
“Hostel Hero: An AIML Chatbot”

Project report submitted in partial fulfilment of the requirement for the degree

of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

Navneet Thakur (161215)

Under the supervision of

(Dr. Hemraj Saini)

to

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology Waknaghat, Solan-173234,

Himachal Pradesh

i | P a g e

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Hostel Hero: An AIML

Chatbot” in partial fulfilment of the requirements for the award of the degree of Bachelor of

Technology in Computer Science and Engineering/Information Technology submitted in

the department of Computer Science & Engineering and Information Technology, Jaypee

University of Information Technology Waknaghat is an authentic record of my own work

carried out over a period from July 2019 to May 2020 under the supervision of Dr. Hemraj

Saini (Associate Professor, Computer Science &Engineering Department).

The matter embodied in the report has not been submitted for the award of any other degree

or diploma.

Navneet Thakur (161215)

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Dr. Hemraj Saini

Associate Professor

Computer Science and Engineering and Information Technology

Dated: 20
th

 June 2020

ii | P a g e

ACKNOWLEDGEMENT

I owe my profound gratitude to my project supervisor Dr. Hemraj Saini, who took keen

interest and guided me all along in my project work titled - “Hostel Hero: An AIML

Chatbot” till the completion of the project by providing all the necessary information for

developing the project. The project development helped me in research and I got to know a

lot of new things in my domain. I am really thankful to him for his support in completion of

this project.

iii | P a g e

TABLE OF CONTENT

Certificate.……………………………………………………………………………... i

Acknowledgement …………………………………………………………………..... ii

Abstract ……………………………………………………………………………….. iv

Chapter 1: Introduction …………………………………………………………. 01

1.1 Introduction…………………………………………………………………… 01

1.2 Motivation……………………………………………………………………… 01

1.3 Problem Statements…………………………………………………………… 01

1.4 Technical Requirements ……………………………………………………… 02

1.5 Deliverables …………………………………………………………………… 02

Chapter 2: Literature Survey ………………………………………………….. 03

2.1 AIML Introduction……………………………………………………………. 03

2.2 AIML Tags…………………………………………………………………….. 03

2.3 Python………………………………………………………………………….. 07

2.4 python-aiml……………………………………………………………………. 07

2.5 Flask……………………………………………………………………………. 08

2.6 HTML………………………………………………………………………….. 09

2.7 CSS……………………………………………………………………………… 10

2.8 gTTS………………….………………………………………………………… 12

2.9 XML………………………………………………………………………......... 13

Chapter 3: System Development……………………………………………….. 16

3.1 Development Plan……………………………………………………………… 16

3.2 Creating HTML Form………………………………………………………… 16

3.3 Chatbot Python File…………………………………………………………… 18

3.4 Integrating Flask App in chatbot python file……………………………….. 19

3.5 Creating personalized AIML file…………………………………………….. 21

3.6 gTTS: The Bonus……………………………………………………………… 28

Chapter 4: Performance Survey……………………………………………….. 29

Chapter 5: Conclusion………………………………………………………….. 30

References…………………………………………………………………………… 31

iv | P a g e

ABSTRACT

Interaction with machine or a software has become very common these days as most of the

businesses are getting automated and this query related work is also being automated

alongside with other technologies. Now in various software related companies’ websites, one

can see chatbot windows through which you are actually interacting with a machine or

software and that software can resolve most of your queries very easily by providing you

sufficient and most accurate information with respect to your query.

This project is based on AIML which stands for artificial Intelligence Mark-up Language

which is a language used for creating the chatbots. The chatbot created at the end of the

project will be able to resolve any kind of query related to JUIT Hostels, whether it is about

chief warden or warden or the hostel fee, it can tell the client about it if asked. To build this, I

will be using python language to implement the aiml interpreter and then we have to create a

form to input the queries of clients, this will be done using HTML. Now to transfer the data

entered in the form to python file we need to use a Flask app which can move data between

the HTML page and python file. When this is done, we will have to create the personalised

aiml files to train our chatbot on them as the chatbot learn from database or previous

conversation that are recorded in database and then answer to the query accordingly. once we

have the personalized aiml file then we can train out chatbot and the it will be able to answer

any query asked by the clients. The query response will be reverted on the html form page.

