

Security Vulnerability Scanner

Project report submitted in partial fulfillment of the requirement for the
degree of Bachelor of Technology

In

Computer Science and Engineering

By

Vishal Pant (161257)

Under the supervision of

Mr. Prateek Thakral

to

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology Waknaghat,

Solan-173234, Himachal Pradesh

Candidate’s Declaration

I hereby declare that the work presented in this report entitled SECURITY

VULNERABILITY SCANNER in partial fulfillment of the requirements for the award

of the degree of Bachelor of Technology in Computer Science and Engineering

submitted in the Department of Computer Science & Engineering and Information

Technology, Jaypee University of Information Technology, Waknaghat is an authentic

record of my own work carried out over a period from August 2019 to May 2020

under the supervision of Mr. Prateek Thakral, Assistant Professor (Grade-II), Computer

Science & Engineering and Information Technology.

The matter embodied in the report has not been submitted for the award of any other

degree or diploma.

Vishal Pant, 161257

This is to certify that the above statement made by the candidate is true to the best of my

knowledge

Mr. Prateek Thakral

Assistant Professor (Grade-II)

Computer Science & Engineering and Information Technology

Dated:

i

Acknowledgment

We have taken efforts in this project. However, it would not have been possible

without the kind support and help of many individuals and organizations. We would

like to extend our sincere thanks to all of them.

We are highly indebted to Mr. Prateek Thakral for their guidance and constant

supervision as well as for providing necessary information regarding the project and

also for their support in completing the project.

We would like to express our gratitude towards our parents and Jaypee University of

Information Technology for their kind cooperation and encouragement which helped

us in the completion of this project.

Our thanks and appreciations also go to our colleagues in developing the project and

people who have willingly helped us out with their abilities.

ii

TABLE OF CONTENTS

CERTIFICATE…………………………………….……………………..i

ACKNOWLEDGEMENT………………………….…………………....ii

LIST OF FIGURES………………………..…...………………………..iv

LIST OF TABLES………………………………..….…………………...v

ABSTRACT…………………………………….……………………….vi

1. Chapter-1 PROJECT OBJECTIVE

1.1 Introduction….…………………………………………………….……....1-8
1.2 Objective ……………...……………………..………………...……..…….9

2. Chapter-2 LITERATURE SURVEY AND METHODOLOGY

2.1 Literature Survey………….……………………………….…….……....10-22
2.2 Methodology………...…………………………....………………....…..22-23

3. Chapter-3 SYSTEM DEVELOPMENT

3.1 Python………….……………………..……………………….....……....24-28
3.2 Shell Scripting....…………...……………………….…....………………29

4. Chapter-4 ALGORITHM

4.1 Algorithm…………………………………………………………......…30-31

5. Chapter-5 TEST PLAN

5.1 Data Set…………………………………………………………….……..32
5.2 Test Setup...………………………………………..……………………32-33

6. Chapter-6 RESULT AND PERFORMANCE ANALYSIS

6.1.Result………………………....…………………….……………...….......34
6.2.Performance Analysis……………………………………………………..35

7. Chapter-7 CONCLUSIONS

7.1 Conclusion……………………………..……………….……….……........36
7.2 Future Scope....……....…………………………….……………...……….36

REFERENCES…...…………...…………………..…………………37-39

APPENDICES…………………………..……………………………..40

iii

LIST OF FIGURES

Figure TITLE PAGE NO.
Figure

1.1 Confidentiality, Integrity, and Availability 3

Figure

1.2 Symbols used for a secure application 9

Figure

2.1 Injection Overview 11

Figure

2.2 Sensitive Information Exposure 12

Figure

2.3 XXE Attack methodology 13

Figure

2.4 Broken Access Control 14

Figure

2.5 XSS POC 15

Figure

3.1 Python version 25

Figure
3.2 Installation of beautifulSoup library 26
Figure
3.3 How to install requests library 27
Figure
3.4 Explanation of Scrapy framework 28
Figure
3.5 Existence of shell in OS 29
Figure
5.1 How to install python 32
Figure
6.1

Screenshot displays the scanning progress on
https://appsecure.security 34

Figure
6.2 Graph depicting User vs Scanner response time 35

iv

LIST OF TABLES

Figure TITLE PAGE NO.

