
Image Captioning using Intelligent Datasets

Project report submitted in partial fulfilment of the requirement for the

degree

Of

Bachelor of Technology in

Computer Science and Engineering

By

Aditya Mohan (161262)

Under the supervision of Mr. Rizwan ur Rehman

To

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology Waknaghat, Solan-

173234, Himachal Pradesh

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Image Captioning using

Intelligent Datasets” in partial fulfilment of the requirements for the award of the degree

of Bachelor of Technology in Computer Science and Engineeringsubmitted in the

Department of Computer Science & Engineering and Information Technology, Jaypee

University of Information Technology, Waknaghat is an authentic record of my own

work carried out over a period from May 2020 to June 2020 under the supervision of Mr.

Rizwan ur Rehman.

The work done embodied in the report has not been appeased for the award of any other

degree or diploma.

Aditya Mohan

161262

This is to certify that the above affirmation made by the candidate is true to the best of

myknowledge.

Mr. Rizwan ur Rehman

Assistant Professor (Grade- II)

Department of Computer Science & Engineering and Information Technology

Dated: 22nd Jun 2020

Acknowledgement

I would like to take the opportunity to thank and express our deep sense of gratitude to

our mentor and project guide Mr. Rizwan ur Rehman for his immense support and

valuable guidance without which it would not have been possible to reach at this stage of

my major project.

I am also obliged to all the faculty members for their valuable support in their respective

fields which helped us in reaching at this stage of my project.

Dated: 22nd Jun 2020

(i) (ii)

Contents
Chapter 1 INTRODUCTION .. 1

1.1 Introduction .. 1

1.2 Problem Statement ... 1

1.3 Objectives.. 2

1.4 Methodology ... 3

Chapter 2 LITERATURE SURVEY ... 4

2.1 Show & Tell: A Neural Image Caption Generator .. 4

2.1.1 Introduction ... 4

2.1.2 Model ... 4

2.1.3 Datasets ... 5

2.1.4 Results .. 5

2.1.5 Conclusion .. 6

2.2 Show, Attend & Tell ... 6

2.2.1 Introduction ... 6

2.2.2 Model ... 7

2.2.3 Datasets ... 7

2.2.4 Results .. 8

2.2.5 Conclusion .. 8

2.3 Image Captioning with Semantic Attention .. 8

2.3.1 Introduction ... 8

2.3.2 Model ... 9

2.3.3 Database .. 9

2.3.4 Results .. 9

2.3.5 Conclusions ...10

2.4 ConvNets ..10

2.5 Very Deep Convolutional Networks for Large-Scale Image Recognition11

2.6 Deep Residual Learning for Image Recognition ...12

2.7 You Only Look Once: Unified, Real-Time Object Detection ..13

2.7.1 Introduction ..13

2.7.2 Model ..13

2.7.3 Database ...15

2.7.4 Results ...15

2.7.5 Conclusion ...15

Chapter 3 SYSTEM DEVELOPMENT ...16

3.1 Dataset...16

(iii)

3.2 Clustering based on Image Feature Maps ...16

3.3 Clustering on Caption Keywords ...18

3.4 Sampling ..19

3.4 Data Preprocessing ...20

3.4.1 Images Processing ...20

3.4.2 Text Preprocessing ..21

3.5 Model Details ...22

3.5.1 Encoder ...22

3.5.2 Decoder ...22

3.6 Training ..23

3.7 Inference ..23

3.8 Hardware Requirements ..24

3.9 Software Requirements ..24

Chapter 4 PERFORMANCE ANALYSIS ..25

4.1 DBSCAN vs Agglomerative Clustering ..25

4.1.1 Agglomerative clustering ...25

4.2 Evaluation Metrics..27

4.2.1 BLEU ..27

4.2.2 METEOR ..28

4.3 Single vs Stacked LSTMs ...28

4.3.1 Single LSTM ...28

4.3.2 Stacked LSTMs ...29

Chapter 5 CONCLUSIONS ...31

5.1 Conclusions ..31

5.2 Future Work ...31

5.2.1 Attention ...31

5.2.2 User interface for Caption generation of the uploaded image32

5.3 Applications ...32

References ...34

Appendices ..36

(iv)

List of Figures

Figure 1………………………………………………………………………………………………………...............4

Figure 2………………………………………………………………………………………………………...............4

Figure 3………………………………………………………………………………………………………...............5

Figure 4………………………………………………………………………………………………………...............6

Figure 5………………………………………………………………………………………………………...............7

Figure 6………………………………………………………………………………………………………...............9

Figure 7…………………………………………………………………………………………………….................10

Figure 8…………………………………………………………………………………………………….................11

Figure 9…………………………………………………………………………………………………….................13

Figure 10……………………………………………………………………………………………………...............14

Figure 11……………………………………………………………………………………………...............………14

Figure 12…………………………………………………………………………………...............…………………15

Figure 13…………………………………………………………………...............…………………………………17

Figure 14………………………………………………………...............……………………………………………18

Figure 16……………………………………………………...............………………………………………………19

Figure 17……………………………………...............………………………………………………………………20

Figure 18……………………………………...............………………………………………………………………21

Figure 19…………………………………...............…………………………………………………………………22

Figure 20………………………………………...............……………………………………………………………25

Figure 21………………………………………...............……………………………………………………………26

Figure 22………………………………………...............……………………………………………………………26

Figure 23………………………………………...............……………………………………………………………27

Figure 24………………………………………...............……………………………………………………………28

Figure 25………………………………………...............……………………………………………………………29

Figure 26…………………………………………...............…………………………………………………………31

Figure 27…………………………………………...............…………………………………………………………32

List of Tables

Table1..10

Table 2..11

Table 3..11

Table 5..32

Table 6..32

Table 7..33

(v)

(vi)

Abstract

Image captioning is describing an image with a caption in natural language. The

description captures not only the objects contained in an image, but it also must express

how these objects relate to each other. This fundamental problem connects computer

vision and natural language processing. In this project, we explore ways to generate

captions for images given as input. I use deep recurrent architecture that uses recent

advances in computer vision. I also explore newer methods of model evaluation using

user defined captions captured through an online platform.

This project is important in achieving scene understanding from a video or image. It

serves various applications for helping visually impaired people, creating medical reports

from images of X-rays, CT- scans etc., filtering image content on the internet and many

more applications.

