygon Clipping 5

 1.5 Text Clipping 5

 1.6 General Curve in Clipping Volume 6

 1.7 Circle inside the clipping volume 7

 1.8 Higher order Curve in Clipping Volume 8

 2.1 2-D clipping window 10

 2.2 Divided region around clipping window 11

 2.3 Bit-Code for divided region 11

 2.4 Cohen-Sutherland test cases 12

 2.5 Cohen – Sutherland Examples 13

 2.6 Parametrized 2-D line 14

 2.7 Test Case-1 16

 2.8 Test Case-2 16

 2.9 Test Case-3 17

 2.10 Test Case-4 17

v

 2.11 Test Case-5 18

 2.12 Test Case-6 18

 2.13 Clipping of 3-D Line 19

 3.1 OpenGL 22

 4.1 Circle before clipping 25

 4.2 Circle after clipping 26

 4.3 3-D line before clipping 27

4.4 3-D line after clipping 28

4.5 Parabola before clipping 29

 4.6 Parabola before clipping 30

 4.7 Elliptical Shape before clipping 31

4.8 Elliptical Shape after clipping 32

4.9 Spherical Shape before clipping 33

 4.10 Spherical Shape after clipping 34

5.1 Clipped Line against a rectangular clipped window 36

 References 38

vi

 ABSTRACT

In this project, I have derived a new efficient algorithm with the help of “Liang-

Barsky” line clipping algorithm which can clip any general “Single parameter

dependent” curve and it is much better than cohen-sutherland line clipping algorithm

as well as Liang-Barsky line clipping algorithm in terms of cost and efficiency.

Because if the object, which is to be clipped, is being rendered line by line then at each

stage we need to calculate point of intersection between clipping window and higher

order single parametrised curves. Which will involve lots of calculations while finding

the intersection points so to avoid that, with the help of idea of liang-barsky algorithm

first, we will be parametrizing the curve and then will restrict it into the clipping

window by specific boundary conditions. Same concept we will be using for clipping

the 3-D object against 3-D clipping window and from now we are naming it as clipping

volume.

i

CHAPTER-1

INTRODUCTION

ii

1.1 Introduction

In computer graphics, clipping is a method to disable or enable some portion of the text,

images or objects after rendering within a desired region. Mathematically we can easily

understand the concept of clipping using terminology of constructive geometry. When

we render any image then it only includes pixels which lies in the intersection between

the clip region and the scene model. All the lines and surfaces which were outside of

the view volume should be rejected.

To improve performance and efficiency of rendering generally clipping regions are

specified. A well-chosen clip allows to minimize calculations, related to pixels that the

user cannot see, to the renderer to save time and energy. Pixels that are outside the clip

region will not be drawn. More informally, pixels that will not be drawn are called

“clipped."

 Figure 1. 1 Line Clipping in 2-D Clipping Window

https://en.wikipedia.org/wiki/Pixel
https://en.wikipedia.org/wiki/Pixel
https://en.wikipedia.org/wiki/Pixel
https://en.wikipedia.org/wiki/Intersection
https://en.wikipedia.org/wiki/Intersection
https://en.wikipedia.org/wiki/Intersection
https://en.wikipedia.org/wiki/View_volume
https://en.wikipedia.org/wiki/View_volume
https://en.wikipedia.org/wiki/View_volume
https://en.wikipedia.org/wiki/View_volume

iii

In the viewing pipeline, we need only those portion of the picture which are within the

clipping window (it may be 2-D or 3-D). for 2-D objects we use the term “clipping

window” and for 3-D we may use “clipping volume”. Clipping algorithms are to be

applied in world coordinate so that using viewing pipeline we project only desired

portion on device coordinate. Alternatively, the world coordinate part mapped to device

coordinate first, or normalized device coordinate, then clipped w.r.t. the boundaries of

viewport.

2-D Viewing Pipeline: -

 Figure 1. 2 Flow Chart of 2-D Viewing Pipelining

• Model / Object Coordinates: -

This is the coordinate system where individual objects are designed which are to

be used to make world coordinates.

