
SQL AND PYTHON : TOOLS IN CLOUD COMPUTING

Project report submitted in partial fulfillment of the requirement for

the degree of

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION

ENGINEERING

By

MOHIT GARG

161007

UNDER THE GUIDANCE OF

MANOPRINCY J

COGNIZANT TECHNOLOGY SOLUTIONS

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

MAY-JUNE 2020

TABLE OF CONTENT

CAPTION PAGE NO.

DECLARATION i

ACKNOWLEDGEMENT ii

LIST OF TABLES iii

LIST OF FIGURES iv

ABSTRACT vi

CHAPTER 1: DBMS AND SQL 1

1.1 WHAT IS DATA? 1

1.2 REQUIREMENTS FROM DATA 1

1.3 LIMITATIONS OF FLAT FILES 1

1.4 DATABASE SYSTEMS 2

1.5 FUNCTIONS OF DBMS 2

1.6 TYPES OF DATABASE SYSTEMS 3

1.7 DATA INTEGRITY AND CONSTRAINTS 4

1.8 ENTITY RELATIONSHIP (ER) MODEL 6

1.9 SQL 7

1.9.1 DATA TYPES 8

1.9.2 DDL STATEMENTS 8

1.9.3 OPERATORS 10

1.9.4 FUNCTIONS 11

1.9.5 SQL FUNCTIONS 14

1.9.6 SORTING DATA 15

1.9.7 JOIN CLAUSE 16

1.9.8 SUBQUERY 21

1.10 SOFTWARE USED 22

CHAPTER 2: PROGRAMMING FUNDAMENTALS USING JAVA 23

2.1 INTRODUCTION 23

2.2 METHODS 25

2.3 METHOD OVERLOADING 25

2.4 CONSTRUCTOR 26

2.5 CLASSES 27

2.6 DATA TYPES 28

2.7 OPERATORS 28

2.8 VARIABLES 29

2.9 STATIC 29

2.10 STATIC VS INSTANCE METHODS 30

2.11 WRAPPER CLASSES 31

2.12 FLOW CONTROL STATEMENTS 32

2.13 ACCESS MODIFIERS 33

2.14 PACKAGES 34

2.15 CONCEPTS OF OOP 34

2.15.1 INHERITANCE 34

2.15.2 ABSTRACTION 36

2.15.3 POLYMORPHISM 36

2.15.4 ENCAPSULATION 38

2.16 MULTITHREADING 38

2.17 STRING HANDLING 39

2.18 ARRAYS 39

2.19 EXCEPTION HANDLING IN JAVA 41

2.20 THROW and THROWS KEYWORD 42

2.21 GARBAGE COLLECTION IN JAVA 43

2.22 FILE HANDLING 43

CHAPTER 3: PROGRAMMING FUNDAMENTALS USING PYTHON 44

3.1 INTRODUCTION 44

3.2 WRITIING A PYTHON SCRIPT 46

3.3 VARIABLES 46

3.4 DATA TYPES 47

3.5 OPERATIONS IN PYTHON 47

3.6 OPERATOR PRECEDENCE 50

3.7 STRINGS AND STRING METHODS 50

3.8 PYTHON COLLECTIONS (ARRAYS) 52

3.9 PYTHON LOOPS 53

3.10 PYTHON FUNCTIONS 55

3.11 PYTHON CLASSES/ OBJECTS 56

3.12 PYTHON INHERITANCE 57

3.13 SOFTWARE USED 58

CONCLUSION 60

PUBLICATION 61

REFERENCES 62

PLAGRISM REPORT 63

DECLARATION

This is to certify that the work titled “SQL and Python : Tools in Cloud Computing”,

submitted by Mohit Garg under the partial fulfillment for the award of Bachelor of

Technology in Electronics and Communication of Jaypee University Of Information

Technology has been carried out under my supervision. This work has never been submitted

elsewhere for the award of this or any other degree or diploma.

Mohit Garg
161007

i

ii

ACKNOWLEDGEMENT

I take this opportunity to express my sincere gratitude to the Prof. M. J. Nigam (HoD), Department

of Electronics and Communication Engineering, Jaypee University of Information Technology,

Solan for providing this opportunity to carry out the present work.

The constant guidance and consolation got from Dr Shruti Jain Associate Professor Department

of Electronics and Communication Engineering has been of incredible assistance in conveying our

present work and helped us in finishing this task with success.

I would like to express a deep sense of gratitude to my trainers Mrs. Dipti Anjelakar (SQL), Mr.

Krishanu Mukherjee (JAVA), Mr. Prabhat Chandra (Python), at Cognizant Technology

Solutions for their guidance and support in defining the design problem and towards the

completion of my work. Without their wise counsel and able guidance, it would have been

impossible to complete the thesis in this manner.

I am also thankful to our batch owners my batch owner Mrs. Manoprincy J, for her intellectual

support throughout the course of this work.

Finally, I thank my parents and my family members for giving the moral support and abundant

blessings in all of activities and my dear friends who helped me to endure the difficult times with

their unfailing support and warm wishes.

iii

LIST OF TABLES

iv

LIST OF FIGURE

v

vi

ABSTRACT

With increasing amount of data and services enabling us to use computing across various products,

cloud computing has emerged as an exciting paradigm. It helps in sharing resources as well as

information between different devices . DBMS or database management system acts through cloud

computing platforms like AWS or Amazon Web Services. With time , involvement of DBMS in

the sphere of cloud computing is going to enhance ridiculously. With DBMS we are able to execute

queries , build indexes and load different types of data . Through SQL or standard query language,

implementation of DBMS concepts becomes very fruitful.
A clear understanding for Java-based web apps is necessary to run them on cloud components so

that clients can access cloud provided softwares .With clear understanding of OOPs based concepts

like encapsulation, inheritance , polymorphism etc. the base and foundation of core developing is

enhanced.
Python has come out as one of the most powerful language developers want to use to develop

codes and softwares. It's application in cloud computing is promising.
It powers some of the most string applications on cloud.
This report consist of basic foundation of Python which has helped in analysing and organising

data for implementation. It is especially useful for streaming analytical applications built on the

cloud.
For the pivotal growth of cloud computing across various platforms , it has become important to

collect information on cloud and analyse them and find out useful information and for that purpose

Python is crucial. Using a combination of Python -based analytics, cloud data services and

visualization tools, we are able to make innovative applications around the cloud platform .
With basic foundation of SQL in DBMS, JAVA as Object oriented programming language and

Python , the works for cloud computing becomes very wide.

1

CHAPTER 1 DBMS AND SQL

INTRODUCTION

1.1 WHAT IS DATA?

An object of interest can be designated as data. Any information which we can collect about these interest

can be called as data.e.g. data about a student would include information like name, address, age, semester

grades etc. Software Applications store data to answer a question e.g. how many students have a gpa greater

than 8 .Data can be used to convey many information about any entity.

Within itself data is just a raw representation. When this raw information is used to find some relevant

patterns then it is called as information. This information in turn when used to make basic decision then it

is called knowledge.

Figure 1. 1 Data Hierarchy

1.2 REQUIREMENTS FROM DATA

End users expect some end result from software applications. Let us take the example of Facebook

application.

Table 1. 1 Requirements from Data

Requirement Description

Integrity Data should be accurate e.g. my facebook profile should contain valid

country name.

Availability I should be able to access facebook and see my data at all times.

Security Only my friends should be able to see my posts and no one else.

Independent of

Application

my Android app as well as web browser on my laptop should be able to

access data.

Concurrent All my friends should be able to see my posts at the same time.

1.3 LIMITATIONS OF FLAT FILES

Data is stored in flat files and can be accessed using any programming language. The file based approach

suffers following problems:

2

1. Dependency of program on physical structure of data

2. Complex process to retrieve data

3. Loss of data on concurrent access

4. Inability to give access based on record (Security)

5. Data redundancy

1.4 DATABASE SYSTEMS

A common assemblage which is designed to meet infp of any firm is related logically and such a

representation is database .

A software system to control access and define or create a database can be done by a Database Management

System. Database Systems demand a high hardware configuration and sometimes ann optimised cost.

An Application Program interacts with a database by issuing an appropriate request (typically a SQL

statement).

Figure 1. 2 Database System

1.5 FUNCTIONS OF DBMS

Database Management Systems offer several functions that help us overcome problems associated with file

based systems.

