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Abstract

In recent years, the malware industry has become a well organized market 
involving large amounts of money. Well funded, multi-player syndicates 
invest heavily in technologies and capabilities built to evade traditional 
protection, requiring anti-malware vendors to develop counter mechanisms 
for finding and deactivating them. In the meantime, they inflict real 
financial and emotional pain to users of computer systems. One of the 
major challenges that anti-malware faces today is the vast amounts of data 
and files which need to be evaluated for potential malicious intent. For 
example, Microsoft's real-time detection anti-malware products are present 
on over160M computers worldwide and inspect over 700M computers 
monthly. This generates tens of millions of daily data points to be analyzed 
as potential malware. One of the main reasons for these high volumes of 
different files is the fact that, in order to evade detection, malware authors 
introduce polymorphism to the malicious components. This means that 
malicious files belonging to the same malware "family", with the same 
forms of malicious behavior, are constantly modified and/or obfuscated 
using various tactics, such that they look like many different files.

In order to be effective in analyzing and classifying such large amounts of 
files, we need to be able to group them into groups and identify their 
respective families. In addition, such grouping criteria may be applied to 
new files encountered on computers in order to detect them as malicious 
and of a certain family.
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INTRODUCTION

1.1 Introduction

Malware refers to malicious software perpetrators dispatch to infect 
individual computers or an entire organization’s network. It exploits target 
system vulnerabilities, such as a bug in legitimate software (e.g., a browser 
or web application plugin) that can be hijacked. A malware infiltration can 
be disastrous — consequences include data theft, extortion or the crippling 
of network systems.Malware is one of the most serious security threats on 
the Internet today. In fact, most Internet problems such as spam e-mails 
and denial of service attacks have malware as their underlying cause. That 
is, computers that are compromised with malware are often networked 
together to form botnets, and many attacks are launched using these 
malicious, attacker-controlled networks.In order to deal with the new 
malware generated, new techniques to detect them and prevent any 
damage caused by them.One of the major challenges that anti-malware 
faces today is the vast amounts of data and files which need to be 
evaluated for potential malicious intent. For example, Microsoft's real-time 
detection anti-malware products are present on over160M computers 
worldwide and inspect over 700M computers monthly. This generates tens 
of millions of daily data points to be analyzed as potential malware. One of 
the main reasons for these high volumes of different files is the fact that, in 
order to evade detection, malware authors introduce polymorphism to the 
malicious components. This means that malicious files belonging to the 
same malware "family", with the same forms of malicious behavior, are 
constantly modified and/or obfuscated using various tactics, such that they 
look like many different files.

In order to be effective in analyzing and classifying such large amounts of 
files, we need to be able to group them into groups and identify their 
respective families. In addition, such grouping criteria may be applied to 
new files encountered on computers in order to detect them as malicious 
and of a certain family.
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Fig 1.1: Analysis by Norton about Cybercrimes.

1.2 Problem Statement

One of the major challenges that anti-malware faces today is the vast 
amounts of data and files which need to be evaluated for potential 
malicious intent.Malicious files belonging to the same malware "family", 
with the same forms of malicious behaviour, are constantly modified 
and/or obfuscated using various tactics, such that they look like many 
different files.

In order to be effective in analysing and classifying such large amounts of 
files, we need to be able to group them into groups and identify their 
respective families. 

1.3 Objectives
Trim our dataset
Classify malware into different families
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1.4 Methodology

For this problem, we are using the unprecedented malware dataset by 
Microsoft for grouping variants of malware files into their respective 
families.

We are provided with a set of known malware files representing a mix of 
9 different families. Each malware file has an Id, a 20-character hash value 
uniquely identifying the file, and a Class, an integer representing one of 9 
family names to which the malware may belong:
1. Ramnit       
2. Lollipop

3. Kelihos_ver3

4. Vundo

5. Simda

6. Tracur

7. Kelihos_ver1

8. Obfuscator.ACY

9. Gatak

the raw data contains the hexadecimal representation of the file's binary 
content, without the PE header (to ensure sterility). We were also provided 
a metadata manifest, which is a log containing various metadata 
information extracted from the binary, such as function calls, strings, etc. 
This was generated using the IDA disassembler tool.
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LITERATURE REVIEW

(2.1) Terminologies
(a). Machine Learning- Machine Learning calculations are a kind of 
calculations that are a part of man-made brainpower and that makes the 
framework or the product application to be sufficiently keen to have the 
option to progressively precise without being expressly customized and 
can anticipate results. The principle thought behind these kind of 
calculations is that it gets input information as content or pictures and the 
framework or the model is prepared with the factual contributions to 
distinguish or foresee the yield and even refreshed the yields as
new information gets accessible. It requires the calculation to look through 
the informational collection and search for examples or likenesses and 
controlling orchanging the framework as needs be.

Fig 2.1: Introduction to ML
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(b). How machine learning works

Fig 2.2: ML algorithm workflow

The methodology of AI starts with the variety of data or discernments as 
the information dataset which can be as pictures, substance, tables, etc. 
Further,various predefined AI counts are applied to the information data 
which either orchestrate the data into social occasions or perceives plans 
among the dataset to anticipate the yield and give appropriate results. 
Man-made intelligence figurings are roughly requested into controlled 
and solo learning computations.

