
MALWARE DETECTION USING MACHINE
LEARNING

Project report submitted in partial fulfilment of the requirement for the
degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By
Naimish Awasthi (161455)

Nishil Pagare (161307)

Under the supersvison of
Dr. Pradeep Kumar Gupta

to

Department of Computer Science & Engineering and
Information Technology

Jaypee University of Information Technology
Waknaghat, Solan-173234, Himachal Pradesh

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “ Malware
Detection using Machine Learning ” in partial fulfilment of the
requirements for the award of the degree of Bachelor of Technology in
Computer Science and Engineering/Information Technology submitted
in the department of Computer Science & Engineering and Information
Technology, Jaypee University of Information Technology Waknaghat is
an authentic record of my own work carried out over a period from August
2018 to December 2018 under the supervision of Dr. Pradeep Kumar
Gupta (Associate Professor).
The matter embodied in the report has not been submitted for the award of
any other degree or diploma.

(Signature)
Naimish Awasthi (161455)
Nishil Pagare (161307)

This is to certify that the above statement made by the candidate is true to
the best of my knowledge.

(Signature)
Dr. Pradeep Kumar Gupta
Associate Professor
Computer Science and Engineering and Information Technology
Dated:

i

Acknowledgement

We express our profound gratitude and deep regards to our project
supervisor and mentor Dr. Pradeep Kumar Gupta for his guidance and
support. He took keen interest and guided and encouraged us both in our
project titled “Malware Detection using Machine Learning”. The guidance
and mentorship shall carry us long way in our journey of life.
We would also like to thank all the staff members of Jaypee University of
Information Technology, Waknaghat for their timely support and all the
information they provided.
Lastly, we would like to thank our batch mates for their motivation without
which it would be impossible to complete this project.
Till the completion of our project by providing all the necessary
information for developing the project. The project development helped us
in research and we got to know a lot of new things in machine learning and
deep learning.

ii

Abstract

In recent years, the malware industry has become a well organized market
involving large amounts of money. Well funded, multi-player syndicates
invest heavily in technologies and capabilities built to evade traditional
protection, requiring anti-malware vendors to develop counter mechanisms
for finding and deactivating them. In the meantime, they inflict real
financial and emotional pain to users of computer systems. One of the
major challenges that anti-malware faces today is the vast amounts of data
and files which need to be evaluated for potential malicious intent. For
example, Microsoft's real-time detection anti-malware products are present
on over160M computers worldwide and inspect over 700M computers
monthly. This generates tens of millions of daily data points to be analyzed
as potential malware. One of the main reasons for these high volumes of
different files is the fact that, in order to evade detection, malware authors
introduce polymorphism to the malicious components. This means that
malicious files belonging to the same malware "family", with the same
forms of malicious behavior, are constantly modified and/or obfuscated
using various tactics, such that they look like many different files.

In order to be effective in analyzing and classifying such large amounts of
files, we need to be able to group them into groups and identify their
respective families. In addition, such grouping criteria may be applied to
new files encountered on computers in order to detect them as malicious
and of a certain family.

iii

Table of Content :

1. Introduction..1-3
2. Literature Survey..4-17
3. System Development...18-27
4. Performance Analysis...28-40
5. Conclusion...41

INTRODUCTION

1.1 Introduction

Malware refers to malicious software perpetrators dispatch to infect
individual computers or an entire organization’s network. It exploits target
system vulnerabilities, such as a bug in legitimate software (e.g., a browser
or web application plugin) that can be hijacked. A malware infiltration can
be disastrous — consequences include data theft, extortion or the crippling
of network systems.Malware is one of the most serious security threats on
the Internet today. In fact, most Internet problems such as spam e-mails
and denial of service attacks have malware as their underlying cause. That
is, computers that are compromised with malware are often networked
together to form botnets, and many attacks are launched using these
malicious, attacker-controlled networks.In order to deal with the new
malware generated, new techniques to detect them and prevent any
damage caused by them.One of the major challenges that anti-malware
faces today is the vast amounts of data and files which need to be
evaluated for potential malicious intent. For example, Microsoft's real-time
detection anti-malware products are present on over160M computers
worldwide and inspect over 700M computers monthly. This generates tens
of millions of daily data points to be analyzed as potential malware. One of
the main reasons for these high volumes of different files is the fact that, in
order to evade detection, malware authors introduce polymorphism to the
malicious components. This means that malicious files belonging to the
same malware "family", with the same forms of malicious behavior, are
constantly modified and/or obfuscated using various tactics, such that they
look like many different files.

In order to be effective in analyzing and classifying such large amounts of
files, we need to be able to group them into groups and identify their
respective families. In addition, such grouping criteria may be applied to
new files encountered on computers in order to detect them as malicious
and of a certain family.

1

Fig 1.1: Analysis by Norton about Cybercrimes.

1.2 Problem Statement

One of the major challenges that anti-malware faces today is the vast
amounts of data and files which need to be evaluated for potential
malicious intent.Malicious files belonging to the same malware "family",
with the same forms of malicious behaviour, are constantly modified
and/or obfuscated using various tactics, such that they look like many
different files.

In order to be effective in analysing and classifying such large amounts of
files, we need to be able to group them into groups and identify their
respective families.

1.3 Objectives
Trim our dataset
Classify malware into different families

2

1.4 Methodology

For this problem, we are using the unprecedented malware dataset by
Microsoft for grouping variants of malware files into their respective
families.