Figure 1. 3 Functions of DBMS

3

1.6 TYPES OF DATABASE SYSTEMS

These database systems can be classified into four types in terms of their chronology of

evolution:hierarchical, network,Relational ad NoSql. We will now get a brief overview of these database

management systems.

Figure 1. 4 Types of Database Systems

Hierarchical Databases sort out information into a tree-like structure. Information is put away as records

which are associated with each other through parent kid connections. A few instances of Hierarchical

Databases are Information Management System (IMS), Raima Database Manager (RDM) Mobile and so

forth.

Figure 1. 5 Hierarchical Database

Network Databases compose information into a diagram structure in which item types are hubs and

relationship types are curves. Each record can have various parent and youngster records. A few instances

of Network Databases are Integrated Database Management System (IDMS), Integrated Data Store (IDS)

and so forth.

Figure 1. 6 Network Database

4

Relational Databases sorts out information into at least one tables. A table comprises of qualities

(segments), tuples (pushes) and gives an approach to particularly distinguish each tuple. Tables are

identified with one another through parent youngster connections. A few instances of Relational Databases

are DB2, Oracle, SQL Server and so forth.

Figure 1. 7 Relational Database

NoSQL (Not only SQL) database uses key-value, graph or document data structures to store data. These

databases aim for simplicity of design, horizontal scaling and finer control over availability. Some examples

on No Sql databases are Cassandra, MongoDB, CouchDB, OrientDB, HBASE etc.

Figure 1. 8 No SQL Database

1.7 DATA INTEGRITY AND CONSTRAINTS

Data integrity alludes to keeping up and guaranteeing the exactness and consistency of information over its

whole life-cycle. Database Systems guarantee information honesty through requirements which are utilized

to confine information that can be entered or altered in the database. Database Systems offer three types of

integrity constraints:

Table 1. 2 Integrity Types

Integrity Types Definitions Enforced Through

Entity Integrity Each table must have a column or

a set of columns through which

PRIMARY KEY

5

we can uniquely identify a row.

These column(s) cannot have

empty (null) values.

Domain Integrity All attributes in a table must have

a defined domain i.e. a finite set

of values which have to be used.

When we assign a data type to a

column we limit the values that it

can contain. In addition we can

also have value restriction as per

business rules e.g. Gender must

be M or F.

CHECK CONSTRAINT, DATA

TYPES

Referential Integrity Every value of a column in a

table must exist as a value of

another column in a different (or

the same) table.

FOREIGN KEY

Figure 1. 9 Data Integrity

CANDIDATE KEY:- A minimal set of columns that can uniquely identify a single tuple in a relation.

What underlying business decisions are to be taken through database , that determines what candidate keys

would comprise of.

PRIMARY KEY:- To uniquely identify a tuples in a database we require primary key.

6

Table 1. 3 Mandatory and Desired attributes for a primary key

Mandatory Desired

must uniquely identify a tuple should not change with time

must not allow NULL values should have short size e.g. numeric data types

When two or more columns together identify the unique row then it's referred to as Composite Primary

Key.

FOREIGN KEY:- We have two tables , one primary table , one secondary table. We select one key from

primary table which can uniquely identify the tupeles in the secondary table. And this key is called foreign

key. A relationship is formed as soon as a foreign key is formed between two tables. Let us take Employee

and Computer tables as provided below:

Computer is the primary table with CompId as the primary key. Employee is the secondary table with Id as

the primary key.

Figure 1. 10 Foreign Key

1.8 ENTITY RELATIONSHIP (ER) MODEL

ER model is used to graphically represent entities and relationship helping to understand data independency

of the actual database implementation. Let us understand some key terms used in ER Modelling.

Table 1. 4 ER Model Terms

Term Definition Examples

Entity

Real world objects which have an independent existence and about

which we intend to collect data.

Employee,

Computer

Attribute A property that describes an entity. Name, Salary

A sample ER Diagram representing the Employee entity along with its attributes is presented below:

7

Figure 1. 11 ER Model

Crow foot notation is one of the ways to represent cardinality of relationship in an ER Model. The notation

comprises of four symbols and one of them need to be used for each entity in a relationship.

Figure 1. 12 Cross Foot Notation

1.9 SQL
Structured Query Language (SQL) used to handle data that is stored in various types of databases.We find

4 different types of commands in SQL which have different types of functions useful in sql.

1. DDL-Data Definition Language:A relational database has a specific schema which can be

described by DDL commands.There are various types entities , indexes, constraints and keys in a

database and they can be created , modified and deleted which is done by DDL commands.

2. DML-Data Manipulation Language:eSometimes when we have created a database , we need to

update some values or alter it or modify it according to the current needs and this is where DML

comes into play.It hides the specific implementation and still provides what the user asked for.

3. DCL-Data Control Language: views, tables, stored procedures etc. in a relational database can

be accessed through DCL.It grants and revokes privileges of a database.

4. TCL-Transaction Control Language:to begin or end a transaction in a database we need TCL

commands. a sequence of SQL statements comprises a transaction that are applied in an atomic

(all or none) manner. A commit makes all the changes applied by the transaction permanent on the

database while a rollback undoes all the changed applied by the transaction.

8

Figure 1. 13 Parts of SQL

1.9.1 DATA TYPES
There are three type of data types that SQL supports namely:

1. SQL Character Data Types: SQL supports two character data types for storing printable and

displayable characters. They are used for storing information like name, address, description etc.

2. SQL Integral Data Types: SQL supports SMALLINT, INTEGER and INT data types that are

used for storing whole numbers. Unlike other databases Oracle does not define different size limits

for them. They are all treated internally to have 38 digit of precision.

3. SQL Non-Integral Data Types: Nonintegral data types have an integer part and a fractional part.

Either NUMERIC, DECIMAL or NUMBER data types can be used to store nonintegral numbers

1.9.2 DDL STATEMENTS

1. CREATE TABLE :to create a table in a database. Rows and columns are created . Each table has

to compulsorily have a name and can have any number of columns (minimum 1 column is

required). Each column must have a data type which determines the type of values that can be

stored. CREATE TABLE command will fail if a table is already existing in the database with

same name. All tables must have a unique name.

SYNTAX: CREATE TABLE Student (

 StudentId INTEGER,

 FName VARCHAR2(10),

 Gender CHAR(1),

 DOJ DATE);

2. DROP TABLE removes an existing table from the database.

SYNTAX-DROP TABLE Employee;

9

CONSTRAINTS
Constraints are typically specified along with the CREATE TABLE statement. Constraints are classified

into multiple types based on the number of columns they act upon as well as on the way they are specified.

Various constraints that can be created on database tables are:

1. NOT NULL CONSTRAINT: NOT NULLdoes not let a column from accepting NULL values.

NOT NULL can only be applied as a column level constraint. Constraint name is optional and it

can be specified by using CONSTRAINT keyword.

SYNTAX: CREATE TABLE Employee (

EMpId INTEGER CONSTRAINT tud_EId_nn NOT NULL,

FullName VARCHAR2(30) NOT NULL,

LastName VARCHAR2(30)

2. DEFAULT CONSTRAINT: A column can be given the default value by using DEFAULT option.

The data type of column and default expression must be the same. DEFAULT option can be

provided for nullable as well as NOT NULL attributes. Oracle database does not consider

DEFAULT as a constraint.

SYNTAX: CREATE TABLE Student (

 StudentId INTEGER,

 FName VARCHAR2(10),

 DOJ DATE DEFAULT SYSDATE);

3. PRIMARY KEY CONSTRAINT: This constraint on a column ensures that the column cannot

contain NULL and duplicate values.

SYNTAX- CREATE TABLE Student (

 StudentId INTEGER CONSTRAINT stud_sid_pk PRIMARY KEY,

 FName VARCHAR2(10),

 ContactNo NUMBER(10));

4. CHECK CONSTRAINT: To limit the values that can be specified for a column.

SYNTAX: CREATE TABLE Student (

 StudentId INTEGER,

 FName VARCHAR2(10),

Gender CHAR(1) CONSTRAINT Stud_gender_ck1 CHECK(Gender

IN('M', 'F')));

5. UNIQUE CONSTRAINT: To ensure that two rows in a table cannnot have same value in that

column. Unlike Primary Key, UNIQUE constraint allows NULL values. many UNIQUE

constraints can be present in one table.

