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Abstract  

Image captioning is describing an image with a caption in natural language. The 

description captures not only the objects contained in an image, but it also must express 

how these objects relate to each other. This fundamental problem connects computer 

vision and natural language processing. In this project, we explore ways to generate 

captions for images given as input. I use deep recurrent architecture that uses recent 

advances in computer vision. I also explore newer methods of model evaluation using 

user defined captions captured through an online platform.  

This project is important in achieving scene understanding from a video or image. It 

serves various applications for helping visually impaired people, creating medical reports 

from images of X-rays, CT- scans etc., filtering image content on the internet and many 

more applications.  
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Chapter 1 INTRODUCTION 

 

1.1 Introduction 

Machine Learning is a subset of Artificial Intelligence. It uses statistical techniques to 

provide computers the ability to learn with the help of large amounts of data. While 

Machine Learning has reduced the burden on programmers to explicitly program the 

computers, it has touched the areas which have never been explored before. This has led 

to various technological advances.  

There are 3 types of Machine Learning algorithms: 

a) Supervised Learning Algorithms 

b) Unsupervised Learning Algorithms 

c) Reinforcement Learning Algorithms 

 

Automatic generation of a description in natural language is called Image Captioning. 

Image captioning is supposed to recognize the different objects in an image, and further 

recognize how they are related to one another. Using this knowledge, it is required to 

form captions that are both syntactically as well as semantically correct. Deep learning 

practices usually tend to be data-hungry and require great amounts of computation time. 

In this paper, we present an efficient approach to achieve this task by data reduction using 

clustering techniques while maintaining the same if not better accuracy than previous 

works. We also explore the results of the usage of single LSTMs against stacked LSTMs 

to generate the captions. We have used the MS-COCO dataset for training and evaluating 

our models. 

 

1.2 Problem Statement 

In this project, we explore ways to generate captions for images given as input. We use 

deep neural networks. Further, for better results we use clustering upon our datasets so as 

to reduce size of the dataset which in turn will reduce overfitting and computation time. 

The description must catch not just the objects present in the image, but also must 

describe how these objects are related to one another. 
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1.3 Objectives 

Our objective is to achieve maximum accuracy in generating sensible captions. We also 

explore newer and better ways of evaluating the model on different datasets. We use 

clustering on our dataset to overcome overfitting and reduce computation cost involved. 

 

 

Given an image like the example above, the goal is to generate a caption such as "a surfer 

riding on a wave". To achieve this task, we useencoder-decoder model, where the 

encoder outputs feature vectors of the input images and the decoder outputs the generated 

captions on receiving these image vectors as input. 

 

 

Figure 1: Sample Image for understanding 

Figure 2. Encoder-Decoder Model for Captioning images 
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1.4 Methodology 

The idea behind this project is to use deep learning techniques to generate captions from 

input images. We explore different CNN and RNN architectures to achieve this. The main 

technique used here is to extract features of images using VGG-16 convolutional neural 

network. In a way CNN acts as an encoder here. The RNN model decodes these features 

to predict captions word by word. 

The dataset used here by us in the MS COCO dataset which has roughly ~82000 images. 

Also reading related work done already in image captioning the common problem of 

overfitting came to fore. So, we have decided to go forth with a subset of 18,000 images 

from the 82,000 available images. Also, with given hardware constraints we devised a 

way to build our dataset by performing Hierarchical clustering on the images based on 

their features and selecting images from the clusters. This we hope will result in less 

overfitting and more generalization. Also, selecting images from clusters will lead to less 

training data and will require less computation power.  

 

 

 

 

  

Figure 3. Overall Project Flow 
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Chapter 2 LITERATURE SURVEY 

2.1 Show & Tell: A Neural Image Caption Generator 

 

2.1.1 Introduction 

Automatically generating the description of an image using perfect sentences in natural 

language is indeed a very complex task. It can however be helpful to many individuals 

like blind people to able to get the context of images. An image description must catch 

the articles in a picture, also additionally should communicate how they are identified 

with one another just as their characteristics and the exercises they are engaged with. 

 

 

 

2.1.2 Model 

In this paper, probabilistic framework is proposed to generate captions from images. 

Using a strong sequence model, better results can be achieved by increasing the 

probability of the right interpretation given a sentence in an “end-to-end” fashion – both 

for training as well as inference. Such models utilize RNN that encodes the different 

length contribution to a constant dimensional vector, and utilizations this to "decode" it to 

the ideal yield caption. In this manner, it is normal to utilize a similar approach where, 

given a picture, one applies a similar rule of "making an interpretation of" it into its 

description. Along these lines, this paper proposes to legitimately amplify the probability 

of the right description given the picture. 

Figure 4. Example of Show and tell image caption generatiorn 
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2.1.3 Datasets 

Various datasets which comprise of images and sentences in English describing these 

images are utilized for assessment. These include MSCOCO, Flickr8k, Flickr30k 

PASCAL VOC 2008 and SBU datasets. All these datasets, except for SBU have 1000s of 

images, each having at least 5 sentences which are moderately visual and fair. For SBU, a 

1000 pictures are considered for testing and training is done on the rest. 

 

 

 

2.1.4 Results 

The model is data driven and it is also trained end-to-end, and since a lot of datasets are 

involved, questions such as “what sort of transfer learning it is ready to accomplish”, and 

“how it would manage models having weak labels” came up. Therefore, experiments on 

Figure 5. Working of Show and tell  

Table 1. Datasets used 
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five diverse datasets were performed, which empowered a profound comprehension of the 

model. 

