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ABSTRACT 

In today’s digital world an image is defined as digital image. There are various 

techniques that can be applied on images, among them image dehazing is one of the important 

technique. This research first of all studied the various processes that can be applied on the 

images namely: Compression, Watermarking, Contrast Equalization, De-hazing and 

Enhancement. Image dehazing is taken up for consideration that uses single dehazing approaches 

like Independent Component Analysis, Dark Channel Prior, and contrast specific; among fast 

dehazing techniques like Tan’s, Fattal and Dark Channel Prior methods. The second step in the 

research moved to the case study of DCP and fusion techniques along with the advantage and 

disadvantages of each and every technique of fusion. In this thesis, a strategy has been proposed 

using Dark Channel Prior and Fusion. DCP is a technique to remove haze from an image using 

dark channel prior. The dark channel prior is a type of statistics to generate outdoor haze free 

images. It emphasizes on the key observation that outdoor images have some pixels with very 

low intensity. This implies that pixels are very dark and difficult to see with human eye. 

Technique helps to estimate the thickness of the haze and generate a good quality haze free 

image. This technique produces high quality depth map that gives the good estimation of 

transmission. The drawback of DCP is that when objects are similar to atmospheric light and no 

shadow is formed then this technique generates radiance with lower intensity. After performing 

DCP, different fusion techniques have been applied.  
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1. Introduction 

1.1 Introduction  

An image or digital image is a representation of visual information. An image is a picture 

that has been made or copied and stored in electronic form. An image can be described by a two 

dimensional array arranged in rows and columns. A digital image is composed of a set number of 

segments, all of which parts have a particular value at a particular location. These elements 

referred to as picture elements, image elements, and pixels. A pixel is most broadly used to 

denote the components of a digital image.  

1.1.1 Types of Images 

● Binary Image: These are the types of images that take discrete values (0 or 1). 

Since only two values are taken, hence they are called binary images. The Black 

color is denoted by 1 and white color by 0. 

● Greyscale: These images are also known as monochrome images since they do 

not represent any color. They only state the level of brightness for one color. This 

type of image consists of only 8 bytes. 0 denotes black and 255 represents white 

and in between are various levels of brightness. 

● Coloured: These images contain three bands namely red, green and blue. The 

intensity of all the three bands is 8 bytes. The various intensity levels in each band 

convey the entire colored image. The size of the colored image is 24 bits. 
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1.1.2 Image Processing 

Image Processing is a technique to perform certain activities on an image, to get 

an improved picture or to isolate some significant information from it. It is a sort of 

signal processing wherein input is a picture and yield might be picture or 

qualities/highlights related to that picture. Image processing includes three steps: 

1. The image is imported using image acquisition tool  

2. The image is then analyzed and then manipulated  

3.  Then the output in which the result may be an altered image, or it may be 

in the form of the report of image analysis. 

The main advantage of Digital Image Processing techniques is its repeatability, 

versatility and the preservation of original data precision. The various Image Processing 

techniques are: 

● Image preprocessing 

● Image enhancement 

● Image segmentation 

● Image restoration 

● Image transformation 

● Feature extraction 

1.1.3 Computer Vision, Image Processing and Machine Learning 

Computer vision, image processing, signal processing, machine learning – we’ve 

heard the terms but what’s the difference between them? Each of these fields is based on 

the input of an image or signal. They process the signal and then give us altered output in 

return. So what distinguishes these fields from each other?  The boundaries between these 
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domains may seem obvious since their names already imply their goals and 

methodologies. However, these fields draw heavily from the methodologies of one 

another, which can make the boundaries between them blurry. Here we’ll draw the 

distinction between the fields according to the type of input used, and more importantly, 

the methodologies and outputs that characterize each one. 

Let’s start by defining the input used in each field. Many, if not all, inputs can be 

thought of as a type of a signal. We favor the engineering definition of a signal, that is, a 

signal is a sequence of discrete measurable observations obtained using a capturing 

device, be it a camera, a radar, ultrasound, a microphone, et cetera… The dimensionality 

of the input signal gives us the first distinction between the fields. Mono-channel sound 

waves can be thought of as a one-dimensional signal of amplitude over time, whereas a 

picture is a two-dimensional signal, made up of rows and columns of pixels. Recording 

consecutive images over time produces video which can be thought of as a three-

dimensional signal. 