SYNTAX: CREATE TABLE Student (

 StudentId INTEGER, FName VARCHAR2(10), ContactNo NUMBER(10)

CONSTRAINT Stud_cno_uk UNIQUE);

10

1.9.3 OPERATORS:

We have many types of operations possible in SQL:

Arithmetic operators:

Table 1. 5 Arithmetic Operators

Comparison Operator:

Table 1. 6 Comparison Operators

Logical Operator:

Table 1. 7 Logical Operators

11

1.9.4 FUNCTIONS:

Conversion Functions:
Table 1. 8 Conversion Function

Date Function:
Table 1. 9 Date Function

CASE STATEMENT

It is used to select from a range of values depending upon the condition. We can use WHERE, GROUP

BY with case statement . We have following Examples:

1. Simple CASE expression:

Figure 1. 14 Simple CASE expression

2. Searched CASE expression:

Figure 1. 15 Searched CASE expression

12

ALTER TABLE
We need to use ALTER TABLE command through which the structure of existing table can be changed

without any loss of data. ALTER table can also be used to rename a column, change data type of a column

and add or remove constraints. Syntax for ALTER TABLE command is provided below:

Figure 1. 16 ALTER STATEMENT

INSERTING DATA

INSERT STATEMENT: To add tuples (records) to table. It supports many syntax as shown below:

Figure 1. 17 INSERT STATEMENT

RETRIEVING DATA

SELECT QUERY: SELECT query allows us to retrieve data from many tables in a relational database.

It can be represented as:

Figure 1. 18 SELECT STATEMENT

Use DISTINCT clause to remove duplicates. Usage of DISTINCT should be avoided as far as possible as

it can lead to performance issues.

 SYNTAX: SELECT DISTINCT Dept FROM Employee

13

WHERE CLAUSE
To refine records on a basis of a condition we need WHERE statement. Only those data that meet some

required conditions get filtered with this clause.

SYNTAX: SELECT col1, col2, ...

FROM name_of_table

WHERE condition;

LIKE OPERTOR
LIKE operator is used to match a character pattern. It allows us to use wild cards. SQL supports two wild

cards: '%' which matches with any number of characters and '_' which matches with exactly one character.

SYNTAX- SELECT col1, col2, ...

FROM name_of_table

WHERE col LIKE some_pattern;

UPDATING DATA

UPDATE SYNTAX
To modify records existing inside a single table in a database. Update statement can be represented as:

Figure 1. 19 UPDATE STATEMENT

The database system ensures that no constraints are violated during execution of an update statement. Any

violation of constraints results in failure of the statement.

DELETING DATA

DELETE : deletes records from a table in a relational database. The database system ensures that no

constraints are violated during execution of a delete statement. Any violation of constraints results in failure

of the statement.

TRUNCATE statement can also be used to delete data from tables. TRUNCATE statement deletes every

rows from table as it does not support WHERE clause. TRUNCATE statement is a faster option compared

to DELETE when we have to delete all rows from the table.

14

Figure 1. 20 DELETE AND TRUNCATE STATEMENT

1.9.5 SQL FUNCTIONS
SQL functions are built in modules provided by a database. We can use them in data manipulation

statements to perform calculations on data. All functions return a single value.

NUMERIC FUNCTION
Numeric functions are single row functions that accept a numeric value and return numeric output.

Table 1. 10 Numeric Function

Name Syntax Function

ABS ABS(value) Returns absolute value of a number

ROUND ROUND(value, digits) Rounds the value to specified decimal digits

CEIL CEIL(value) Rounds up the fractional value to next integer

FLOOR FLOOR(value) Rounds down the fractional value to the lower integer

CHARACTER FUNCTION
Character functions work on character strings and can return a character string or a numeric value.

Table 1. 11 Character Function

Name Syntax Function

UPPER UPPER(value) Converts value to upper case

LOWER LOWER(value) Converts value n lower case

CONCAT CONCAT(value1, value2) Concatenates value1 and value2

LENGTH LENGTH(value) the number of characters in value present returned

SUBSTRING FUNCTION

Substring function is used to extract part of a string. It has the following syntax SUBSTR(value,

start_position, length)

15

Figure 1. 21 Substring Function

AGGREGATE FUNCTION
Aggregate functions works on many rows at a time to return a single row. Some aggregate functions like

SUM (total), AVG (average) operates only on numeric columns while others like MIN (lowest value),

MAX (highest value) and COUNT (number of rows) operate on all data types. All aggregate functions

ignore NULL values except COUNT(*).

SYNTAX: SELECT MIN(Salary), MAX(Salary), SUM(Salary) FROM Employee

SYNTAX: SELECT COUNT(ID) COUNT_ID, COUNT(*) COUNT_STAR, COUNT(Bonus)

COUNT_BONUS FROM Employee

SYNTAX: SELECT AVG(Salary) AvgSalary, AVG(Bonus) AvgBonus1, SUM(Bonus) /

Count(Bonus) AvgBonus2 FROM Employee

1.9.6 SORTING DATA

ORDER BY CLAUSE
Order By clause sorts the answer of a query in a particular order. Before we understand the syntax of

ORDER BY, Sorting on secondary column happens only when multiple rows have the same value in the

primary column. The sort order can be different for the two columns i.e. primary can be sorted in ascending

and secondary in descending and vice-versa. ORDER BY must be used to specify the columns on which

data has to be sorted and the sort order i.e. ascending or descending. Rows are sorted in ascending order if

sort order is not specified. DESC should be used to sort the rows in descending order.

Figure 1. 22 ORDER BY CLAUSE

GROUPING DATA

GROUP BY
GROUP BY does grouping of the data from the table into various groups based on criteria provided and

calculates the aggregate function for each group. Thus the result has 1 row for each group.

SYNTAX: SELECT Dept, Designation, MAX(Salary) FROM Employee GROUP BY Dept, Designation;

HAVING

Having allows aggregate functions to be used as filter criteria which cannot be done using WHERE clause.

16

COMBINING DATA
UNION and UNION ALL clause to combine results from two or more SELECT statements. The select

statements may be from same or different tables.They must have same number of columns and their data

types at same position in both the query must be compatible (either same or convertible through automatic

conversion). UNION removes all duplicates from the result. Two records are considered duplicates if values

at corresponding positions of all their columns match.

 SYNTAX: SELECT CompId FROM Employee UNION SELECT CompId FROM Computer

1.9.7 JOIN CLAUSE
A JOIN clause combines rows from two or more tables, basis formed is the column present in them

CROSS JOIN:
It is referred to as cartesian product . When we have two table with m and n rows respecitivlely thne the

cross k=join gives m * n rows . It gives a lot of meaningless data that is why not generally used.

Algorithm:

Figure 1. 23 Algoritm of Cross Join

Example:

Employee Table

Figure 1. 24 Employee Table

Computer Table:

Figure 1. 25 Computer table

Now the cross join of Employee and Computer Table gives:

17

Figure 1. 26 Cross Join

INNER JOIN
Records that have matching values in both tables are selected in inner join.

Algorithm:

Figure 1. 27 Algorithm of Inner Join

Employee Table

Figure 1. 28 Employee table

Computer Table

Figure 1. 29 Computer Table

18

Result of Inner Join

Figure 1. 30 Inner Join

SYNTAX- SELECT col_names(s)

 FROM tableA

 NNER JOIN tableB

 ON tableA.colA_name = tableB.colB_name;

LEFT JOIN
Returns all records from the left table (tableA), and the records that are matching from the right table

(tableB).

Algorithm:

Figure 1. 31 Algorithm of Left Join

Employee Table:

Figure 1. 32 Employee table

Computer Table:

19

Figure 1. 33Computer Table and Left Join

SYNTAX- SELECT col_name(s)

 FROM tableA

 LEFT JOIN tableB

 ON tableA.colA_name = tableB.col_name;

RIGHT JOIN
Returns all records from the right table (tableB), and the records that are matching from the left table

(tableA).

Algorithm:

Figure 1. 34 Algorithm of Right Join

Employee Table:

20

Figure 1. 35 Employee table

Computer Table:

Figure 1. 36 Computer Table

Result:

Figure 1. 37 Right Join

SYNTAX: SELECT col_name(s)

 FROM tableA

 RIGHT JOIN tableB

 ON tableA.colA_name = tableB.colB_name;

FULL OUTER JOIN
Full outer join combines the result of both left join and right join.