At the end when the chatbot is supplied with sufficient information and has a well balanced

and precise database of knowledge, it can answer all the queries related to JUIT Hostels

within a second.

As a bonus, I will be adding the gTTS which is a python module to implement the text-to-

speech functionality with the help of which along with presenting the response to the client,

the chatbot will also read the response produced by it.

1 | P a g e

Chapter 01

Hostel Hero: An AIML Chatbot

 Introduction

1.1 Introduction:

In today’s world, everything is becoming automated. Every part of society is being automated

day by day in order to reduce the human efforts and Artificial Intelligence is playing the most

important role in all this. Now a days, we have lots of machines/software that respond to our

commands and do certain specific operation. We just need to tell them what to do and they do it

very precisely and in vey less time and this is all because of the Artificial Intelligence. For

example, we have Google Assistant, Bixby and Siri etc. These all are Artificial Intelligence

based chat bots that can chat with us and can do certain specific tasks for us if we tell them to do.

In this project, I have also created a chatbot similar to these above examples yet different.

This chatbot can help anyone to understand the rules and regulations of JUIT hostels and can

provide them all the necessary information they need about all the hostels of JUIT, like where

the hostel buildings are located, who are the respective wardens of each hostel what is their

contact numbers, and what are the various do’s and don’ts of the hostels.

For developing this chatbot, I have used the technologies like AIML, python, flask, HTML, CSS,

GTTS and xml.

1.2 Motivation:

Whenever someone visit university campus for the first time or someone has been in the campus

since a long time, no one can remember all the things about university.

Being a Hosteler student, I have seen that we don’t know many things about our hostels and we

need to search for that information on the internet.

So, this motivated me to build a chatbot that can help anyone to get the required information

about the hostels very easily and can guide him through the hostel rules.

1.3 Problem Statement:

This project aims for creating a chatbot using AIML and python, that can guide people through

all the information related to hostels of JUIT.

This report contains all the information regarding this project like how it is created, what are

various challenges faced and what is the final product etc.

2 | P a g e

1.4 Technical Requirements:

This project has certain generic requirements for its implementation as follow:

a) Windows 10 (64-bit)

b) 4GB RAM

c) Web Browser like Chrome latest version

d) Editor like Visual Studio Code

e) Installed Python

f) Installed Flask

g) Installed GTTS

h) Installed python-aiml Library

1.5 Deliverables:

As a result, I have built a chatbot named “Hostel Hero” through which you can get any kind of

information related to JUIT hostels.

You just have to type your query and the chatbot will give the respective information back to you

and as a bonus it will also read the whole response for you.

3 | P a g e

Chapter 02

Literature Survey

2.1 AIML Introduction:

AIML stands for Artificial Intelligence Mark-up Language. AIML is an XML language, which is

used for creating natural language software agents called chatbots. It was because of AIML that

we were able to create very advanced ELIZA called A.L.I.C.E. There are AIML interpreters

available in various languages like in Java, Ruby, python, C++, C#, pascal etc.

AIML is motivated by two things:

1. Creating a chatbot which can interact with us, requires a large amount of writing content,

as a reply during conversation.

2. Developing a chatbot requires a great imagination and blend of expected conversation

flow and programming skills.

2.2 AIML Tags:

1. aiml tag: This tag contains the content of aiml file.

 E.g.: <aiml version= “2.0” encoding = “UTF-8”>

 ………Content……

 </aiml>

2. category tag: This tag defines the basic unit of knowledge in AIML. In this tag, there are

generally two tags, first is pattern tag and second is template tag.

 E.g.: <category>

 ……

 </category>

3. pattern tag: This tag is used for comparison with the user input. A user can input

different type of text and that text is matched with different patterns in aiml files.

Note: This tag must be the first tag inside the category tag.

Also, all the things within the pattern tag must be in capital letters.

Pattern tag is case sensitive.

4. template tag: This tag is used for storing specific reply for specific inputs that are given

by user. For a given pattern, the chatbot will reply the corresponding template.