 

Fig 1: Head movement vestibular gram signal captured by low noise camera 

 

Input of 1 kind will generally be reworked to a different. as an example, 

ultrasound pictures are recorded victimization the reflection of sound waves from the 
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article determined, reworked to a visible modality. X-ray will be thought of equally to 

ultrasound, solely that hot absorption is reworked into a picture. resonance Imaging 

(MRI), records the excitation of ions and transforms it into a visible image. during this 

sense, signal process could be understood really as image process. 

Let’s verify the x-ray as a prototypic example. Let’s assume we've got non 

heritable one image from AN apparatus. Image process engineers (or software) would 

typically have to be compelled to improve the standard of the image before it passes to 

the physician’s show. Hence, the input is a picture and also the output is a picture. Image 

process is, as its name implies, all concerning the process of pictures. each of the input 

and the output are pictures. strategies often employed in image process are: filtering, 

noise removal, edge detection, color process so forth. software package packages 

dedicated to image process are, as an example, Photoshop and limping. 

 

 

 

Fig 2: Edge detection in image processing software 

 

In computer vision we tend to would like to receive quantitative and qualitative 

info from visual information very similar to the method of visual reasoning of human 
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vision; we are able to distinguish between objects, classify them, type them in step with 

their size, and so forth. laptop vision, like image process, takes pictures as input. 

However, it returns another style of output, particularly info on size, color, number, et 

cetera. Image process strategies are controlled for achieving tasks of laptop vision. 

Extending on the far side one image, in laptop vision we tend to attempt to extract 

info from video. as an example, we tend to might want to count the amount of cats 

passing by an exact purpose within the street as recorded by a video camera. Or, we tend 

to might want to live the gap go past an athlete throughout the sport and extract different 

statistics. Therefore, temporal info plays a significant role in computer vision, very 

similar to it's with our own manner of understanding the globe. 

With training, the classifier learns to apart a diver from a fish. Once the training set is 

completed, the classifier is intended to repeat the same observation because the human 

expert can create in an exceedingly new scenario. Thus, machine learning is kind of a 

general framework in terms of input and output. Like humans, it can receive any signal as 

an input and give almost any type of output. 
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The following table summarizes the input and output of every domain: 

Domain Input Output 

Image processing Image Image 

Signal processing Signal Signal, quantitative information, e.g. 
Peak location, 

Computer vision Image/video Image, quantitative/qualitative 
information, e.g. size, color, shape, 
classification, etc. 

Machine learning Any feature signal, from 
e.g. image, video, sound, 
etc.. 

Signal, quantitative/qualitative 
information, image 

Table 1 

This can also be presented in a Venn diagram: 

 

Fig 3: Venn diagram showing comparison between ML, CV, IP and SP 
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2. Introduction to Computer Vision 

2.1 What is Computer Vision? 

Computer Vision is how machines like Smartphones or Robotic Systems visually perceives the 

world and respond to it. It is modeled after human vision. A robot can gather data through 

cameras or other sensors and then use that input to identify different objects and safely move 

through its environment.  

 

2.2 Convolution Filters and Edge detectors 

● Canny Edge Detector: Canny Edge Detection is a very popular edge detection algorithm. 

It was developed by John F. Canny in 1986. It is a multi-step algorithm and we will go through 

each step: 

○ Noise Reduction 

○ Finding Intensity Gradient of the Image 

○ Non-maximum Suppression 

○ Hysteresis Thresholding 

 

● Hough Line Transform: Hough Transform is a popular technique to detect any shape, if 

you can represent that shape in mathematical form. It is capable of detecting the shape even if it 

is broken or distorted a little bit.  
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2.3 CNN Layers and Feature Visualizations 

Image classification is a challenging task for computers. Convolutional neural networks 

represent single data-driven approach to this task. It will be about image representation and the 

layers that make up CNN. 

 

Fig 4: Standard CNN model 

In the case of image classification, we want a neural network that takes an image as an input and 

outputs the correct class for that image taken.  

The input is seen by a neural network (and by computers) as a grid consisting of numerical 

values. Below, you’ll see a zoomed-in portion of a grayscale image of a car. The image is 

disintegrated into a fine grid, and each of the grid cells is called a pixel. For grayscale images, 

each pixel has a value between 0 and 255, where 0 is black and 255 is white; shades of gray lie in 

between. 