Illustrative Algorithm:

Figure 1. 38 Algorithm of Full Outer Join

21

Employee Table

Figure 1. 39 Employee table

Computer Table

Figure 1. 40 Computer Table

Result:

Figure 1. 41 Full Outer Join

1.9.8 SUBQUERY
Subquery is a query which is present within another query. A subquery must be enclosed in brackets and

can be used in SELECT, FROM, WHERE and HAVING clauses. Subquery in SELECT and FROM clause

are rarely used. Subqueries in WHERE and HAVING clauses are classified into Independent and Correlated

subqueries.

INDEPENDENT SUBQUERY
In an independent subquery, the inner and outer query are independent of each other. We can run an inner

query and inspect its result independent of the outer query. Independent subquery are further classified into

single row and multiple row types depending upon the number of rows returned.

Figure 1. 42 Independent Subquery

22

CORRELATED SUBQUERY

A Correlated subquery is one in which the inner query is dependent on the outer query for it's

complete execution. Specifically it uses a column from one of the tables in the query which is outer. The

inner query is executed iteratively for each selected row of the outer query. In case of independent subquery,

the inner query just executes once.

Figure 1. 43 Correlated Subquery

1.10 SOFTWARE USED

MYSQL WORKBENCH
MySQL Workbench is an integrated virtualization tool for repositories, developers, and DBAs. MySQL

Workbench provides data model, SQL development, and complete management tools for server

configuration, user management, backup and much more. MySQL Workbench is available for Windows,

Linux and Mac OS X. MySQL Workbench enables the DBA, developer, or data architect to visualize,

model, generate, and manage databases. It includes all the data modeler required to build complex ER

models, forwards and backs up engineering, and also brings important aspects of the change management

task and complexity of time-consuming documentation and effort. MySQL Workbench delivers visual tools

for performing, executing, and optimizing SQL queries. The SQL editor provides syntax color highlighting,

auto-completion, reuse of SQL captions, and SQL execution history. The Database Connectivity panel

enables developers to easily manage standard data communications, including MySQL Fabric. The Object

browser provides quick access to the database schema and objects.

Figure 1. 44 MYSQL Workbench

23

 CHAPTER 2 PROGRAMMING FUNDAMENTALS USING JAVA

2.1 INTRODUCTION

Need for Oops

1. It provides methodology for achieving benefits of reusable software components.

2. The methodology is quicker as it provides reusability features.

3. It places focus on object and information. A problem can be broken down into many objects .

4. It was created to overcome shortcomings of structured programming techniques.

5. It uses bottom up approach.

6. The foundation of the code is a class which is used to form run time objects.

Key features of Oops

1. Encapsulation

2. Abstraction

3. Inheritance

4. Polymorphism

How is JAVA platform independent ?

The significance of platform independent is that the java incorporated code(byte code) can run on every

single working framework.

A program is written in a language that is a comprehensible language. It might contain words, phrases, and

so forth which the machine doesn't comprehend. For the source code to be comprehended by the machine,

it should be in a language comprehended by machines, normally a machine-level language. In this way,

here comes the job of a compiler. The compiler changes over the significant level language (human

language) into an organization comprehended by the machines. Along these lines, a compiler is a program

that interprets the source code for another program from a programming language into executable code.

This executable code might be an arrangement of machine guidelines that can be executed by the CPU

legitimately, or it might be a middle of the road portrayal that is deciphered by a virtual machine. This

middle of the road portrayal in Java is the Java Byte Code.

Step by Step method of execution:

1. The javac compiles the code written in JAVA.

2. The result is .class file or the bytecode. And not machine code.

3. The bytecode which we have obtained is non executable. And an interpreter will be needed.

4. Finally program is run to give the output

24

Figure 2. 1 Java

Java is platform independent but the JAVAC is platform dependent.

ENUM
ENUM: To represent a group of constants which are named in a language which is called Enum.

If we take an example of planets , We can have an enum named Solar System with enumerators called

Earth, Mars, Venus, Jupiter. SImilarly we can have many enums like that of colors or directions, etc.

When all possible :

-Constructor(s) must have the same name as the class within which it is defined while it is not necessary

for the method in java.

-Constructor(s) do not return any type while method(s) have the return type or void if does not return any

value.

-Constructor is called only once at the time of Object creation while method(s) can be called any number

of times.

1. values are to be known at compile time then we use enum.

2. The set of enum need not be fixed all the time.

3. We use enum keyword to declare enum which means it is of enum datatype.

4. The main objective which we have is to define our data types.

How to declare ?

We can do it either outside of a class or inside of a class but we cannot do it inside a method.

EXAMPLE: enum Direction

{

EAST,WEST,NORTH,SOUTH;

}

main()

{

Direction d=DIrection.EAST;

25

}

One thing to keep in mind is that inside enum that the first line should have a list of things like methods,

constructors, variables , constants and other things.

According to Java conventions of naming, we should name the constraints with capital letters.

Some points to Enum:

1. Class internally implements enum.

2. Object of type enum are represented by enum constants.

3. Enum constant always implicitly public static final.

2.2 METHODS

SYNTAX:

Return type name ()

{

Body

}

We accompany them with modifiers such as default, private, public , private, protected and others which

we will discuss later.

Return type—there has to be the type of value being returned from the method and data type has to be

mentioned.

1. Name of method -the rules for field names apply to method names as well, but the convention is a

little different.

2. parenthesis with parameter list —input parameters differentiated by comma delimiters

Figure 2. 2 Structure of a Function

2.3 METHOD OVERLOADING

Java can recognize the techniques with various strategy marks. for example the techniques can have same

name yet with various parameters list (for example number of the parameters, request of the parameters,

and information sorts of the parameters) inside a similar class.

26

1. We can differentiate on basis of number and type of arguments we have available.

2. We can have more than one function with same name and type and order of arguments but a

compiler error will be achieved.

3. While overloading , the return type is not considered as a mean to differentiate between the

functions.

If we need same kind of operations for different kind of entities we may use overloading.

We can doo overloading by different kind of methods :

1. By the methods containing the number of parameters.

Eg: int add(int a, int ,b)

{

//body

}

Int add (int a, int b, int c)

{

//body

}

2. Methods containing data types of parameters.

Eg: int add(int a, int b,int c)

{

//body

}

Double add (double a, double b, double c)

{

//body

}

3. Methods having different order of parameters.

Eg:void func(String name, int i)

{

//body

}

Void func(int i, String name)

{

//body

}

2.4 CONSTRUCTOR
They are needed to initialize the state of an object.

Whatever statements are inside a constructor are executed while a object is created.

They assign value to an object either it is done explicitly or the compiler does it automatically for us.

When we use new keyword to create an object , the constructor is automatically created which is the default

constructor. It is used to assign values to variable and data members.

It is invoked at time of object creation.

Syntax:

27

Class Planet

{

…..

// A constructor

New Planet()

{

}

…

}

Planet obj=new Planet(); // here when object is created , default constructor is invoked.

Types of Constructor:

We have two types of constructor :

1. Default constructor: it has no parameters. If we dont define any constructor then the compiler

makes one default constructor.

 But if we provide our own then we dont need the default constructor.

2. Parameterized Constructor: Constructor having parameters inside declarations is known as

parameterized Constructor. When we want initialize our own values then this type of constructor

is needed.

There is no return value associated with a constructor since it is used for initialization.

DIFFERENCE IN CONSTRUCTOR AND METHODS.

2.5 CLASSES

Objects are individually created in a class.

Variables and methods are contained inside a class. It will have it’s own . java method.

There are many access level to the class:

Table 2. 1 Access Levels

Access Name Accessibility
Private Only in this class

Package Only in this package

Protected Only in this package and n all subclasses of this

class

Public Everywhere this class is available

28

When a certain method cannot access any of non-static blocks of class then it should be declared static.

Whatever object a class contains , it inhibits the same properties and behaviours of the class. The

behavoiour of the object is described by the fields and methods.

THIS KEYWORD

This is the keyword that refers to the current object.

We can use it to :

1. Refer current class instance

2. Invoke current class constructor

3. Return the current class instance

4. Used a method parameter

5. Invoke current class method

6. Argument in constructor class

2.6 DATA TYPES

Simple Datat types: short,, int, long,, char, float,, double & boolean.

Table 2. 2 Data Types

Data type Size Range

Long 64 –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

Int 32 –2,147,483,648 to 2,147,483,647

Short 16 –32,768 to 32,767

Byte 8 –128 to 127

float 64 4.9e–324 to 1.8e+308

Double 32 32 1.4e−045 to 3.4e+038

2.7 OPERATORS
We have many types of operators in JAVA:

Arithmetic operators: arithmetic operations can be performed on data types.