(vii)

1

Chapter 1 INTRODUCTION

1.1 Introduction

Machine Learning is a subset of Artificial Intelligence. It uses statistical techniques to

provide computers the ability to learn with the help of large amounts of data. While

Machine Learning has reduced the burden on programmers to explicitly program the

computers, it has touched the areas which have never been explored before. This has led

to various technological advances.

There are 3 types of Machine Learning algorithms:

a) Supervised Learning Algorithms

b) Unsupervised Learning Algorithms

c) Reinforcement Learning Algorithms

Automatic generation of a description in natural language is called Image Captioning.

Image captioning is supposed to recognize the different objects in an image, and further

recognize how they are related to one another. Using this knowledge, it is required to

form captions that are both syntactically as well as semantically correct. Deep learning

practices usually tend to be data-hungry and require great amounts of computation time.

In this paper, we present an efficient approach to achieve this task by data reduction using

clustering techniques while maintaining the same if not better accuracy than previous

works. We also explore the results of the usage of single LSTMs against stacked LSTMs

to generate the captions. We have used the MS-COCO dataset for training and evaluating

our models.

1.2 Problem Statement

In this project, we explore ways to generate captions for images given as input. We use

deep neural networks. Further, for better results we use clustering upon our datasets so as

to reduce size of the dataset which in turn will reduce overfitting and computation time.

The description must catch not just the objects present in the image, but also must

describe how these objects are related to one another.

2

1.3 Objectives

Our objective is to achieve maximum accuracy in generating sensible captions. We also

explore newer and better ways of evaluating the model on different datasets. We use

clustering on our dataset to overcome overfitting and reduce computation cost involved.

Given an image like the example above, the goal is to generate a caption such as "a surfer

riding on a wave". To achieve this task, we useencoder-decoder model, where the

encoder outputs feature vectors of the input images and the decoder outputs the generated

captions on receiving these image vectors as input.

Figure 1: Sample Image for understanding

Figure 2. Encoder-Decoder Model for Captioning images

3

1.4 Methodology

The idea behind this project is to use deep learning techniques to generate captions from

input images. We explore different CNN and RNN architectures to achieve this. The main

technique used here is to extract features of images using VGG-16 convolutional neural

network. In a way CNN acts as an encoder here. The RNN model decodes these features

to predict captions word by word.

The dataset used here by us in the MS COCO dataset which has roughly ~82000 images.

Also reading related work done already in image captioning the common problem of

overfitting came to fore. So, we have decided to go forth with a subset of 18,000 images

from the 82,000 available images. Also, with given hardware constraints we devised a

way to build our dataset by performing Hierarchical clustering on the images based on

their features and selecting images from the clusters. This we hope will result in less

overfitting and more generalization. Also, selecting images from clusters will lead to less

training data and will require less computation power.

Figure 3. Overall Project Flow

4

Chapter 2 LITERATURE SURVEY

2.1 Show & Tell: A Neural Image Caption Generator

2.1.1 Introduction

Automatically generating the description of an image using perfect sentences in natural

language is indeed a very complex task. It can however be helpful to many individuals

like blind people to able to get the context of images. An image description must catch

the articles in a picture, also additionally should communicate how they are identified

with one another just as their characteristics and the exercises they are engaged with.

2.1.2 Model

In this paper, probabilistic framework is proposed to generate captions from images.

Using a strong sequence model, better results can be achieved by increasing the

probability of the right interpretation given a sentence in an “end-to-end” fashion – both

for training as well as inference. Such models utilize RNN that encodes the different

length contribution to a constant dimensional vector, and utilizations this to "decode" it to

the ideal yield caption. In this manner, it is normal to utilize a similar approach where,

given a picture, one applies a similar rule of "making an interpretation of" it into its

description. Along these lines, this paper proposes to legitimately amplify the probability

of the right description given the picture.

Figure 4. Example of Show and tell image caption generatiorn

5

2.1.3 Datasets

Various datasets which comprise of images and sentences in English describing these

images are utilized for assessment. These include MSCOCO, Flickr8k, Flickr30k

PASCAL VOC 2008 and SBU datasets. All these datasets, except for SBU have 1000s of

images, each having at least 5 sentences which are moderately visual and fair. For SBU, a

1000 pictures are considered for testing and training is done on the rest.

2.1.4 Results

The model is data driven and it is also trained end-to-end, and since a lot of datasets are

involved, questions such as “what sort of transfer learning it is ready to accomplish”, and

“how it would manage models having weak labels” came up. Therefore, experiments on

Figure 5. Working of Show and tell

Table 1. Datasets used

6

five diverse datasets were performed, which empowered a profound comprehension of the

model.

2.1.5 Conclusion

An end-to-end neural network system that can naturally see a picture and produce a

sensible description in plain English is introduced. NIC depends on CNN that encodes a

picture into a minimized portrayal, trailed by a repetitive neural system that creates a

comparing sentence. Investigations on a few datasets show the vigor of NIC as far as

subjective outcomes (the created sentences are entirely sensible) and quantitative

assessments, utilizing either positioning measurements or BLEU.From these experiments

it is clear that, the performance of approaches like NIC will increase as the size of the

datasets goes up.

2.2 Show, Attend & Tell

2.2.1 Introduction

Thus, caption generation has long been seen asa tough problem. It is an essential test for

Machine Learning, since it attempts to imitate the human-likeability to pack all the

measures of the data into natural language.

In this paper, the Caption generation approach attempts to include a kind of attention with

two variants: a “soft” attention mechanism and a “hard” attention mechanism.

Table 3. Evaluation w.r.t approaches

Table 2. Evaluation using BLEU-4, METEOR and CIDER metrics

7

2.2.2 Model

Encoder

To acquire a relationship between the component vectors and parts of the 2-D picture,

highlights from a lower convolutional layer are removed. The decoder focuses its

attention on some portions of an image by sampling a group of all the feature vectors.

Decoder

They utilized a LSTM network that delivered a subtitle by anticipating each word in turn

dependent on a setting vector, the past concealed state and the recently anticipated words.

In simple words, a context vector is a depiction of the correct part of the image at time t.

This relevant part is picked up from the feature map which is fed to LSTM. A positive

weight is generated for each relevant part of the image which is either interpreted as

probability or as the importance of that location. The weight of each location is then

calculatedusing the attention model which uses a multi-layer perceptron is used.