• World Coordinates: -

This is the coordinate system where individual objects are integrated to make a

proper scene.

iv

• Viewing Coordinates: -

From world coordinate we move the scene into the coordinate of camera called

viewer’s coordinate.

• Normalized Coordinates: -

As we know when we take any picture or video from camera then it should be

platform independent so for this purpose we use normalized coordinates system.

• Device Coordinates: -

After normalized coordinates we map the picture or video to specific device

coordinates.

Figure 1. 3 Viewport Coordinates

Type of Clipping: -

• Line Clipping: -

 Already described.

• Polygon Clipping: -

Here we retain the portion of polygon which lies inside the clipping window

against which we want to clip.

v

Figure 1. 4 Polygon Clipping

• Text Clipping: -

Here we retain the portion of text which lies inside the clipping window against

which we want to clip.

Figure 1.5 Text Clipping

vi

1.2 Problem Statement

In this project, we are trying to derive a new algorithm by modifying Liang-Barsky’s

line clipping algorithm into a general (single-parameterized) curve clipping algorithm.

 As we know there are many clipping algorithms such as Liang-Barsky line clipping

algorithm, Cohen-Sutherland line clipping algorithm, Nicholl-Lee-Nic-holl Line

Clipping algorithm, Sutherland-Hodgeman polygon Clipping algorithm and many

more. But they all involve lot of calculation as compare to our new derived algorithm

if we go for any arbitrary 2-D shaped curve. Once we derive this, we will be trying the

same for 3-D Clipping window.

Figure 1.6 General Curve in Clipping Volume

vii

1.3 Objectives

Figure 1.7 Circle inside the clipping volume

Now in the above picture we need to clip the circle against this rectangular clipping

window. it could be done using line clipping algorithm by rendering the above window

line by line. As you can see by doing so lots of calculation will be involved because

circle is 2nd order curve. So here we are trying to derive and algorithm which can clip

such an arbitrary and more complex shapes in minimum calculations and less efforts.

 Once we derive this, we will be trying the same against 3-D Clipping volume.

viii

1.4 Methodology

 Figure 1. 8 Higher order Curve in Clipping Volume

For clipping above shape from clipping window if we use line clipping algorithm it will

involve lots of calculation. So, to avoid that we need to parametrize the above curve

and restrict the parametrized coordinate within the clipping window. By doing so we

get the extreme values of the parameter and by using these parameters we get the

required coordinates to clip the shape easily.

 Using this method, we can clip off many more complex shapes with less efforts and

minimum cost.

ix

CHAPTER-2

LITERATURE SURVEY

x

2.1 Point Clipping Algorithm:

Let there be a point having coordinates P (a, b). Now we want to clip it w.r.t. the

given clipping window. We must accept (enable) only those points which will lie

inside the clipping window else reject (disable) all other points.

 Figure 2.1 2-D clipping window

Algorithm:

Point P (a, b) will be accepted if,

𝒙𝒘𝒎𝒊𝒏 ≤ 𝒂 ≤ 𝒙𝒘𝒎𝒂𝒙 && 𝒚𝒘𝒎𝒊𝒏 ≤ 𝒃 ≤ 𝒚𝒘𝒎𝒂𝒙

Both the inequalities should hold simultaneously.

Otherwise point will be disabled.

Same concept we will be using in our modifying algorithm and for

3-D point against 3-D clipping volume as well.

xi

2.2 Cohen Sutherland Line Clipping Algorithm:

This is one of the line clipping algorithm where we divide 2-Dimensional space into 9

different regions as shown in picture below. Region of interest or clipping window will

always be shown in the centre.

 Figure 2.2 Divided region around clipping window

Figure 2.3 Bit-Code for divided region

xii

We have created 9 regions. 1 inside and 8 outside region.

 Now we have given the line which we need to clip against the given rectangular

clipping window. We will assign both the end of the given line by their bit-code.

(xmin, xmax, ymin and ymax).

If x < xmin, bit number 1 will be set.

If x > xmax, bit number 2 will be set.