We are provided with a set of known malware files representing a mix of
9 different families. Each malware file has an Id, a 20-character hash value
uniquely identifying the file, and a Class, an integer representing one of 9
family names to which the malware may belong:
1. Ramnit
2. Lollipop

3. Kelihos_ver3

4. Vundo

5. Simda

6. Tracur

7. Kelihos_ver1

8. Obfuscator.ACY

9. Gatak

the raw data contains the hexadecimal representation of the file's binary
content, without the PE header (to ensure sterility). We were also provided
a metadata manifest, which is a log containing various metadata
information extracted from the binary, such as function calls, strings, etc.
This was generated using the IDA disassembler tool.

3

LITERATURE REVIEW

(2.1) Terminologies
(a). Machine Learning- Machine Learning calculations are a kind of
calculations that are a part of man-made brainpower and that makes the
framework or the product application to be sufficiently keen to have the
option to progressively precise without being expressly customized and
can anticipate results. The principle thought behind these kind of
calculations is that it gets input information as content or pictures and the
framework or the model is prepared with the factual contributions to
distinguish or foresee the yield and even refreshed the yields as
new information gets accessible. It requires the calculation to look through
the informational collection and search for examples or likenesses and
controlling orchanging the framework as needs be.

Fig 2.1: Introduction to ML

4

(b). How machine learning works

Fig 2.2: ML algorithm workflow

The methodology of AI starts with the variety of data or discernments as
the information dataset which can be as pictures, substance, tables, etc.
Further,various predefined AI counts are applied to the information data
which either orchestrate the data into social occasions or perceives plans
among the dataset to anticipate the yield and give appropriate results.
Man-made intelligence figurings are roughly requested into controlled
and solo learning computations.

(c). Types of Machine Learning
Supervised Machine learning- This sort of estimations work for a dataset
which is presently being set up by past yields and consequences of the past
using named data to anticipate the aftereffect of the new data. For this
circumstance the known dataset is destitute down, the count by then
conveys an initiated limit which help in gauge of the yield estimations of
new data. It can similarly inspect the data and the outcome and appear
differently in relation to the as of late set away data with see botches and
as prepared tochange and set up the model suitably..
Unsupervised Machine Learning- This sort of not exactly equivalent to
coordinated AI estimations as this counts are used when the model isn't set
up before neither it is described nor it is named. Independent learning
estimations make the system to initiate a covered structure or model in the

5

unlabelled dataset and anticipate potential results with the usage of such
models while emptying the abnormalities.

Semi-Supervised Machine Learning-The semi-coordinated AI figurings
are counts which uses advantages of both controlled and solo AI
estimations for setting up the dataset and likewise makes a great deal of
productive and momentous classifiers. In these sort of estimations, the
model uses both named and unlabelled data for the planning and it by and
large requires a constrained amount of named data and a reasonably
colossal number of unlabelled data which are used simultaneously to set
up the model. This is used for redesigning the precision and the gauge
limits of the model and as needs be consistently used by virtue of data
which requires both talented and significant hotspots for getting ready and
picking up from it.
Reinforcement Machine Learning-The rule thought of help learning is
that it is compensate based getting ready in which the model collaborates
with the earth by doing exercises and discovering botches or rewards. The
most relevant characteristics of help learning are the experimentation and
conceded compensate. For this circumstance the model increases from its
mistakes or bungles and the model is made to team up with the machines
to normally choose the outcome and the ideal direct to overhaul the
working and for execution help.

Fig 2.3: Types of machine learning

6

(d). Machine Learning Algorithms-
This segment contains of different ML calculations which are to be utilized
in the task and talked about-
- Nearest Neighbors- KNN or K-nearest neighbors is a sort of calculation
which can be utilized both for relapse and grouping issues however is for
the most part utilized in arrangement issues. This calculation is simple in
elucidation and requires exceptionally low computation time and along
these lines is a generally utilized ML calculation. The K in this calculation
is the quantity of neighbors which are characterized by the client. In this
calculation we utilize the Euclidean separation to quantify the K nearset
neighbors of the information point and foresee the yield as per its
neighbors.

Fig 2.4: Formulae used for calculating nearset distance.
-Naïve Bayes- Naive Bayes hypothesis is a kind of order calculation
which can be utilized for both double and multi class arrangement issues.
This hypothesis is called so on the grounds that it has its underlying
foundations of Bayes hypothesis.Innocent Bayes is regularly spoken to by
probabilities. In this model theinformation is put away as probabilities for
an educated model.
Equation- P(h|d) = (P(d|h)*P(h))/ P(d)

7

-Decision Trees- Decision tree calculation is a sort of directed learning
calculation wherein an information structure is utilized to tackle an issue.
For this situation the leaf hub is alluded to as the class mark and the
interior hubs of the tree speak to the qualities. They can take care of the
issues of both arrangement and relapse. At first, we consider the entire
dataset as the root and clear cut element esteems are liked and the
persistent qualities are first made discrete qualities before utilizing them to
fabricate the model. At that point measurable techniques are utilized for
requesting the properties as inner hub or root.

Equation-

Linear Regression- Linear regression is a calculation which utilizes the
measurable ideas and models a connection between the information and
yield numerical qualities. The model is spoken to by a direct condition
which joins theinfo estimations of a particular set and predicts the yield for
a lot of that information esteems.

8

Fig 2.5: Pictorial representation of example of LR.
 Support Vector Machines-SVM is a regulated AI calculation which is
ordinarily utilized for both relapse and characterization issues. It is broadly
utilized in arrangement issues where every datum thing is plotted in n-
dimensional space and n characterizes the highlights present and the
estimation of each element is the estimation of each organize. Further, a
different hyper plane is made to separate the two classes.