 

 

 

 

2.1.5 Conclusion 

An end-to-end neural network system that can naturally see a picture and produce a 

sensible description in plain English is introduced. NIC depends on CNN that encodes a 

picture into a minimized portrayal, trailed by a repetitive neural system that creates a 

comparing sentence. Investigations on a few datasets show the vigor of NIC as far as 

subjective outcomes (the created sentences are entirely sensible) and quantitative 

assessments, utilizing either positioning measurements or BLEU.From these experiments 

it is clear that, the performance of approaches like NIC will increase as the size of the 

datasets goes up.  

 

2.2 Show, Attend & Tell 

2.2.1 Introduction 

Thus, caption generation has long been seen asa tough problem. It is an essential test for 

Machine Learning, since it attempts to imitate the human-likeability to pack all the 

measures of the data into natural language. 

In this paper, the Caption generation approach attempts to include a kind of attention with 

two variants: a “soft” attention mechanism and a “hard” attention mechanism. 

Table 3. Evaluation w.r.t approaches 

Table 2. Evaluation using BLEU-4, METEOR and CIDER metrics 
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2.2.2 Model 

 

Encoder 

To acquire a relationship between the component vectors and parts of the 2-D picture, 

highlights from a lower convolutional layer are removed. The decoder focuses its 

attention on some portions of an image by sampling a group of all the feature vectors. 

Decoder 

They utilized a LSTM network that delivered a subtitle by anticipating each word in turn 

dependent on a setting vector, the past concealed state and the recently anticipated words. 

In simple words, a context vector is a depiction of the correct part of the image at time t. 

This relevant part is picked up from the feature map which is fed to LSTM. A positive 

weight is generated for each relevant part of the image which is either interpreted as 

probability or as the importance of that location. The weight of each location is then 

calculatedusing the attention model which uses a multi-layer perceptron is used.  

 

2.2.3 Datasets 

Datasets that are used during training process are Flickr8k dataset which has 8K data 

points, Flickr30k dataset which has 30K images and Microsoft COCO dataset which has 

over 82K. The Flickr8k and the Flickr30k datasets have 5 labels for every picture, while 

in the MS COCO dataset, images have at least 5 labels, overabundance of which is 

Figure 6. Show, Attend and Tell Example for image captioning 
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disposed of to keep up consistency over all datasets.For all experiments, a fixed 

vocabulary size of 10K is used. 

 

2.2.4 Results 

Performance of the model on the Flickr8k, Flickr30k and MS COCO turned out to be 

state of the art. Furthermore, there was improvement in the cutting edge execution of 

METEOR evaluation metrics on MS COCO that was theorized to be associated with a 

portion of the regularization methods. 

 

 

 

2.2.5 Conclusion 

An attention based approach that gives incredible presentation on three benchmark 

datasets utilizing the METEOR and BLEU evaluation metrics is gotten in this paper. 

Furthermore, something that was obvious from the model was that the scholarly attention 

might be misused to produce more prominent interpretability into the models age 

procedure, and display that the trained captions relate really well to the actualcaptions. 

 

2.3 Image Captioning with Semantic Attention 

2.3.1 Introduction 

It requires a degree of picture understanding that works out in a good way past picture 

grouping and item identification to produce a significant natural language description of a 

picture. It associates Computer Vision with Natural Language Processing (which are two 

Figure 7 Show, Attend and Tell, working of attention model 
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significant fields in Artificial Intelligence) which makes the difficult all the more 

intriguing. 

 

 

 

2.3.2 Model 

In this model both top-down just as bottom-up features are removed from the picture. 

Moreover, a lot of credit finders is hurried to get a rundown of visual traits which are well 

on the way to show up in the picture. Each ascribe compares to a section in the 

vocabulary  

 

2.3.3 Database 

Flickr30k and MSCOCO is chosen as the datasets in this paper. Flickr30k has more than 

30,000 images and the MSCOCO has over 82,000 images. For Flickr30k, each image is 

given five captions and for MSCOCO, each image has at least 5 captions. A publicly 

available split of training, testing and validating sets is used to make the results 

comparable to others, for both Flickr30k as well as MS-COCO datasets. 

 

2.3.4 Results 

The impact of every one of the individual attention modules on the last execution is 

assessed by killing one of the attention modules and not killing the other one in the ATT-

FCN model. The 2 distinct models are prepared on the MS-COCO dataset. On certain 

metrics, the presentation when utilizing output attention is somewhat better than just 

utilizing input layer attention. In any case, the blend of these two attentions improves the 

Figure 8 Image Captioning with Semantic Attention 
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presentation by certain percent on pretty much every measurement. This means that the 

attention components at input and the output layers are not the equivalent, and every one 

of them take into account various parts of visual properties. In this manner, joining the 

two may help produce a more extravagant interpretation of the specific circumstance and 

accordingly lead to better execution.

 

 

2.3.5 Conclusions 

In this paper, image captioning that accomplishes best in class execution across well-

known standard benchmarks is proposed. Not quite the same as past work, this approach 

joins top-down and the bottom-up systems to extricate more important data from an 

image, and connects them with a RNN that can specifically goes to on rich semantic traits 

identified from the image. The genuine intensity of this model is its capacity to go to on 

specific angles and breaker worldwide and neighborhood data to deliver a superior 

caption. 

 

2.4 ConvNets 

The Convolution Operation 

The most striking distinction between a convolution layer and fully connected layer is 

that the full connected ones learn global patterns withintheir input feature space while 

convolution layers learn local examples on account of pictures, designs found in little 

second windows of the inputs. 