2.2.3 Datasets

Datasets that are used during training process are Flickr8k dataset which has 8K data

points, Flickr30k dataset which has 30K images and Microsoft COCO dataset which has

over 82K. The Flickr8k and the Flickr30k datasets have 5 labels for every picture, while

in the MS COCO dataset, images have at least 5 labels, overabundance of which is

Figure 6. Show, Attend and Tell Example for image captioning

8

disposed of to keep up consistency over all datasets.For all experiments, a fixed

vocabulary size of 10K is used.

2.2.4 Results

Performance of the model on the Flickr8k, Flickr30k and MS COCO turned out to be

state of the art. Furthermore, there was improvement in the cutting edge execution of

METEOR evaluation metrics on MS COCO that was theorized to be associated with a

portion of the regularization methods.

2.2.5 Conclusion

An attention based approach that gives incredible presentation on three benchmark

datasets utilizing the METEOR and BLEU evaluation metrics is gotten in this paper.

Furthermore, something that was obvious from the model was that the scholarly attention

might be misused to produce more prominent interpretability into the models age

procedure, and display that the trained captions relate really well to the actualcaptions.

2.3 Image Captioning with Semantic Attention

2.3.1 Introduction

It requires a degree of picture understanding that works out in a good way past picture

grouping and item identification to produce a significant natural language description of a

picture. It associates Computer Vision with Natural Language Processing (which are two

Figure 7 Show, Attend and Tell, working of attention model

9

significant fields in Artificial Intelligence) which makes the difficult all the more

intriguing.

2.3.2 Model

In this model both top-down just as bottom-up features are removed from the picture.

Moreover, a lot of credit finders is hurried to get a rundown of visual traits which are well

on the way to show up in the picture. Each ascribe compares to a section in the

vocabulary

2.3.3 Database

Flickr30k and MSCOCO is chosen as the datasets in this paper. Flickr30k has more than

30,000 images and the MSCOCO has over 82,000 images. For Flickr30k, each image is

given five captions and for MSCOCO, each image has at least 5 captions. A publicly

available split of training, testing and validating sets is used to make the results

comparable to others, for both Flickr30k as well as MS-COCO datasets.

2.3.4 Results

The impact of every one of the individual attention modules on the last execution is

assessed by killing one of the attention modules and not killing the other one in the ATT-

FCN model. The 2 distinct models are prepared on the MS-COCO dataset. On certain

metrics, the presentation when utilizing output attention is somewhat better than just

utilizing input layer attention. In any case, the blend of these two attentions improves the

Figure 8 Image Captioning with Semantic Attention

10

presentation by certain percent on pretty much every measurement. This means that the

attention components at input and the output layers are not the equivalent, and every one

of them take into account various parts of visual properties. In this manner, joining the

two may help produce a more extravagant interpretation of the specific circumstance and

accordingly lead to better execution.

2.3.5 Conclusions

In this paper, image captioning that accomplishes best in class execution across well-

known standard benchmarks is proposed. Not quite the same as past work, this approach

joins top-down and the bottom-up systems to extricate more important data from an

image, and connects them with a RNN that can specifically goes to on rich semantic traits

identified from the image. The genuine intensity of this model is its capacity to go to on

specific angles and breaker worldwide and neighborhood data to deliver a superior

caption.

2.4 ConvNets

The Convolution Operation

The most striking distinction between a convolution layer and fully connected layer is

that the full connected ones learn global patterns withintheir input feature space while

convolution layers learn local examples on account of pictures, designs found in little

second windows of the inputs.

Convolutions are outlined by 2 important parameters:

Figure 9. Image and the generated caption

11

• Size of the portions extracted from the inputs- These are usually 3x3 or 5x5. within the

example, they were 3x3, that could be a common selection.

• Depth of the feature map- the amount of filters calculated by the convolution.

The max pooling operation

The role of max-pooling is to aggressively down sample feature maps. It comprises of

separating windows from the input feature maps and outputting the maximum estimation

of each channel. It's like convolution adroitly, then again, actually as opposed to changing

nearby fixes by means of a scholarly direct change, they are changed by means of a

hardcoded max tensor activity.

2.5 Very Deep Convolutional Networks for Large-Scale Image Recognition

The input to the ConvNets is a fixed-size 224×224 RGB image during training. The main

pre-processing done is normalizing the RGB esteems, figured on the training dataset,

Figure 10. Feature maps converted from a portion of input image

Figure 11. Max pooling

12

from every pixel. The image is worked upon by a heap of convolutional (conv.) layers,

where channels are utilized with a little receptive field: 3×3

In one of the layers the 1×1 convolution filters were utilized, which can be viewed as a

straight change of the input channels (trailed by non-linearity). The convolution stride is

consistently 1 pixel; the spatial cushioning of convolution layer input is with the end goal

that the spatial goals is safeguarded after convolution.

2.6 Deep Residual Learning for Image Recognition

It is very tough to train deeper neural networks. Microsoft research presented a residual

learning system to incorporate the training of networks that are deeper than the ones used

already. The issue of disappearing/exploding gradients disrupt the assembly in extremely

deep neural networks. This issue, was to a great extent tended to by normalized

initialization and intermediate normalization layers which improves networks with

several layers to begin uniting for stochastic gradient descent with back-propagation. At

the point when the networks with progressively neural network layers can begin meeting,

a degradation issue has been uncovered; with the network profundity expanding,

exactness arrives at a specific point and afterward begins to diminish quickly.

.

Figure 12 ConvNet Configuration

13

2.7 You Only Look Once: Unified, Real-Time Object Detection

2.7.1 Introduction

People take a look at an image and get what articles are in the image, where they are, and

how they collaborate. People have a quick and precise visual framework, permitting us to

carryout extreme tasks like driving with less conscious thoughts. Detection Systems at

present repurpose classifiers to perform recognition. These frameworks take a classifier

for an object and assess it at various areas and tests on an image to detect an object.

The unified model has numerous advantages over conventional strategies for object

recognition. To begin with, YOLO is truly quick. Since it outlines identification as a

regression issue there is no requirement for an unpredictable pipeline. Second, YOLO

reasons about the image when making forecasts all inclusive. Third, YOLO learns

generalizable portrayals of articles.

2.7.2 Model

The different components of object detection are unified into a single neural network. The

network utilizesthe featuresin an image to predict the bounding boxes. YOLO enables

Figure 13. Working, Residual Learning

Figure 14 YOLO Detection system

14

end-to-end training and real-time speeds while also maintaining high average precision.