To create an image classifier, we need an algorithm that check these pixel values and classify 

this image as a car. We also want a classifier to be able to detect this car under varying light 

conditions (at night or on a sunny day), and we want the classifier to generalize well so that it 

can recognize a variety of cars in different environments and in different angles. 
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Every CNN is made up of many layers, the three main types of layers are convolutional, pooling 

and fully-connected, as pictured below. Typically, CNN’s made of many layers, especially 

convolutional and pooling layers. Each of them is made of nodes that look at some input data and 

produce an output, so let’s go over what each of these layers do. 

The convolutional layer can be seen as the feature extractor of this network, it teaches itself to 

find spatial features in an input image. This layer is produced by applying a series of many image 

filters, also known as convolutional kernels, to an input image. These filters are very small grids 

of values that slide over an image, pixel-by-pixel, and produce a filtered output image that will 

be about the same size as the input image. Multiple kernels will produce multiple filtered, output 

images. 

We use a maxpooling layer for various reasons. 

Firstly, dimensionality reduction: as an input image moves forward through a CNN, we are 

taking a generally flat image in x-y space and expanding its depth dimension while decreasing its 

height and width. The network distills information about the content of an image and squishes it 

into a representation that will make up a reasonable number of inputs that can be seen by a fully-

connected layer. Secondly, maxpooling makes a network resistant to small pixel value changes 

in an input image. Imagine that some of the pixel values in a fairly small patch are a little bit 

brighter or darker or that an object has moved to the right by a few pixels. For similar images, 

even if a patch has some slightly different pixel values, the maximum values extracted in 

successive pooling layers, should be same. Thirdly, by reducing the width and height of image 

data as it moves forward through the CNN, the maxpooling layer mimics an increase in the field 

of view for later layers. For instance, a 3x3 kernel placed over an original input image will see a 

3x3 pixel area at once, but that same kernel, applied to a pooled version of the original input 
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image (ex. an image reduced in width and height by a factor of 2), will see the same number of 

pixels, but the 3x3 area corresponds to a 2x larger area in the original input image. This permits 

later convolutional layers to detect features in a larger region of the input image. 

At the end of a convolutional neural network we have a fully-connected layer (sometimes more 

than one) which means that every output that’s produced at the end of the last pooling layer 

which is an input to each node in this fully-connected layer. 

CNN’s are made of different layers: a series of convolutional layers + activation and maxpooling 

layers, and at least one, final fully-connected layer that can produce a set of class scores for a 

given image. The convolutional layers of a CNN act as feature extractors; they extract shape and 

color patterns from the pixel values of training set images. It’s important to note that the 

behavior of the convolutional layers, and the features they learn to extract, are defined entirely 

by the weights that make up the convolutional kernels in the network. A CNN learns to find the 

best weights during training using a process called backpropagation, which looks at any 

classification errors that a CNN makes during training, finds which weights in that CNN are 

cause for that error, and changes those weights accordingly. 

2.4 Recurrent and Recursive Neural Networks 

The CNN architectures we’ve discussed before were trained using the current inputs 

only. We did not notice previous inputs when generating the current output. In other words, our 

systems lacked any memory elements. RNNs address this very basic and important issue by 

considering memory (past inputs to the network) when producing the current output. 

In a NLP problem, if you want to predict the next word in a sentence it is vital to know 

the words before it. RNNs are known as recurrent because they perform the same task for each 

element of a sequence, with the output being depended on the previous combinations. Another 
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way to think about RNNs is that they have a “memory” which stores information about what has 

been calculated so far. 

 

Fig 5: Basic RNN model[6] 

The left side of the above diagram shows a notation of an RNN and on the right side an 

RNN being unrolled (or unfolded) into a full network. By unrolling we mean that we write out 

the network for the complete sequence. For instance, if the sequence we consider is a sentence of 

3 words, the network would be unrolled into a 3-layer neural network, one layer for each word. 

Input: x(t) is taken as the input to the network at time step t. For example, x1 could be a 

one-hot vector corresponding to a word of a sentence. 