Convolutions are outlined by 2 important parameters: 

Figure 9. Image and the generated caption  
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• Size of the portions extracted from the inputs- These are usually 3x3 or 5x5. within the 

example, they were 3x3, that could be a common selection. 

• Depth of the feature map- the amount of filters calculated by the convolution.  

 

 

 

 

The max pooling operation 

The role of max-pooling is to aggressively down sample feature maps. It comprises of 

separating windows from the input feature maps and outputting the maximum estimation 

of each channel. It's like convolution adroitly, then again, actually as opposed to changing 

nearby fixes by means of a scholarly direct change, they are changed by means of a 

hardcoded max tensor activity. 

 

 

 

2.5 Very Deep Convolutional Networks for Large-Scale Image Recognition 

The input to the ConvNets is a fixed-size 224×224 RGB image during training. The main 

pre-processing done is normalizing the RGB esteems, figured on the training dataset, 

Figure 10. Feature maps converted from a portion of input image 

Figure 11. Max pooling 
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from every pixel. The image is worked upon by a heap of convolutional (conv.) layers, 

where channels are utilized with a little receptive field: 3×3 

 

 

In one of the layers the 1×1 convolution filters were utilized, which can be viewed as a 

straight change of the input channels (trailed by non-linearity). The convolution stride is 

consistently 1 pixel; the spatial cushioning of convolution layer input is with the end goal 

that the spatial goals is safeguarded after convolution. 

2.6 Deep Residual Learning for Image Recognition 

It is very tough to train deeper neural networks. Microsoft research presented a residual 

learning system to incorporate the training of networks that are deeper than the ones used 

already. The issue of disappearing/exploding gradients disrupt the assembly in extremely 

deep neural networks. This issue, was to a great extent tended to by normalized 

initialization and intermediate normalization layers which improves networks with 

several layers to begin uniting for stochastic gradient descent with back-propagation. At 

the point when the networks with progressively neural network layers can begin meeting, 

a degradation issue has been uncovered; with the network profundity expanding, 

exactness arrives at a specific point and afterward begins to diminish quickly.  

.  

Figure 12 ConvNet Configuration 
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2.7 You Only Look Once: Unified, Real-Time Object Detection 

 

2.7.1 Introduction 

People take a look at an image and get what articles are in the image, where they are, and 

how they collaborate. People have a quick and precise visual framework, permitting us to 

carryout extreme tasks like driving with less conscious thoughts. Detection Systems at 

present repurpose classifiers to perform recognition. These frameworks take a classifier 

for an object and assess it at various areas and tests on an image to detect an object. 

 

 

 

The unified model has numerous advantages over conventional strategies for object 

recognition. To begin with, YOLO is truly quick. Since it outlines identification as a 

regression issue there is no requirement for an unpredictable pipeline. Second, YOLO 

reasons about the image when making forecasts all inclusive. Third, YOLO learns 

generalizable portrayals of articles. 

 

2.7.2 Model 

The different components of object detection are unified into a single neural network. The 

network utilizesthe featuresin an image to predict the bounding boxes. YOLO enables 

Figure 13. Working, Residual Learning 

Figure 14 YOLO Detection system 
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end-to-end training and real-time speeds while also maintaining high average precision. 

These confidence scores mean how confident the model is about the box containing an 

object and also how accurate it thinks the box is that it predicts. If there is no object in 

that bounding box, then the confidence scores will be zero, else the confidence score will 

be equal to the intersection over union (IOU) between the predicted box and the actual 

object-box. 

 

 

 

 

 

 

 

 

Figure 15. YOLO Model 

 

Figure 16. YOLO Architecture 
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The model is then converted to perform detection. Four convolutional layers and two 

fully connected layers with randomly initialized weights are added. The last layer is able 

to predicts the class probabilities as well as the bounding box coordinates.  

 

2.7.3 Database 

The model evaluated on the PASCAL VOC dataset. The convolutional layers are related 

on the ImageNet 1000-class rivalry dataset. For purpose of pre-training, the initial 20 

convolutional layers are utilized trailed by an average-pooling layer.  

 

2.7.4 Results 

YOLO is exceptionally quick at test time because it just requires a single network 

evaluation, different from classifier-based strategies. Despite the fact that not basic to 

execution all things considered for R-CNN or DPM, non-maximal suppression includes 

2-3% in mAP. 

 

2.7.5 Conclusion 

YOLO seems to be a unified model for object detection. The model is easy to build and 

can be trained on full images. Entire model is trained jointly unlike classifier-based 

approaches. Fast YOLO is the fastest object detector in the writing and YOLO pushes the 

cutting edge real-time object location. Likewise, YOLO sums up new areas making it 

extraordinary for applications that depend on quick, vigorous object detetction. 

 

 

 

 

Figure 17. Qualitative Results 



 
 

16 
 

Chapter 3 SYSTEM DEVELOPMENT 

3.1 Dataset 

We have used MS-COCO Dataset as our primary dataset for the training purpose. The 

MS-COCO dataset consists of 82,000 images each having at least 5 captions. We made 4 

datasets of different sizes by randomly choosing images from the clusters formed using 

the agglomerative clustering algorithm on 18000 images based on their features (more on 

Clustering and sampling in later sections).  

3.2 Clustering based on Image Feature Maps 

After reading various research papers, a common problem of overfitting arose. Also, all 

the previous models needed to be fed a lot of data hence resulted in more computation. 