If y < ymin, bit number 3 will be set.

If y > ymax, bit number 4 will be set.

Figure 2.4 Cohen-Sutherland test cases

xiii

Total 3 possibilities can be listed –

1. Perform Bitwise OR operation from the both end points of line. If it is equals to 0000 it

means both the ends were completely inside of the clipping window. Complete line will

be retained.

2. Perform Bitwise AND operation from the both end points of line. If it is not equals to

0000 it means line is completely outside of the clipping window. Complete line will be

rejected.

3. Else line will be partially inside and partially outside of the clipping window in this case

we need to find out the intersection point by solving line equation with the equation of

the clipping window simultaneously and retain the required line.

Figure 2.5 Cohen-Sutherland Examples

xiv

2.3 Liang-Barsky Line Clipping Algorithm:

This is one of the more efficient algorithm than Cohen Sutherland line clipping

algorithm and many others. Here we have used the concept of parametrization.

Firstly, we parametrized the line and restricted the parametrized point within the

clipping window and solve the inequality to find out which portion of the line we

need to enable and which portion we need to disable. This algorithm can be

extended against 3-D clipping volume as well.

Figure 2.6 Parametrized 2-D line

As we can see from the picture that we want to clip the line having both the end

points are (x1, y1) & (x2, y2). If we parametrize this line by assuming parameter

t=0 at P (x1, y1) and t=1 at Q (x2, y2). Then,

X=x1+(x2-x1) *t

Y=y1+(y2-y1) *t

xv

Algorithm:

• Set t1=0 and t2=1

• XWmin ≤ x1+(x2-x1) *t ≤ XWmax

• YWmin ≤ y1+(y2-y1) *t ≤YWmax

 • Rewrite the above inequalities in the form 𝑡𝑃𝑘 ≤ 𝑞𝑘

So, 𝑡𝑃𝑘 ≤ 𝑞𝑘 where k=1, 2, 3, 4

Case 1) if 𝑃𝑘 = 0 then line will go parallel to coordinate axis. •

 𝑞𝑘 >0 line will be inside the clipping window

xvi

Figure 2.7 Test Case-1

 • 𝑞𝑘 <0 line will be outside the clipping window

 Figure 2.8 Test Case-2

 Case 2) if 𝑃𝑘 < 0, t1=max (0, qk/pk) and t2=1

xvii

Figure 2.9 Test Case-3

Figure 2.10 Test Case-4

Case 3) if 𝑃𝑘 > 0, t2=min (1, qk/pk) and t1=0

xviii

Figure 2.11 Test Case-5

Figure 2.12 Test Case-6

xix

2.4 Line Clipping Algorithm for 3D Space

This paper has proposed another line cutting calculation for 3D space against a

cuboid which isn't produced dependent on Cohen-Sutherland or Liang-Barsky line

cutting calculations. The proposed calculation depends on a recently proposed

basic hypothesis created utilizing essential numerical ideas. All most all the 3D line

cut-out calculations include three stages to check whether a line section lies totally

inside the cut-out volume or lies totally outside the cut-out volume or convergence

estimations when it isn't totally inside or outside. The proposed calculation doesn't

pursue these means. The calculation was tried for an enormous number of irregular

line fragments and the outcomes demonstrated that the new 3D space line cutting

calculation performs superior to the Cohen-Sutherland 3D line section calculation

as far as reality.

This paper says that in 3-D space, using liang-barsky clipping algorithm we can’t

clip the line but using the same concept we will clip not only the line but any

general 2-D curve.

Figure 2.13 Clipping of 3-D Line

xx

 2.5 Comparison among Various Line Clipping Algorithm

In this paper, I have read the comparison among various well-known clipping

algorithm line Nicholl Lee Nicholl clipping algorithm and all mentioned above.

 Here we have seen the comparison of various Line clipping algorithms based on its

working principles. One method for improving the efficiency of a clipping algorithm

is to minimize the repetition of algorithm. Here region codes are being used to

identify the position of line. Another algorithm minimizes intersection calculations.