(c). Types of Machine Learning
Supervised Machine learning- This sort of estimations work for a dataset
which is presently being set up by past yields and consequences of the past
using named data to anticipate the aftereffect of the new data. For this
circumstance the known dataset is destitute down, the count by then 
conveys an initiated limit which help in gauge of the yield estimations of 
new data. It can similarly inspect the data and the outcome and appear 
differently in relation to the as of late set away data with see botches and 
as prepared tochange and set up the model suitably..
Unsupervised Machine Learning- This sort of not exactly equivalent to
coordinated AI estimations as this counts are used when the model isn't set 
up before neither it is described nor it is named. Independent learning
estimations make the system to initiate a covered structure or model in the
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unlabelled dataset and anticipate potential results with the usage of such
models while emptying the abnormalities.

Semi-Supervised Machine Learning-The semi-coordinated AI figurings 
are counts which uses advantages of both controlled and solo AI 
estimations for setting up the dataset and likewise makes a great deal of 
productive and momentous classifiers. In these sort of estimations, the 
model uses both named and unlabelled data for the planning and it by and 
large requires a constrained amount of named data and a reasonably 
colossal number of unlabelled data which are used simultaneously to set 
up the model. This is used for redesigning the precision and the gauge 
limits of the model and as needs be consistently used by virtue of data 
which requires both talented and significant hotspots for getting ready and 
picking up from it.
Reinforcement Machine Learning-The rule thought of help learning is 
that it is compensate based getting ready in which the model collaborates 
with the earth by doing exercises and discovering botches or rewards. The 
most relevant characteristics of help learning are the experimentation and 
conceded compensate. For this circumstance the model increases from its 
mistakes or bungles and the model is made to team up with the machines 
to normally choose the outcome and the ideal direct to overhaul the 
working and for execution help.

Fig 2.3: Types of machine learning
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(d). Machine Learning Algorithms-
This segment contains of different ML calculations which are to be utilized 
in the task and talked about-
- Nearest Neighbors- KNN or K-nearest neighbors is a sort of calculation 
which can be utilized both for relapse and grouping issues however is for 
the most part utilized in arrangement issues. This calculation is simple in 
elucidation and requires exceptionally low computation time and along 
these lines is a generally utilized ML calculation. The K in this calculation 
is the quantity of neighbors which are characterized by the client. In this 
calculation we utilize the Euclidean separation to quantify the K nearset 
neighbors of the information point and foresee the yield as per its 
neighbors.

Fig 2.4: Formulae used for calculating nearset distance.
-Naïve Bayes- Naive Bayes hypothesis is a kind of order calculation 
which can be utilized for both double and multi class arrangement issues. 
This hypothesis is called so on the grounds that it has its underlying 
foundations of Bayes hypothesis.Innocent Bayes is regularly spoken to by 
probabilities. In this model theinformation is put away as probabilities for 
an educated model.
Equation- P(h|d) = (P(d|h)*P(h))/ P(d)
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-Decision Trees- Decision tree calculation is a sort of directed learning
calculation wherein an information structure is utilized to tackle an issue. 
For this situation the leaf hub is alluded to as the class mark and the 
interior hubs of the tree speak to the qualities. They can take care of the 
issues of both arrangement and relapse. At first, we consider the entire 
dataset as the root and clear cut element esteems are liked and the 
persistent qualities are first made discrete qualities before utilizing them to 
fabricate the model. At that point measurable techniques are utilized for 
requesting the properties as inner hub or root.

Equation-

Linear Regression- Linear regression is a calculation which utilizes the 
measurable ideas and models a connection between the information and 
yield numerical qualities. The model is spoken to by a direct condition 
which joins theinfo estimations of a particular set and predicts the yield for 
a lot of that information esteems.
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Fig 2.5: Pictorial representation of example of LR.
 Support Vector Machines-SVM is a regulated AI calculation which is
ordinarily utilized for both relapse and characterization issues. It is broadly 
utilized in arrangement issues where every datum thing is plotted in n-
dimensional space and n characterizes the highlights present and the 
estimation of each element is the estimation of each organize. Further, a 
different hyper plane is made to separate the two classes.
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Fig 2.6: Portrayal of SVM.

 
Table 2.1:Distinction between different ML Algorithms
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(e). Interpretation of Performance Measures
There are different strategies to assess the exhibition of the calculations. 
One of these techniques is to decide the region under the bend or the ROC 
bend and different parameters which are otherwise called Confusion 
Metrics. To assess the exhibition proportion of the order model for a 
dataset that gives the genuine qualities are known, the perplexity 
framework table is utilized.
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Table 2.2: Confusion Matrix

 True Positives (TP) - These are the qualities which are effectively 
anticipated and are sure qualities which can be depicted as the positive 
estimation of real class and positive estimation of anticipated class. It is 
signified by TP.
 

 True Negatives (TN) - These are the qualities which are wrongly 
anticipated however is valid in genuine for example - when we have 
positive estimations of genuine class however refutation in anticipated 
class.

  False Positives (FP) –These are the qualities which are wrongly 
anticipated however is valid in genuine for example - when we have 
positive estimations of real class however invalidation in anticipated class.
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  False Negative (FN) – These are the qualities which are wrongly 
anticipated and negative in real class.

Fig 2.7: Pictorial representation of confusion matrix

Further, we investigate more parameters of execution which are exactness,
accuracy, Recall and F1 score.