Table 1.1 List of SANS top 25 20-22

v

ABSTRACT

In recent years a lot of web applications have been released in the world. At the same

time, cyber attacks against web application vulnerabilities have also increased. In such a

situation, it is necessary to make web applications more secure. However, checking all

web vulnerabilities by hand is very difficult and time-consuming. Therefore, we need a

web application vulnerability scanner. In this work, we develop an automated web

application security vulnerability scanner which helps security researcher and web

developers to identify security vulnerabilities and fix them. The designed tools also

identify the hidden directories and files from the server.

vi

Chapter-1

PROJECT OBJECTIVE

1.1 Introduction - Basics of Information Technology

A fundamental comprehension of data security can assist you with evading pointlessly

leaving your product and destinations unreliable and powerless against shortcomings that

can be misused for monetary benefit or different malevolent reasons. This report can

enable you to realize what you have to know. With this data, you can know about the job

and the essential aspect of cybersecurity and past into the sending of your substance.

● Confidentiality, Integrity, and Availability

Depicts the essential security targets, which are completely principal to getting

security

● Vulnerabilities

Characterizes the significant classifications of vulnerabilities and examines the

nearness of vulnerabilities in all product

● Dangers

Quickly presents significant risk ideas

● Security Controls

Characterizes significant classes of security controls and talks about their potential

weaknesses

1

1.1.1 Privacy, Integrity, and Availability

Confidentiality

Confidentiality is the protecting of information in order to avoid people with malicious

intent to obtain or leak sensitive information.We must have the proper tool to counter the

issue of anyone disrupting this secure flow of data between systems.A failure to keep this

information protected against the assailants can be devastating and must be avoided at all

costs.Such attacks on regular basis must be disrupted and can’t be restored to normal.The

keys and security flags should be adequately protected in the source code.If the sensitive

information of an employee are posted so his phone number , address and more private

information could go in the hands of a malicious person.A powerlessness to keep this

information guaranteed against the aggressors can be wrecking and ought to be

sidestepped at all costs.Such attacks on customary reason must be upset and can't be

restored to normal.The keys and security pennants should be acceptably made sure about

in the source code.If the fragile information of a delegate are posted so his phone number

, address and progressively private information could go in the hands of a harmful person

Integrity

Integrity suggests sheltering information from malicious users. Metaphorically, just

individuals who are supported to do so can get to touchy information. The decision to

terminate them and operators who are helping Integrity infers guaranteeing the validness

of data. Suppose we have a popular E-Commerce site.. That would be a disregard for the

reliability considering the sensitive data and the cost of maintaining it could be

ravished.Another would be a cybersecurity failure we would face if a vulnerability is

exploited leading to thousands of dollars of damage to us. e technique to un-reveal it. On

the off chance that your bank records are posted on an open site, everybody can

comprehend your cash related balance number, balance, and so on., and that data can't be

deleted from their brains, papers, PCs, and different spots. For all intents and purposes all

the basic security occasions revealed in the media today consolidate important difficulties

of protection.The decision to end them and managers who are helping Integrity

determines guaranteeing the validness of data. Accept we have a standard E-Commerce

2

site.. That would be a carelessness for the immovable quality considering the tricky data

and the cost of keeping up it could be abused.

Availability

Availability signifies that the important and essential information is provided to the

parties involved. If the hacker isn’t able to attack the two aspects of cybersecurity ,they

may be able to launch other web vulnerabilities like DDOS attack and severe the link

between the servers and the clients and destroy accessibility .

Fig 1.1

1.1.2 Vulnerabilities

A thing flaw shortcoming is accomplished by a uknown mess up in the structure or

coding of programming. A model is a data underwriting mess up, for example, the client

3

gave input not being reasonably assessed for vindictive information and a lot of long

qualities related to known ambushes. Another model is a race condition blunder that

enables the assailant to play out a particular development with raised favorable

circumstances.

A security strategy setting is a piece of a thing's security that can be adjusted through the

thing itself. Instances of settings are a working structure offering access to control records

that set the preferences that clients have for reports, and an application offering a setting

to empower or cripple the encryption .

A security strategy issue weakness joins function of security game plan settings that

unfairly sway the protection of the information.

A thing highlight is a helpful breaking point given by programming. A thing highlight

abuse weakness is a defenselessness wherein the segment also gives a road to bargain the

security of a structure. These vulnerabilities are accomplished by the thing originator

making trust questions that license the thing to give significant highlights, while in

addition presenting the probability of somebody excusing the trust theories to bargain

security.