These confidence scores mean how confident the model is about the box containing an

object and also how accurate it thinks the box is that it predicts. If there is no object in

that bounding box, then the confidence scores will be zero, else the confidence score will

be equal to the intersection over union (IOU) between the predicted box and the actual

object-box.

Figure 15. YOLO Model

Figure 16. YOLO Architecture

15

The model is then converted to perform detection. Four convolutional layers and two

fully connected layers with randomly initialized weights are added. The last layer is able

to predicts the class probabilities as well as the bounding box coordinates.

2.7.3 Database

The model evaluated on the PASCAL VOC dataset. The convolutional layers are related

on the ImageNet 1000-class rivalry dataset. For purpose of pre-training, the initial 20

convolutional layers are utilized trailed by an average-pooling layer.

2.7.4 Results

YOLO is exceptionally quick at test time because it just requires a single network

evaluation, different from classifier-based strategies. Despite the fact that not basic to

execution all things considered for R-CNN or DPM, non-maximal suppression includes

2-3% in mAP.

2.7.5 Conclusion

YOLO seems to be a unified model for object detection. The model is easy to build and

can be trained on full images. Entire model is trained jointly unlike classifier-based

approaches. Fast YOLO is the fastest object detector in the writing and YOLO pushes the

cutting edge real-time object location. Likewise, YOLO sums up new areas making it

extraordinary for applications that depend on quick, vigorous object detetction.

Figure 17. Qualitative Results

16

Chapter 3 SYSTEM DEVELOPMENT

3.1 Dataset

We have used MS-COCO Dataset as our primary dataset for the training purpose. The

MS-COCO dataset consists of 82,000 images each having at least 5 captions. We made 4

datasets of different sizes by randomly choosing images from the clusters formed using

the agglomerative clustering algorithm on 18000 images based on their features (more on

Clustering and sampling in later sections).

3.2 Clustering based on Image Feature Maps

After reading various research papers, a common problem of overfitting arose. Also, all

the previous models needed to be fed a lot of data hence resulted in more computation.

We devised a method of constructing our dataset from the original dataset so that it

covers all the variance present in our dataset.

Clustering is a technique in data mining and machine learning which helps to group

similar data points such that the points in same group have similar behavior as compared

to points in other groups. A group is called cluster.

Hierarchical clustering is of two types:

a. Agglomerative

b. Divisive

In agglomerative clustering, initially each point is considered as a cluster. At each

iteration, the similar clusters merge with other cluster until a single cluster or X clusters

are formed.

A proximity matrix is computed first of all. Every point is considered to be a cluster.

Iteratively, two closest clusters are merged and the proximity matrix is updated. This

process continues until a single cluster is obtained.

The hierarchical clustering is usually visualized using a dendrogram. A dendrogram is a

tree-like diagram that records the sequences of merges or splits.

17

We perform Agglomerative Hierarchical clustering on the feature maps extracted from

the images present in MS COCO dataset. We were able to obtain the following

Dendrogram representing our 18K Dataset.

Graph 1: Dendrogram diagram for cluster hierarchy of the 18K Dataset based upon features from

images is generated.

Figure 18. Agglomerative Hierarchical Clustering Technique

18

3.3 Clustering on Caption Keywords

Another approach that has been followed is that of clustering on keywords extracted from

captions. Clustering on image feature maps was found to be computationally expensive so

another approach was devised. In this approach all possible captions for every image in

the 18K dataset were concatenated to form a single long passage which consisted of

around 5 sentences. The stop-words like (is, an, the, there…) were removed from the

passages as they do not lend much meaning to the captions. After removal of stop-words

the TF-IDF vectorizer was used to vectorize the sentences. As we know that TF-IDF

vectorizer assigns more weights to terms that are more important in the document we

extracted 5 such terms with highest weights which acted as our 5 important keywords for

every image.

After the extraction of keywords for every image, a dictionary was prepared with image

name as the key and corresponding keywords as the values. These keywords were then

each assigned a unique integer and represented by them as such. So, after all this

preprocessing k-means clustering algorithm was applied on the dictionary with a k-

means++ initializer for better initialization of centroids. The k was kept to be 16. So, 16

clusters were formed. The main objective here was not to form the perfect clusters and

not to find the perfect the number of clusters but to form a reasonably good partitioning of

the whole 18K dataset so that sampling can be carried out which leads to better results.

But given that, the better the clustering technique followed the better intelligent dataset

will be sampled.

All clusters had variable number of image names with numbers ranging from ~100 to

~6000. Below is the table representing the number of images in assigned to every cluster

label.

19

3.4 Sampling

The dendrogram obtained was analyzed and the number of clusters was chosen to be 16.

The 16 clusters formed contained a variable number of images ranging from ~100 images

to ~1000 images per cluster.

There are many ways in which one can sample images from the cluster. We decided to

randomly sample them so that every image has an equal chance of being selected.

Graph 2. Bar plot depicting the number of images

assigned to respective cluster label

20

We created 4 more databases from the 18K database. The sizes of these databases were

different based on what percentage of images were randomly chosen from each of the 16

cluster. Since every cluster had a variable number of images, therefore a percentage of

images were chosen from every cluster. The percentages were 50, 60, 70 and 80. Models

were trained separately on these different datasets as well as on the 18K dataset.

Also, the clusters of images made sure almost all scenarios are covered so that the model

generalizes well but also does not use much time as well as data. This creates an

intelligent dataset of images randomly sampled from every cluster. The reduction of

datasets with clustering also led to a reduction in training time.

3.4 Data Preprocessing

We had two types of data, both images and textual. There are different ways to preprocess

both of these data.

3.4.1 Images Processing

A model should be large enough to capture relations in the data along with specifics of

the problem. Early layers of the CNN architecture capture high level relations between

the different parts of the input image. Later layers catch data which is local to the image

and quite certain features that helps settle on an ultimate choice; for the most part, the

subtleties that can help separate between those ideal outputs. Therefore, if the perplexing

idea of the issue is high the amounts of parameters and the proportion of data required is

in like manner gigantic.

When working on domain specific issue, regularly the measure of information expected

to assemble models of this size is deficient and exceptionally elusive. In any case, models

trained on one assignment catch relations in the information type and can be effortlessly

reused for various issues in a similar domain. This is what is called as transfer learning.

In transfer learning, we use a pre-trained model, which was initially trained on a large

readily available dataset like the ImageNet dataset. Then try tolook for layers that output

features that can be reused. We utilize the output of the last convolutional layer as input

to train smaller network which requires a less parameters.