   Accuracy – Accuracy is the most common execution measure and it is 
basically an extent of adequately foreseen recognition to the total 
discernments. One may envision that, in case we have high precision, our 
model is perfect. Really, precision is an uncommon measure yet exactly 
when you have symmetric datasets where estimations of bogus positive 
and bogus negatives are generally same. Thusly, you have to look at 
changed parameters to survey the execution of your model. 
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Equation = TP+TN/TP+FP+FN+TN

  Precision - Precision is the extent of precisely foreseen positive 
discernments to the total foreseen positive recognitions. The request that 
this estimation answer is of all voyagers that named as suffer, what number 
of truly persevere? Highaccuracy relates to the low bogus positive rate.

Equaation = TP/TP+FP

   Recall (Sensitivity) - Review is the extent of viably foreseen positive
recognitions to the all discernments in real class - yes. The request survey 
answers is: Of the significant number of explorers that truly suffer, what 
number of did we mark?

Equation = TP/TP+FN

   F1 Score -F1 Score is the weighted typical of Precision and Recall. 
Therefore,this score thinks about both bogus positives and bogus 
negatives. Naturally it isn't as clear as precision, yet F1 is regularly more 
important than accuracy, especially in case you have an uneven class 
movement. Accuracy works best if bogus positives and bogus negatives 
have practically identical cost. In case the cost of bogus positives and 
bogus negatives are out and out various, it's more brilliant to
look at both Precision and Recall.

Equation = 2*(Recall * Precision) / (Recall + Precision)
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(f) Deep Learning-

Deep learning is a progressively perplexing and insightful sub 
classification of AI which has its calculations motivated by the working 
and structure of the human cerebrum comprehensively known as Artificial 
neural system. What's more, it additionally alludes to the assortment of 
methods which are utilized for learning in neural system with various 
layers. Counterfeit Neural Network or ANN are the kind of neural system 
model which takes its motivation and chips away at the essential thought 
of the sensory systems and the handling of data in human cerebrum to gain 
from information. Here, the learning components can be either directed, 
semi-managed or solo. Profound learning has been demonstrated effective
in different fields and brought about progressively practical learning of 
machines.
Its uses ranges from the field of medication structure to the traffic 
expectation and furthermore for the item acknowledgment. A profound 
neural system is not quite the same as a neural system due to the quantity 
of layers. While the execution of profound learning, we experienced two 
primary issues, for example, 1) the computational power required for the 
way toward preparing the model was higher than that of the framework 
accessible and in this way requires more opportunity forcalculation. 2) 
Another issue that experienced during the usage is the inclination
disappearing issue, that is, in a neural system that has actuation capacities, 
for example, the hyperbolic digression or the sigmoid and the angle extend 
is (- 1,1) or [0,1), the backpropagation is normally processed by chain rule, 
increasing k to this little numbers from the yield layer through a k-layer 
organize, which implies that the slope diminished exponentially with k. 
Coming about of this is the front layers of the model trains slowly than the 
other layers.
(g) Perceptrons
The most essential and the early regulated learning calculation is the 
perceptron and it is the littlest structure square of the system that is 
Artificial Neural Network.
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The working of the perceptrons is by taking numerous information sources
(x1,x2… … xj) and creation of a solitary yield (y). Likewise, weighted 
data sources were additionally considered to help decide the significance 
of particular contributions to the yield. The subsequent yield is either 0 or 
1 and it is possibly dictated by checking if the weighted whole is more 
prominent than 0 or under 0.

Weighted Sum- Σj wj * xj + b
{ 1: if w * x + b > 0
Output =
0: if w * x + b <= 0 }

Be that as it may, as the perceptron just gives the yield as 0 or 1, it makes it
extremely troublesome or about difficult to broaden the working and 
functionalities of the model to have the option to chip away at order 
errands having numerous classes. Besides, this issue can be settled by 
having various perceptrons in a layers ensuring that each perceptron in the 
layer acquires a similar info and all the perceptrons are liable for the yield 
work. The Artificial Neural Network (ANN) is just perceptrons with more 
than one layers though the perceptron is simply an ANN with single layer, 
which is frequently the yield layer having just 1 neuron.

(h) Loss Function

The exhibition of the neural system is estimated by a capacity which is 
called as the cost capacity or the misfortune work which helps in 
estimating the inconsistency between the expectation by the calculations 
and the right name if the forecast or the aggregate arrangement of forecast 
is given alongside the name or alot of marks. Among the different cost 
work accessible the most basic and the usually utilized in neural systems is 
the mean squared blunder (MSE).
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A definitive objective of preparing the neural systems is to limit the
expense/misfortune capacity and locate the individual loads and 
inclinations that do as such. For this method, we utilized a calculation 
which called as angle drop calculation.

17



SYSTEM DEVELOPMENT

(3.1) System Requirements
The calculations that are being actualized in this undertaking requires 
some
nonexclusive framework as it requires preparing of calculations.
  Windows 10 (64-bit)
  ANACONDA
  Python
  4 GB RAM
  Intel(R) Core(TM) i3-3120M CPU @ 2.50 GHz

(3.2) Reason for using Python
Python is a programming language with an enormous group of spectators 
and it is extremely straightforward and can be effectively coherent. 
Besides, python offers the assortment of bundles which makes the most 
scary calculations or undertakings less difficult. Python has libraries for 
pretty much every usable document for example - with working with 
pictures, working with content or working with sound records. In any 
event, when working with another OS, python is entirely pliant.
Python has an enormous network which makes it simpler to look for help 
and tips and deceives.