It must be the second tag inside the category tag.

4 | P a g e

5. star tag: This tag is used to get the wildcard input entered by users. The star wildcard

denotes one or more words. This helps us to match any kind of input entered by user to

be processed and give the output accordingly.

E.g.:

Fig. 2.1: code snap showing use of star tag and start wildcard

6. srai tag: This tag is used for multiple purpose. With the help of this tag, we can direct the

same template as a response for different user inputs. This is useful in cases when a user

can ask same question in different ways and formats and the answer is same for all those

inputs. When the pattern is matched with the input then the srai tag is replaced with the

corresponding template.

E.g.:

Fig. 2.2: code snap showing use of srai tag

7. random tag: This tag is used define a list of responses for a given input and the

interpreter will randomly pick one of those responses when the user input that particular

pattern.

E.g.:

Fig. 2.3: code snap showing use of random tag

5 | P a g e

8. set tag: This tag is used to set a local variable known as predicates and it is specific to the

client whom our chatbot is interacting. A variable can be predefined or can be created by

programmer.

E.g.:

Fig. 2.4: code snap showing syntax of set tag

9. get tag: This tag is used to get the value of a local variable which is set previously while

interacting with a specific client.

E.g.:

Fig. 2.5: code snap showing use of set tag and get tag

10. that tag: This tag is helpful when chatbot is interacting with a client with respect to a

particular context. Inside a that tag, last sentence output given by the chatbot so that we

can create the new template for responding according to the context. This tag is generally

useful in case of interrogative conversation.

E.g.:

Fig. 2.6: code snap showing use of that tag

6 | P a g e

11. topic tag: This tag helps us to set context so that all the following conversion can be

done with respect to that context. This tag is generally used in case of Yes or No

conversation.

E.g.:

Fig. 2.7: code snap showing use of topic tag

12. think tag: This tag is used to set variable without telling the client. Actually, in case of

set tag, it also tells the user whatever the variables are set, but here it’s not the case.

E.g.:

Fig. 2.8: code snap showing syntax of think tag

13. condition tag: This tag works same as like a switch case in programming languages. It

helps the chat bot to respond according to certain scenario depending on variable and its

corresponding values.

E.g.:

Fig. 2.9: code snap showing use of condition tag

7 | P a g e

2.3 Python:

Python is a very powerful object-oriented language. Python also has an interpreter for aiml

language and it is very easy to use so that’s why I have used python in this project.

In this project I have used python control structures like while loop, if else statements and some

other things also.

I have use python here because working in python is very easy for project like this where you

have to data processing because there are so many in-built functionalities that makes our task

very easy and interesting.

Fig. 2.10: code snap showing use while loop

2.4 python-aiml:

To use aiml with python we need a module called “python-aiml”. While using python2, the

module used is “aiml” and for python3, its is “python-aiml”. I have used python3 in this project

so I have used “python-aiml” module.

What “python-aiml” module do is, it implements an interpreter for aiml language.

Installing python-aiml:

Go to the root directory of your project and open the command prompt.

Now write the command:

Fig. 2.11: command to install python-aiml module

Now we can import the module in our python file of our chatbot.

Kernel:

Kernel is something that we get with “python-aiml” module. This kernel is the main working

body behind the use of aiml with python. This kernel makes the bot to learn different pattern and

their respective responses as well as with the help of this the chat bot respond to different

questions asked by client.

8 | P a g e

How to use kernel:

 Fig. 2.12: code snap showing various kernel functions

First line in above snap shows the command to create a kernel and next two lines shows how

kernel is used to learn aiml and xml files and how kernel respond to particular query or pattern

respectively.

2.5 Flask:

This is a web framework that provides us various tools and libraries to create web applications. It

is written in python. This belongs to the category of micro frameworks which is a framework

with very little dependencies on external libraries. This is a very light framework to work with.

Template Engine:

These are used to create application using flask. We create a template folder where various

templates are kept like html documents and a static folder is created where various static files

like images, CSS files and JS files are kept.

Create the application file which will be a python file.