Programming highlight abuse vulnerabilities are presented during the plan of the product

or a segment of the product (e.g., a convention that the product actualizes). Trust

suppositions may have been expressed - for instance, an architect monitoring a security

shortcoming and discovering that a different security control would make up for it.

In any case, trust suspicions are regularly certain, for example, making an element

without first assessing the dangers it would present. Dangers may likewise change over

the lifetime of programming or a convention utilized in programming.

4

For instance, the Address Resolution Protocol (ARP) believes that an ARP answer

contains the right mapping between Media Access Control (MAC) and Internet Protocol

(IP) addresses. The ARP reserve utilizes that data to give valuable assistance—to

empower sending information between gadgets inside a nearby system.

The ARP convention was institutionalized more than 25 years back, and dangers have

changed a lot from that point forward, so the trust suspicions characteristic in its structure

at that point are probably not going to at present be sensible today.

It might be difficult to separate programming highlight abuse vulnerabilities from the

other two classifications. For instance, both programming blemishes and abuse

vulnerabilities might be brought about by lacks in programming configuration forms. Be

that as it may, programming blemishes are negative—they give no positive advantage to

security or usefulness—while programming highlights abuse vulnerabilities happen

because of giving extra highlights.

There may likewise be perplexity concerning abuse vulnerabilities for highlights that can

be empowered or crippled—as it were, arranged—versus security design issues. The key

contrast is that for abuse powerlessness, the arrangement setting empowers or impairs the

whole component and doesn't explicitly adjust only its security; for a security design

issue defenselessness, the setup setting modifies just the product's security.

For instance, a setting that cripples all utilization of HTML in messages significantly

affects both security and usefulness, so powerlessness identified with this setting would

be an abuse defenselessness.

5

1.1.3 Threats

A danger source is a reason for risk, for example, an antagonistic digital or physical

assault, a human blunder of oversight or commission, a disappointment of association

controlled equipment or programming, or other disappointment outside the ability to

control of the association. A risk occasion is an occasion or circumstance started or

brought about by a danger source that has the potential for causing an unfriendly effect.

System traffic commonly goes through middle PCs, for example, switches, or is persisted

unbound systems, for example, remote hotspots. Along these lines, it tends to be captured

by an outsider. Dangers against organizing traffic incorporate the accompanying:

Eavesdropping: Data stays unblemished, yet its security is undermined. For instance,

somebody could get familiar with your charge card number, record a delicate discussion,

or block arranged data.

Tampering: Data in travel is changed or supplanted and afterward sent on to the

beneficiary. For instance, somebody could modify a request for merchandise or change

an individual's resume.

Impersonation: Data goes to an individual who acts like the expected beneficiary.

Pantomime can take two structures:

6

○ Unauthorization: An individual can claim to be another person. For instance, an

individual can claim to have the email address jdoe@example.net, or a PC can

distinguish itself as a site called www.example.net when it isn't. This sort of pantomime

is known as ridiculing.

○ Deception: An individual or association can distort itself. For instance, assume

the site www.example.net professes to be a furniture store when it is extremely only a site

that assumes praise card installments however never sends any merchandise.

1.1.4 Security Controls

Sensitive information should be given the utmost priority in a well structured and planned

piece of design plans.The security controls must be given a thought from a out of the box

kind of approach and should be thought with two classes.The framework should be able

to overcome its own possible exploits that a user can use to achieve a successful attack on

the system.given the most outrageous need in a particularly sorted out and orchestrated a

couple of structure plans. The security controls must be given thought from an out of the

case kind of approach and should be thought with two classes. The framework should

have the alternative to vanquish its own latent capacity experiences that a customer can

use to achieve a powerful attack on the system.

1. The board controls:The main overhead in a prescribed framework

2. Operational controls: The predefined actions to be executed if a security bug is

triggered.

3. Specialized controls: A special set of instructions to be executed when a certain

set of conditions are met.

. All of the mentioned above triggers are quite useful for a strong and cemented base for a

cyber secure system.A strong security tactic is all the blocks involved should be strong on

7

their own individually and by using the specialized tools. A union of the security

guidelines should provide the best set of instructions for the machine to follow.

The aggregate of the referenced above triggers are truly significant for a strong and built

up base for a computerized secure system.A strong security methodology is all the

squares included should be strong in solitude freely and by using the specific mechanical

assemblies. A relationship of the security rules should give the best course of action of

rules for the machine to follow.The triggers are truly basic for a strong and created base

for a motorized secure systemA solid security thinking is all the squares included ought

to be solid in division uninhibitedly and by utilizing the particular mechanical parties. A

relationship of the security rules should give the best strategy of rules for the machine to

follow.including a system based firewall, a host-based firewall, and OS fixing.