The advantage of extracting bottleneck features further include reduction in

dimensionality as an image initially is represented by 150x150 with 3 channels which

ultimately leads to approx. 3,375,000 floats (=150*150*159) whereas the VGG-16

21

outputs a 4x4x512 feature map which is 8,192. This is a great reduction in terms of

dimensionality and also helps the model focus on the important features by cutting out the

noise.

The figure below is the architecture of Inception V3 model. For extracting the bottleneck

features the fully connected layers at the end of the model are not initialized. Output is

given by the convolutional layers.

Figure 19: VGG-16 Architecture

The images in the dataset are represented by the feature maps we generated using the

VGG-16 architecture.

3.4.2 Text Preprocessing

The captions are represented using a 200-dimensional GloVe word embedding vectors.

Weights were initialized for the embedding layer as the embedding matrix generated from

the vocabulary before training.

22

3.5 Model Details

3.5.1 Encoder

The encoder here is the VGG-16 model. The VGG-16 was initialized with the ImageNet

weights. The images are fed to the VGG-16 model which then produces feature maps for

those images from its second last layer as output. The feature maps produced from each

image is of the shape (4x4x512).

Further, the feature maps and embedding vectors are passed through fully connected

layers with dropouts of 50%. Batch normalization is also applied to the dense layer in the

feature map arm of the model so as to reduce the training time and make it converge

faster.

3.5.2 Decoder

In the caption embedding arm of the model, we trained the LSTM to output the caption

word-by-word. The LSTM was initialized with 256 units.

In the figure given below we can see working of a single LSTM cell. It describes the cell

state at any time t. W and b is the weight and bias of each gate in the cell. ‘u’ represents

the update gate, ‘o’ represents the output gate, ‘f” represents the forget gate. 𝜎 represents

the sigmoid function. ‘x’ is the input to the cell at any time t. ‘a’ represents the hidden cell

state at any time t. ‘y’ is the output of the cell.

Figure 20. A LSTM cell

23

𝑐̃<𝑡> = tanh(𝑊𝑐[𝑎<𝑡−1>, 𝑥<𝑡>]𝑏𝑐)

Γ𝑢 = 𝜎(𝑊𝑢[𝑎<𝑡−1> , 𝑥<𝑡>] + 𝑏𝑢)

Γ𝑜 = 𝜎(𝑊𝑜[𝑎<𝑡−1>, 𝑥<𝑡>] + 𝑏𝑜)

Γ𝑓 = 𝜎(𝑊𝑓[𝑎<𝑡−1> , 𝑥<𝑡>] + 𝑏𝑓)

𝑐<𝑡> = Γ𝑓 ∗ 𝑐<𝑡−1> + �̃�<𝑡> ∗ Γ𝑢

𝑎<𝑡> = 𝑐<𝑡> ∗ Γ𝑜

𝑦<𝑡> = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎<𝑡>)

An approach with stacked LSTMs was also analyzed. The intuition being that stacked

LSTMs might be able to capture more complex patterns or relationships. The first LSTM

was followed by a dropout of 50% so as to overcome the overfitting it may cause and was

followed by another LSTM.

3.6 Training

During the training phase, the model is trained to produce caption word-by-word until the

maximum length of caption (which in this case was 51) is attained or the model outputs

end of sentence tag (‘<end>’).

The model was trained for 40 epochs with a batch size of 16. The training was carried out

on an online platform called Google Colab due to the non-availability of GPU-enabled

computers. Colab is equipped with NVIDIA T4 GPUs. So, for every image I the model

calculates the conditional probability of

𝑝(𝑊𝑡 | 𝐼, 𝑊0 , 𝑊1 , 𝑊2 , . . . , 𝑊𝑡−1)

where W is the word predicted at any time t. Adam optimizer with categorical cross-

entropy as the loss function was used to train the model.

3.7 Inference

After training the model, the process of decoding the outputs was carried out by two

different algorithms namely the greedy search algorithm and beam search algorithm. The

(1)

(2)

(3)

(4)

(5)

(6)

(7)

24

greedy search algorithm outputs the word with the highest conditional probability at every

timestep t.

𝑝𝑔𝑟𝑒𝑒𝑑𝑦
<𝑡> = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑝(𝑊𝑡 | 𝐼, 𝑊0 , 𝑊1 , . . . , 𝑊𝑡−1)

The beam search algorithm considers k best possible sentences at any time t and in the

end, it outputs the sentence with maximum probability out of the k sentences. The greedy

search algorithm is basically a special case of the beam search having beam width k=1.

3.8 Hardware Requirements

1. OS- Windows/Ubuntu/Mac

2. RAM- 12 GB or higher

3. GPU- NVidia GeForce 1650 3 GB dedicated or higher

4. Processor- Quad-Core i5 or higher

5. 512 GB SSD or higher

These requirements are the minimum required for training this model in optimal time.

Online cloud applications such as Google Colab can also be used as they have better

hardware specifications like Tesla K80 GPU and better RAM capacity.

3.9 Software Requirements

1. Anaconda3

2. Python 3

3. Tensorflow

4. Keras

5. Matplotlib

6. Scikit Learn

7. Seaborn

8. Pandas

9. Numpy

10. Jupyter Notebooks

25

Chapter 4 PERFORMANCE ANALYSIS

4.1 DBSCAN vs Agglomerative Clustering

We applied two clustering algorithms on the same feature maps extracted from VGG-16

CNN architecture. Both algorithms work quite differently and hence gave very varying

results for the same dataset of feature maps.

4.1.1 Agglomerative clustering

Agglomerative Clustering, which is a Hierarchical clustering algorithm is used primarily

to build a hierarchyof clusters starting from one data point being considered as one cluster

and then based on distance the clusters are paired till we get one giant cluster.

Figure 21: Agglomerative clustering and dendrogram

26

This clustering algorithm gives us the cluster tree, called the Dendrogram, which

graphically shows the distribution of data points into clusters ranging from 1 to the

number of data points. The dendrogram we attained from our dataset of image features is

shown below.

Graph 2: Dendrogram for 18K dataset

Analysis of the Dendrogram resulted in us coming down to 16 as an optimal number of

clusters in which our data points must be divided

4.1.2 Density Based Spatial Clustering of applications with noise (DBSCAN)

On the other hand, DBSCAN, which is a Density based clustering algorithm, clusters

together the data samples which are close to each other based on a) distance between

them and b) minimum number of points. The data samples which are in the low density

region are simply marked as outliers. However smart it may seem, DBSCAN is not fully

deterministic as it considers the far away and unreachable data points as outliers or noise.