Now in this file I have created an using flask and through that app I have accessed the content or

query entered by the user and then that text query is fed to kernel which in turn provide response

to that query according to the patterns that are learnt by it.

 Fig. 2.13: code snap showing creation of app using flask

9 | P a g e

render_template: This is the function used for rendering the content of a template like html file

etc. This function also used to send data or update data of html file dynamically.

2.6 HTML:

HTML stands for Hyper Text Mark-up Language and is a standard language used for creating

web pages. It is easy to learn and implement. There are number of elements in here and each

element will tell how the web page will look at the end. We need a web browser to run html file.

HTML Elements:

1. html Element: This element defines the html file.

E.g.: <html> content </html>

Note: Never skip the end tag in html file.

2. Head Element: This element contains the data about the data i.e. metadata.

This element is placed between html element and body element.

E.g.: <head> content </head>

3. Title Element: This element contains the title of the document and is placed inside

the head tag.

E.g.: <title> content </title>

4. Body Element: This element contains the actual body of the html document inside it.

E.g.: <body> content </body>

5. Heading Element: There are total 6 headings from h1 to h6. These elements are used

to define the heading of the section inside the html page.

E.g.: <h1> heading </h1>

6. Paragraph Element: This element defines a new paragraph inside the html web

page.

E.g.: <p> paragraph </p>

7. Division Element: This element defines a new division inside the html document.

E.g.: <div> content </div>

8. Style Element: This element defines certain styles or apply certain styles to different

elements inside the html document. This Element is present inside the head element.

E.g.: <style> different styles </style>

10 | P a g e

9. Form Element: This form is used to define a form. This is used for getting the user

input and then later on submit it to may be stored in database or may be to do certain

computations and revert back the result.

Syntax: <form> form elements </form>

E.g.:

Fig. 2.14: code snap showing code for a basic html form

2.7 CSS:
CSS stands for cascading style sheet. CSS defines the styles for html documents. This actually

take the main part in defining how the html document will looks like. It can control how multiple

pages will looks like at the same time.

CSS Syntax:

Fig. 2.15: figure showing CSS syntax

The selector element tells to which element the following style is going to affect.

The declaration section contains all the properties that are to be applied to that particular

element.

In each declaration we have multiple properties and their respective values.

Multiple properties are separated by semi colon.

The declaration section is covered by curly braces.

In this project I have used Inline CSS, where properties are defined alongside the html element

definition.

11 | P a g e

Types of CSS:

1. External CSS

Fig. 2.16: figure showing how to link external CSS file

2. Internal CSS

Fig. 2.17: figure showing how use CSS internally

3. Inline CSS

Fig. 2.18: figure showing how use Inline CSS

Note:

While using Inline CSS, we are not able to take full benefits and advantages offered by CSS.

So, Inline CSS is used sparingly.

12 | P a g e

CSS Properties:

1. Background-color:

This property is used to set the background-color of the text inside a particular element.

2. Color:

This property is used to set the text color of the particular element.

3. Margin:

This property is used to keep one element far from other by putting some space between

them after a defined area.

4. Padding:

This property is used to create a space between the content inside a particular element but

inside the border.

5. Height:

This property is used to set the height of a particular element.

6. Width:

This property is used to set width of a particular element of html.

7. Text-align:

This property is used to set the text alignment in horizontal direction.

8. Font-family:

This property of CSS is used to set the font family of the text.

2.8 gTTS:

It stands for “Google Text-to-Speech”. It is a python library which is used for interfacing with

Google’s text to speech API.

When we supply an input text to gTTS, it converts it into an audio file in the specified language.

gTTS requires internet connectivity for converting text to speech.

In this project I have also used gTTS as sometime output of a chatbot and nobody want to read it

so the chatbot will read all its responses for you.

Installing gTTS:

Go to the root folder of your project and the type the command shown in figure 2.19.

Fig. 2.19: figure showing command to install gTTS

13 | P a g e

2.9 XML:

XML stands for Extensible Mark-up language. This is very similar to HTML. This language

was mainly designed to store and transport data. It is a self-descriptive language. The difference

between HTML and XML is that XML was developed to store and carry data while HTML was

developed to display data.