1.2 Objective

In the era of information technology, web technologies are spreading at a greater pace.

Lots of businesses are going online and more online services come into existence. This

will increase the number of vulnerable sites on the internet. The objective of this project

is to help developers and web security researchers to discover a web security

vulnerability in web applications. The designed tool will identify the basic vulnerability

such as Cross-site scripting, hidden directories on the server, Click-jacking, Unencrypted

communication, Strict Transport Security enforcement, Denial of Service attack and other

vulnerabilities.

It will be helpful in automation of the black box testing of the website and reduce man

hours and the ease and maximize the process.

8

Fig 1.2: Symbols used for a secure application

9

Chapter-2

LITERATURE SURVEY AND METHODOLOGY

2.1 Literature Survey

1. OWASP report

The OWASP is a collection of the most important and lethal online web security

vulnerabilities found by web researchers and compiled by them.It casually explains the

danger of these exploits to the user.The report is compiled by the people best in the field

and who are devoted to online web security research.

The following are the dangers announced in the OWASP report:

A. Injection

Injection exploits are usually carried out when malicious code is successfully executed on

a system like a SQL database and can recover all the sensitive information of users. On

the off chance that that structure input isn't appropriately verified, this would bring about

that code being executed.

Injection exploits could be avoided by authenticating as well as disinfecting client

submitted information. (Approval implies dismissing suspicious-looking information,

while sterilization alludes to tidying up potentially dangerous pieces of the information.)

moreover, an administrator should limit measure for data infusion assault could

uncover.

10

Fig 2.1: Injection Overview

B. Broken Authentication

Validation and the capacity to bargain a whole framework utilizing an administrator and

being able to shield the system from agressors trying to gain control and gain a lot of

information through an information rupture is the goal of a hacker.

An authentication system is usually used to provide more security like a code sent to an

EMAIL or a code sent through an SMS .

Endorsement and the capacity to bargain a whole structure utilizing a chief and having

the alternative to shield the system from agressors endeavoring to get control and

increment a lot of information through an information break is the target of a software

engineer.

C. Sensitive Data Exposure

11

If the website doesn’t protect sensitive information of the user for example, monetary

data and passwords, assailants will leak that sensitive information or could blackmail the

users for money and cause damage to the company’s image as well.

Fig 2.2: Sensitive Information Exposure

D. XML External Entities (XEE)

A web assault against a online code that uses XML input. This information would exploit

an outside element, endeavoring to misuse helplessness. An 'outside substance’ setting is

12

set for a fixed issue, for example, a HDD. An XML code can be hoodwinked into

exploiting information for an unapproved outside substance, it could leak sensitive and

private information of the client unknowingly to an aggressor.

(JSON) is a basic, intelligible documentation frequently used to transmit information

over the web. In spite of the fact that it was initially made and can deciphered by a wide

range of programming dialects.

Fig 2.3: XXE Attack methodology

E. Improper Access

For example, a web client could empower a customer to change which account they are

marked in as just by changing a bit of a URL, with no other affirmation.

Access controls can be verified through guaranteeing that a website utilizes approval

systems and is keen on them.

13

*Many administrations control approval key when clients sign in. Each advantaged

solicitation ;client causes will necessitate that the approval token is available. This is a

safe method to guarantee .

Fig 2.4: Broken Access Control

F. Security Misdiagnosis

Security misdiagnosis can be widely recognized defenselessness rundown and should be

frequently the consequence for utilizing arrangements or showing too many blunders. For

example, an application could show a client can be generally perceived lack of protection

once-over and ought to be much of the time the ramification for using courses of action

or indicating an excessive number of botches.

G. XSSs

Cross-site scripting generally occurs when a hacker can run malicious code on the client

side of the website and steal the cookies of a user or can also execute scripts which can

trigger further events vulnerabilities code on an unfortunate casualty's program. an

application could show a customer can be commonly seen absence of assurance

once-finished and should be a significant part of the time the consequence for utilizing

game-plans or demonstrating an unreasonable number of bungles.

Relief techniques for cross-site scripting incorporate getting away untrusted HTTP

demands just as approving or potentially purifying client produced content.