Hidden state: h(t) represents a hidden state at time t and acts as “memory” of the 

network. h(t) is calculated based on the current input and the previous time step’s 

hidden state: h(t) = f(U x(t) + W h(t−1)). The function f is taken to be a non-linear 

transformation such as tanh, ReLU. 
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Weights: The RNN has input to hidden connections parameterized by a weight matrix U, 

hidden-to-hidden recurrent connections parameterized by a weight matrix W, and hidden-to-

output connections parameterized by a weight matrix V and all these weights (U,V,W) are 

distributed across time. 

Output: o(t) illustrates the output of the network. In the figure I just put an arrow after 

o(t) which is also often subjected to non-linearity, especially when the network contains further 

layers downstream. 

Forward Pass 

The figure does not clarify the choice of activation function for the hidden units. Before 

we proceed let us make a  few assumptions: 1) suppose the hyperbolic tangent activation 

function for hidden layer. 2) We assume that the output is discrete, as if the RNN is used to 

predict words or characters. A natural way to show discrete variables is to take the output o as 

giving the un-normalized log probabilities of each probable value of the discrete variable. We 

can then apply the softmax operation as a post-processing step to get a vector ‘ŷ’ of normalized 

probabilities over the output. 

The RNN forward pass can thus be represented by below: 

 

 This is an example of a recurrent network that maps an input sequence to an output 

sequence of equal length. The net loss for a given sequence of x values paired with a sequence of 

‘y’ values would then be just the sum of the losses over all the time steps. We assume that the 

outputs o(t) are used as the argument to the softmax function to obtain the vector ‘ŷ’ of 
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probabilities over the output. We also assume that the loss ‘L’ is the negative log-likelihood of 

the true target y(t) given the input so far. 

Backward Pass 

The gradient computation involves performing a forward propagation pass moving left to 

right through the graph shown above followed by a backward propagation pass moving right to 

left through the graph. The runtime is O(τ) and cannot be reduced by parallelization because the 

forward propagation graph is inherently sequential; each time step may be computed only after 

the previous one. States computed in the forward pass must be stored until they are reused during 

the backward pass, so the memory cost is also O(τ). The back-propagation algorithm applied to 

the unrolled graph with O(τ) cost is called back-propagation through time (BPTT). Because the 

parameters are shared by all time steps in the network, the gradient at each output depends not 

only on the calculations of the current time step, but also the previous time steps. 

Computing Gradients 

Given our loss function L, we need to calculate the gradients for our three weight 

matrices U, V, W, and bias terms b, c and update them with a learning rate α. Similar to normal 

back-propagation, the gradient gives us a sense of how the loss is changing with respect to each 

weight parameter. We update the weights W to minimize loss with the following equation: 

 

The same is to be done for the other weights U, V, b, c as well. 

Let us now compute the gradients by BPTT for the RNN equations above. The 

nodes of our computational graph include the parameters U, V, W, b and c as well as 
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the sequence of nodes indexed by t for x (t), h(t), o(t) and L(t). For each node n we need 

to compute the gradient ∇nL recursively, based on the gradient computed at nodes that 

follow it in the graph. 

Gradient with respect to output o(t) is calculated assuming the o(t) are used as the 

argument to the softmax function to obtain the vector ŷ of probabilities over the output. We also 

assume that the loss is the negative log-likelihood of the true target y(t). 

 

Let us now understand how the gradient flows through hidden state h(t). This we can 

clearly see from the below diagram that at time t, hidden state h(t) has gradient flowing from 

both current output and the next hidden state. 

 

Fig 6: Red arrow shows gradient flow 
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We work our way backward, starting from the end of the sequence. At the last time step 

τ, h(τ) only has o(τ) as a descendant, so its gradient is simple: 

 

We will then iterate backward in time to back-propagate gradients through time, from t=τ 

−1 down to t = 1, noting that h(t) (for t < τ ) has as descendants both o(t) and h(t+1). Its gradient 

is thus given by: 

 

Once the gradients on the internal nodes of the computational graph are extracted, we can 

obtain the gradients on the parameter nodes. The gradient calculations using the chain rule for all 

parameters is: 
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2.5 Long Short Term Memory Networks 

RNNs have a key flaw, as capturing relationships that span more than 8 or 10 steps back 

is practically not feasible. This problem stems from the "vanishing gradient" problem in which 

the contribution of information decays geometrically over time. 