Coming back to our work, use of DBSCAN gave us a very few clusters for the given

dataset and classifiedremaining data points as noise. Even on changing the

27

On further research we came down to the decision of going forth with Agglomerative

clustering as our choice of clustering algorithmas it wouldfully serve our purpose since

we needed a significant amount of clusters to build a good and lean dataset.

Figure 22: DBSCAN clustering example with different parameters

4.2 Evaluation Metrics

One of the most challenging task of any machine translation or image captioning model is

to how to evaluate the outcomes. Traditional supervised learning evaluation metrics of

precision, recall and f1 score do not work here.

We performed varied sets of experiments on different sizes of datasets, model

architectures, and evaluated them on two evaluation metrics namely BLEU and METEOR

and a dataset of 250 test images was used for the same. Our primary data source was the

MS-COCO dataset and

4.2.1 BLEU

BLEU stands for Bilingual Evaluation Understudy. It uses n-gram precision to calculate

an average score for the given hypothesis in comparison to the corresponding reference

sentence. BLEU has been the benchmark metric for machine translation tasks. One of the

limitations of BLEU has been that it does not understand meaning of the words used in

the sentence. It simply compares the word’s presence in the hypothesis with that in the

reference sentence. This has a negative effect because if a synonym is used in place of a

particular word present in reference then although the caption maybe correct but it will

28

show difference in captions according to the BLEU score. This limitation was addressed

by the METEOR metric.

4.2.2 METEOR

METEOR is another machine translation metric often used. It overcomes the limitations

faced by BLEU. It calculates the harmonic mean of precision and recall of unigram

matches between the reference and the hypothesis sentences. Also, it does not explicitly

matches the words and rather takes into account synonym matching as well.

4.3 Single vs Stacked LSTMs

4.3.1 Single LSTM

Our results were generated on total of 5 datasets. We call the datasets created using

random sampling fromfeature-based clusters as Intelligent datasets. These datasets are

named like Intelli-x (short for Intelligent-x) where x is the percentage of data we sampled

from each of the clusters. In the table, we present the results generated over the test

dataset. The beam search algorithm gives better results than greedy algorithm most of the

times. The beam width used for beam search was 3.

The BLEU score peaks for Intelligent-70 dataset giving a score of 51 whereas the

METEOR score peaks for the Intelligent-60 dataset giving a score of 30.7. So, we can

safely say that reduced datasets as better as the actual datasets and in many cases better

than the actual dataset. Almost every dataset gave better or equal results as the actual

dataset. These scores are an improvement from previous works also we can state that

Dataset/Metric BLEU METEOR

 Greedy Beam Greedy Beam

Intelli-50 49.3 50.2 29.4 29.4

Intelli-60 48 49.1 29.2 30.7

Intelli-70 48.9 51 28.7 29.5

Intelli-80 48.5 49.3 28.3 27.4

18K 50.2 49.6 29.2 27.9

Table 4: BLEU-4 and METEOR Scores for the models trained on reduced version of MSCOCO

dataset containing 18K data points and reduced version of this 18K dataset containing 50, 60, 70

and 80 percent of the 18K data points

29

even with 50 or 60 percentage of data we can train the model if the dataset is sampled in a

better way. A generalized dataset will most likely train a more generalized model.

Dataset/Metric BLEU METEOR

 Greedy Beam Greedy Beam

Intelli - 50 50.2 51.07 29.6 29.4

Intelli - 60 50.95 51.07 31.5 28.8

Intelli - 70 49.3 48.9 28.7 27.2

Intelli - 80 50 52 27.6 28.3

18K 50.2 49.6 29.2 27.9

The BLEU score peaks for Intelligent-60 dataset giving a score of 51 whereas the

METEOR score peaks for the Intelligent-60 dataset giving a score of 28.8. So, we can

safely say that reduced datasets as better as the actual datasets and in many cases better

than the actual dataset. Almost every dataset gave better or equal results as the actual

dataset. These scores are an improvement from previous works also we can state that

even with 50 or 60 percentage of data we can train the model if the dataset is sampled in a

better way. A generalized dataset will most likely train a more generalized model

4.3.2 Stacked LSTMs

Models with stacked LSTMs were trained separately on two datasets, one being

Intelligent-70 and the one being the 18K dataset.

The BLEU and METEOR scores for the 18K dataset are better than the Intelligent-70

dataset. We can say that since the model complexity increases and the number of

Dataset/Metric BLEU METEOR

 Greedy Beam Greedy Beam

Intelli-70 48.9 47.9 28 27.2

18K 48.6 51.5 28.2 28.3

Table 5. BLEU-4 and METEOR Scores for the models trained on reduced version of MSCOCO

dataset containing 18K data points and reduced version of this 18K dataset containing 50, 60, 70 and

80 percent of the 18K data points. This reduced version was sampled from clustering based on

captions.

Table 6. BLEU-4 and METEOR scores compared on a stacked

LSTM model with Intelligent 70 dataset and the 18K dataset. In this

the intelligent dataset was sampled from clustering based on

images.

30

parameters to be trained also increases, therefore the model tends to under fit somewhat

when trained on the intelligent dataset.

However, for datasets sampled from clusters which were generated from k-means

clustering on captions produced better results on stacked LSTM model as compared to

their performance on unstacked LSTM model.

The BLEU and METEOR scores for the stacked LSTM model trained on the “Intelligent-

60” dataset are the highest. This means a reduction of 40% dataset will result in the model

having a better performance than the model trained on the whole dataset. This is a

significant reduction in dataset which results in reduction of training time and also

prevents memory overflow. In all this makes the model training efficient. There is also a

validation of the performance of the beam search algorithm which gives better results

than the greedy search algorithm used in the decoding of outputs. The beam width used

here was 3 but a higher beam width will most likely result in better performance of the

model but will also lead to an increase in computation cost.

Dataset/Metric BLEU METEOR

 Greedy Beam Greedy Beam

Intelligent 50 49.1 49.2 28.4 30.5

Intelligent 60 51.1 52.6 29.6 31.5

Intelligent 70 50.76 50.68 28.8 28.7

Intelligent 80 48.3 50.1 28.8 30.2

18K 48.6 51.5 28.2 28.3

Table 7. BLEU-4 and METEOR scores compared on a stacked LSTM

model with Intelligent 50, 60, 70, 80 dataset and the 18K dataset. In

this the intelligent dataset was sampled from clustering based on

captions.