XML document Structure:

XML documents have very interesting structure. It is like a tree which has a root, branches and

leaves.

Fig. 2.20: Diagram showing XML document structure

XML Document Syntax:

The syntax of xml language is very simple and easy to learn. An xml document always have a

root which act as apparent of all the elements.

Fig. 2.21: code snap showing a sample of xml document

14 | P a g e

In the figure 2.21, <note> element is acting as a root element for all other elements present in the

document.

XML Prolog:

Fig. 2.22: code snap showing xml prolog

Though the xml prolog is option but still if it is present then it must be the first line of the xml

document.

Note: All elements present in xml must have the closing tag as it is illegal to remove the closing

tag. And, all the xml tags are case sensitive in nature.

In XML, like HTML we have elements who have attributes as name-value pairs.

Note: We cannot use symbols like <, >, &,’,” directly in xml documents as they have special

meaning there so instead, we have to use then like:

Fig. 2.22: figure showing the syntax for using different characters in xml document

An xml element can contain, attributes, text, other element or all of these at the same time.

XML does not have any inbuilt specific elements.

Element name can start with a letter or an underscore and the element name cannot contain

spaces.

Element name can contain letters, digits, hyphens and underscores and cannot start with letters

“xml”.

15 | P a g e

We can use attributes with xml elements like shown below:

Fig. 2.23: figure showing the syntax for attributes

Though we know that AIML is another extension of xml but still we need to have basic Idea of

xml for developing the chatbot because the starting point for any aiml chatbot is a standard xml

start-up file called as “std-startup.xml”. This file act as a main entry point for working of any

aiml chatbot. This file will contain only a single pattern and a single response for that as shown

in below code snapshot.

Fig. 2.24: std-startup.xml file

As we can see that there is only single pattern and in response to that the aiml interpreter will

command to learn the “basic_chat.aiml” file.

16 | P a g e

Chapter 03

System Development

The chatbot is developed using AIML which stands for Artificial Intelligence Mark-up

Language. AIML use pattern matching algorithm to find the best match for entered query thus

enables the chatbot to respond with best possible response. Various steps involved in

development of this chatbot are shown in next section which is development plan.

3.1 Development plan:

Step-1: Create an HTML form to take in the input query of client.

Step-2: Setup the python-aiml module and create the basic chatbot python file.

Step-3: Creating flask app to import the input from html form.

Step-4: Personalise the aiml file to the specific topic to customise your chatbot.

Step-5: Now add the gTTS to the project to make it much easier to use.

3.2 Creating HTML Form:

The html form is created which will act as an interface for interacting with chatbot.

In this html form, we basically will have a block at the centre of the page where on the top left

we will have JUIT logo. Below the logo we will see the name of the chatbot and below that we

will have the input bar to enter the query. Below the input query bar, we have the search button

and below the search button we will have the response section where response will be printed or

reverted to the client.

I have used various CSS properties to style that html web page and I have used he inline CSS in

developing this webpage.

Here, I basically have created two divisions, one for the background and other for the centred

box where the form will be given to enter the query and display responses.

The background is of dark purple color and the centre box is of white color.

The place holder for query bar is set to “Query” and the search button is of light purple color.

Both the input bar and the search button have the same width in order to bring the uniformity to

the form.

17 | P a g e

Autocomplete property is set to off and the user can ask query in English language and in any

form he/ she likes.

Centre box is made a little wider as there are some large responses to certain queries so those

responses can fill I the space appropriately without affecting much of the uniformity of the web

page.

The name of the input field is set to “textcontent” as it will also be used in the flask app to render

the input.

Some of the CSS properties used are also imported from external CSS file which is placed in the

static folder which is present in the root directory of our project.

Fig. 3.1: code snap showing the code of HTML form

18 | P a g e

Fig. 3.2: code snap showing various CSS properties for styling different elements

3.3 Chatbot Python File:

In this section, I have used python language to implement the aiml interpreter. This is because

the python language has a very clean grammar and the syntax of the language is also very-very

easy to learn as well as implement. Also, the language has so many library and inbuilt functions

as well as API the it makes the development in this language a very easy task to do. That is why I

have chosen python as a language to implement the aiml interpreter.