To achieve this goal an efficient clipping algorithm is presented here. One is on the

basis of testing x-y plane to reduce intersection calculation. Our algorithm with

reducing these calculations can avoid the repetition of these algorithms.

xxi

CHAPTER-3

System Development

xxii

3.1 OpenGL: Open Graphics Library(OpenGL) is an API (Application Programming

Interface) which is cross platform and cross language. It’s used for rendering 2-D or 3-D

pictures (Vector Graphics).

 OpenGL is an advancing API. New forms of the OpenGL details are consistently

discharged by the Khronos Group, every one of which stretches out the API to help

different new highlights. The subtleties of every variant are chosen by agreement between

the Group's individuals, including illustrations card producers, working framework

planners, and general innovation organizations, for example, Mozilla and Google.

Fig 3.1 OpenGL

xxiii

3.2 API for 2D/3D Graphics:

xxiv

CHAPTER-4

Algorithms

xxv

In this project, we are deriving a new algorithm so that we would be able to clip

any general (single parametrized) 2-D curve against 2-D clipping window as well

as against 3-D clipping volume.

4.1 Clipping circular shape against 2-D Clipping window

Suppose we want to clip the given 2-D arbitrary shape whose equation is already

given,

Figure 4.1 Circle before clipping

Here we want to clip the circular part which is inside the clipping window.

It’s given that circle having centre: (a, b) and radius 3 unit. Equation

of circle: (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 9… (1)

Equation of boundaries of clipping window are given as x=xmin, x=xmax,

y=ymin, y=ymax

xxvi

Here if you notice that if we use normal line clipping algorithm then it will

involve lot of calculations so we will be doing using modified clipping

algorithm.

Parametrization of circle: x=a+3cos𝜃

and y=b+3sin𝜃

Algorithm:

Solve following inequality simultaneously to find all the desired value of

𝜃1 and 𝜃2 in for which circle lies inside the clipping window.

1. XWmin≤ a + 3cos𝜃 ≤XWmax

2. YWmin≤ b + 3sin𝜃 ≤YWmax

3. 0≤ 𝜃 ≤ 2𝜋

4. After solving this we get two values of 𝜃 called 𝜃1 and 𝜃2, and for

each value we get one corresponding point on circle. Between

both these points where 𝜃1 ≤ 𝜃 ≤ 𝜃2 we retain the curve and rest

of the curve will be removed.

 Figure 4.2 Circle after clipping

xxvii

4.2 Clipping 3-D line against 3-D Clipping volume

Let’s take another example where we are clipping a 3-D line against clipping volume

(Cuboid).

Consider a 3-D line passing through a cuboid as shown in figure and we want to clip the

portion which is inside the clipping volume.

 Figure 4.3 3-D line before clipping

Let’s parametrize the line as,

x=x1+(x2-x1)*t

y=y1+(y2-y1)*t

z=z1+(z2-z1)*t

it’s given that equation of boundaries of clipping volume are x=xmin, x=xmax, y=ymin,

y=ymax, z=zmin, z=zmax.

For clipping the line inside the volume all these inequalities should hold simultaneously.

• xmin≤x1+(x2-x1) *t≤xmax

• ymin≤y1+(y2-y1) *t≤ymax

• zmin≤z1+(z2-z1) *t≤zmax

xxviii

 • 0≤ 𝑡 ≤ 1

After solving these inequalities, we will get the two boundary values of t1 and t2. Put

these values in the parametrized equation to get the coordinates of the required line and

join to obtain it.

Figure 4.4 3-D line after clipping

xxix

4.3 Clipping Parabolic Shape against 2-D Clipping Window

Let’s take few more examples for better understanding.

We are going to clip a parabola against a two-dimensional clipping window.

Consider a parabola 𝑦2 = 4𝑎𝑥 is passing through a clipping window having boundary lines

are x=xmin, y=ymin, x=xmax and y=ymax as shown in figure.

 Figure 4.5 Parabola before clipping

Parametrization of parabola: 𝑦2 = 4𝑎𝑥

x= a𝑡2 y=2at

xxx

for clipping the parabola following inequalities holds true simultaneously.