Multiplication : *

Division : %

Modulo : /

Addition : +

Subtraction : -

Unary Operator :
Need only one operand in JAVA is done by the Unary Operator.

Unary minus: -

Unary Plus : +

Increment Operator :++

Post increment : value computed first then incremented

29

Pre increment : value incremented first then computed

Decrement Operator : --

 Post decrement : value computed first then decremented

Pre decrement : value decremented first then computed

Logical not operator : ! invert boolean value

Assignment operator: it is used to assign a value to a variable.

Relational Operator : to compare values in JAVA we use relational operator .

Equal : ==

Not equal to : !=

Less than or equal to : <=

Greater than or equal to : >=

Greater than : >

Less than : <

Logical Operator:
AND-&&

OR-||

 NOT- !

Ternary Operator: It is shorthand used for if-else statements.

Condition ? if true : if false

2.8 VARIABLES

- Java program has basic unit which is called variable. A variable is a combination of a type , an identifier

& initializer(optional)

- they all have a defined scope,which illustrates their visibility. All variable must be declared before they

are used.

SYNTAX:

2.9 STATIC

The word status is a keyword that can be used with class , block , method , variable. They belong to the

class instead of a specific instance. TO access a static word we dont need object.

EXAMPLE:

Class Sample

{

Static void myFunction()

{

30

//statements

}

main()

{

myFunction();

}

Here the function myFunction can be called directly without using any object because now it has become

a class level member.

STATIC VARIABLE

It is common to all objects of the class as it a class level variable. A single copy of the variable is shared by

all the objects of the class created. Any changes made to the variable will be reflected in all the objects .

They are also called Class Variable.

STATIC METHODS

They can access static variables or as they are called class variable without using any instance of the class.

Both static and non static method can access static methods.

SYNTAX : static return _type method_name ();

STATIC CLASS

To make a class static , it needs to be nested. Non static members of outer class cant access static class.

2.10 STATIC VS INSTANCE METHODS

Instance Methods:
For instance methods we require and object to be created before it has to be called to execute the function

definition.

We need to create an object in the class within which it is needed.

 Syntax:

Public void func(String n)

{

//code to be executed

}

//return type can be any data type

-The instance methods are a property of the object and not the class .

1. Every object which we create in the class has its own copy of the instance methods.

31

2. They are stored on per instance basis but stored in single memory allocation.

3. They can be overridden as we have seen in run time polymorphism.

Static Method: They can be called without any creation of object since they are a property of class and

not any object..

They are referenced by class name itself.

Syntax:

Public static void func(String name)

{

//code to be executed

}

//need to have static modifier

??return type can be any data type

1. The static methods are linked to class that is they exist without any need to create an object.

2. They are share by all objects of the class.

3. Any changes made will be reflected in all the classes.

4. They cannot be overridden and hence follow static binding.

2.11 WRAPPER CLASSES

We have mentioned various wrapper class of primitive data types below. Wrapper classes convert primitive

data types into objects.

Figure 2. 3 Wrapper Class Conversion

32

They are needed in API collections. We should use wrapper classes when we need object is instead of

primitive data types.

AUTOBOXING

Java compiler makes automatic conversion between primitive data types and their respective wrapper

classes. This is autoboxing.

If the conversion is vice versa then it is unboxing.

EXAMPLE: Character char=’z’;

Compiler performs autoboxing when a primitive value is :

1. Parameter to some method which instead expects a object of wrapper class.

2. Compiler performs unboxing when object of wrapper class s :

3. Passed as parameter to a function which is expects a value of primitive type of corresponding type.

2.12 FLOW CONTROL STATEMENTS

IF-THEN : It is the simplest control flow statement. It executes statements depending on which condition

is correct.

IF-ELSE: It provides and alternate executing statement if conditions come out to be false. if-else-if-else:

to make a decision tree sort of statements and executions.

SWITCH : It gives option of range of values for our variable .

WHILE : It is a loop statement to execute a set of statements till a certain condition is true . As soon as the

condition is false , the control comes out of the loop. We need a increment variable to keep a check on a

condition is true.

Figure 2. 4 Syntax of WHILE statement

FOR LOOP : It repeats a set of JAVA statements. It runs a set of code as long as a certain condition is

true.

33

Figure 2. 5 Syntax of FOR loop

BREAK : It isused to terminate from a loop .

CONTINUE : It is used to skip the current execution of a statement inside a loop and move further .

Figure 2. 6 CONTINUE STATEMENT

2.13 ACCESS MODIFIERS

It is used to limit the access of a class , constructor , data variable or a method in another class .

We have four types of modifiers :

1. Default:

2. Private:

3. Protected:

4. Public:

The details of access are given in this table :

Figure 2. 7 Details of Access Modifiers

34

2.14 PACKAGES

It is a group of interfaces, classes and other packages as well.

.

Figure 2. 8 Types of Packges

SYNTAX: import java.util.Scanner

In this syntax : the top package is java , the subpackage is util, Scanner is a class inside util package .

Why do we use packages :

• Name ambiguity: to avoid collision of same name class ,we can use packages

• Reusabilty: Instead of writing a certain code repeatedly , we can use packages to import them inside

any class.

EXAMPLE:

Java Packages: java.io.*, java.lang.*

User defined : we can create packages with any name. It should be the first statement inside your program.

2.15 CONCEPTS OF OOP

2.15.1 INHERITANCE

When one class s acquired by another class, then it is defined as inheritance. It is generally to provide

reusability inside a class. The functionalities can be incorporated from one class to another class.

Parent Class

It is the class from which some other class inherits functions and properties.

Derived or Child class

 The class which inherits some features from parent class.

The code which is already written inside parent class need not be repeated inside child class.

Syntax:

Figure 2. 9 Example of Inheritance

35

TYPES OF INHERITANCE :

1. Single inheritance : A derived class extends another parent class.

Figure 2. 10 Single Inheritance

2. Multilevel Inheritance : A derived class extends parent class which in turn extends another parent

class.

Figure 2. 11 Multiple Inheritance

3. Hierarchical Inheritance: Where more than one class extends another class.

Figure 2. 12 Hierarchical Inheritance

4. Mulitple Inheritance : When onederived class is inherited by more than one parent class.

Java doesnt support multiple inheritance .

36

Figure 2. 13 Multiple inheritance

2.15.2 ABSTRACTION

When the details are hidden and functionalities are shown to the user , it is defined as abstraction.

It is used to focus only on the object and not how the work is done in background.

ABSTRACT CLASS

When we declare a class as abstract , it is abstract class. A abstract class should be extended and it cannot

be instantiated.

Figure 2. 14 RULES FOR ABSTRACT CLASS

ABSTRACT METHOD

When a method does not contain any implementation and is declared with the keyword abstract then it is

known as abstract method.

SYNTAX: abstract void abfunstion(); // no method body

An abstract class can have abstract method , method body (when it is non abstract method0 , constructor

, even main () method.

2.15.3 POLYMORPHISM

This is a feature of OOPs that gives us ability to perform a single action in various different ways. Suppose

we want to calculate area of different figures in Area class with calcarea() method. The shapes could be

circle, rectangle , square , parallelogram etc . Suppose we have one Area class and all other shapes as it’s

37

subclasses. The methods to calculate area could have different implementation in different subclasses with

differernt names.

EXAMPLE:

Public class Area

{

public void calcArea(){

System.out.println(“Area can be calculated in base class”);

}

}

Public class Area extends Circle{

@override

Public void calcArea(){

System.out.println(“Area can be calculated of the circle”);

}

}

We have two types polymorphism in Java:

1. Method Overloading : It is compile-time or static polymorphism.

2. Method overriding: It is runtime or dynamic polymorphism.

Figure 2. 15 Method Overloading and Method Overriding

When there are many functions with same name but they differ in number of parameters or the data type of

arguments , then it is said to be overloading.

When the derived class has a separate implementation of function of base class , then the base function is

said to be overridden.

38

2.15.4 ENCAPSULATION

It is simply states as the binding of object state which is called fields and the behaviour or methods together.

When we create any class , we are implementing encapsulation.

Encapsulation is performed to hide from users the details of implementation.

How to implement Encapsulation ?