Now for this, first of all I have installed “python-aiml” module. “python-aiml” module is a

module which implements the aiml interpreter for python language. “python-aiml” is the module

for implementing the aiml interpreter while using the python3 version of python. If we are using

python2 then the module we require is “aiml” not “python-aiml”.

First go to the root directory of project and open the command prompt and type the following

command:

 $ pip install python-aiml

After it gets installed completely, we can import the aiml module to our python file.

Now, we need to create the kernel which is a functionality provided by the aiml module.

This kernel will do al the work starting from learning file to responding to a particular query of

the client.

 We can create the kernel as follow:

kernel= aiml.Kernel()

19 | P a g e

Kernel respond to a query as follow:

Response=kernel.respond(query)

Now what is happening is that kernel is taking in the query and use the pattern matching

algorithms to match the asked query to a particular pattern that it has learnt from aiml files.

We have used a “while loop” which will keep on listening to the queries of the clients.

Fig. 3.3: code snap showing the kernel functionalities and use

3.4 Integrating Flask App in chatbot python file:

Now, we need to create the flask app through which we can link our html form to the python file

means we can send data to/from html form from/to python file. This is the main requirement as

we take the input query entered through the html form but we need it to supply to our kernel and

interpreter so that it can respond to it. Similarly, we also want the response sent by the kernel to

be presented to user and that is presented through html form. This all need for the flow of data

from here to there gave rise to the need of flask.

I have also tried doing this using CGI but that was very complex and there were so many things

and problems because of which it would have taken so much time to complete this project so

that’s why I shifted to flask for doing this task. And using flask has made this work so much

simpler and easier and it was a great relief.

Installing Flask:

 To install Flask, type the following command in your command prompt in root directory of your

project:

$ pip install Flask

20 | P a g e

Now from flask, we need three things to import:

1. Flask: To create the flask app.

2. render_template: To render the templates i.e. html form. It is used to get the content

from different input fields of the form.

3. request: This is used to extract content from different elements of the rendered

template.

Note: In case of rendering the template, we need to specify the route to the app so that it can

render the particular temple by implementing a function and this is done using

“render_template”.

After rendering a template, we need to make another function which will extract the data from

different elements of the rendered template and this is done using “request”.

Now, our chatbot file will looks like:

Fig. 3.4: code snap showing chatbot file after integrating flask app

21 | P a g e

After integrating the above flask app to the python file of chatbot, the prototype of chatbot is

ready but it doesn’t have any knowledge to interact with client. It is like a new born baby, who

doesn’t know how to talk and walk but can learn very easily to do so if we supply it with

sufficient knowledge. A chatbot learns from the previously stored information and in the next

section we will provide it with sufficient information so that it can learn how to interact and

respond according to the question asked and this all is done by providing it with aiml files which

act as a database for the chatbot from where it can use the information to do its task efficiently.

3.5 Creating personized AIML file:

The aiml files act as a database for the chatbot and the chatbot use the information stored in these

files to do the conversation with client. These are the aiml files which helps us to make our

chatbot to be centred to a specific organisation or purpose. These aiml files determines the nature

of chatbot e.g. whether it is for a software company or a law firm etc.

We can personalize our chatbot and make it field specific with the help of these aiml files.

In this project as we are making our chatbot to be responsible for any kind of query regarding the

Hostels of JUIT, so the aiml file here contain all the information regarding the JUIT Hostels.

These files here include all patterns in which any query can be generated and the corresponding

responses regarding the hostel of JUIT.

Fig. 3.5: code snap showing aiml code for starting conversation part-1

22 | P a g e

Fig. 3.6: code snap showing aiml code for starting conversation part-2

Figure 3.5 and 3.6 shows the aiml code for the beginning of conversation with chatbot and here I

have used <srai> tag also. Now, following figures will show the aiml code for the end of the

conversation.

Fig. 3.7: code snap showing aiml code for end conversation

23 | P a g e

Now, Head of all the hostels is chief warden. The following aiml code shows patterns and

templates related to chief warden.