9

Fig 2.6: Portrayal of SVM.

Table 2.1:Distinction between different ML Algorithms

10

(e). Interpretation of Performance Measures
There are different strategies to assess the exhibition of the calculations.
One of these techniques is to decide the region under the bend or the ROC
bend and different parameters which are otherwise called Confusion
Metrics. To assess the exhibition proportion of the order model for a
dataset that gives the genuine qualities are known, the perplexity
framework table is utilized.

11

Table 2.2: Confusion Matrix

 True Positives (TP) - These are the qualities which are effectively
anticipated and are sure qualities which can be depicted as the positive
estimation of real class and positive estimation of anticipated class. It is
signified by TP.

 True Negatives (TN) - These are the qualities which are wrongly
anticipated however is valid in genuine for example - when we have
positive estimations of genuine class however refutation in anticipated
class.

 False Positives (FP) –These are the qualities which are wrongly
anticipated however is valid in genuine for example - when we have
positive estimations of real class however invalidation in anticipated class.

12

 False Negative (FN) – These are the qualities which are wrongly
anticipated and negative in real class.

Fig 2.7: Pictorial representation of confusion matrix

Further, we investigate more parameters of execution which are exactness,
accuracy, Recall and F1 score.

 Accuracy – Accuracy is the most common execution measure and it is
basically an extent of adequately foreseen recognition to the total
discernments. One may envision that, in case we have high precision, our
model is perfect. Really, precision is an uncommon measure yet exactly
when you have symmetric datasets where estimations of bogus positive
and bogus negatives are generally same. Thusly, you have to look at
changed parameters to survey the execution of your model.

13

Equation = TP+TN/TP+FP+FN+TN

 Precision - Precision is the extent of precisely foreseen positive
discernments to the total foreseen positive recognitions. The request that
this estimation answer is of all voyagers that named as suffer, what number
of truly persevere? Highaccuracy relates to the low bogus positive rate.

Equaation = TP/TP+FP

 Recall (Sensitivity) - Review is the extent of viably foreseen positive
recognitions to the all discernments in real class - yes. The request survey
answers is: Of the significant number of explorers that truly suffer, what
number of did we mark?

Equation = TP/TP+FN

 F1 Score -F1 Score is the weighted typical of Precision and Recall.
Therefore,this score thinks about both bogus positives and bogus
negatives. Naturally it isn't as clear as precision, yet F1 is regularly more
important than accuracy, especially in case you have an uneven class
movement. Accuracy works best if bogus positives and bogus negatives
have practically identical cost. In case the cost of bogus positives and
bogus negatives are out and out various, it's more brilliant to
look at both Precision and Recall.

Equation = 2*(Recall * Precision) / (Recall + Precision)

14

(f) Deep Learning-

Deep learning is a progressively perplexing and insightful sub
classification of AI which has its calculations motivated by the working
and structure of the human cerebrum comprehensively known as Artificial
neural system. What's more, it additionally alludes to the assortment of
methods which are utilized for learning in neural system with various
layers. Counterfeit Neural Network or ANN are the kind of neural system
model which takes its motivation and chips away at the essential thought
of the sensory systems and the handling of data in human cerebrum to gain
from information. Here, the learning components can be either directed,
semi-managed or solo. Profound learning has been demonstrated effective
in different fields and brought about progressively practical learning of
machines.
Its uses ranges from the field of medication structure to the traffic
expectation and furthermore for the item acknowledgment. A profound
neural system is not quite the same as a neural system due to the quantity
of layers. While the execution of profound learning, we experienced two
primary issues, for example, 1) the computational power required for the
way toward preparing the model was higher than that of the framework
accessible and in this way requires more opportunity forcalculation. 2)
Another issue that experienced during the usage is the inclination
disappearing issue, that is, in a neural system that has actuation capacities,
for example, the hyperbolic digression or the sigmoid and the angle extend
is (- 1,1) or [0,1), the backpropagation is normally processed by chain rule,
increasing k to this little numbers from the yield layer through a k-layer
organize, which implies that the slope diminished exponentially with k.
Coming about of this is the front layers of the model trains slowly than the
other layers.
(g) Perceptrons
The most essential and the early regulated learning calculation is the
perceptron and it is the littlest structure square of the system that is
Artificial Neural Network.

15

The working of the perceptrons is by taking numerous information sources
(x1,x2… … xj) and creation of a solitary yield (y). Likewise, weighted
data sources were additionally considered to help decide the significance
of particular contributions to the yield. The subsequent yield is either 0 or
1 and it is possibly dictated by checking if the weighted whole is more
prominent than 0 or under 0.

Weighted Sum- Σj wj * xj + b
{ 1: if w * x + b > 0
Output =
0: if w * x + b <= 0 }

Be that as it may, as the perceptron just gives the yield as 0 or 1, it makes it
extremely troublesome or about difficult to broaden the working and
functionalities of the model to have the option to chip away at order
errands having numerous classes. Besides, this issue can be settled by
having various perceptrons in a layers ensuring that each perceptron in the
layer acquires a similar info and all the perceptrons are liable for the yield
work. The Artificial Neural Network (ANN) is just perceptrons with more
than one layers though the perceptron is simply an ANN with single layer,
which is frequently the yield layer having just 1 neuron.