1. We have to make the variables private so they cannot be accessed from outside class directly .

2. We have to use getter and setter to get and set the values of fields .

EXAMPLE:

 Public int get()

{

Return value;

}

Public int set()

{

variable=value;

}

ADVANTAGES OF ENCAPSULATION:

1. The maintainability and flexibility and reusability is enhanced through encapsulation.

2. If we dont define setter methods then field can be made read only.

3. If getter methods are not defined then the field can only be set write only .So it is not possible for

outside classes to modify values.

4. The user does not need to know behind the scene implementation. Encapsulation is also defined as

Data Hiding.

2.16 MULTITHREADING

To understand multithreading we need to know what thread means. A thread is the tiniest poriton of a

process that can be run simultanoeusly with the other thread of the same process. They have independent

execution.

common memory is shared by threads . To execute multiple threads concurrently is called Multithreading.

USAGE OF MULTITHREADING:

1. Two or more parts of a programs can be run parallely and it increases the efficiency of a CPU

2. Thread that are running concurrently or simultaneously utilize the maximum CPU time .

3. A thread can have many states.

The life cycle of a thread s depicted in following diagram:

39

Figure 2. 16 Multithreading

2.17 STRING HANDLING

String is defined as sequence of characters. It is immutable object which means it cannot be modified,once

it has been made. We can create string using:

1. String literal

2. new keyword

EXAMPLE:

String string1=”Hello”;

String string2= new String(“World”);

VARIOUS STRINGS METHODS:

1. char charAt(int index): returns character at specified index.

2. boolean equals(Object obj): returns true if string equal to another string else false.

3. compareTo(String string) : compares two strings using uni code equivalent of the characters.

4. indexOf(int ch):return index in the string of a specific character.

5. substring(int beginIndex): returns the substring of a string.

6. substring(int beginIndex, nt lastIndex): return substring between specified indexes.

7. concat(String str) : contacts specified string to original string.

8. replace(char OldChar,char newCHar): replaces old character with new character.

9. toUpperCase(): converts string to upper case.

10. to LowerCase(): converts string to lower case.

11. char[] toCharsArray(): converts the string to a character array .

12. valueOf(): return string representation of arguments that are passed like float, long, double , int etc.

String trim(): return string after omitting the preceding and following spaces

2.18 ARRAYS

They are objects which can sore multiple values in contiguous memory locations . It can hold primitive

data types as well as object references.

40

Figure 2. 17 Structure of Array

FEATURES OF ARRAYS:

1. They are objects.

2. reference variables of other objects can be stored in array.

3. They created on the heap and are dynamic.

4. The length of an array is fixed.

Different ways to declare an array:

 Int firstArray[];

 Or

 Int [] secondArray;

 Or

 Int thirdArray[]={1,2,3,4,5};

PASSING ARRAY TO METHOD :

We can pass array to methods

EXAMPLE:

Class ArraysClass

{

main()

{

Int arr[];

sum(arr);

}

Void sum(int[] arr)

41

{

Body of function

}

}

2.19 EXCEPTION HANDLING N JAVA

It allows us to hande runtime errors caused by exceptions. An exception is an event which is unwanted and

it disrupts the normal flow of a program. The program gets terminated as soon as an exception occurs.

With the use of exception , it gets easier to inform the user about the reason behind the interrupted flow of

a program. An exception can occur due to network connection problem , access to invalid indexes, etc.

TYPES OF EXCEPTION:

Figure 2. 18 Types of Exception

To perform exception handling we can use try catch :

TRY: Try is used to cover those statements where an exception can occur.

It is always followed by a catch block which handles those exceptions.

SYNTAX:

Try

{

//statements that mau cause exception

42

}

CATCH: It is where the exceptions occurring in try block are resolved and handled. We can catch different

type of exceptions in different catch block .

SYNTAX:

Try

{

//statements that mau cause exception

}

Catch (exception(type) e(object))

{

// erro handling code }

2.20 THROW and THROWS keyword

1. When we want to explicitly throw an exception in a method or any block inside the code then we

use the throw keyword.

2. It is either a checked or an unchecked exception.

3. It is primarily used to throw custom exceptions.

Eg:

Throw new NullPointerException(“”);

By this we must have instance by throwable type or a subclass of throwable.

User defined exceptions typically extend Exception CLass.

When compiler encounters a thro keyword it stood immediately and finds the try block and check if it has

some catch block implementation.

Eg:

Void func()

{

Try

{

Throw new ArithmeticWException(“demo”);

}

catch(NullPointerException e)

{

//body of catch

}

Tghrows keyword suggests that methods might throw any of the listed exceptions.

The exceptions to these methods have to handle using try - catch block.

Syntax:

Type method_name(parameter) throws exception_list

It is a comma separated list.

Eg:

Static void main(String args[]) throws InterruptedException

{

43

Thread.sleep(10000);

….

}

• When we have checked exceptions then only we can use throws keyword while usage for

unchecked is meaningless through throws.

• It is required only to convince the compiler as it does not prevent any abnormal termination of the

program.

• Information to the caller can be provided by the help of throws keyword.

2.21 GARBAGE COLLECTION IN JAVA

In C++ the responsibility for both creation and destroying objects is in the hands of the programmer but in

JAVA , we need not bother about it at all.

Because for all those objects which are no longer used then the garbage collector destroyed those objects.

The main objective of Garbage Collector would be to free any heap memory by destroying the

unreachable objects.

When we have an object which does not contain any reference to it then it is called an unreachable object.

Eg:

FLoat f=new Float(4.0);

// this object f is reachable via reference in f

f=null;

//now the object is no longer reachable.

The object is eligible for garbage collection only if it is unreachable.

2.22 FILE HANDLING

The most affordable and popular programming language JAVA provides extensive support in various

data base functionalities as well as sockets etc. File Handling is necessary to perform different tasks on

file like read , write , etc .

It implies that we can read and write into data. Java.io.package allows us to maiupulate different files at

different times. We need object of the class to specify the filename or directory name.

Eg:

Import java.io.File

File file_obj=new File(“file_name.txt”);

Here we use the phenomenon of I/O operations on file .

Streams:

It is sequence of data which can be in two forms :

Byte Stream:

It comprises of byte data. When we have input provided and it can be execute d with byte data then that is

called file handling with byte stream.

Character Stream :

It contains character. When we process data with chartered as input then it is called file handling with

characters stream.

We have some of the JAVA file methods :

44

Figure 2. 19 File Handling Methods

File Operations :
We can have 4 types of operations on a file.

1.Create a File

To create a file we can use createNewFiles() method. It returns true if successfully file has been created

and false if file is already in the system.

2. Get File Information:

We have certain methods like getName(), canWrite() etc to achieve information regarding the file.

3. Write to a File:

We have syntax like :

FileWriter myFile =new FileWriter(“ C: FileHandlingMyFile.txt”);

4.Read from a File:

Here we can use Scanner class to read input from console .

We can create Scanner class object with syntax: Scanner obj=new Scanner(System.in);

45

CHAPTER 3 PROGRAMMING FUNDAMENTALS USING

PYTHON

3.1 INTRODUCTION
Python s for general purpose translation, interoperability, object orientation, and advanced programming

language. It was developed by Guido van Rossum in 1985- 1990. Like Perl, Python's source code is also

available under the GNU General Public License (GPL). This tutorial provides enough insight into the

programming language of Python.

Why to Learn Python?

Python s is a high quality translated, interactive and object-oriented language. Python is designed to be

very readable. It uses English keywords more often there as some languages use punctuation, and has

fewer syntactic properties than other languages.

the key advantages of learning Python:

• Interpreted language – An interpreter processes the content.No compilation is needed.

• Interactive language− We can interact directly with the prompt of Pythion.

• Object-Oriented − The technique of language is much similar to OOPs

• Beginner's Language − These language is helpful for beginners.

Characteristics of Python

Following are important characteristics of Python Programming −

• Functional & structured programming types are supported in Python.

• Usage can be transformed to scripting type of language as well as byte code .

• Dynamic type of rechecking is allowed in this language..

• Collection of garbage is automatic.

Applications of Python

• Few keywords & a defined syntax makes it a easy language.

• The structure of code is clearly defined hence readability is very clear.

• The amount of maintenance required is quite less.

• It has a huge amount of portable library.

• It allows testing and debugging features

• It has portable hardware platform.

• The audience can customize their tools to develop a program in Python.

• All commercial database are provided interfaces.

46

3.2 WRITIING A PYTHON SCRIPT

There are two main windows that we will work with n DLE: the interactive window, which is the one that

opens when we start DLE, and the script window. We can type code into both the interactive and script

windows. The difference between the two is how the code is executed.