We devised a method of constructing our dataset from the original dataset so that it 

covers all the variance present in our dataset.  

Clustering is a technique in data mining and machine learning which helps to group 

similar data points such that the points in same group have similar behavior as compared 

to points in other groups. A group is called cluster. 

Hierarchical clustering is of two types: 

a. Agglomerative 

b. Divisive 

In agglomerative clustering, initially each point is considered as a cluster. At each 

iteration, the similar clusters merge with other cluster until a single cluster or X clusters 

are formed.  

A proximity matrix is computed first of all. Every point is considered to be a cluster. 

Iteratively, two closest clusters are merged and the proximity matrix is updated. This 

process continues until a single cluster is obtained.  

The hierarchical clustering is usually visualized using a dendrogram. A dendrogram is a 

tree-like diagram that records the sequences of merges or splits. 
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We perform Agglomerative Hierarchical clustering on the feature maps extracted from 

the images present in MS COCO dataset. We were able to obtain the following 

Dendrogram representing our 18K Dataset. 

 

Graph 1: Dendrogram diagram for cluster hierarchy of the 18K Dataset based upon features from 

images is generated. 

Figure 18. Agglomerative Hierarchical Clustering Technique 
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3.3 Clustering on Caption Keywords 

Another approach that has been followed is that of clustering on keywords extracted from 

captions. Clustering on image feature maps was found to be computationally expensive so 

another approach was devised. In this approach all possible captions for every image in 

the 18K dataset were concatenated to form a single long passage which consisted of 

around 5 sentences. The stop-words like (is, an, the, there…) were removed from the 

passages as they do not lend much meaning to the captions. After removal of stop-words 

the TF-IDF vectorizer was used to vectorize the sentences. As we know that TF-IDF 

vectorizer assigns more weights to terms that are more important in the document we 

extracted 5 such terms with highest weights which acted as our 5 important keywords for 

every image. 

After the extraction of keywords for every image, a dictionary was prepared with image 

name as the key and corresponding keywords as the values. These keywords were then 

each assigned a unique integer and represented by them as such. So, after all this 

preprocessing k-means clustering algorithm was applied on the dictionary with a k-

means++ initializer for better initialization of centroids. The k was kept to be 16. So, 16 

clusters were formed. The main objective here was not to form the perfect clusters and 

not to find the perfect the number of clusters but to form a reasonably good partitioning of 

the whole 18K dataset so that sampling can be carried out which leads to better results. 

But given that, the better the clustering technique followed the better intelligent dataset 

will be sampled.  

All clusters had variable number of image names with numbers ranging from ~100 to 

~6000. Below is the table representing the number of images in assigned to every cluster 

label.  
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3.4 Sampling 

The dendrogram obtained was analyzed and the number of clusters was chosen to be 16. 

The 16 clusters formed contained a variable number of images ranging from ~100 images 

to ~1000 images per cluster.  

There are many ways in which one can sample images from the cluster. We decided to 

randomly sample them so that every image has an equal chance of being selected.  

Graph 2. Bar plot depicting the number of images 

assigned to respective cluster label 
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We created 4 more databases from the 18K database. The sizes of these databases were 

different based on what percentage of images were randomly chosen from each of the 16 

cluster. Since every cluster had a variable number of images, therefore a percentage of 

images were chosen from every cluster.  The percentages were 50, 60, 70 and 80. Models 

were trained separately on these different datasets as well as on the 18K dataset.  

Also, the clusters of images made sure almost all scenarios are covered so that the model 

generalizes well but also does not use much time as well as data. This creates an 

intelligent dataset of images randomly sampled from every cluster. The reduction of 

datasets with clustering also led to a reduction in training time. 

3.4 Data Preprocessing 

We had two types of data, both images and textual. There are different ways to preprocess 

both of these data.  

3.4.1 Images Processing 

A model should be large enough to capture relations in the data along with specifics of 

the problem. Early layers of the CNN architecture capture high level relations between 

the different parts of the input image. Later layers catch data which is local to the image 

and quite certain features that helps settle on an ultimate choice; for the most part, the 

subtleties that can help separate between those ideal outputs. Therefore, if the perplexing 

idea of the issue is high the amounts of parameters and the proportion of data required is 

in like manner gigantic. 

When working on domain specific issue, regularly the measure of information expected 

to assemble models of this size is deficient and exceptionally elusive. In any case, models 

trained on one assignment catch relations in the information type and can be effortlessly 

reused for various issues in a similar domain. This is what is called as transfer learning. 

In transfer learning, we use a pre-trained model, which was initially trained on a large 

readily available dataset like the ImageNet dataset. Then try tolook for layers that output 

features that can be reused. We utilize the output of the last convolutional layer as input 

to train smaller network which requires a less parameters.  

The advantage of extracting bottleneck features further include reduction in 

dimensionality as an image initially is represented by 150x150 with 3 channels which 

ultimately leads to approx. 3,375,000 floats (=150*150*159) whereas the VGG-16 
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outputs a 4x4x512 feature map which is 8,192. This is a great reduction in terms of 

dimensionality and also helps the model focus on the important features by cutting out the 

noise. 

The figure below is the architecture of Inception V3 model. For extracting the bottleneck 

features the fully connected layers at the end of the model are not initialized. Output is 

given by the convolutional layers. 

 

 

Figure 19: VGG-16 Architecture 

 

The images in the dataset are represented by the feature maps we generated using the 

VGG-16 architecture. 

3.4.2 Text Preprocessing  

The captions are represented using a 200-dimensional GloVe word embedding vectors. 