(h) Loss Function

The exhibition of the neural system is estimated by a capacity which is
called as the cost capacity or the misfortune work which helps in
estimating the inconsistency between the expectation by the calculations
and the right name if the forecast or the aggregate arrangement of forecast
is given alongside the name or alot of marks. Among the different cost
work accessible the most basic and the usually utilized in neural systems is
the mean squared blunder (MSE).

16

A definitive objective of preparing the neural systems is to limit the
expense/misfortune capacity and locate the individual loads and
inclinations that do as such. For this method, we utilized a calculation
which called as angle drop calculation.

17

SYSTEM DEVELOPMENT

(3.1) System Requirements
The calculations that are being actualized in this undertaking requires
some
nonexclusive framework as it requires preparing of calculations.
 Windows 10 (64-bit)
 ANACONDA
 Python
 4 GB RAM
 Intel(R) Core(TM) i3-3120M CPU @ 2.50 GHz

(3.2) Reason for using Python
Python is a programming language with an enormous group of spectators
and it is extremely straightforward and can be effectively coherent.
Besides, python offers the assortment of bundles which makes the most
scary calculations or undertakings less difficult. Python has libraries for
pretty much every usable document for example - with working with
pictures, working with content or working with sound records. In any
event, when working with another OS, python is entirely pliant.
Python has an enormous network which makes it simpler to look for help
and tips and deceives.

(3.3) Reason for using ANACONDA
Anaconda is broadly well known as it gives every one of the libraries
preintroduced and make the client free from issue of the generally
introducing all libraries. It has around 100 bundles which can be utilized
for information science, AI or factual investigation.

(3.4) SCIKIT LEARN
Scikit learn is a library in python typically utilized for AI and is fit for
including different relapse, grouping and bunching calculations.

18

(3.5) PANDAS
It is an open source python library which provides better results. This
library is anything but difficult to utilize and even give information
structure and information examination devices. This library is broadly
utilized in every scholarly field, business and mechanical fields.

(3.6) KERAS
It is an open source python library that is commonly utilized for neural
system. It is regularly intended to run quick experimentation of numerous
intricate profound learning calculations. It as a rule centers around being
more easy to use, progressively particular and increasingly extensible.

(3.7) Pillow
It is an open source python library that is utilized for imaging and
furthermore includes bolsters in the content for opening, likewise
controlling, further sparing a wide range of picture record positions. It
offers standard methods for doing picture control. This incorporates per-
pixel controls and concealing and straightforwardness dealing with.

(3.8) TENSERFLOW
It is a free open source python library that is use for dataflow and
differentiableprogramming which is utilized over a specific scope of
errands. The tenserflow canbe characterized as an emblematic math library
which can likewise be utilized forsome, AI applications for instance neural
systems.

19

In order to be effective in analysing and classifying such large amounts of
files, we need to be able to group them into groups and identify their
respective families. In addition, such grouping criteria may be applied to
new files encountered on computers in order to detect them as malicious
and of a certain family.

For this problem, we are using the unprecedented malware dataset by
Microsoft for grouping variants of malware files into their respective
families.

We are provided with a set of known malware files representing a mix of 9
different families. Each malware file has an Id, a 20-character hash value
uniquely identifying the file, and a Class, an integer representing one of 9
family names to which the malware may belong:

1. Ramnit

2. Lollipop

3. Kelihos_ver3

4. Vundo

5. Simda

6. Tracur

7. Kelihos_ver1

8. Obfuscator.ACY

9. Gatak

the raw data contains the hexadecimal representation of the file's binary
content, without the PE header (to ensure sterility). We were also provided
a metadata manifest, which is a log containing various metadata
information extracted from the binary, such as function calls, strings, etc.
This was generated using the IDA disassembler tool.

20

Feature Engineering :
Initial feature engineering consisted of extracting various keyword counts
from the ASM files as well as the entropy and file size from the BYTE
files of the 10868 malware samples in the training set.
Image files of the first 1000 bytes of the ASM and BYTE files were
created and combined with keyword and entropy data. This resulted in a
set of 2018 features.
Flow control graphs and call graphs were generated for each ASM sample.
A feature set was then generated from the graphs, including graph
maximum delta, density, diameter and function
counts etc.
Feature Selection :
Statistical analysis of the feature set using chi-squared tests to remove
features that are independent of the class labels or have low variance. The
BYTE file images were found to be weak
learners and were removed from the feature set. A comparison of the best
features from the chi-squared
tests with reduced feature sets of between 10% - 50% of the original
features.
In this feature selection we will closely examine each and every feature,
how a particular feature going to affect the malware category, in this we
will only keep necessary features like features not having variance very
close to 0 or very close to 1 and we will apply some pre-defined tests to
get correct features for training and testing in order to achieve high
accuracy with minimum error.
There might be high possibility of data missing from the dataset, in order
to overcome this problem, we have may possibilities like deleting that
particular entry or filling the null entries on basis of their frequency or
median/mean for categorical or Numerical data respectively.

21

Now Firstly load our data set

22

Here lr represent the model type, and you Can see our Data Splitted into 3

Folds and from each fold one part(white) used for training and other

part(orange) for testing and collectively returning mean of scores

 CV= how many folds you want in data

So similarly we are splitting our data here into 10 folds to get more

accuracy in our scores

An extra-trees classifier.

This class implements a meta estimator that fits a number of randomized

decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and

uses averaging to improve the predictive accuracy and control over-fitting.