Fig. 3.8: code snap showing aiml code for query related to chief warden

Now, following figures will show the aiml code for the query related to Hostel Buildings of

JUIT.

Fig. 3.9: code snap showing aiml code for knowing the hostel buildings

24 | P a g e

After Knowing about the hostel names, one can ask for the respective wardens of each hostel.

The following code snaps shows the related code for this type of queries.

Fig. 3.10: code snap showing aiml code for knowing the warden of Parmar Bhavan

Parallelly, the next figure show query about warden of Geeta Bhavan.

Fig. 3.11: code snap showing aiml code for knowing the warden of Geeta Bhavan

25 | P a g e

Now, after knowing about the hostel warden one may ask for the contact number of the warden.

The following code snap shows the aiml code for this case.

Fig. 3.12: code snap showing aiml code for contact of the warden of Geeta Bhavan and Azad Bhavan

In the figure 3.12, we can also see the use of that tag which used to communicate with respect to

a context. In the next figure, the code snap shows the code for query related to alcohol.

Fig. 3.13: code snap showing aiml code for query related to alcohol and drinking

26 | P a g e

The next code snap shows the code for some other related queries like smoking, electrical

appliances etc.

Fig. 3.14: code snap showing aiml code for query related to smoking and appliances etc.

The next code snap shows the code for query related to reaching Parmar Bhavan.

Fig. 3.15: code snap showing aiml code for query related to reaching Parmar Bhavan.

27 | P a g e

The next figure shows the code snap for queries related to hostel fee.

Fig. 3.16: code snap showing aiml code for query related hostel fee.

Same as shown in the previous figures, I have designed the chatbot to give response related to

any matter mentioned above for all hostels and now at the end the query related what are the do’s

and don’ts of the hostels is shown in the below figure.

Fig. 3.17: code snap showing aiml code for query related to do’s and don’ts.

28 | P a g e

3.6 gTTS: The Bonus

As we know that gTTS is a python library which is used to convert text to speech by using

internet.

It is a bonus as some time we don’t want to read the results so to help with this the chatbot is

capable of reding the output for you.

After installing gTTS library, we can import it to our python file.

Now the gTTS function take three arguments:

1. text: which is to be spoken.

2. Language: in which language to be spoken which I have set to English “en”.

3. Slow: whether to read it slow which I have set to false.

Now, the output of gTTS functions is then saved in a .mp3 file as:

Output.save(“audio.mp3”)

After saving the audio file, we can run it using “os” module as:

os.system(“start audio.mp3”)

These all changes are only made inside the while loop. Now, after adding the gTTS, finally the

while loop looks like:

Fig. 3.18: while loop after adding gTTS functionality

29 | P a g e

Chapter 04

Performance Analysis

As we know the chatbot gives response by using pattern matching technique for identifying the

appropriate and precise response to a particular query. If we talk about the performance, the

chatbot is performing very well. It gives answer very quickly to a query asked by a client.

To check its response time, I have used the “time” module of python, using which we can get the

execution time of the task.

Figure 4.1 shows the execution time of the chatbot to produce the response without using gTTS.

Fig. 4.1: the execution time to produce response without gTTS

The figure 4.2 shows the execution time to produce response with and without audio using gTTS

respectively.

Fig. 4.2: the execution time to produce response with and without gTTS

As we can see in figure 4.1 and 4.2, the chatbot took approximately 0.003 to 0.004 seconds to

respond to a particular query, which is very fast. But it is taking a little longer in case while we

are using gTTS, this is because gTTS module use internet to convert text to speech and this is the

reason why it is taking approx. 5 seconds to give response in case when we are using gTTS.

Further the performance of the chatbot can be checked based on how it performs in the real

environment while interaction with the real clients. It can me measured according to how many

queries it has resolved out of 100 to check how much perfect and personalised it is.

Number of queries it isn’t able to resolve will show us the scope of improvement along with the

performance measures of the chatbot which we can improve very easily by adding a few more

lines of code with respect to the queries not resolved by the chatbot.