(3.3) Reason for using ANACONDA
Anaconda is broadly well known as it gives every one of the libraries 
preintroduced and make the client free from issue of the generally 
introducing all libraries. It has around 100 bundles which can be utilized 
for information science, AI or factual investigation.

(3.4) SCIKIT LEARN
Scikit learn is a library in python typically utilized for AI and is fit for 
including different relapse, grouping and bunching calculations.
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(3.5) PANDAS
It is an open source python library which provides better results. This 
library is anything but difficult to utilize and even give information 
structure and information examination devices. This library is broadly 
utilized in every scholarly field, business and mechanical fields.

(3.6) KERAS
It is an open source python library that is commonly utilized for neural 
system. It is regularly intended to run quick experimentation of numerous 
intricate profound learning calculations. It as a rule centers around being 
more easy to use, progressively particular and increasingly extensible.

(3.7) Pillow
It is an open source python library that is utilized for imaging and 
furthermore includes bolsters in the content for opening, likewise 
controlling, further sparing a wide range of picture record positions. It 
offers standard methods for doing picture control. This incorporates per-
pixel controls and concealing and straightforwardness dealing with.

(3.8) TENSERFLOW
It is a free open source python library that is use for dataflow and 
differentiableprogramming which is utilized over a specific scope of 
errands. The tenserflow canbe characterized as an emblematic math library 
which can likewise be utilized forsome, AI applications for instance neural 
systems.
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In order to be effective in analysing and classifying such large amounts of 
files, we need to be able to group them into groups and identify their 
respective families. In addition, such grouping criteria may be applied to 
new files encountered on computers in order to detect them as malicious 
and of a certain family.

For this problem, we are using the unprecedented malware dataset by 
Microsoft for grouping variants of malware files into their respective 
families.

We are provided with a set of known malware files representing a mix of 9 
different families. Each malware file has an Id, a 20-character hash value 
uniquely identifying the file, and a Class, an integer representing one of 9 
family names to which the malware may belong:

1. Ramnit

2. Lollipop

3. Kelihos_ver3

4. Vundo

5. Simda

6. Tracur

7. Kelihos_ver1

8. Obfuscator.ACY

9. Gatak

the raw data contains the hexadecimal representation of the file's binary 
content, without the PE header (to ensure sterility). We were also provided 
a metadata manifest, which is a log containing various metadata 
information extracted from the binary, such as function calls, strings, etc. 
This was generated using the IDA disassembler tool.
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Feature Engineering :
Initial feature engineering consisted of extracting various keyword counts 
from the ASM files as well as the entropy and file size from the BYTE 
files of the 10868 malware samples in the training set. 
Image files of the first 1000 bytes of the ASM and BYTE files were 
created and combined with keyword and entropy data. This resulted in a 
set of 2018 features.
Flow control graphs and call graphs were generated for each ASM sample. 
A feature set was then generated from the graphs, including graph 
maximum delta, density, diameter and function
counts etc.
Feature Selection :
Statistical analysis of the feature set using chi-squared tests to remove 
features that are independent of the class labels or have low variance. The 
BYTE file images were found to be weak
learners and were removed from the feature set. A comparison of the best 
features from the chi-squared
tests with reduced feature sets of between 10% - 50% of the original 
features.
In this feature selection we will closely examine each and every feature, 
how a particular feature going to affect the malware category, in this we 
will only keep necessary features like features not having variance very 
close to 0 or very close to 1 and we will apply some pre-defined tests to 
get correct features for training and testing in order to achieve high 
accuracy with minimum error.
There might be high possibility of data missing from the dataset, in order 
to overcome this problem, we have may possibilities like deleting that 
particular entry or filling the null entries on basis of their frequency or 
median/mean for categorical or Numerical data respectively.
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Now Firstly load our data set 
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Here lr represent the model type, and you Can see our Data Splitted into 3 

Folds and from each fold one part(white) used for training and other 

part(orange) for testing and collectively returning mean of scores

 CV= how many folds you want in data

So similarly we are splitting our data here into 10 folds to get more 

accuracy in our scores

An extra-trees classifier.

This class implements a meta estimator that fits a number of randomized 

decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and 

uses averaging to improve the predictive accuracy and control over-fitting.

So  Log  Loss  is  basically  probability  of  Comparison  between  the 

lograthmic value of Predicted data and Original  Data.  And as Log loss 

approaches to 0 it shows model with higher accuracy.
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Selection Comparison

Testing with an ExtraTreesClassifier and 10-fold cross validation produced 
the following results:

- Original ASM Keyword Counts (1006 features): 
  logloss = 0.034
Since when we performed our Testing on Original Data Set Without 
excluding any features and considering all features equally important we 
get to know that the accuracy of our result was less as compared to other in 
this comparison we got log loss of 0.034.

- 10% Best ASM Features with Entropy and Image Features     (202 
features):
 logloss = 0.0174
Now when we started testing the Dataset by considering only 20% of 
features we saw an increment in accuracy and decrease in log loss.