• xmin≤a𝑡2 ≤xmax

• ymin≤2at≤ymax

• 0≤ 𝑡 ≤ 1

From above three inequalities we get two boundary values of t say t1 and t2. Ultimately you

get the points in-between which parabola need to be retained.

Figure 4.6 Parabola after clipping

xxxi

 4.4 Clipping Elliptical Shape against 2-D Clipping Window

Let’s assume an elliptical shape which we want to clip against a particular clipping

window.

Consider an ellipse
𝑥2

22
+

𝑦2

102
=1 and we want to clip this against the clipping

window as shown in figure.

 Figure 4.7 Elliptical shape before clipping

Algorithm:

Parametrization of Ellipse:
𝑥2

22
+

𝑦2

102
=1

 𝑥 = 2 cos 𝑢 & 𝑦 = 10 sin 𝑢

 For clipping the ellipse, following inequalities must hold simultaneously.

i 𝑥𝑚𝑖𝑛 ≤ 2 cos 𝑢 ≤ 𝑥𝑚𝑎𝑥

ii 𝑦𝑚𝑖𝑛 ≤ 10 sin 𝑢 ≤ 𝑦𝑚𝑎𝑥

xxxii

iii 0 ≤ 𝑢 ≤ 2𝜋

After solving these three inequalities simultaneously we get four values of 𝑢 say

𝑢1, 𝑢2, 𝑢3, 𝑢4.

 Figure 4.8 Elliptical shape after clipping

 Put these four parameters in parametric equations and obtain all four

coordinates and with the help of this obtain the clipped ellipse.

xxxiii

4.5 Clipping Spherical Shape against 3-D Clipping Volume

Let’s assume a spherical shape which we want to clip against clipping volume.

Consider a sphere of radius r having equation: 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2

 Figure 4.9 Spherical shape before clipping

Algorithm:

Let’s Parametrize the sphere as

𝑥 = 𝑟 sin 𝑎 𝑐𝑜𝑠𝑏,

𝑦 = 𝑟 𝑠𝑖𝑛 𝑎 sin 𝑏,

 𝑧 = 𝑟 cos 𝑎.

For clipping this shape against the given clipping volume, following inequalities

must holds simultaneously.

i. 𝑥𝑚𝑖𝑛 ≤ 𝑟 sin 𝑎 𝑐𝑜𝑠𝑏 ≤ 𝑥𝑚𝑎𝑥

ii. 𝑦𝑚𝑖𝑛 ≤ 𝑟 sin 𝑎 𝑠𝑖𝑛𝑏 ≤ 𝑦𝑚𝑎𝑥

xxxiv

iii. 𝑧𝑚𝑖𝑛 ≤ cos 𝑎 ≤ 𝑧𝑚𝑎𝑥

iv. 0 ≤ 𝑏 ≤ 2𝜋

v. 0 ≤ 𝑎 ≤ 𝜋

By solving all the five inequalities we will get the condition for desired clipped

sphere as shown below.

 Figure 4.10 Spherical shape after clipping

xxxv

CHAPTER-5

 Result and Performance Analysis

xxxvi

5.1 Result

 Figure 5.1 Clipped Line against a rectangular clipping window

5.2 Conclusion

So, after finding a beautiful approach for clipping any general (single

parameter dependent curve) we have reduced our calculations and

performance time. When we take pictures from our camera then it

converts from world coordinates to viewing coordinates but as we know

sometimes we don’t want full picture to be projected on device

coordinates through viewing pipeline so we need to clip the original

image. one simple way is to render line by line but when curves, that to

be clipped, are complex then this approach is very lengthy and time

taking. So, in this project we have clipped so many 2-D or 3-D curves

/lines with our new approach successfully.

xxxvii

5.2 Future Work:

Lists of things for future work:

• To improve its performance, we will try to optimize this

algorithm as much as we can

• To learn more about another graphics software where I can

use this algorithm

• Implementation of this logic in various other field of graphics.

xxxviii

REFERENCES

[1] V. Skala, ―O (lg N) Line clipping Algorithm in E , ‖Computers and Graphics, Vol. 18, No. 4,

1994, pp. 517-527.