Weights were initialized for the embedding layer as the embedding matrix generated from 

the vocabulary before training. 
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3.5 Model Details 

3.5.1 Encoder 

The encoder here is the VGG-16 model. The VGG-16 was initialized with the ImageNet 

weights. The images are fed to the VGG-16 model which then produces feature maps for 

those images from its second last layer as output. The feature maps produced from each 

image is of the shape (4x4x512). 

Further, the feature maps and embedding vectors are passed through fully connected 

layers with dropouts of 50%. Batch normalization is also applied to the dense layer in the 

feature map arm of the model so as to reduce the training time and make it converge 

faster.  

 

3.5.2 Decoder 

In the caption embedding arm of the model, we trained the LSTM to output the caption 

word-by-word. The LSTM was initialized with 256 units.  

In the figure given below we can see working of a single LSTM cell. It describes the cell 

state at any time t. W and b is the weight and bias of each gate in the cell. ‘u’ represents 

the update gate, ‘o’ represents the output gate, ‘f” represents the forget gate. 𝜎 represents 

the sigmoid function. ‘x’ is the input to the cell at any time t. ‘a’ represents the hidden cell 

state at any time t. ‘y’ is the output of the cell.  

 

 

 

 

Figure 20. A LSTM cell 
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𝑐̃<𝑡> = tanh(𝑊𝑐[𝑎<𝑡−1>, 𝑥<𝑡>]𝑏𝑐) 

Γ𝑢 = 𝜎(𝑊𝑢[𝑎<𝑡−1> , 𝑥<𝑡>] + 𝑏𝑢) 

Γ𝑜 = 𝜎(𝑊𝑜[𝑎<𝑡−1>, 𝑥<𝑡>] + 𝑏𝑜) 

Γ𝑓 = 𝜎(𝑊𝑓[𝑎<𝑡−1> , 𝑥<𝑡>] + 𝑏𝑓) 

𝑐<𝑡> = Γ𝑓 ∗ 𝑐<𝑡−1> + �̃�<𝑡> ∗ Γ𝑢 

𝑎<𝑡> = 𝑐<𝑡> ∗ Γ𝑜 

𝑦<𝑡> = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎<𝑡>) 

 

An approach with stacked LSTMs was also analyzed. The intuition being that stacked 

LSTMs might be able to capture more complex patterns or relationships. The first LSTM 

was followed by a dropout of 50% so as to overcome the overfitting it may cause and was 

followed by another LSTM.  

3.6 Training 

During the training phase, the model is trained to produce caption word-by-word until the 

maximum length of caption (which in this case was 51) is attained or the model outputs 

end of sentence tag (‘<end>’). 

The model was trained for 40 epochs with a batch size of 16. The training was carried out 

on an online platform called Google Colab due to the non-availability of GPU-enabled 

computers. Colab is equipped with NVIDIA T4 GPUs. So, for every image I the model 

calculates the conditional probability of  

𝑝(𝑊𝑡   | 𝐼, 𝑊0 , 𝑊1 , 𝑊2 , . . . , 𝑊𝑡−1)   

where W is the word predicted at any time t. Adam optimizer with categorical cross-

entropy as the loss function was used to train the model. 

3.7 Inference 

After training the model, the process of decoding the outputs was carried out by two 

different algorithms namely the greedy search algorithm and beam search algorithm. The 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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greedy search algorithm outputs the word with the highest conditional probability at every 

timestep t. 

𝑝𝑔𝑟𝑒𝑒𝑑𝑦
<𝑡> = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑝(𝑊𝑡  | 𝐼, 𝑊0 , 𝑊1 , . . . , 𝑊𝑡−1) 

The beam search algorithm considers k best possible sentences at any time t and in the 

end, it outputs the sentence with maximum probability out of the k sentences. The greedy 

search algorithm is basically a special case of the beam search having beam width k=1. 

3.8 Hardware Requirements 

1. OS- Windows/Ubuntu/Mac 

2. RAM- 12 GB or higher 

3. GPU- NVidia GeForce 1650 3 GB dedicated or higher 

4. Processor- Quad-Core i5 or higher 

5. 512 GB SSD or higher 

These requirements are the minimum required for training this model in optimal time. 

Online cloud applications such as Google Colab can also be used as they have better 

hardware specifications like Tesla K80 GPU and better RAM capacity.  

3.9 Software Requirements 

1. Anaconda3 

2. Python 3 

3. Tensorflow 

4. Keras 

5. Matplotlib 

6. Scikit Learn 

7. Seaborn 

8. Pandas 

9. Numpy 

10. Jupyter Notebooks 
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Chapter 4 PERFORMANCE ANALYSIS 

4.1 DBSCAN vs Agglomerative Clustering 

We applied two clustering algorithms on the same feature maps extracted from VGG-16 

CNN architecture. Both algorithms work quite differently and hence gave very varying 

results for the same dataset of feature maps. 

4.1.1 Agglomerative clustering 

Agglomerative Clustering, which is a Hierarchical clustering algorithm is used primarily 

to build a hierarchyof clusters starting from one data point being considered as one cluster 

and then based on distance the clusters are paired till we get one giant cluster.  

 

 

Figure 21: Agglomerative clustering and dendrogram 
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This clustering algorithm gives us the cluster tree, called the Dendrogram, which 

graphically shows the distribution of data points into clusters ranging from 1 to the 

number of data points. The dendrogram we attained from our dataset of image features is 

shown below. 