– 20% Best ASM with Entropy and Image Features (402 features):
–  logloss = 0.0164

- 30% Best ASM with Entropy and Image Features plus Feature Statistics 
(623 features): 
  multiclass logloss = 0.0133
  accuracy score = 0.9978
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Confusion Matrix:
  [[1540    0    0    0    0    1    0    0    0]
  [   1 2475    2    0    0    0    0    0    0]
  [   0    0 2942    0    0    0    0    0    0]
  [   1    0    0  474    0    0    0    0    0]
  [   2    0    0    0   38    2    0    0    0]
  [   3    0    0    0    0  748    0    0    0]
  [   1    0    0    0    0    0  397    0    0]
  [   0    0    0    0    0    0    0 1225    3]
  [   0    0    0    0    0    0    0    8 1005]]
- 40% Best ASM and image features with feature statistics:
  ExtraTreesClassifier with 1000 estimators on 10868 training samples and 
823 features 
  using 10-fold cross validation:
    multiclass logloss = 0.0135
    accuracy score = 0.9976
    Confustion Matrix:
    [[1541    0    0    0    0    0    0    0    0]
    [   1 2475    2    0    0    0    0    0    0]
    [   0    0 2942    0    0    0    0    0    0]
    [   1    0    0  474    0    0    0    0    0]
    [   5    0    0    0   37    0    0    0    0]
    [   5    0    0    0    0  746    0    0    0]
    [   1    0    0    0    0    0  397    0    0]
    [   0    0    0    0    0    0    0 1227    1]

    [   0    0    0    0    0    0    0    9 1004]]
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GRID SEARCH
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Model Selection
Selection of candidate models using GridSearchCV to find optimal 
classifier hyper-parameters. 
- SVM:
- ExtraTrees:
- XGBoost: 30% Best Features
           logloss: 0.0080
           accuracy: 0.9981
           Confusion Matrix:
          [[1540    0    0    0    0    1    0    0    0]
           [   2 2475    0    1    0    0    0    0    0]
           [   0    0 2941    0    0    0    1    0    0]
           [   0    0    0  474    0    1    0    0    0]
           [   1    0    0    0   41    0    0    0    0]
           [   4    0    0    0    1  746    0    0    0]
           [   0    0    0    0    0    0  398    0    0]
           [   0    0    0    0    0    0    0 1227    1]
           [   0    0    0    0    0    0    0    8 1005]]               

- NaiveBayes:
- KNN:
Initial feature engineering consisted of extracting various keyword counts 
from the ASM files as well as the entropy and file size from the BYTE 
files of the 10868 malware samples in the training set. Image files of the 
first 1000 bytes of the ASM and BYTE files were created and combined 
with keyword and entropy data. This resulted in a set of 2018 features.
Flow control graphs and call graphs were generated for each ASM sample. 
A feature set was then generated from the graphs, including graph 
maximum delta, density, diameter and function counts etc.
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Performance Analysis

Feature Engineering :
Initial feature engineering consisted of extracting various keyword counts 
from the ASM files as well as the entropy and file size from the BYTE 
files of the 10868 malware samples in the training set. 
Image files of the first 1000 bytes of the ASM and BYTE files were 
created and combined with keyword and entropy data. This resulted in a 
set of 2018 features.
Flow control graphs and call graphs were generated for each ASM sample. 
A feature set was then generated from the graphs, including graph 
maximum delta, density, diameter and function
counts etc.
Feature Selection :
Statistical analysis of the feature set using chi-squared tests to remove 
features that are independent of the class labels or have low variance. The 
BYTE file images were found to be weak
learners and were removed from the feature set. A comparison of the best 
features from the chi-squared
tests with reduced feature sets of between 10% - 50% of the original 
features.
In this feature selection we will closely examine each and every feature, 
how a particular feature going to affect the malware category, in this we 
will only keep necessary features like features not having variance very 
close to 0 or very close to 1 and we will apply some pre-defined tests to 
get correct features for training and testing in order to achieve high 
accuracy with minimum error.
There might be high possibility of data missing from the dataset, in order 
to overcome this problem, we have may possibilities like deleting that 
particular entry or filling the null entries on basis of their frequency or 
median/mean for categorical or Numerical data respectively.
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Selection Comparison

Testing with an ExtraTreesClassifier and 10-fold cross validation produced 
the following results:

- Original ASM Keyword Counts (1006 features): 
  logloss = 0.034
Since when we performed our Testing on Original Data Set Without 
excluding any features and considering all features equally important we 
get to know that the accuracy of our result was less as compared to other in 
this comparison we got log loss of 0.034.

- 10% Best ASM Features with Entropy and Image Features     (202 
features):
 logloss = 0.0174
Now when we started testing the Dataset by considering only 20% of 
features we saw an increment in accuracy and decrease in log loss.

– 20% Best ASM with Entropy and Image Features (402 features):
–  logloss = 0.0164

- 30% Best ASM with Entropy and Image Features plus Feature Statistics 
(623 features): 
  multiclass logloss = 0.0133
  accuracy score = 0.9978
  

Confusion Matrix:
  [[1540    0    0    0    0    1    0    0    0]
  [   1 2475    2    0    0    0    0    0    0]
  [   0    0 2942    0    0    0    0    0    0]
  [   1    0    0  474    0    0    0    0    0]
  [   2    0    0    0   38    2    0    0    0]
  [   3    0    0    0    0  748    0    0    0]
  [   1    0    0    0    0    0  397    0    0]
  [   0    0    0    0    0    0    0 1225    3]
  [   0    0    0    0    0    0    0    8 1005]]
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- 40% Best ASM and image features with feature statistics:
  ExtraTreesClassifier with 1000 estimators on 10868 training samples and 
823 features 
  using 10-fold cross validation:
    multiclass logloss = 0.0135
    accuracy score = 0.9976
    Confustion Matrix:
    [[1541    0    0    0    0    0    0    0    0]
    [   1 2475    2    0    0    0    0    0    0]
    [   0    0 2942    0    0    0    0    0    0]
    [   1    0    0  474    0    0    0    0    0]
    [   5    0    0    0   37    0    0    0    0]
    [   5    0    0    0    0  746    0    0    0]
    [   1    0    0    0    0    0  397    0    0]
    [   0    0    0    0    0    0    0 1227    1]