[2] R. A. Earnshaw et al. (eds.), New Advances in Computer Graphics © Springer-Verlag Tokyo

1989

[3] D. Hearn and M. P. Baker, ―Computer Graphics,‖ C Version, 2nd Edition, Prentice Hall, Inc.,

Upper Saddle River, 1998, p. 224-248

[4] T. M. Nicholl, D. T. Lee and R. A. Nicholl, ―An Efficient New Algorithm for 2-D Line

Clipping: Its Development and Analysis,‖ Computers and Graphics, Vol. 21, No. 4, 1987, pp.

253-262.

[5] Wenjun Huang, ―The Line Clipping Algorithm Basing on Affine Transformation‖, Intelligent

Information Management, 2010, 2,380-385, Published Online June 2010

[6] M. Cyrus and J. Beck, ―Generalized Two and Three Dimensional Clipping,‖ Computers and

Graphics, Vol. 3, No. 1, 1978, pp. 23-28.

[7] C. B. Chen and F. Lu, ―Computer Graphics Basis,‖ Publishing House of Electronics Industry,

Beijing, 2006, pp.167-168.

xxxix

 Appendix – I

Code:

#include<stdio.h>
#include<conio.h>
float min(float a, float b, float c);
float max(float a, float b, float c);
float main()
{ float i, t, t1, t2,j,x1,y1,x2,y2, xwmin, xwmax, ywmin, ywmax,t3,t4, x1n,y1n,x2n,y2n
, c1=0,c2=1;
printf("Enter x1:\n");
scanf("%f",&x1);
printf("Enter y1:\n");
scanf("%f",&y1);
printf("Enter x2:\n");
scanf("%f",&x2);
printf("Enter y2:\n");
scanf("%f",&y2);
printf("Enter the window xwmin,xwmax,ywmin,ywmax respectively:\n");
scanf("%f \t %f \t %f \t %f",&xwmin,&xwmax,&ywmin,&ywmax);

printf("Initial point is: (%f,%f)\n",x1,y1);
printf("Final point is: (%f,%f)\n",x2,y2);

 for(i=1;i<=100;i++)
 {
 for(j=1;j<=100;j++)
 {
 if(x1+(i/j)*(x2-x1)==xwmin)
 t1=i/j;

 if(x1+(i/j)*(x2-x1)==xwmax)
 t2=i/j;
 }
 }

 for(i=1;i<=100;i++)
 {
 for(j=1;j<=100;j++)
 {
 if(y1+(i/j)*(y2-y1)==ywmin)
 t3=i/j;

 if(y1+(i/j)*(y2-y1)==ywmax)

xl

 t4=i/j;
 }
 }

 t1 = max(t1,t3, c1);
 t2 = min(t2,t4, c2);
 /*if(t3>=t1)
 {
 t1==t3;
 }
 if(t2>=t4)
 {
 t2==t4;
 }*/

 printf("t1 is %f\n",t1);
 printf("t2 is %f\n",t2);

 printf("***** After Cliping ****** \n");

 x1n=x1+(t1*(x2-x1));
 y1n=y1+(t1*(y2-y1));

 x2n=x1+(t2*(x2-x1));
 y2n=y1+(t2*(y2-y1));

 printf("Initial point is: (%f,%f)\n",x1n,y1n);
 printf("Final point is: (%f,%f)\n",x2n,y2n);
 getch();
}

float min(float a, float b, float c)
{
 float temp;
 if(a<b)
 temp=a;
 else temp=b;

 if(temp<c)
 temp=temp;
 else temp=c;

 return temp;
}

xli

float max(float a, float b, float c)
{
 float temp;
 if(a<b)
 temp=b;
 else temp=a;
 if(temp<c)
 temp=c;
 else temp=temp;

 return temp;
}

xlii

 Plagiarism Report

xliii