THE INTERACTIVE WINDOW
The interactive window contains a Python shell, which is a textual user interface used to interact with the

Python language. Hence the name “interactive window.” When you first open DLE, the text displayed looks

something like this:

Figure 3. 1 Interactive Window

The first line tells you what version of Python is running. In this case, DLE is running Python 3.8.1. The

second and third lines give some information about the operating system and some commands you can use

to get more information about Python. The >>> symbol in the last line is called the prompt. This is where

you will type n your code. Go ahead and type 1 + 1 at the prompt and press Enter. When you hit Enter ,

Python evaluates the expression, displays the result 2, and then prompts you for more input:

Figure 3. 2 Output

THE SCRIPT WINDOW
Scripts are written using IDLE’s script window. You can open the script window by selecting File New

File from the menu at the top of the interactive window.

Any output generated by code run in the script window is displayed in the interactive window, so you may

want to rearrange the two windows so that you can see both of them at the same time. in the script window,

type in the same code you used to print "Hello, world" in the interactive window. Just like the interactive

window, code typed into the script window is highlighted.

Once the script is saved, all you have to do to run the program is select Run Run Module from the script

window and you’ll see Hello, world appear in the interactive window.

3.3 VARIABLES
There are certain rules or naming conventions for naming variables. The following are the rules:

1. Reserved key words such as if, else, and so on cannot be used for naming

2. Variable names can begin with _, $, or a letter

3. Variable names can be in lower case and uppercase

4. Variable names cannot start with a number White space characters are not allowed in the naming

of a variable.

You can assign values to the variable using = or assignment operator.

47

3.4 DATA TYPES:
There are many types of data, such as numbers, strings, character, images, and so on.

Data types can be broadly categorized into five different types, listed as follows:

Numbers

String

Tuples

List

Dictionary

NUMERIC DATA TYPE: Numeric data types or numbers . There are commonly four numeric

information types in Python. They are whole numbers, long numbers, drifting point numbers, and complex

numbers. Whole numbers and long whole numbers Integers incorporate zero, the entirety of the positive

entire numbers, and the entirety of the negative entire numbers. The translator first checks the articulation

on the correct hand side of the task administrator and afterward ties the incentive with its variable name;

this procedure is named as factor definition or introduction. The int or number information type ranges from

- 231 to (231-1); the main short sign shows the negative qualities.

FLOATING POINT DATA TYPE: Numbers with specific places after the decimal point are alluded to

as floating point numbers in the programming language:

The floating point number sort goes around from - 10 to 10^308 and has 16 digits of exactness.

There are two different ways to compose a floating point number. It very well may be composed utilizing

standard decimal documentation or logical documentation. Logical documentation is regularly valuable for

referencing extremely enormous numbers.

3.5 OPERATORS IN PYTHON
Python supports the following types of operators:

1. Arithmetic operators.

2. Comparison operators

3. Assignment operators

4. Bitwise operators

5. Logical operators

6. Membership operators

7. Identity operator

1. ARITHMETIC OPERATORS

It comprise operands and operators

Figure 3. 3 Arithmetic Operators

48

2. COMPARISON OPERATOR
It returns true or false

Figure 3. 4 Comparison Operator

3. ASSIGNMENT OPERATOR
It is not only used to assign values to variables but are often used in combination with arithematic

operators

Figure 3. 5 Assignment Operator

4. BITWISE OPERATOR

Python supports bitwise operation. Basic bitwise operators are:

Figure 3. 6 Bitwise Operators 1

49

There are some more bitwise operators

Figure 3. 7 Bitwise Operator 2

5. LOGICAL OPERATORS
It supports logical operators like AND, OR , and NOT:

Figure 3. 8 Logical Operator

6. MEMBERSHIP OPERATORS
Python has two membership operators to test the membership in a sequence, such as a string, list, tuple,

and others:

Figure 3. 9 Membership Operator

7. IDENTITY OPERATOR
Given in the table are the two identity operators:

Figure 3. 10 Identity Operator

50

3.6 OPERATOR PRECEDENCE

Operators with the highest precedence are placed on the top:

Table 3. 1 Order Precedence

Operators that have the same precedence are evaluated from left to right, except for

comparisons and exponentiation.

3.7 STRINGS AND STRING METHODS
Collections of text in Python are called strings. Special functions called string methods are used to

manipulate strings. There are string methods for changing a string from lowercase to uppercase, removing

whitespace from the beginning or end of a string, or replacing parts of a string with different text, and many

more.

THE STRING DATA TYPE
 Strings are one of the fundamental Python data types. The term data type refers to what kind of data a value

represents. Strings are used to represent text. Strings are a fundamental data type because they can’t be

broken down into smaller values of a different type. Not all data types are fundamental. Strings have three

properties that you’ll explore in the coming sections:

51

 1. Strings contains characters, which are individual letters or symbols.

2. Strings have a length, which is the number of characters contained in the string.

3. Characters in a string appear in a sequence, meaning each character has a numbered position in the string.

Whenever you create a string by surrounding text with quotation marks, the string is called a string literal.

The quotes surrounding a string are called delimiters because they tell Python where a string begins and

where it ends.

Figure 3. 11 String Data Type

Determine the Length of a String
The number of characters contained in a string, including spaces, is called the length of the string. For

example, the string "abc" has a length of 3, and the string "Don't Panic" has a length of 11. To determine a

string’s length, you use Python’s built-in len() function. To see how t works, type the following into IDLE’s

interactive window:

Figure 3. 12 Length function

STRING CONCATENATION
Two strings can be combined, or concatenated, using the + operator:

Figure 3. 13 String Concatenation

In this example, string concatenation occurs on the third line. string1 and string2 are concatenated using +

and the result is assigned to the variable magic_string.

STRING INDEXING
Each character in a string has a numbered position called an index. You can access the character at the Nth

position by putting the number N in between two square brackets ([and]) immediately after the string:

Figure 3. 14 String Indexing

flavor[1] returns the character at position 1 in "apple pie", which is p.

The following figure shows the index for each character of the string "apple pie":

Figure 3. 15 Index of each character

52

Strings also support negative indices:

The last character in a string has index -1, which for "apple pie" is the letter e. The second-to-last

character has index -2, and so on.

The following figure shows the negative index for each character in the string "apple pie":

Figure 3. 16 Negative index of each character

STRING SLICING
You can extract a portion of a string, called a substring, by inserting a colon between two index numbers

inside of square brackets, like this:

Figure 3. 17 String Slicing

flavor[0:3] returns the first three characters of the string assigned to flavor, starting with the character with

index 0 and going up to, but not including, the character with index 3. The [0:3] part of flavor[0:3] is called

a slice. String slices can be confusing because the substring returned by the slice includes the character

whose index is the first number, but doesn’t include the character whose index is the second number.

3.8 PYTHON COLLECTIONS
We have four type of collections:

LIST
List makes it possible to make change and order in a collection.

 EXAMPLE: mylist = ["cloud", "sky", "stars"]

print(mylist)

TUPLE
Tuples are same as list but the are written in round brackets and access method is different

EXAMPLE: mytuple = ("cloud", "star", "sky")

 print(mytuple)

SET
Collection which is unordered and unidexed.

EXAMPLE: myset = {"cloud", "sky", "star"}

 print(myset)

DICTIONARIES

Collection which is not ordered , indexed and can be changed .They are mentioned within curly braces and

they come in key value pairs.

53

EXAMPLE: mydict = {

 "day": "13",

 "month": "May",

 "year": 2020

}

print(mydict)

3.9 PYTHON LOOPS:

Python supports different conditions which can be logical:

IF STATEMENT
We use following structure

 EXAMPLE:value1=29

 value2=89

 if value2>value1:

 print("value2 is greater than value1")

In this example 2 values are compared and the greater one is printed.

To define a scope inside a python program it depends upon the indentation. We dont use curly brackets

much like other programming languages.

ELIF STATEMENT
EXAMPLE:value1 =1 33

 value2 =2 33

 if value2 > value1:

 print("value2 greater than value1")

 elif value1 == value2:

 print("value1 and value2 equal")

ELSE STATEMENT

The else keyword catches anything which isn't caught by the preceding conditions.

 EXAMPLE:

 aa = 1200

bb = 133

if bb > aa:

 print("bb greater than aa")

elif aa == bb:

 print("aa & bb are equal")

54

else:

 print("aa greater than bb")

We have two loop commands which are primitive:

• While

• For

WHILE LOOP
When we want to execute block of statements tilla certain condition is right.