So Log Loss is basically probability of Comparison between the

lograthmic value of Predicted data and Original Data. And as Log loss

approaches to 0 it shows model with higher accuracy.

23

Selection Comparison

Testing with an ExtraTreesClassifier and 10-fold cross validation produced
the following results:

- Original ASM Keyword Counts (1006 features):
 logloss = 0.034
Since when we performed our Testing on Original Data Set Without
excluding any features and considering all features equally important we
get to know that the accuracy of our result was less as compared to other in
this comparison we got log loss of 0.034.

- 10% Best ASM Features with Entropy and Image Features (202
features):
 logloss = 0.0174
Now when we started testing the Dataset by considering only 20% of
features we saw an increment in accuracy and decrease in log loss.

– 20% Best ASM with Entropy and Image Features (402 features):
– logloss = 0.0164

- 30% Best ASM with Entropy and Image Features plus Feature Statistics
(623 features):
 multiclass logloss = 0.0133
 accuracy score = 0.9978

24

Confusion Matrix:
 [[1540 0 0 0 0 1 0 0 0]
 [1 2475 2 0 0 0 0 0 0]
 [0 0 2942 0 0 0 0 0 0]
 [1 0 0 474 0 0 0 0 0]
 [2 0 0 0 38 2 0 0 0]
 [3 0 0 0 0 748 0 0 0]
 [1 0 0 0 0 0 397 0 0]
 [0 0 0 0 0 0 0 1225 3]
 [0 0 0 0 0 0 0 8 1005]]
- 40% Best ASM and image features with feature statistics:
 ExtraTreesClassifier with 1000 estimators on 10868 training samples and
823 features
 using 10-fold cross validation:
 multiclass logloss = 0.0135
 accuracy score = 0.9976
 Confustion Matrix:
 [[1541 0 0 0 0 0 0 0 0]
 [1 2475 2 0 0 0 0 0 0]
 [0 0 2942 0 0 0 0 0 0]
 [1 0 0 474 0 0 0 0 0]
 [5 0 0 0 37 0 0 0 0]
 [5 0 0 0 0 746 0 0 0]
 [1 0 0 0 0 0 397 0 0]
 [0 0 0 0 0 0 0 1227 1]

 [0 0 0 0 0 0 0 9 1004]]

25

GRID SEARCH

26

Model Selection
Selection of candidate models using GridSearchCV to find optimal
classifier hyper-parameters.
- SVM:
- ExtraTrees:
- XGBoost: 30% Best Features
 logloss: 0.0080
 accuracy: 0.9981
 Confusion Matrix:
 [[1540 0 0 0 0 1 0 0 0]
 [2 2475 0 1 0 0 0 0 0]
 [0 0 2941 0 0 0 1 0 0]
 [0 0 0 474 0 1 0 0 0]
 [1 0 0 0 41 0 0 0 0]
 [4 0 0 0 1 746 0 0 0]
 [0 0 0 0 0 0 398 0 0]
 [0 0 0 0 0 0 0 1227 1]
 [0 0 0 0 0 0 0 8 1005]]

- NaiveBayes:
- KNN:
Initial feature engineering consisted of extracting various keyword counts
from the ASM files as well as the entropy and file size from the BYTE
files of the 10868 malware samples in the training set. Image files of the
first 1000 bytes of the ASM and BYTE files were created and combined
with keyword and entropy data. This resulted in a set of 2018 features.
Flow control graphs and call graphs were generated for each ASM sample.
A feature set was then generated from the graphs, including graph
maximum delta, density, diameter and function counts etc.

27

Performance Analysis

Feature Engineering :
Initial feature engineering consisted of extracting various keyword counts
from the ASM files as well as the entropy and file size from the BYTE
files of the 10868 malware samples in the training set.
Image files of the first 1000 bytes of the ASM and BYTE files were
created and combined with keyword and entropy data. This resulted in a
set of 2018 features.
Flow control graphs and call graphs were generated for each ASM sample.
A feature set was then generated from the graphs, including graph
maximum delta, density, diameter and function
counts etc.
Feature Selection :
Statistical analysis of the feature set using chi-squared tests to remove
features that are independent of the class labels or have low variance. The
BYTE file images were found to be weak
learners and were removed from the feature set. A comparison of the best
features from the chi-squared
tests with reduced feature sets of between 10% - 50% of the original
features.
In this feature selection we will closely examine each and every feature,
how a particular feature going to affect the malware category, in this we
will only keep necessary features like features not having variance very
close to 0 or very close to 1 and we will apply some pre-defined tests to
get correct features for training and testing in order to achieve high
accuracy with minimum error.
There might be high possibility of data missing from the dataset, in order
to overcome this problem, we have may possibilities like deleting that
particular entry or filling the null entries on basis of their frequency or
median/mean for categorical or Numerical data respectively.

28

Selection Comparison

Testing with an ExtraTreesClassifier and 10-fold cross validation produced
the following results:

- Original ASM Keyword Counts (1006 features):
 logloss = 0.034
Since when we performed our Testing on Original Data Set Without
excluding any features and considering all features equally important we
get to know that the accuracy of our result was less as compared to other in
this comparison we got log loss of 0.034.

- 10% Best ASM Features with Entropy and Image Features (202
features):
 logloss = 0.0174
Now when we started testing the Dataset by considering only 20% of
features we saw an increment in accuracy and decrease in log loss.