14

Fig 2.5: XSS POC

H. Insecure Deserialization

This danger focuses on the vulnerabilities and issues often leak and endanger

information., for example, putting away the information to the plate or spilling it.

Deserialization is the polar opposite: changing over serialized information once more into

objects the application can utilize. Serialization is similar to storing furniture a process

where data is recycled and used resembles unloading the cases and gathering the

furniture after the move. A shaky deserialization assault resembles having the movers

mess with the substance of the containers before they are unloaded reused and used takes

subsequent to exhausting the cases and gathering the furniture after the move. A

temperamental deserialization snare takes in the wake of having the movers play with the

substance of the compartments before they are exhausted.

I. Using Components With Known Vulnerabilities

Numerous cutting edge security engineers do parts, for example, structures in their

applications. All parts units of programming to assist engineers with maintaining a

strategic distance regular model incorporates front-end structures like React and littler

libraries that used to include share symbols or a/b testing.

Part designers regularly provide fixes and updates, however, cybersecurity engineers

generally fixed or latest adaptations with segments executing as planned. For testing the

danger of running segments with known issues, designers expel underutilized parts from

undertakings, just guaranteeing .

15

J. Inadequate Surveilling

A numerous number of websites are not finding a way to recognize information ruptures.

For normal revelation time for a break is for at least 6 months. An assailant takes a many

great deal of time to cause harm .Experts prescribes that backend engineers should

execute l observing just occurrence reaction intends to guarantee that they are made

mindful of assaults on their applications.

11. SANS TOP 25

The SANS Institute is a helpful research and instruction association. IT is a rundown of

the most across the board and basic blunders that can prompt genuine exploits in

programming (it would be ideal if you note: not all helplessness types apply to all

programming dialects). The exploits incorporate uncertain cooperation between parts,

dangerous asset the executives, and permeable guards.

Tears can identify 24 out of the be distinguished by static examination programming,

causes you rapidly find them in your application, and gives point by point data on the

best way to fix the blunders.

16

17

2.2 Methodology

Here are six of the types of website vulnerabilities which can be detected using this

automated tool:

1. Hidden Directories Exploit - Recon

2. Click-jacking

3. Unencrypted Communication

4. DOS - Denial of Service attack

5. Strict Transport security not enforced

6. Cross-Site Scripting

7. Missing Essential Security header

The project is divided into two different phases:

18

1. Hidden directory finder on server

2. Web Application static analysis

1. Hidden directory & file finder

Hidden directory and file finder application help a security researcher/engineer to find

hidden files and directories on the application server. Hidden directory or file on the

application server sometimes discloses the user information, hidden credentials or API

key and server information. Exposes such information may be beneficial for an attacker

to carry out further attacks.

2. Web application static analysis

Static analysis of the web application consists of the analysis of the response header,

response time and source code.

This will help developers in finding clickjacking, Cross-site scripting, denial of service

vulnerabilities. Also, this will alert developers if any sensitive credential, API key or

secret is leaked in the source code.

19

Chapter 3

SYSTEM DESIGN

3.1. PYTHON

Python is a very simple yet powerful programming language.It is very linear in its

approach and yet retains its roots of object oriented programming.Python’s lightweight

and plethora of built in scientific-oriented inbuilt functions are quite useful.its the perfect

language for parsing and scripting.

. Python bolsters modules and bundles, which supports program measured quality and

code reuse. The Python mediator and the broad standard library are accessible in source

or paired structure without charge for every single significant stage, and can be

uninhibitedly conveyed.

Frequently, software engineers begin to look all starry eyed at Python as a result of the

expanded efficiency it gives. Since there is no assemblage step, the alter test-troubleshoot

cycle is unimaginably quick. Troubleshooting Python programs is simple: a bug or

terrible info will never cause a division deficiency. Rather, when the mediator finds a

mistake, it raises a special case. At the point when the program doesn't get the special

case, the translator prints a stack follow.

A source-level debugger permits examination of the neighborhood and worldwide

factors, assessment of self-assertive articulations, setting breakpoints, venturing through

the code a line at once, etc. The debugger is written in Python itself, vouching for

Python's thoughtful power. Then again, regularly the snappiest method to investigate a

program is to add a couple of print explanations to the source: the quick alter

test-troubleshoot cycle makes this straightforward methodology exceptionally successful.