While training our network we make use of backpropagation. In the backpropagation 

process we adjust the weight matrices with the use of a gradient. In the process, gradients are 

evaluated by continuous multiplications of derivatives. The value of these derivatives can be so 

small, that these continuous multiplications may result the gradient to practically "vanish". 

 So far, we have placed no constraints on this update, so its knowledge can change 

chaotically. This chaos means information quickly transforms and disappears, and it's difficult 

for the model to keep a long-term memory. 

LSTM is one option to overcome the Vanishing Gradient problem in RNNs. In LSTM 

we: 

1. Adding a forgetting mechanism. If a scene ends, for instance, the model need 

not remember the current scene location, the time of day, and reset any scene-specific 

information; however, if a character dies in the scene, it should continue remembering that he's 

dead. Therefore, we want the model to learn a separate forgetting/remembering mechanism: 

when new inputs come in, it needs to know which beliefs to keep or discard. 
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         2. Adding a saving mechanism. When the model gets a new image, it needs to 

learn whether any information about the image is worth using and saving. Maybe your mom sent 

you an article about the sports, but who cares? 

3. So when new input comes in, the model first forgets any long-term information it 

decides it no longer requires. Then it learns which parts of the latest input are worth using, and 

saves them into its long-term memory. 

4. Focusing long-term memory into working memory. Finally, the model needs to 

learn which parts of its long-term memory are instantly useful. For example, Penny's age may be 

a useful piece of information to keep in the long term (children are more likely to be crawling, 

adults are more likely to be working), but is probably not useful if he's not in the current scene. 

So instead of using the full long-term memory every time, it learns which parts to focus on 

instead. 

Whereas an RNN can overwrite its memory at every time step in an uncontrolled fashion, 

an LSTM transforms its memory in a very accurate way: by using particular learning 

mechanisms for which pieces of information to remember and which to update, and which to pay 

attention to. This assist it in keeping track of information over longer periods of time.
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Fig 7: LSTM[7] 

2.6 Part-of-Speech Tagging[10][11] 

Speech Tagging is the process of determining the category of word from the words in the 

surrounding context. Tagger analyzes the text in some language and assigns different parts of 

speech to each and every word (and other token), such as noun, verb, adjective, etc., although 

generally computational applications use more detailed POS tags like 'noun-plural'. 

The reason we use this is because it can be implemented quickly and with high level of 

accuracy. 
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2.7 Word Embeddings 

LSTM takes in an expected input size and hidden layer dimension. That means the input of an 

LSTM must be of fixed size. But this creates a problem because the normal sentences are rarely 

of a constant size. 

So, we create an Embedding layer that takes in the size of our vocabulary and return a vector of a 

specified size.  
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3. Image Captioning (Model design) 

3.1 Image Captioning 

CNN: Used for image classification and object localization. 

RNN: Used to generate text based on previous text or we can say they learn from sequential data.  

In image Captioning we join these two networks together to create a model that takes in an 

image as an input and output a sequence of text that describe that image. 

 

3.2 CNN-RNN model 

We want our model to take an image as an input and output a text description of it. The CNN 

will process the input image. Then we will connect the output of a CNN to the input of RNN 

which will allow us to generate descriptive text. 

 

Fig 8: CNN-RNN model 
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3.3 DataSet 

We will be using MS COCO dataset[9] which stands for MicroSoft Common Objects in Context. 

COCO is a large-scale object detection, captioning and segmentation dataset. COCO has several 

features: 

● Object segmentation 

● Recognition in context 

● Superpixel stuff segmentation 

● 330K images (>200K labeled) 

● 1.5 million object instances 

● 80 object categories 

● 91 stuff categories 

● 5 captions per image 

● 250,000 people with keypoints 

3.4 Learning Rate 

Learning rate defines how much parameters should change in each iteration. In other words it 

controls how fast or slow we should converge to minimum. On one hand, small learning rate can 

take iterations to converge a large learning rate can overshoot minimum as you can see in the 

figure above. 

3.5 Optimizers 

Selecting a good optimization algorithm is very essential while training a model. The choice of 

optimization algorithm can actually bring a difference between getting a good accuracy in hours 

or days. Famous optimization algorithms: 
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● Stochastic Gradient Descent: Gradient descent starts with calculating gradients 

(derivatives) for each of the parameter w.r.t cost function. Those gradients gives us numerical 

adjustment we need to make to each parameter so as to minimize the cost function. This process 

continues until we hit the local/global minimum.  When gradient will be zero at local minimum 

our gradient descent will report it as minimum value when global minimum is somewhere else. 