– 20% Best ASM with Entropy and Image Features (402 features):
– logloss = 0.0164

- 30% Best ASM with Entropy and Image Features plus Feature Statistics
(623 features):
 multiclass logloss = 0.0133
 accuracy score = 0.9978

Confusion Matrix:
 [[1540 0 0 0 0 1 0 0 0]
 [1 2475 2 0 0 0 0 0 0]
 [0 0 2942 0 0 0 0 0 0]
 [1 0 0 474 0 0 0 0 0]
 [2 0 0 0 38 2 0 0 0]
 [3 0 0 0 0 748 0 0 0]
 [1 0 0 0 0 0 397 0 0]
 [0 0 0 0 0 0 0 1225 3]
 [0 0 0 0 0 0 0 8 1005]]

29

- 40% Best ASM and image features with feature statistics:
 ExtraTreesClassifier with 1000 estimators on 10868 training samples and
823 features
 using 10-fold cross validation:
 multiclass logloss = 0.0135
 accuracy score = 0.9976
 Confustion Matrix:
 [[1541 0 0 0 0 0 0 0 0]
 [1 2475 2 0 0 0 0 0 0]
 [0 0 2942 0 0 0 0 0 0]
 [1 0 0 474 0 0 0 0 0]
 [5 0 0 0 37 0 0 0 0]
 [5 0 0 0 0 746 0 0 0]
 [1 0 0 0 0 0 397 0 0]
 [0 0 0 0 0 0 0 1227 1]

 [0 0 0 0 0 0 0 9 1004]]

names = ["Nearest Neighbors",
 #"Linear SVM",
 #"RBF SVM",
 "Decision Tree",
 "Random Forest",
 "AdaBoost",
 "Naive Bayes",
 #"Linear Discriminant Analysis",
 #"Quadratic Discriminant Analysis",
 "Extra Trees"]
classifiers = [
 KNeighborsClassifier(),
 #SVC(kernel="linear", C=0.025, probability=True),
 #SVC(gamma=2, C=1, probability=True),
 DecisionTreeClassifier(max_depth=5),
 RandomForestClassifier(max_depth=5, n_estimators=1000),
 AdaBoostClassifier(),
 GaussianNB(),
 #LinearDiscriminantAnalysis(),
 #QuadraticDiscriminantAnalysis(),
 ExtraTreesClassifier(n_estimators=1000)]

30

def run_cv(X,y, clf):

 # Construct a kfolds object
 kf = KFold(len(y),n_folds=10,shuffle=True)
 y_prob = np.zeros((len(y),9))
 y_pred = np.zeros(len(y))

 # Iterate through folds
 for train_index, test_index in kf:
 #print(train_index.shape)
 X_train = X.loc[train_index,:]
 X_test = X.loc[test_index,:]
 y_train = y[train_index]

 clf.fit(X_train,y_train)
 y_prob[test_index] = clf.predict_proba(X_test)
 y_pred[test_index] = clf.predict(X_test)

 return y_prob, y_pred

iterate over classifiers
ytrain = np.array(y)
for name, clf in zip(names, classifiers):
 print(name)
 prob, pred = run_cv(X,ytrain,clf)
 print "logloss: %.3f" % log_loss(y, prob)
 cm = confusion_matrix(y, pred)
 print(cm)
#score = clf.score(X_test, y_test)

31

Nearest Neighbors
1.708
[[61 1 3 0 0 1 0 0 0]
 [7 111 0 0 1 2 0 0 0]
 [0 1 147 0 0 0 0 0 0]
 [0 0 0 2 1 0 0 2 1]
 [0 0 0 0 3 0 0 0 0]
 [1 1 3 0 0 18 0 1 4]
 [0 1 2 0 1 1 18 0 0]
 [0 0 1 3 0 1 0 55 4]
 [0 0 2 2 0 0 0 1 36]]

Decision Tree
1.546
[[55 2 0 0 0 5 2 1 1]
 [3 114 0 0 0 0 2 1 1]
 [0 0 141 0 0 1 5 0 1]
 [2 0 0 0 1 1 1 0 1]
 [0 0 0 2 0 1 0 0 0]
 [4 1 0 0 0 19 3 1 0]
 [2 0 0 0 0 0 21 0 0]
 [2 0 1 0 0 4 0 57 0]
 [1 0 0 0 2 3 0 0 35]]

Random Forest
0.297
[[63 0 2 0 0 0 0 0 1]
 [4 115 0 0 0 0 0 2 0]
 [0 0 147 0 0 0 0 0 1]
 [0 0 0 0 0 0 0 6 0]
 [0 0 0 0 0 0 0 3 0]
 [3 0 0 0 0 22 1 1 1]
 [0 0 2 0 0 0 20 1 0]
 [2 0 0 0 0 0 0 62 0]
 [0 0 0 0 0 0 0 1 40]]

32

AdaBoost
2.015
[[0 53 1 0 1 0 1 10 0]
 [0 118 3 0 0 0 0 0 0]
 [0 11 136 0 0 0 1 0 0]
 [0 5 1 0 0 0 0 0 0]
 [0 2 1 0 0 0 0 0 0]
 [0 25 1 0 0 0 1 1 0]
 [0 2 3 0 0 0 17 1 0]
 [0 61 0 0 0 0 1 2 0]
 [0 36 0 0 0 0 1 2 2]]

Naive Bayes
6.851
[[35 5 1 0 0 14 1 2 8]
 [2 66 2 1 0 7 0 0 43]
 [0 0 147 0 0 0 0 0 1]
 [0 0 0 4 0 1 1 0 0]
 [0 0 0 3 0 0 0 0 0]
 [1 1 3 0 0 18 0 2 3]
 [0 0 0 0 0 0 21 0 2]
 [0 0 1 0 0 2 3 57 1]
 [0 1 0 0 0 0 0 4 36]]