31

Chapter 5 CONCLUSIONS

5.1 Conclusions

We propose clustering based approach for Image captioning that gives satisfactory

performance on the MS-COCO dataset. We show how limiting the data through resizing,

clustering and sampling we can make our encoder-decoder model give more

interpretability, and show that the output captions related very well to the human way of

thinking especially when the model is trained upon just the right amount of data.

5.2 Future Work

5.2.1 Attention

One of the major limitations of our work is the use of an encode-decoder model. This is

so because an encoder-decoder model is a little slow and it usually faces failure when the

input sequence is really long. To overcome this limitation, we aim at combining our

encoder decoder model with Attention mechanism to achieve better results. What an

Attention model does is, it tries to teach the decoder, where to pay attention in the richer

encoding while predicting the sentence as the output.

32

Figure23: Attention as an interface between encoder and decoder

5.2.2 User interface for Caption generation of the uploaded image

Next, we wish to work on a web application where a person can upload an image and get

its caption instantly. The uploaded image will be passed through our trained model and

will output a sentence describing the content of the image. Further, through human

evaluation we can review the caption generated for the uploaded image and add the pair

to our primary dataset. Then upon training the model with newly added data points we

hope to achieve better results and scores through evaluation metrics.

5.3 Applications

User Interface to improve the model

The problem faced during evaluating the results is that whether the caption generated by

RNN was actually wrong or was it just not present in the dataset. The caption generated

by RNN maybe logically correct but maybe labelled by the model as wrong because it

was not present in the given dataset.

To overcome this anomaly, we have made an online platform where we host a dataset of

~10000 images. The website will allow people from all over the world to submit a

description of the image as they deem fit for that image up to 140 characters. From the

33

data collected from that website the captions generated by the model will be evaluated.

Also, the most commonly occurring captions will be added to the corpus and the model

will be re-trained for better generalization of the model.

We believe this is the way a model can be truly evaluated as an image can have many

interpretations according to every human and we cannot ignore all of them.

Figure 24. Snapshots of website and database created for

evaluation

34

References

1. Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and tell: A neural

image caption generator. In Proceedings of the IEEE conference on computer vision

and pattern recognition (pp. 3156-3164).

2. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., ... &Bengio, Y.

(2015, June). Show, attend and tell: Neural image caption generation with visual

attention. In International conference on machine learning (pp. 2048-2057).

3. You, Q., Jin, H., Wang, Z., Fang, C., & Luo, J. (2016). Image captioning with

semantic attention. In Proceedings of the IEEE conference on computer vision and

pattern recognition (pp. 4651-4659)

4. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556

5. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., &Wojna, Z. (2016). Rethinking the

inception architecture for computer vision. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 2818-2826)

35

6. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition (pp. 770-778)

7. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once:

Unified, real-time object detection. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 779-788)

8. Horng, S. J., Su, M. Y., Chen, Y. H., Kao, T. W., Chen, R. J., Lai, J. L., &Perkasa, C.

D. (2011). A novel intrusion detection system based on hierarchical clustering and

support vector machines. Expert systems with Applications, 38(1), 306-313.

9. Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors

for word representation. In Proceedings of the 2014 conference on empirical methods

in natural language processing (EMNLP) (pp. 1532-1543).

10. Ioffe, S., &Szegedy, C. (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

11. Kilickaya, M., Erdem, A., Ikizler-Cinbis, N., & Erdem, E. (2016). Re-evaluating

automatic metrics for image captioning. arXiv preprint arXiv:1612.07600.

12. Faber, V. (1994). Clustering and the continuous k-means algorithm. Los Alamos

Science, 22(138144.21), 67.

13. Banerjee, S., &Lavie, A. (2005, June). METEOR: An automatic metric for MT

evaluation with improved correlation with human judgments. In Proceedings of the

acl workshop on intrinsic and extrinsic evaluation measures for machine translation

and/or summarization (pp. 65-72).

14. Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002, July). BLEU: a method for

automatic evaluation of machine translation. In Proceedings of the 40th annual

meeting on association for computational linguistics (pp. 311-318). Association for

Computational Linguistics.

36

Appendices

Code:

Input.py

import os

from PIL import Image

from tkinter import *

from tkinter import filedialog

import Encoder

import cv2

import sys

import warnings

if not sys.warnoptions:

warnings.simplefilter("ignore")

37

class Input:

 def browse(self):

 root = Tk()

 root.withdraw()

 tempdir = filedialog.askopenfilename(filetypes =

(("Image", "*.jpg"), ("All files", "*")))

 if(len(tempdir)==0):

 print("wrong input")

 else:

 Encoder.Encoder(tempdir)

 def camera(self):

 cam=cv2.VideoCapture(0)

 cv2.namedWindow("Capture Image")

 img_counter=0

 img_name=[]

 currdir=os.getcwd()

 while(True):

 ret,frame=cam.read()

 cv2.imshow("Capture Image",frame)

 if not ret:

 break;

 k=cv2.waitKey(1)

 if(k%256)==27:

 print("Escape hit, closing...")

 break;

38

 elif (k%256==32):

 img_name.append("opencv_frame_{}.png".format(img_counte

r))

 cv2.imwrite(img_name[img_counter],frame)

 print("{} written!".format(img_name))

 img_counter+=1

 cam.release()

 cv2.destroyAllWindows()

 Encoder.Encoder(currdir+'\\'+img_name[img_counter-

1])

 def __init__(self,i):

 if(i==1):

 self.browse()

 elif(i==2):

 self.camera()

 else:

 print('Wrong input')

if __name__=='__main__':

 print("Welcome to Image Caption Generator")

 while(True):

 print("Enter 1 to Browse Image file")

 print("Enter 2 to capture image from camera")

 ipt=int(input("Enter:"))

 if(ipt==0):

 break

39

 i=Input(ipt)

 print("Bye")