EXAMPLE:

Print d as long as d is ggreater than 7

 d = 18

 while d >7:

 print(d)

 d -= 1

BREAK STATEMENT
To come out of a loop body

EXAMPLE:

Exit the loop when d=7

d= 1

while d < 10:

 print(d)

 if d == 7:

 break

 d += 1

CONTINUE STATEMENT
When we dont want to execute current iteration and jump onto next iteration

Eg:

Continue to next line when d=7

d =1

while d < 10:

 d+= 1

 if d == 7:

 continue

 print(d)

FOR LOOP
To iterate over a set of tuples, list or dictionary or characters within a string we canuse for loop

 EXAMPLE:

55

brands=["Timex", "Sonata", "G-Shock"]

for i in brands:

 print(i)

RANGE() FUNCTION

When we want the loop to run only a specified number of times we use range function.

The increment is 1 by default.

Eg:

 Using the range() function

for i in brands(6):

 print(i)

3.10 PYTHON FUNCTIONS
When we want a block of code to be executed many times whenever required we use the feature of function.

Parameters or arguments can be passed into function.

CREATING A FUNCTION

EXAMPLE:def myfirst_function():

 print("My first function")

CALLING A FUNCTION

EXAMPLE: def myfirst_function():

 print("My first function")

myfirst _function()

ARGUMENTS
Details can be transferred into functions as arguments.

Issues are defined after the function name, within parentheses. You can add as many arguments as you

want, just split by comma.

The following example has a function for a single argument (firstname). When a function is called, we pass

the first name, used inside the function to print the full name:

EXAMPLE: def myfirst _function(firstname):

 print(firstname + " Refsnes")

my_function("Emil")

my_function("Tobias")

my_function("Linus")

RETURN VALUES

it is used to return some value from a function:

56

EXAMPLE: def mysecond_function(x):

 return 2* x

print(mysecond_function(6))

print(mysecond_function(78))

print(mysecond_function(23))

RECURSION
Python also accepts workflow, which means a defined function can be expensive. Going back is a general

concept of mathematics and programming. It means the job is expensive. This has the advantage of the

definition that you can enter using data to get the result. The developer should be very careful about

duplication because it can be very easy to write work that has never been stopped, or that uses excess

memory or processor power. However, if properly written, repetition can be an effective and great way to

organize.

3.11 PYTHON CLASSES/ OBJECTS

Python is operated with help of objects which have their own methods and variables

CREATING A CLASS

EXAMPLE: CLass name-MyFirstClass, property- x1:

class MyFirstClass:

 x1 = 5

CREATING OBJECT
MyFirstClass class is used to create objects:

EXAMPLE: object -obj1, print the value of x:

obj1 = MyFirstClass()

OBJECT METHODS

Methods are contained inside an object.

To create method in the Student class:

EXAMPLE:

class Student:

 def __init__(obj, first_name, stdid):

 obj.first_name = name

 obj.stdid = id

def my_func(obj):

 print(" my name is " + obj.name)

p1 = Student("Mohit", 161007)

p1.my_func()

57

The obj parameter is current object of class and is used to pass the variables .

THE SELF PARAMETER
To access a variable that belongs to a class we need self parameter.

It can be named anything but the only restriction is that it has to be the first parameter inside the function.

EXAMPLE:

class Student:

 def __init__(myobject, name, age):

 myobject.name = name

 myobject.age = age

 def my_func(abcd):

 print(" my name is " + abcd.name)

p1 = Student("Mohit", 22)

p1.my_func()

MODIFY OBJECT PROPERTIES

EXAMPLE : Set the name of p1 to Varun:

p1.name= Varun

DELETE OBJECT PROPERTIES
delete prop of objects:

EXAMPLE: Delete the age

del p1.age

DELETE OBJECTS

 deleting objects by del keyword:

EXAMPLE:

 Deleting p1 object:

del p1

THE PASS STATEMENT

We cannot have empty definitions of class, but to avoid getting any type of error , you can use pass

statement.

EXAMPLE:

class Student:

 pass

3.12 PYTHON INHERITANCE
Inheritance provides us the basic feature of inheriting some features which can be used in a class from any

existing class , which not only provides reusability but also saves time in recalling many methods.It also

provides using features in varied way with varied implementations.

58

CREATING A PARENT CLASS
We can declare parent class like any other class

EXAMPLE:

class Student:

 def __init__(obj, firstname, lastname):

 obj.firstname = firstname

 self.lastname = lastname

 def print_name(obj):

 print(obj.firstname,obj.lastname)

x =Student("Mohit", "Prateek")

x.print_name()

CREATING CHILD CLASS

Heree derived class inherits features from parent class

EXAMPLE:

Create a class named Players, inheriting the properties Student class:

class Players(Person):

 pass

Here we don’t want to add any properties to class so we used pass statement

Now the Player class and Student properties and methods are same.

EXAMPLE:

 Use the Players classamd create object:

x = Players("Mrunal", “Puneet")

x.print_name()

USE THE SUPER() FUNCTION

Using super() method we can automatically let derived class inherit all features and methods of parent class.

EXAMPLE:

class Players(Student):

 def __init__(obj, firstname, lastname):

 super().__init__(firstname, lastname)

3.13 SOFTWARE USED

SPYDER
Spyder is a powerful science environment written in Python, Python, and is also designed for scientists,

engineers and data analysts. offers a unique combination of advanced planning, analyzing, debugging, and

profiling software for a comprehensive tool for development with data analysis, collaboration, in-depth

testing, and the best visualization capabilities of the scientific package.

In addition to its many built-in features, its capabilities can be further expanded through its plugin and API.

In addition, Spyder can also function as a PyQt5 library, allowing developers to build on its functionality

and interactive features such as the interactive console.

59

Figure 3. 18 Spyder DE

60

CONCLUSION

With the help of various types of commands in sql like DDL, DML, DCL, TCL etc. we were able

to develop a comprehensive understanding of database creation and manipulation. In the midst

of handling databases in clouds we need to handle a large amount of data and given the basic

knowledge provided by this internship we will be able to further enhance cloud concepts.

The JAVA concepts expanding object oriented programming helped us in grasping the inticracies

of inheritance , encapsulation , string handling and many other conceptw which not only strengthen

our coding but also will help us in developing java based web apps in future.

The study of Python concepts which is becoming more and more relevant in cloud platforms has

made it easier to analyse and comprehend useful information in data.This basic knowledge of

python has helped to perform operations which can help in manipulation and identification of

information from data.Together with SQL, JAVA and Python we were able to strengthen our basic

concepts which will form the basis for cloud computing technologies in AWS.

61

PUBLICATION

1. Shruti Jain, Manasvi Kashyap, Mohit Garg, Shailu Srivastava, “Design and Simulation of Optimum

FIR Digital Filters using Windowing Technique”, The 3rd International Conference on Recent

Innovations in Computing (ICRIC-2020), 20th -21st March, 2020 , Central University of Jammu, J &

K (Accepted).

62

REFERENCES

1. https://www.w3schools.com/sql/sql_where.asp

2. https://www.tutorialspoint.com/sql/index.htm

3. https://www.javatpoint.com/dbms-tutorial

4. https://beginnersbook.com/2015/04/dbms-tutorial/

5. https://www.tutorialspoint.com/java/index.htm

6. https://www.w3schools.com/java/

7. https://www.javatpoint.com/java-tutorial

8. https://www.mysql.com/products/workbench/

9. https://www.python.org/

10. https://www.w3schools.com/python/

11. https://www.tutorialspoint.com/python/index.htm

12. https://www.learnpython.org/

13. https://www.spyder-ide.org/

https://www.w3schools.com/sql/sql_where.asp
https://www.tutorialspoint.com/sql/index.htm
https://www.javatpoint.com/dbms-tutorial
https://beginnersbook.com/2015/04/dbms-tutorial/
https://www.tutorialspoint.com/java/index.htm
https://www.w3schools.com/java/
https://www.javatpoint.com/java-tutorial
https://www.mysql.com/products/workbench/
https://www.python.org/
https://www.w3schools.com/python/
https://www.tutorialspoint.com/python/index.htm
https://www.learnpython.org/
https://www.spyder-ide.org/

63

PLAGRISM REPORT

64

	161007
	project undertaking
	plagform