Extra Trees
0.185
[[64 0 0 0 0 0 0 0 2]
 [2 116 0 0 0 0 0 3 0]
 [0 0 146 0 0 0 0 2 0]
 [0 0 0 4 0 0 0 2 0]
 [0 0 0 0 2 0 0 1 0]
 [2 0 0 0 0 24 0 1 1]
 [0 0 1 0 0 0 20 2 0]
 [0 0 1 0 0 0 0 63 0]
 [0 0 0 0 0 0 0 0 41]]

33

The performance of the ExtraTreesClassifier is optimal at around 30% of
ASM and image features with highest variance plus sample statistics,
entropy and file size. Adding call graph features produced a marginal
improvement. It is possible that better classification accuracy would be
achieved by using an ensemble of different classifiers with the ASM,
image and call graph feature sets as separate inputs to the various
classifiers.
Cross-Validation of Model using cross validation Score
Set the parameters by cross-validation

tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4],

 'C': [1, 10, 100, 1000]},

 {'kernel': ['linear'], 'C': [1, 10, 100, 1000]}]

print("# Tuning hyper-parameters for SVC")
print()

clfgrid = GridSearchCV(SVC(C=1), tuned_parameters, cv=10, n_jobs=4)

start = time()
clfgrid.fit(X_train, y_train)

print("Classification report:")
print("GridSearchCV took {:.2f} seconds.".format(time() - start))
print(" ")
y_pred = grid_search.predict(X_test)
print(classification_report(y_test, y_pred))
print(" ")
y_prob = grid_search.predict_proba(X_test)
print("logloss = {:.3f}".format(log_loss(y_test, y_prob)))
print("score = {:.3f}".format(accuracy_score(y_test, y_pred)))
cm = confusion_matrix(y_test, y_pred)
print(cm)

34

Classification report:
GridSearchCV took 2183.53 seconds.

 precision recall f1-score support

 1 0.99 1.00 1.00 135
 2 1.00 1.00 1.00 251
 3 1.00 1.00 1.00 292
 4 1.00 1.00 1.00 45
 5 1.00 1.00 1.00 2
 6 1.00 1.00 1.00 84
 7 1.00 0.98 0.99 47
 8 0.99 1.00 1.00 127
 9 1.00 0.99 1.00 104

avg / total 1.00 1.00 1.00 1087

logloss = 0.014
score = 0.998
[[135 0 0 0 0 0 0 0 0]
 [0 251 0 0 0 0 0 0 0]
 [0 0 292 0 0 0 0 0 0]
 [0 0 0 45 0 0 0 0 0]
 [0 0 0 0 2 0 0 0 0]
 [0 0 0 0 0 84 0 0 0]
 [1 0 0 0 0 0 46 0 0]
 [0 0 0 0 0 0 0 127 0]
 [0 0 0 0 0 0 0 1 103]]
Shannon's Entropy by malware class. A score of 0.0 means the bytes are all
the same value, a score of 1.0 means every byte in the file has a different
value.Shannon's Entropy by file size. A score of 0.0 means the bytes are all
the same value, a score of 1.0 means every byte in the file has a different
value.Assembler register EDX by ESI counts.

35

Selecting Model as ExtraTreeClassifier

n_jobs=4, criterion='gini')
p1, pred1 = run_cv(X,y,clf1)
print("logloss = {:.3f}".format(log_loss(y, p1)))
print("score = {:.3f}".format(accuracy_score(y, pred1)))
cm = confusion_matrix(y, pred1)
print(cm)
(array([38, 41, 63, ..., 10845, 10854, 10866]), array([0, 1,
2, ..., 10864, 10865, 10867]))
(array([1, 7, 11, ..., 10855, 10857, 10862]), array([0, 2, 3, ...,
10865, 10866, 10867]))
(array([8, 13, 18, ..., 10842, 10848, 10860]), array([0, 1,
2, ..., 10865, 10866, 10867]))
(array([3, 17, 19, ..., 10851, 10858, 10863]), array([0, 1,
2, ..., 10865, 10866, 10867]))
(array([4, 12, 23, ..., 10823, 10827, 10831]), array([0, 1,
2, ..., 10865, 10866, 10867]))
(array([2, 6, 32, ..., 10856, 10859, 10864]), array([0, 1, 3, ...,
10865, 10866, 10867]))
(array([10, 29, 37, ..., 10840, 10843, 10861]), array([0, 1,
2, ..., 10865, 10866, 10867]))
(array([16, 20, 21, ..., 10807, 10819, 10833]), array([0, 1,
2, ..., 10865, 10866, 10867]))
(array([0, 28, 39, ..., 10814, 10865, 10867]), array([1, 2,
3, ..., 10863, 10864, 10866]))
(array([5, 9, 14, ..., 10820, 10834, 10839]), array([0, 1, 2, ...,
10865, 10866, 10867]))
logloss = 0.038
score = 0.993

36

[[1537 0 0 0 0 0 0 4 0]
 [5 2469 2 0 0 1 0 1 0]
 [0 0 2941 0 0 1 0 0 0]
 [1 0 0 468 0 1 0 5 0]
 [1 1 0 0 37 0 0 2 1]
 [3 1 0 0 1 742 0 2 2]
 [0 0 0 0 0 0 398 0 0]
 [25 0 3 2 0 3 2 1193 0]
 [3 0 0 0 0 2 0 2 1006]]