 

Graph 2:  Dendrogram for 18K dataset 

 

Analysis of the Dendrogram resulted in us coming down to 16 as an optimal number of 

clusters in which our data points must be divided 

 

4.1.2 Density Based Spatial Clustering of applications with noise (DBSCAN) 

On the other hand, DBSCAN, which is a Density based clustering algorithm, clusters 

together the data samples which are close to each other based on a) distance between 

them and b) minimum number of points. The data samples which are in the low density 

region are simply marked as outliers. However smart it may seem, DBSCAN is not fully 

deterministic as it considers the far away and unreachable data points as outliers or noise. 

Coming back to our work, use of DBSCAN gave us a very few clusters for the given 

dataset and classifiedremaining data points as noise. Even on changing the  
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On further research we came down to the decision of going forth with Agglomerative 

clustering as our choice of clustering algorithmas it wouldfully serve our purpose since 

we needed a significant amount of clusters to build a good and lean dataset.  

 

Figure 22: DBSCAN clustering example with different parameters 

 

4.2 Evaluation Metrics 

One of the most challenging task of any machine translation or image captioning model is 

to how to evaluate the outcomes. Traditional supervised learning evaluation metrics of 

precision, recall and f1 score do not work here. 

We performed varied sets of experiments on different sizes of datasets, model 

architectures, and evaluated them on two evaluation metrics namely BLEU and METEOR 

and a dataset of 250 test images was used for the same. Our primary data source was the 

MS-COCO dataset and  

4.2.1 BLEU 

BLEU stands for Bilingual Evaluation Understudy. It uses n-gram precision to calculate 

an average score for the given hypothesis in comparison to the corresponding reference 

sentence. BLEU has been the benchmark metric for machine translation tasks. One of the 

limitations of BLEU has been that it does not understand meaning of the words used in 

the sentence. It simply compares the word’s presence in the hypothesis with that in the 

reference sentence. This has a negative effect because if a synonym is used in place of a 

particular word present in reference then although the caption maybe correct but it will 



 
 

28 
 

show difference in captions according to the BLEU score. This limitation was addressed 

by the METEOR metric. 

4.2.2 METEOR 

METEOR is another machine translation metric often used. It overcomes the limitations 

faced by BLEU. It calculates the harmonic mean of precision and recall of unigram 

matches between the reference and the hypothesis sentences. Also, it does not explicitly 

matches the words and rather takes into account synonym matching as well. 

4.3 Single vs Stacked LSTMs 

4.3.1 Single LSTM 

Our results were generated on total of 5 datasets. We call the datasets created using 

random sampling fromfeature-based clusters as Intelligent datasets. These datasets are 

named like Intelli-x (short for Intelligent-x) where x is the percentage of data we sampled 

from each of the clusters. In the table, we present the results generated over the test 

dataset. The beam search algorithm gives better results than greedy algorithm most of the 

times. The beam width used for beam search was 3. 

 

 

 

 

 

 

 

The BLEU score peaks for Intelligent-70 dataset giving a score of 51 whereas the 

METEOR score peaks for the Intelligent-60 dataset giving a score of 30.7. So, we can 

safely say that reduced datasets as better as the actual datasets and in many cases better 

than the actual dataset. Almost every dataset gave better or equal results as the actual 

dataset. These scores are an improvement from previous works also we can state that 

Dataset/Metric BLEU METEOR 

  Greedy Beam Greedy  Beam 

Intelli-50 49.3 50.2 29.4 29.4 

Intelli-60 48 49.1 29.2 30.7 

Intelli-70 48.9 51 28.7 29.5 

Intelli-80  48.5 49.3 28.3 27.4 

18K 50.2 49.6 29.2 27.9 

     

Table 4: BLEU-4 and METEOR Scores for the models trained on reduced version of MSCOCO 

dataset containing 18K data points and reduced version of this 18K dataset containing 50, 60, 70 

and 80 percent of the 18K data points 
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even with 50 or 60 percentage of data we can train the model if the dataset is sampled in a 

better way. A generalized dataset will most likely train a more generalized model. 

Dataset/Metric BLEU METEOR 

  Greedy Beam Greedy  Beam 

Intelli - 50 50.2 51.07 29.6 29.4 

Intelli - 60 50.95 51.07 31.5 28.8 

Intelli - 70 49.3 48.9 28.7 27.2 

Intelli - 80  50 52 27.6 28.3 

18K 50.2 49.6 29.2 27.9 

The BLEU score peaks for Intelligent-60 dataset giving a score of 51 whereas the 

METEOR score peaks for the Intelligent-60 dataset giving a score of 28.8. So, we can 

safely say that reduced datasets as better as the actual datasets and in many cases better 

than the actual dataset. Almost every dataset gave better or equal results as the actual 

dataset. These scores are an improvement from previous works also we can state that 

even with 50 or 60 percentage of data we can train the model if the dataset is sampled in a 

better way. A generalized dataset will most likely train a more generalized model 

4.3.2 Stacked LSTMs 

Models with stacked LSTMs were trained separately on two datasets, one being 

Intelligent-70 and the one being the 18K dataset.  

 

 

 

 

The BLEU and METEOR scores for the 18K dataset are better than the Intelligent-70 

dataset. We can say that since the model complexity increases and the number of 

Dataset/Metric BLEU METEOR 

  Greedy Beam Greedy  Beam 

Intelli-70 48.9 47.9 28 27.2 

18K 48.6 51.5 28.2 28.3 

Table 5. BLEU-4 and METEOR Scores for the models trained on reduced version of MSCOCO 

dataset containing 18K data points and reduced version of this 18K dataset containing 50, 60, 70 and 

80 percent of the 18K data points. This reduced version was sampled from clustering based on 

captions. 