    [   0    0    0    0    0    0    0    9 1004]]

names = ["Nearest Neighbors", 
         #"Linear SVM", 
         #"RBF SVM", 
         "Decision Tree",
         "Random Forest", 
         "AdaBoost", 
         "Naive Bayes", 
         #"Linear Discriminant Analysis",
         #"Quadratic Discriminant Analysis",
         "Extra Trees"]
classifiers = [
    KNeighborsClassifier(),
    #SVC(kernel="linear", C=0.025, probability=True),
    #SVC(gamma=2, C=1, probability=True),
    DecisionTreeClassifier(max_depth=5),
    RandomForestClassifier(max_depth=5, n_estimators=1000),
    AdaBoostClassifier(),
    GaussianNB(),
    #LinearDiscriminantAnalysis(),
    #QuadraticDiscriminantAnalysis(),
    ExtraTreesClassifier(n_estimators=1000)]
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def run_cv(X,y, clf):

    # Construct a kfolds object
    kf = KFold(len(y),n_folds=10,shuffle=True)
    y_prob = np.zeros((len(y),9))
    y_pred = np.zeros(len(y))
    
    # Iterate through folds
    for train_index, test_index in kf:
        #print(train_index.shape)
        X_train = X.loc[train_index,:]
        X_test = X.loc[test_index,:]
        y_train = y[train_index]

        clf.fit(X_train,y_train)
        y_prob[test_index] = clf.predict_proba(X_test)
        y_pred[test_index] = clf.predict(X_test)
    
    return y_prob, y_pred

# iterate over classifiers
ytrain = np.array(y)
for name, clf in zip(names, classifiers):
  print(name)
  prob, pred = run_cv(X,ytrain,clf)
  print "logloss: %.3f" % log_loss(y, prob)
  cm = confusion_matrix(y, pred)
  print(cm)
#score = clf.score(X_test, y_test)
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Nearest Neighbors
1.708
[[ 61   1   3   0   0   1   0   0   0]
 [  7 111   0   0   1   2   0   0   0]
 [  0   1 147   0   0   0   0   0   0]
 [  0   0   0   2   1   0   0   2   1]
 [  0   0   0   0   3   0   0   0   0]
 [  1   1   3   0   0  18   0   1   4]
 [  0   1   2   0   1   1  18   0   0]
 [  0   0   1   3   0   1   0  55   4]
 [  0   0   2   2   0   0   0   1  36]]

Decision Tree
1.546
[[ 55   2   0   0   0   5   2   1   1]
 [  3 114   0   0   0   0   2   1   1]
 [  0   0 141   0   0   1   5   0   1]
 [  2   0   0   0   1   1   1   0   1]
 [  0   0   0   2   0   1   0   0   0]
 [  4   1   0   0   0  19   3   1   0]
 [  2   0   0   0   0   0  21   0   0]
 [  2   0   1   0   0   4   0  57   0]
 [  1   0   0   0   2   3   0   0  35]]

Random Forest
0.297
[[ 63   0   2   0   0   0   0   0   1]
 [  4 115   0   0   0   0   0   2   0]
 [  0   0 147   0   0   0   0   0   1]
 [  0   0   0   0   0   0   0   6   0]
 [  0   0   0   0   0   0   0   3   0]
 [  3   0   0   0   0  22   1   1   1]
 [  0   0   2   0   0   0  20   1   0]
 [  2   0   0   0   0   0   0  62   0]
 [  0   0   0   0   0   0   0   1  40]]
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AdaBoost
2.015
[[  0  53   1   0   1   0   1  10   0]
 [  0 118   3   0   0   0   0   0   0]
 [  0  11 136   0   0   0   1   0   0]
 [  0   5   1   0   0   0   0   0   0]
 [  0   2   1   0   0   0   0   0   0]
 [  0  25   1   0   0   0   1   1   0]
 [  0   2   3   0   0   0  17   1   0]
 [  0  61   0   0   0   0   1   2   0]
 [  0  36   0   0   0   0   1   2   2]]

Naive Bayes
6.851
[[ 35   5   1   0   0  14   1   2   8]
 [  2  66   2   1   0   7   0   0  43]
 [  0   0 147   0   0   0   0   0   1]
 [  0   0   0   4   0   1   1   0   0]
 [  0   0   0   3   0   0   0   0   0]
 [  1   1   3   0   0  18   0   2   3]
 [  0   0   0   0   0   0  21   0   2]
 [  0   0   1   0   0   2   3  57   1]
 [  0   1   0   0   0   0   0   4  36]]