X = combined_train_data.iloc[:,1:]
ylabels = sorted_train_labels.iloc[:,1:]
y = np.array(ylabels - 1)
y = y.flatten()
y

array([1, 7, 8, ..., 3, 3, 3], dtype=int64)

xgclf = xgb.XGBClassifier(objective="multi:softprob", nthread=4)

params = {"n_estimators": [1000, 2000],
 "max_depth": [5, 10],
 "learning_rate": [0.1, 0.05]}

run grid search
grid_search = GridSearchCV(xgclf, param_grid=params)
start = time()
grid_search.fit(X, y)

print("GridSearchCV took {:.2f} seconds.".format((time() - start)))
print(" ")
y_pred = grid_search.predict(X)
print(classification_report(y, y_pred))
print(" ")
y_prob = grid_search.predict_proba(X)

37

print("logloss = {:.3f}".format(log_loss(y, y_prob)))
print("score = {:.3f}".format(accuracy_score(y, y_pred)))
cm = confusion_matrix(y, y_pred)
print(cm)
GridSearchCV took 6196.85 seconds.

 precision recall f1-score support

 0 1.00 1.00 1.00 1541
 1 1.00 1.00 1.00 2478
 2 1.00 1.00 1.00 2942
 3 1.00 1.00 1.00 475
 4 1.00 1.00 1.00 42
 5 1.00 1.00 1.00 751
 6 1.00 1.00 1.00 398
 7 1.00 1.00 1.00 1228
 8 1.00 1.00 1.00 1013

avg / total 1.00 1.00 1.00 10868

logloss = 0.000
score = 1.000
[[1541 0 0 0 0 0 0 0 0]
 [0 2478 0 0 0 0 0 0 0]
 [0 0 2942 0 0 0 0 0 0]
 [0 0 0 475 0 0 0 0 0]
 [0 0 0 0 42 0 0 0 0]
 [0 0 0 0 0 751 0 0 0]
 [0 0 0 0 0 0 398 0 0]
 [0 0 0 0 0 0 0 1228 0]
 [0 0 0 0 0 0 0 0 1013]]

38

Selecting Model as XGBoostClassifier

xgclf = xgb.XGBClassifier(n_estimators=1000,
objective="multi:softmax", nthread=4)
prob, pred = run_cv(Xpoly,y,xgclf)
print("logloss: {:.4f}".format(log_loss(y, prob)))
print("accuracy: {:.4f}".format(accuracy_score(y, pred)))
cm = confusion_matrix(y, pred)
print(cm)
[0 1 2 ..., 10865 10866 10867] [8 16 21 ..., 10844 10849
10864]
[0 1 2 ..., 10864 10865 10866] [23 25 38 ..., 10847 10857
10867]
[0 1 2 ..., 10865 10866 10867] [7 9 10 ..., 10819 10861
10863]
[0 1 2 ..., 10865 10866 10867] [29 36 40 ..., 10823 10824
10832]
[0 1 2 ..., 10865 10866 10867] [6 14 18 ..., 10808 10836
10860]
[0 1 2 ..., 10865 10866 10867] [11 26 32 ..., 10840 10841
10848]
[0 1 2 ..., 10864 10866 10867] [4 12 17 ..., 10854 10858
10865]
[0 2 4 ..., 10865 10866 10867] [1 3 5 ..., 10853 10855
10859]
[1 2 3 ..., 10865 10866 10867] [0 31 54 ..., 10850 10851
10856]
[0 1 3 ..., 10864 10865 10867] [2 15 30 ..., 10843 10862
10866]

logloss: 0.0081
accuracy: 0.9982

39

[[1541 0 0 0 0 0 0 0 0]
 [2 2475 0 0 0 0 0 0 1]
 [0 0 2941 0 0 0 1 0 0]
 [0 0 0 474 0 1 0 0 0]
 [1 0 0 0 41 0 0 0 0]
 [4 0 0 0 1 746 0 0 0]
 [0 0 0 0 0 0 398 0 0]
 [0 0 0 0 0 0 0 1226 2]
 [0 0 0 0 0 0 0 7 1006]]

The Confusion Matrix for ExtraTreeClassifier and XGBoostClassifier

Each Row and Column of the matrix is representing the Category of
malware and X-axis represent Original Value and y-axis Represent
Predicted Value.
For Comparison let’s see the 8th Category of Malware
in ExtraTreeClassifier, and XGBoostClassifier. Since for
XGBoostClassifier the
Model Correctly Predicted 1226 Category as Category-8 and remaining 2
as category-9, while talking about ExtraTreeClassifier it predicted only

1193 as
category-8 while wrongly predicted 25 category-1, 3 category-3, 2

category-4,
3 category-6 and 2 category-7 as category-8, which shows XGBoost model

is a
good classifier for predicting category,
Since we can see accuracy of XGboostClassifier is 99.82% while that of
ExtraTreeClassifier is 99.7%.

40

CONCLUSION

The best accuracy scores were achieved with XGBoost (99.82%) and
ExtraTreesClassifier (99.76%) using a feature set of 623 ASM, image and
entropy features. Marginal improvements could be achieved using
additional features and ensemble methods, however due to the limited
sample size further efforts are unlikely to produce significant
improvements in prediction accuracy.

41

	Feature Engineering :
	Selection Comparison

	Feature Engineering :
	Selection Comparison