20

Fig 3.1: Python version

3.1.1 Python Library

A Python library is a reusable lump of code that you might need to remember for your

projects/ventures. Contrasted with dialects like C++ or C, Python libraries don't relate to

a particular setting in Python. Here, a 'library' freely depicts an assortment of center

modules.

Every library in Python contains an enormous number of valuable modules that you can

import for your consistent programming.

Beautiful Soup

21

Fig 3.2: Installation of beautifulSoup library

Requests Library

Fig: 3.3 How to install requests library

Scrapy Framework

22

Scrapy is an open-source python system constructed explicitly for web scratching by

Scrapinghub fellow benefactors Pablo Hoffman and Shane Evans. You may be asking

yourself, "I'm not catching that's meaning?"

It implies that Scrapy is a completely fledged web scratching arrangement that takes a

great deal of the work out of the building and designing your bugs, and the best part is

that it consistently manages edge cases that you most likely haven't thought of yet.

Close to introducing the system, you can have a completely working bug scratching the

web. Out of the case, Scrapy arachnids are intended to download HTML, parse and

process the information and spare it in either CSV, JSON or XML record groups.

There is likewise a wide scope of inherent augmentations and middlewares intended for

dealing with threats and sessions just as HTTP highlights like pressure, confirmation,

reserving, client specialists, robots.txt and creep profundity confinement. Scrapy

additionally makes it exceptionally simple to reach out through the advancement of

custom middlewares or pipelines to your web scratching ventures which can give you the

particular usefulness you require.

Perhaps the greatest bit of leeway of utilizing the Scrapy system is that it is based on

Twisted, a nonconcurrent organizing library. This means Scrapy bugs don't need to hold

on to make demands each in turn. Rather, they can make numerous HTTP demands in

parallel and parse the information as it is being returned by the server. This

fundamentally builds the speed and proficiency of a web scratching arachnid.

One little downside about Scrapy is that it doesn't deal with JavaScript straight out of the

crate like Selenium. In any case, the group at Scrapinghub has made a Splash, a simple

to-incorporate, lightweight, scriptable headless program explicitly intended for web

scratching.

The expectation to absorb information to Scrapy is somewhat more extreme than, for

instance, figuring out how to utilize BeautifulSoup. In any case, the Scrapy venture has

23

amazing documentation and a very dynamic biological system of designers on GitHub

and StackOverflow who are continually discharging new modules and helping you

investigate any issues you are having.

 Fig 3.4: Explanation of Scrapy framework

3.2. SHELL SCRIPTING

Shell scripting is composing a progression of order for the shell to execute. It can join

extensive and dreary successions of directions into a solitary and straightforward content,

which can be put away and executed whenever. This lessens the exertion required by the

end client.

Let us understand the steps in creating a Shell Script

1. Create a file using a vi editor(or any other editor). Name script file with

extension .sh

2. Start the script with #! /bin/sh

3. Write some code.

4. Save the script file as filename.sh

24

5. For executing the script type bash filename.sh

A shell in a Linux operating system takes input from you in the form of commands,

processes it, and then gives an output. It is the interface through which a user works on

the programs, commands, and scripts. A shell is accessed by a terminal which runs it.

When you run the terminal, the Shell issues a command prompt (usually $), where you

can type your input, which is then executed when you hit the Enter key. The output or the

result is thereafter displayed on the terminal.

Fig 3.5: Existence of shell in O

25

Chapter-4

ALGORITHM

4.1 Algorithm

//python Pseudocode

#import required python libraries

Import beautifulsoup

Import requests

Import urllib.requests

Check for hidden directories

file will contains most commonly directories used by developer and web servers

file=open(“file”,”r”)

Content = f.readline

content_array=[]

for x in content:

 content_array.append(x)

print(content_array)

domain=input("enter url")

for i in range(0,len(content_array)):

 url=domain+"/"+content_array[i]

 response=requests.head(url, allow_redirects=false)

 if response.status_code < 400:

 if response.status_code >=300:

#check redirection url using location header value

 print(response.status_code,url, response.headers(location))

 elif response .status_code >=200:

 print(response.status_code,url)

response=requests.head(domain,allow_redirects=false)

26

#check for clickjacking, strict transport security enforcement, unencrypted

communication, XSS

if response.headers(‘X-Content-Type’) != “deny”,”same-origin”:

print(“Vulnerable to clickjacking”)

Similarly check for other headers and analysis of the response

#check for DOS attack

response=requests.head(url, allow_redirects=false)

init_responsecode=response.status_code

For i in range (0,1000):

response=requests.head(url, allow_redirects=false)

final_responsecode=response_code

 if init_responsecode != final_responsecode:

 print(“vulnerable to xss”)

27

Chapter-5

TEST PLAN

5.1 Data Set

For enumerating the directories on the web server, we use a list of all possible directories
used by developers around the world and web servers. The scanner will scan the web
server according to the provided lists of directories and files and will search for possible
exposed directories.