30 | P a g e

Chapter 05

Conclusion

In the end, I can say the doing this project was a nice experience as at the end, as a result we

have successfully created a chatbot which is developed using HTML, XML, AIML, Python,

CSS, gTTS. This chatbot can resolve any query related to the JUIT Hostels. You can ask it about

chief warden, fee, wardens, hostels, do’s and don’ts or anything that is related to hostels and it

will most probably solve your problem by providing you the sufficient information you need.

For future works, we can make it a larger scale project by making it to cover the full university

means it can answer all the queries related to the academics, the laundry, the mess and the

hostels. This pretty much include each and every aspect of a campus that one visiting the campus

may want to know about the campus.

 It takes a great effort to make a chatbot personalized to a specific topic but thanks to aiml, we

have achieved it. Below given figures shows the working example our chatbot “Hostel Hero”.

31 | P a g e

 Fig. 5.1: Query Asked Fig. 5.2: Response to the query

32 | P a g e

REFERENCES

1. A.L.I.C.E Artificial Intelligence Foundation, [online] Available:

http://alice.pandorabots.com.

2. Bhavika R. Ranoliya, Nidhi Raghuwanshi, Sanjay Singh, "Chatbot for university

related FAQs", Advances in Computing Communications and Informatics (ICACCI)

2017 International Conference on, pp. 1525-1530, 2017.

3. Shahriare Satu, Hasnat Parvez and Shamim-Al-Mamun, "Review of integrated

applications with AIML based chatbot", 2015 International Conference on Computer

and Information Engineering (ICCIE), pp. 87-90, 2015.

4. J. Weizenbaum, "Elizaa computer program for the study of natural language

communication between man and machine", Communications of the ACM, vol. 9,

no. 1, pp. 36-45, 1966.

5. Ayah Atiyah, Shaidah Jusoh, Sufyan Almajali, "An Efficient Search for Context-

Based Chatbots", Computer Science and Information Technology (CSIT) 2018 8th

International Conference on, pp. 125-130, 2018.

http://alice.pandorabots.com/

33 | P a g e

Plagiarism Report

34 | P a g e

35 | P a g e

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

PLAGIARISM VERIFICATION REPORT

Date: 16th JULY 2020

Type of Document:

Name: Navneet Thakur Department: CSE EnrolmentNo: 161215

 ContactNo. 9418669639

 E-mail. thakurnavneet31@gmail.com

Name oftheSupervisor: Dr. Hemraj Saini

 Title of the Thesis/Dissertation/Project Report/Paper (In

Capitalletters):

HOSTEL HERO: AN AIMLCHATBOT

UNDERTAKING
I undertake that I am aware of the plagiarism related norms/ regulations, if I found guilty of any plagiarism and
copyright violations in the above thesis/report even after award of degree, the University reserves the rights to
withdraw/revoke my degree/report. Kindly allow me to avail Plagiarism verification report for the document
mentioned above.
Complete Thesis/Report Pages Detail:

 Total No. of Pages= 39

 Total No. of Preliminary pages= 5

 Total No. of pages accommodate bibliography/references= 1

(Signature of Student)

FOR DEPARTMENT USE

Wehavecheckedthethesis/reportaspernormsandfoundSimilarityIndexat 5(%). Therefore,we
are forwarding the complete thesis/report for final plagiarism check. The plagiarism verification report may be
handed over to the candidate.

(SignatureofGuide/Supervisor) Signature ofHOD

FOR LRC USE

The above document was scanned for plagiarism check. The outcome of the same is reported below:

Copy Received on Excluded Similarity Index
(%)

Generated Plagiarism Report Details
(Title, Abstract & Chapters)

 AllPreliminary
Pages

 Bibliography/Ima
ges/Quotes

 14 WordsString

Word Counts

Character Counts

Report Generated on

 Submission ID Total Pages Scanned

 File Size

B.Tech Project Report

Checked by
Name&Signature Librarian

………

Please send your complete thesis/report in (PDF) with Title Page, Abstract and Chapters in (Word File)

through the supervisor at plagcheck.juit@gmail.com

mailto:plagcheck.juit@gmail.com

	Final Project Report-Navneet Thakur (161215)
	Plagiarism Form.Navneet Thakur (161215)