Extra Trees
0.185
[[ 64   0   0   0   0   0   0   0   2]
 [  2 116   0   0   0   0   0   3   0]
 [  0   0 146   0   0   0   0   2   0]
 [  0   0   0   4   0   0   0   2   0]
 [  0   0   0   0   2   0   0   1   0]
 [  2   0   0   0   0  24   0   1   1]
 [  0   0   1   0   0   0  20   2   0]
 [  0   0   1   0   0   0   0  63   0]
 [  0   0   0   0   0   0   0   0  41]]
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The performance of the ExtraTreesClassifier is optimal at around 30% of 
ASM and image features with highest variance plus sample statistics, 
entropy and file size. Adding call graph features produced a marginal 
improvement. It is possible that better classification accuracy would be
achieved by using an ensemble of different classifiers with the ASM, 
image and call graph feature sets as separate inputs to the various 
classifiers.
Cross-Validation of Model using cross validation Score
# Set the parameters by cross-validation

tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4],

                     'C': [1, 10, 100, 1000]},

                    {'kernel': ['linear'], 'C': [1, 10, 100, 1000]}]

print("# Tuning hyper-parameters for SVC")
print()

clfgrid = GridSearchCV(SVC(C=1), tuned_parameters, cv=10, n_jobs=4)

start = time()
clfgrid.fit(X_train, y_train)

print("Classification report:")
print("GridSearchCV took {:.2f} seconds.".format(time() - start))
print(" ")
y_pred = grid_search.predict(X_test)
print(classification_report(y_test, y_pred))
print(" ")
y_prob = grid_search.predict_proba(X_test)
print("logloss = {:.3f}".format(log_loss(y_test, y_prob)))
print("score = {:.3f}".format(accuracy_score(y_test, y_pred)))
cm = confusion_matrix(y_test, y_pred)
print(cm)
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Classification report:
GridSearchCV took 2183.53 seconds.
 
             precision    recall  f1-score   support

          1       0.99      1.00      1.00       135
          2       1.00      1.00      1.00       251
          3       1.00      1.00      1.00       292
          4       1.00      1.00      1.00        45
          5       1.00      1.00      1.00         2
          6       1.00      1.00      1.00        84
          7       1.00      0.98      0.99        47
          8       0.99      1.00      1.00       127
          9       1.00      0.99      1.00       104

avg / total       1.00      1.00      1.00      1087

 
logloss = 0.014
score = 0.998
[[135   0   0   0   0   0   0   0   0]
 [  0 251   0   0   0   0   0   0   0]
 [  0   0 292   0   0   0   0   0   0]
 [  0   0   0  45   0   0   0   0   0]
 [  0   0   0   0   2   0   0   0   0]
 [  0   0   0   0   0  84   0   0   0]
 [  1   0   0   0   0   0  46   0   0]
 [  0   0   0   0   0   0   0 127   0]
 [  0   0   0   0   0   0   0   1 103]]
Shannon's Entropy by malware class. A score of 0.0 means the bytes are all 
the same value, a score of 1.0 means every byte in the file has a different 
value.Shannon's Entropy by file size. A score of 0.0 means the bytes are all 
the same value, a score of 1.0 means every byte in the file has a different 
value.Assembler register EDX by ESI counts.
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Selecting Model as ExtraTreeClassifier 

n_jobs=4, criterion='gini')
p1, pred1 = run_cv(X,y,clf1)
print("logloss = {:.3f}".format(log_loss(y, p1)))
print("score = {:.3f}".format(accuracy_score(y, pred1)))
cm = confusion_matrix(y, pred1)
print(cm)
(array([   38,    41,    63, ..., 10845, 10854, 10866]), array([    0,     1,     
2, ..., 10864, 10865, 10867]))
(array([    1,     7,    11, ..., 10855, 10857, 10862]), array([    0,     2,     3, ..., 
10865, 10866, 10867]))
(array([    8,    13,    18, ..., 10842, 10848, 10860]), array([    0,     1,     
2, ..., 10865, 10866, 10867]))
(array([    3,    17,    19, ..., 10851, 10858, 10863]), array([    0,     1,     
2, ..., 10865, 10866, 10867]))
(array([    4,    12,    23, ..., 10823, 10827, 10831]), array([    0,     1,     
2, ..., 10865, 10866, 10867]))
(array([    2,     6,    32, ..., 10856, 10859, 10864]), array([    0,     1,     3, ..., 
10865, 10866, 10867]))
(array([   10,    29,    37, ..., 10840, 10843, 10861]), array([    0,     1,     
2, ..., 10865, 10866, 10867]))
(array([   16,    20,    21, ..., 10807, 10819, 10833]), array([    0,     1,     
2, ..., 10865, 10866, 10867]))
(array([    0,    28,    39, ..., 10814, 10865, 10867]), array([    1,     2,     
3, ..., 10863, 10864, 10866]))
(array([    5,     9,    14, ..., 10820, 10834, 10839]), array([    0,     1,     2, ..., 
10865, 10866, 10867]))
logloss = 0.038
score = 0.993
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[[1537    0    0    0    0    0    0    4    0]
 [   5 2469    2    0    0    1    0    1    0]
 [   0    0 2941    0    0    1    0    0    0]
 [   1    0    0  468    0    1    0    5    0]
 [   1    1    0    0   37    0    0    2    1]
 [   3    1    0    0    1  742    0    2    2]
 [   0    0    0    0    0    0  398    0    0]
 [  25    0    3    2    0    3    2 1193    0]
 [   3    0    0    0    0    2    0    2 1006]]