The list used in this project is taken from OWASP project dir-buster. OWASP top 10 is
considered as top organisation in the security field. And all security researchers follow
OWASP top 10 guidelines while searching for security issue in a web application.

LIST:
https://github.com/dustyfresh/dictionaries/blob/master/DirBuster-Lists/directory-list-2.3-s
mall.txt

5.2 Test Setup

1. Install python on your machine

A. Windows

Fig 5.1: How to install python

B. Ubuntu/Kali Linux

28

https://github.com/dustyfresh/dictionaries/blob/master/DirBuster-Lists/directory-list-2.3-small.txt
https://github.com/dustyfresh/dictionaries/blob/master/DirBuster-Lists/directory-list-2.3-small.txt

Use these commands in terminal:

$ sudo apt-get update

$ sudo apt-get install python3.6

C. Mac O

Step 1: Install homebrew http://brew.sh/

Step 2: In Terminal use this command: brew install python3

2. Install python libraries/dependencies:

A. Requests

To install Requests, simply run this simple command in your terminal of choice:

$ pipenv install requests

B. BeautifulSoup

3. Run the developed python script in terminal and enter your site for scanning.

Chapter-6

RESULT AND PERFORMANCE ANALYSIS

6.1 Result

29

http://brew.sh/

In seventh semester, half of the project is completed. The scanner is capable of nicely
scanning the hidden directories and files on the web servers using website address.

Fig 6.1: Screenshot display the scanning progress on https://appsecure.security

30

31

6.2 Performance Analysis

The performance of the tool depends on the website response time. If the website takes a
long time to respond then the scanner will timeout (after 300 seconds) and proceed for
the next scan. There is no direct method to measure performance. Usually, the website
responds based on the user accessing the site. If a large group of users is accessing the
site then the response time will obviously we slower. Thus this will impact our scanning
time. But if we roughly plot a graph of performance then this would we something like
this:

32

Fig 6.2: Graph depicting User vs Scanner response time

33

Chapter-7

CONCLUSION

7.1 Conclusion

Dangers to uprightness and privacy of data and assets are expanded. To remain ensured,

developers and security engineers perform security testing of their web application to

check the security stance of the framework. As we have experienced the writing overview

of vulnerability detection techniques, it is discovered that there are different

vulnerabilities leaving the web application prone to attack. Attackers finding better

approaches to sidestep security systems so new vulnerabilities are advancing which

should be tended to.

7.2 Future Scope

With more and more start of online businesses and services, the web applications are

growing. This will create more attack surface for an attacker. With the help of this

automated vulnerability scanner, may website can be protected from some basic security

attacks. And will also create hindrance for the large attack, if this basic security

vulnerability is fixed.

34

REFERENCES

[1] OWASP top 10

[https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/ow

asptop10/OWASP%20Top%2010%20-%202013.pdf]

[2] SANS top 25 [https://www.sans.org/top25-software-errors/]

[3] Directory Buster

[https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project]

[4] Port Swigger web security [https://portswigger.net/web-security]

[5] Microsoft Corporation. Microsoft .NET Framework Development Center.

https://msdn.microsoft.com/netframework/, 2005.

[6] Microsoft Corporation. System.Reflection Namespace.

http://msdn.microsoft.com/library/default.asp? url=/library/en-us/cpref/%html/

frlrfsystemreflection.asp, 2005.

[7] David Cruwys. C Sharp/VB - Automated WebSpider / WebRobot.

[8] http: //www.codeproject.com/csharp/DavWebSpider.asp, March 2004.

[9] David Endler. The Evolution of Cross-Site Scripting Attacks. Technical report,

iDEFENSE Labs, 2002.

[10] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software

Engineering. Prentice-Hall International, 1994.

[11] Yao-Wen Huang, Fang Yu and Christian Hang, Chung-Hung Tsai, Der-Tsai Lee,

and Sy-Yen Kuo. Securing web application code by static analysis and runtime

protection. In 13th ACM International World Wide Web Conference, 2004.