Table 6. BLEU-4 and METEOR scores compared on a stacked 

LSTM model with Intelligent 70 dataset and the 18K dataset. In this 

the intelligent dataset was sampled from clustering based on 

images. 
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parameters to be trained also increases, therefore the model tends to under fit somewhat 

when trained on the intelligent dataset.   

However, for datasets sampled from clusters which were generated from k-means 

clustering on captions produced better results on stacked LSTM model as compared to 

their performance on unstacked LSTM model.  

 

 

 

 

The BLEU and METEOR scores for the stacked LSTM model trained on the “Intelligent-

60” dataset are the highest. This means a reduction of 40% dataset will result in the model 

having a better performance than the model trained on the whole dataset. This is a 

significant reduction in dataset which results in reduction of training time and also 

prevents memory overflow. In all this makes the model training efficient. There is also a 

validation of the performance of the beam search algorithm which gives better results 

than the greedy search algorithm used in the decoding of outputs. The beam width used 

here was 3 but a higher beam width will most likely result in better performance of the 

model but will also lead to an increase in computation cost. 

 

 

 

 

 

 

Dataset/Metric BLEU METEOR 

  Greedy Beam Greedy  Beam 

Intelligent 50 49.1 49.2 28.4 30.5 

Intelligent 60 51.1 52.6 29.6 31.5 

Intelligent 70 50.76 50.68 28.8 28.7 

Intelligent 80  48.3 50.1 28.8 30.2 

18K 48.6 51.5 28.2 28.3 

Table 7. BLEU-4 and METEOR scores compared on a stacked LSTM 

model with Intelligent 50, 60, 70, 80 dataset and the 18K dataset. In 

this the intelligent dataset was sampled from clustering based on 

captions. 
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Chapter 5 CONCLUSIONS 

5.1 Conclusions 

We propose clustering based approach for Image captioning that gives satisfactory 

performance on the MS-COCO dataset. We show how limiting the data through resizing, 

clustering and sampling we can make our encoder-decoder model give more 

interpretability, and show that the output captions related very well to the human way of 

thinking especially when the model is trained upon just the right amount of data. 

5.2 Future Work 

5.2.1 Attention 

One of the major limitations of our work is the use of an encode-decoder model. This is 

so because an encoder-decoder model is a little slow and it usually faces failure when the 

input sequence is really long. To overcome this limitation, we aim at combining our 

encoder decoder model with Attention mechanism to achieve better results. What an 

Attention model does is, it tries to teach the decoder, where to pay attention in the richer 

encoding while predicting the sentence as the output.  
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Figure23: Attention as an interface between encoder and decoder 

5.2.2 User interface for Caption generation of the uploaded image 

Next, we wish to work on a web application where a person can upload an image and get 

its caption instantly. The uploaded image will be passed through our trained model and 

will output a sentence describing the content of the image. Further, through human 

evaluation we can review the caption generated for the uploaded image and add the pair 

to our primary dataset. Then upon training the model with newly added data points we 

hope to achieve better results and scores through evaluation metrics. 

5.3 Applications 

User Interface to improve the model 

The problem faced during evaluating the results is that whether the caption generated by 

RNN was actually wrong or was it just not present in the dataset. The caption generated 

by RNN maybe logically correct but maybe labelled by the model as wrong because it 

was not present in the given dataset.  

To overcome this anomaly, we have made an online platform where we host a dataset of 

~10000 images. The website will allow people from all over the world to submit a 

description of the image as they deem fit for that image up to 140 characters. From the 



 
 

33 
 

data collected from that website the captions generated by the model will be evaluated. 

Also, the most commonly occurring captions will be added to the corpus and the model 

will be re-trained for better generalization of the model. 

We believe this is the way a model can be truly evaluated as an image can have many 

interpretations according to every human and we cannot ignore all of them. 

 

 

 

 

 

Figure 24. Snapshots of website and database created for 

evaluation 
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Appendices 

Code: 

Input.py 

import os 

from PIL import Image 

from tkinter import * 

from tkinter import filedialog 

import Encoder 

import cv2 

import sys 

import warnings 

 

if not sys.warnoptions: 

warnings.simplefilter("ignore") 
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class Input: 

 

 def browse(self): 

  root = Tk() 

  root.withdraw()  

 

  tempdir = filedialog.askopenfilename(filetypes = 

(("Image", "*.jpg"), ("All files", "*"))) 

 

  if(len(tempdir)==0): 

   print("wrong input") 

    

  else: 

   Encoder.Encoder(tempdir) 

 

 def camera(self): 

  cam=cv2.VideoCapture(0) 

  cv2.namedWindow("Capture Image") 

  img_counter=0 

  img_name=[] 

  currdir=os.getcwd() 

  while(True): 

  ret,frame=cam.read() 

      cv2.imshow("Capture Image",frame) 

      if not ret: 

          break; 

      k=cv2.waitKey(1) 

      if(k%256)==27: 

  print("Escape hit, closing...") 

          break; 
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  elif (k%256==32): 

 

 img_name.append("opencv_frame_{}.png".format(img_counte

r)) 

          cv2.imwrite(img_name[img_counter],frame) 

  print("{} written!".format(img_name)) 

  img_counter+=1 

   

  cam.release() 

  cv2.destroyAllWindows() 

  Encoder.Encoder(currdir+'\\'+img_name[img_counter-

1]) 