X = combined_train_data.iloc[:,1:]
ylabels = sorted_train_labels.iloc[:,1:]
y = np.array(ylabels - 1)
y = y.flatten()
y

array([1, 7, 8, ..., 3, 3, 3], dtype=int64)

xgclf = xgb.XGBClassifier(objective="multi:softprob", nthread=4)

params     = {"n_estimators": [1000, 2000],
              "max_depth": [5, 10],
              "learning_rate": [0.1, 0.05]}

# run grid search
grid_search = GridSearchCV(xgclf, param_grid=params)
start = time()
grid_search.fit(X, y)

print("GridSearchCV took {:.2f} seconds.".format((time() - start)))
print(" ")
y_pred = grid_search.predict(X)
print(classification_report(y, y_pred))
print(" ")
y_prob = grid_search.predict_proba(X)
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print("logloss = {:.3f}".format(log_loss(y, y_prob)))
print("score = {:.3f}".format(accuracy_score(y, y_pred)))
cm = confusion_matrix(y, y_pred)
print(cm)
GridSearchCV took 6196.85 seconds.
 
             precision    recall  f1-score   support

          0       1.00      1.00      1.00      1541
          1       1.00      1.00      1.00      2478
          2       1.00      1.00      1.00      2942
          3       1.00      1.00      1.00       475
          4       1.00      1.00      1.00        42
          5       1.00      1.00      1.00       751
          6       1.00      1.00      1.00       398
          7       1.00      1.00      1.00      1228
          8       1.00      1.00      1.00      1013

avg / total       1.00      1.00      1.00     10868

 
logloss = 0.000
score = 1.000
[[1541    0    0    0    0    0    0    0    0]
 [   0 2478    0    0    0    0    0    0    0]
 [   0    0 2942    0    0    0    0    0    0]
 [   0    0    0  475    0    0    0    0    0]
 [   0    0    0    0   42    0    0    0    0]
 [   0    0    0    0    0  751    0    0    0]
 [   0    0    0    0    0    0  398    0    0]
 [   0    0    0    0    0    0    0 1228    0]
 [   0    0    0    0    0    0    0    0 1013]]
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Selecting Model as XGBoostClassifier

xgclf = xgb.XGBClassifier(n_estimators=1000, 
objective="multi:softmax", nthread=4)
prob, pred = run_cv(Xpoly,y,xgclf)
print("logloss: {:.4f}".format(log_loss(y, prob)))
print("accuracy: {:.4f}".format(accuracy_score(y, pred)))
cm = confusion_matrix(y, pred)
print(cm)
[    0     1     2 ..., 10865 10866 10867] [    8    16    21 ..., 10844 10849 
10864]
[    0     1     2 ..., 10864 10865 10866] [   23    25    38 ..., 10847 10857 
10867]
[    0     1     2 ..., 10865 10866 10867] [    7     9    10 ..., 10819 10861 
10863]
[    0     1     2 ..., 10865 10866 10867] [   29    36    40 ..., 10823 10824 
10832]
[    0     1     2 ..., 10865 10866 10867] [    6    14    18 ..., 10808 10836 
10860]
[    0     1     2 ..., 10865 10866 10867] [   11    26    32 ..., 10840 10841 
10848]
[    0     1     2 ..., 10864 10866 10867] [    4    12    17 ..., 10854 10858 
10865]
[    0     2     4 ..., 10865 10866 10867] [    1     3     5 ..., 10853 10855 
10859]
[    1     2     3 ..., 10865 10866 10867] [    0    31    54 ..., 10850 10851 
10856]
[    0     1     3 ..., 10864 10865 10867] [    2    15    30 ..., 10843 10862 
10866]

logloss: 0.0081
accuracy: 0.9982
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[[1541    0    0    0    0    0    0    0    0]
 [   2 2475    0    0    0    0    0    0    1]
 [   0    0 2941    0    0    0    1    0    0]
 [   0    0    0  474    0    1    0    0    0]
 [   1    0    0    0   41    0    0    0    0]
 [   4    0    0    0    1  746    0    0    0]
 [   0    0    0    0    0    0  398    0    0]
 [   0    0    0    0    0    0    0 1226    2]
 [   0    0    0    0    0    0    0    7 1006]]

The Confusion Matrix for ExtraTreeClassifier and XGBoostClassifier

Each Row and Column of the matrix is representing the Category of 
malware and X-axis represent Original Value and y-axis Represent 
Predicted Value.
For Comparison let’s see the 8th Category of Malware 
in ExtraTreeClassifier, and XGBoostClassifier. Since for 
XGBoostClassifier the 
Model Correctly Predicted 1226 Category as Category-8 and remaining 2 
as category-9, while talking about ExtraTreeClassifier it predicted only 

1193 as 
category-8 while wrongly predicted 25 category-1, 3 category-3, 2 

category-4, 
3 category-6 and 2 category-7 as category-8, which shows XGBoost model 

is a 
good classifier for predicting category,
Since we can see accuracy of XGboostClassifier is 99.82% while that of 
ExtraTreeClassifier is 99.7%.
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CONCLUSION

The best accuracy scores were achieved with XGBoost (99.82%) and 
ExtraTreesClassifier (99.76%) using a feature set of 623 ASM, image and 
entropy features. Marginal improvements could be achieved using 
additional features and ensemble methods, however due to the limited 
sample size further efforts are unlikely to produce significant 
improvements in prediction accuracy.
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