● Stochastic gradient descent with momentum: Here, we tend to reduce the oscillations 

in more sensitive direction and hence make it converge faster. 

● AdaGrad Optimization: For every parameter, we store the sum of squares of all its 

historical gradients. This sum is utilized later to scale the learning rate. 

● RMSProp Optimization: Like AdaGrad, we will keep the estimate of squared gradient 

but instead of letting that squared estimate accumulate over training we rather let that estimate 

decay gradually. To do this, we multiply the current estimate of squared gradients with the decay 

rate. 

● Adam: This algorithm calculates an exponential moving average of gradients and the 

squared gradients whereas parameters beta_1 and beta_2 controls the decay rates of these 

moving averages. This keeps all the nice features of RMSProp and Gradient descent with 

momentum. 

3.6 Underfitting and Overfitting 

Over fitting occurs when a model learns the detail and noise in the training dataset to the extent 

that it negatively impacts the results of the model on new data. This means that the noise or 

random fluctuations in the training data is considered and learned as concepts by the model. 
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Under fitting occurs to a model that can neither model the training data nor generalize to new 

data. Generalization refers to how well the concepts learned by a machine learning model apply 

to particular examples not seen by the model when it was learning. 

 

 

3.7 Training Phase 

To see how that works let us look at a particular example. We have a training image and the 

associated caption. Our goal is to train the model so that it can generate the caption given the 

image as an input. First we feed this image to a CNN. We can use a retrained network like VGG 

or Resnet. At the end of network we have a softmax classifier that outputs a vector of class 

scores but we don’t want to classify the image. Instead we want a set of features that represent 

special content in that image. To get that kind of features we remove the final fully connected 

layer that classify the image and look at the earlier layer that distill the spatial information in the 

image. Now we are using the CNN model as a feature extractor that compresses the huge amount 

of information contained in the original image into a smaller representation. This CNN is often 

called an Encoder because it encode the content of an image into a smaller feature vector. Then 

we can process this feature vector and use it as the initial input for the following RNN.   

 

The Decoder, that is the second half of our network will be made up of LSTM cells which are 

good at remembering lengthy sequence of words. Each LSTM cell is expecting to see the same 

shape of input vector at each time step. The very first cell is connected to the output feature 

vector of the CNN encoder. The input to the RNN for all future time steps will be the individual 

words of the training caption. 
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4. Performance Analysis 

4.1 Input Images and Output Text 

We selected some random images and fed it to our trained model. Since we used transfer 

Learning the CNN part of the model was already quit accurate and we know for an RNN decoder 

we don’t need to add too much layers. 

 

(a) 
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  (b)        (c) 

 

(d)         (e) 

Fig 9: Images (a), (b),  (c), (d) and (e) are some random images fed into the model 
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4.2 Observations 

If the training loss is much lower than validation loss you are overfitting. If the training 

loss and validation loss closer you are underfitting your model.  

Adam optimizer works better that SGD because it converges faster and it's perfect in this 

situation.  
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Results 

The main motive of this research work is to develop a deep learning architecture which 

can take an Image as an Input and produce text as an output. Accuracy and Performance was not 

the point of focus here because these two factors can be improved with  

● Training the model on more diverse data 

● Tweaking the hyperparameters to squeeze out more accuracy.  

This project just have to demonstrate that the model has learned something when you 

generate captions on the test data. The model was able to generate adequate caption for the 

Image. 

General Outcome 

 If the training loss is much lower than validation loss you are overfitting. If the training 

loss and validation loss closer you are underfitting your model. Best strategy is to try a large 

network with different dropout values and select the model which has the best validation 

performance.  
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.Future Scope 

 Image Captioning can be used in a variety of different applications. For example: 

● Image Caption can be used to describe images to the people who are blind or have 

low vision and who rely on sound and text to describe a scene 

● In web development it is good practice to provide a description to any image that 

appears on the page so that image can be read or heard as opposed to just seen. 

This makes web content accessible 

● Caption can be used to describe video in real time. 
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