Encoder.py

import os

import h5py

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from PIL import Image

from keras.applications.vgg16 import VGG16

from keras.preprocessing.image import ImageDataGenerator,

array_to_img, img_to_array, load_img

from keras.regularizers import l2, l1

from keras.models import Sequential, load_model

from keras.layers import Convolution2D, MaxPooling2D,

ZeroPadding2D

from keras.layers import Activation, Dropout, Flatten, Dense

from keras.utils.np_utils import to_categorical

from keras import optimizers

from keras.preprocessing import image

from keras.applications.vgg16 import preprocess_input

import Decoder

import sys

import warnings

if not sys.warnoptions:

warnings.simplefilter("ignore")

print("Initialising Encoder")

40

conv_base = VGG16(weights='imagenet',

include_top=False,

input_shape=(150, 150, 3))

print("Encoder Initialised")

class Encoder:

 path=''

 conv_base=0

 def encode(self,image):

 image=self.preprocess(image)

 feat_vect=self.conv_base.predict(image)

 feat_vect=np.reshape(feat_vect,4*4*512)

 return feat_vect

 def preprocess(self,image_path):

 img=image.load_img(image_path,target_size=(150,150))

 x=image.img_to_array(img)

 x=np.expand_dims(x,axis=0)

 x=preprocess_input(x)

 return x

 def __init__(self,path):

 print("Encoding

Phase*******************************")

 self.path=path

 self.conv_base=conv_base

 feature_map={}

 feature_map[path]=self.encode(path)

 print("Picture

Encoded******************************")

41

 print("Decoding

Phase*******************************")

 Decoder.Decoder(feature_map)

Decoder.py

%tensorflow_version 1.x

import os

import h5py

import json

import numpy as np

import pandas as pd

from numpy import array

from PIL import Image

import matplotlib.pyplot as plt

import pickle

from pickle import load,dump

import keras

from keras.layers import Input, Embedding, LSTM, Dense,

BatchNormalization,Dropout

from keras.models import Model

from keras.preprocessing.sequence import pad_sequences

import sys

import warnings

if not sys.warnoptions:

warnings.simplefilter("ignore")

print("Initialising Decoder")

42

max_length=51

ixtoword=load(open('data/vocabulary/ixtoword.pkl','rb'))

wordtoix=load(open('data/vocabulary/wordtoix.pkl','rb'))

embedding_dim=200

vocab_size=len(ixtoword)

embedding_matrix=load(open('data/embeddings/embedding_matrix

.npy'))

print('Decoder Initialised!')

class Decoder:

 model=0

 def __init__(self,feature):

 self.createModel()

 print("Model Initialised")

 pic=list(feature.keys())[0]

 image=feature[pic].reshape(1,8192)

 print("Caption

Generated:",self.generateCaption(self.model,image))

 def createModel(self):

 inputs1=Input(shape=(4*4*512,))

 fe1=Dropout(0.25)(inputs1)

 fe2=Dense(256,activation='relu')(fe1)

 bn=BatchNormalization()(fe2)

 inputs2=Input(shape=(max_length,))

 se1=Embedding(vocab_size,embedding_dim,mask_zero=True)(

inputs2)

43

 se2=Dropout(0.25)(se1)

 se3=LSTM(256,return_sequences=True)(se2)

 se4=LSTM(256)(se3)

 decoder1=keras.layers.add([bn,se4])

 decoder2=Dense(256,activation='relu')(decoder1)

 outputs=Dense(vocab_size,activation='softmax')(decoder2

)

 self.model=Model(inputs=[inputs1,inputs2],outputs=outpu

ts)

 self.model.layers[2].set_weights([embedding_matrix])

 self.model.layers[2].trainable=False

 self.model.compile(loss='categorical_crossentropy',opti

mizer='adam')

 self.model.load_weights('data/model/model_weights_70_st

acked.h5')

 def generateCaption(self,model,photo):

 in_text='<start>'

 for i in range(max_length):

 sequence=[ixtoword[w.lower()] for w in

in_text.split() if w.lower() in ixtoword]

 sequence=pad_sequences([sequence],maxlen=max_length)

 yhat=model.predict([photo,sequence],verbose=0)

44

 yhat=np.argmax(yhat)

 # print('yhat:{}'.format(yhat))

 word=wordtoix[yhat]

 # print(word)

 in_text+=' '+word

 if word=='<end>':

 break;

 final=in_text.split()

 final=final[1:-1]

 final=' '.join(final)

 return final

45

46

	Chapter 1 INTRODUCTION
	1.1 Introduction
	1.2 Problem Statement
	1.3 Objectives
	1.4 Methodology

	Chapter 2 LITERATURE SURVEY
	2.1 Show & Tell: A Neural Image Caption Generator
	2.1.1 Introduction
	2.1.2 Model
	2.1.3 Datasets
	2.1.4 Results
	2.1.5 Conclusion

	2.2 Show, Attend & Tell
	2.2.1 Introduction
	2.2.2 Model
	2.2.3 Datasets
	2.2.4 Results
	2.2.5 Conclusion

	2.3 Image Captioning with Semantic Attention
	2.3.1 Introduction
	2.3.2 Model
	2.3.3 Database
	2.3.4 Results
	2.3.5 Conclusions

	2.4 ConvNets
	The Convolution Operation
	The max pooling operation

	2.5 Very Deep Convolutional Networks for Large-Scale Image Recognition
	2.6 Deep Residual Learning for Image Recognition
	2.7 You Only Look Once: Unified, Real-Time Object Detection
	2.7.1 Introduction
	2.7.2 Model
	2.7.3 Database
	2.7.4 Results
	2.7.5 Conclusion

	Chapter 3 SYSTEM DEVELOPMENT
	3.1 Dataset
	3.2 Clustering based on Image Feature Maps
	3.3 Clustering on Caption Keywords
	3.4 Sampling
	3.4 Data Preprocessing
	3.4.1 Images Processing
	3.4.2 Text Preprocessing

	3.5 Model Details
	3.5.1 Encoder
	3.5.2 Decoder

	3.6 Training
	3.7 Inference
	3.8 Hardware Requirements
	3.9 Software Requirements

	Chapter 4 PERFORMANCE ANALYSIS
	4.1 DBSCAN vs Agglomerative Clustering
	4.1.1 Agglomerative clustering

	4.2 Evaluation Metrics
	4.2.1 BLEU
	4.2.2 METEOR

	4.3 Single vs Stacked LSTMs
	4.3.1 Single LSTM
	4.3.2 Stacked LSTMs

	Chapter 5 CONCLUSIONS
	5.1 Conclusions
	5.2 Future Work
	5.2.1 Attention
	5.2.2 User interface for Caption generation of the uploaded image

	5.3 Applications

	References
	Appendices