[12] Yao-Wen Huang, Shih-Kun Huang, and Tsung-Po Lin. Web Application

Security Assessment by Fault Injection and Behavior Monitoring. 12th ACM

International World Wide Web Conference, May 2003.

[13] Insecure.org. NMap Network Scanner. http://www.insecure.org/nmap/,

[14] Shah. Sugandh, B.M. Mehtre, "A Modern Approach to CyberSecurity Analysis

Using Vulnerability Assessment and Penetration Testing" in NCRTCST 2013,

Hyderabad (A.P), India, Nov. 2013.

35

https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/owasptop10/OWASP%20Top%2010%20-%202013.pdf
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/owasptop10/OWASP%20Top%2010%20-%202013.pdf
https://www.sans.org/top25-software-errors/
https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project
https://portswigger.net/web-security
https://msdn.microsoft.com/netframework/

[15] Shah Sugandh, B. M. Mehtre, "A Reliable Strategy for Proactive Self-Defence in

Cyber Space using V APT Tools and Techniques", Computational Intelligence and

Computing Research (ICCIC), 2013.

[16] S. Shah, B.M. Mehtre, "An automated approach to Vulnerability Assessment and

Penetration Testing using Net-Nirikshak 1.0", Advanced Communication Control and

Computing Technologies (ICACCCT) 2014 International Conference on, pp. 707-712,

8–10 May 2014.

[17] Kumar Kranthi, K. Srinivasa Rao, "A Latest Approach to Cyber Security Analysis

using Vulnerability Assessment and Penetration Testing", International Journal of

Emerging Research in Management & Technology, vol. 3, no. 4, ISBN 2278–9359.

[18] Urmi Chhajed, Ajay Kumar, "A Critical Review on Detecting Cross-Site

Scripting Vulnerability", International Journal of Innovative Research in Science

Engineering and Technology, vol. 3, no. \$, April 2014, ISBN 2319–8753.

[19] A. Kieyzun, P.J. Guo, K. Jayaraman, M.D. Ernst, "Automatic creation of SQL

Injection and cross-site scripting attacks", Software Engineering 2009. ICSE 2009 IEEE

31st International Conference on, vol. 199, no. 209, 16–24 May 2009.

[20] Yadav Sushilkumar et al., "Survey: Secured Techniques for Vulnerability

Assessment and Penetration Testing", (IJCSIT) International Journal of Computer

Science and Information Technologies, vol. 5, no. 4, pp. 5132-5135, 2014.

[21] I. Yusof, A.-S.K. Pathan, "Preventing persistent Cross-Site Scripting (XSS) attack

by applying pattern filtering approach", Information and Communication Technology for

The Muslim World (ICT4M) 2014 The 5th International Conference on, vol. 1, no. 6,

17–18 Nov. 2014.

[22] J. Bau, E. Bursztein, D. Gupta, J. Mitchell, "State of the Art: Automated

Black-Box Web Application Vulnerability Testing", Security and Privacy (SP) 2010

IEEE Symposium on, vol. 332–345, 16–19 May 2010.

[23] M.E. Ruse, S. Basu, "Detecting Cross-Site Scripting Vulnerability Using

Concolic Testing", Information Technology: New Generations (ITNG) 2013 Tenth

International Conference on, vol. 633–638, 15–17 April 2013.

[24] T.S. Rocha, E. Souto, "ETSSDetector: A Tool to Automatically Detect Cross-Site

Scripting Vulnerabilities", Network Computing and Applications (NCA) 2014 IEEE 13th

International Symposium on, vol. 306–309, 21–23 Aug. 2014.

36

[25] Singh Tejinder, "Detecting and Prevention Cross-Site Scripting Techniques",

IOSR Journal of Engineering 2.4 (2012), pp. 854-857.

[26] "CWE -CWE List Version 2.9", Feb 2016, [online] Available: Cwe.mitre.org.

37

APPENDICES

Code

import urllib.request

import requests

f = open("raw.txt","r")

content=f.readlines();

content_array=[]

for x in content:

 content_array.append(x)

#len(content_array)

domain=input("enter url")

for i in range(0,len(content_array)):

 url=domain+"/"+content_array[i]

 response=requests.head(url, allow_redirects=False)

 if response.status_code < 400:

 if response.status_code >=300:

print(response.status_code,url , "->",

response.headers["Location"])

 elif response .status_code >=200:

 print(response.status_code,url)

print("Scanning done")

38

39