   

 

 def __init__(self,i): 

  if(i==1): 

   self.browse() 

  elif(i==2): 

   self.camera() 

  else: 

   print('Wrong input') 

 

 

 

if __name__=='__main__': 

 print("Welcome to Image Caption Generator") 

 while(True): 

  print("Enter 1 to Browse Image file") 

  print("Enter 2 to capture image from camera") 

  ipt=int(input("Enter:")) 

  if(ipt==0): 

   break 



 
 

39 
 

  i=Input(ipt) 

 print("Bye") 

 

Encoder.py 

import os 

import h5py 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from PIL import Image 

 

from keras.applications.vgg16 import VGG16 

from keras.preprocessing.image import ImageDataGenerator, 

array_to_img, img_to_array, load_img 

from keras.regularizers import l2, l1 

from keras.models import Sequential, load_model 

from keras.layers import Convolution2D, MaxPooling2D, 

ZeroPadding2D 

from keras.layers import Activation, Dropout, Flatten, Dense 

from keras.utils.np_utils import to_categorical 

from keras import optimizers 

from keras.preprocessing import image 

from keras.applications.vgg16 import preprocess_input 

import Decoder 

import sys 

import warnings 

 

if not sys.warnoptions: 

warnings.simplefilter("ignore") 

 

print("Initialising Encoder") 
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conv_base = VGG16(weights='imagenet', 

include_top=False, 

input_shape=(150, 150, 3)) 

print("Encoder Initialised") 

 

class Encoder: 

 path='' 

 conv_base=0 

 

 def encode(self,image): 

     image=self.preprocess(image) 

 feat_vect=self.conv_base.predict(image) 

 feat_vect=np.reshape(feat_vect,4*4*512) 

     return feat_vect 

 

 def preprocess(self,image_path): 

 img=image.load_img(image_path,target_size=(150,150)) 

     x=image.img_to_array(img) 

     x=np.expand_dims(x,axis=0) 

     x=preprocess_input(x) 

     return x 

 

 def __init__(self,path): 

  print("Encoding 

Phase*******************************") 

  self.path=path 

  self.conv_base=conv_base 

  feature_map={} 

  feature_map[path]=self.encode(path) 

  print("Picture 

Encoded******************************") 
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  print("Decoding 

Phase*******************************") 

  Decoder.Decoder(feature_map) 

 

 

Decoder.py 

 

# %tensorflow_version 1.x 

 

import os 

import h5py 

import json 

import numpy as np 

import pandas as pd 

from numpy import array 

from PIL import Image 

import matplotlib.pyplot as plt 

import pickle 

from pickle import load,dump 

import keras 

from keras.layers import Input, Embedding, LSTM, Dense, 

BatchNormalization,Dropout 

from keras.models import Model 

from keras.preprocessing.sequence import pad_sequences 

import sys 

import warnings 

 

if not sys.warnoptions: 

warnings.simplefilter("ignore") 

 

print("Initialising Decoder") 
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max_length=51 

ixtoword=load(open('data/vocabulary/ixtoword.pkl','rb')) 

wordtoix=load(open('data/vocabulary/wordtoix.pkl','rb')) 

 

embedding_dim=200 

vocab_size=len(ixtoword) 

embedding_matrix=load(open('data/embeddings/embedding_matrix

.npy')) 

print('Decoder Initialised!') 

 

class Decoder: 

 model=0 

 

 def __init__(self,feature): 

  self.createModel() 

  print("Model Initialised") 

  pic=list(feature.keys())[0] 

  image=feature[pic].reshape(1,8192) 

  print("Caption 

Generated:",self.generateCaption(self.model,image)) 

 

 

 def createModel(self): 

  inputs1=Input(shape=(4*4*512,)) 

  fe1=Dropout(0.25)(inputs1) 

  fe2=Dense(256,activation='relu')(fe1) 

  bn=BatchNormalization()(fe2) 

 

  inputs2=Input(shape=(max_length,)) 

 

 se1=Embedding(vocab_size,embedding_dim,mask_zero=True)(

inputs2) 
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  se2=Dropout(0.25)(se1) 

  se3=LSTM(256,return_sequences=True)(se2) 

  se4=LSTM(256)(se3) 

 

  decoder1=keras.layers.add([bn,se4]) 

  decoder2=Dense(256,activation='relu')(decoder1) 

 

 outputs=Dense(vocab_size,activation='softmax')(decoder2

) 

 

 

 self.model=Model(inputs=[inputs1,inputs2],outputs=outpu

ts) 

 

 

 self.model.layers[2].set_weights([embedding_matrix]) 

  self.model.layers[2].trainable=False 

 

 

 self.model.compile(loss='categorical_crossentropy',opti

mizer='adam') 

 

 

 self.model.load_weights('data/model/model_weights_70_st

acked.h5') 

 

 def generateCaption(self,model,photo): 

  in_text='<start>' 

  for i in range(max_length): 

   sequence=[ixtoword[w.lower()] for w in 

in_text.split() if w.lower() in ixtoword] 

  

 sequence=pad_sequences([sequence],maxlen=max_length) 

  

 yhat=model.predict([photo,sequence],verbose=0) 
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   yhat=np.argmax(yhat) 

   # print('yhat:{}'.format(yhat)) 

   word=wordtoix[yhat] 

   # print(word) 

   in_text+=' '+word 

   if word=='<end>': 

     break; 

   final=in_text.split() 

   final=final[1:-1] 

   final=' '.join(final) 

  return final 
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