
I

 TEXT CLASSIFICATION

Project report submitted in partial fulfilment of the requirement for the

degree of Bachelor of Technology in

Computer Science and Engineering/Information Technology

By

Pratyush Kumar (161202)

Varan Kaushal (161255)

Under the supervision of

 Dr. Hari Singh

(Assistant Professor (Senior Grade), Dept. of CSE & IT.)

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology, Waknaghat

II

Candidate’s Declaration

We hereby declare that the work presented in this report entitled “ Text Classification ” in

partial fulfilment of the requirements for the award of the degree of Bachelor of Technology

in Computer Science and Engineering submitted in the department of Computer Science &

Engineering and Information Technology, Jaypee University of Information Technology,

Waknaghat is an authentic record of our own work carried out over a period from July 2019

to December 2019 under the supervision of Dr. Hari Singh (Assistant Professor (Senior

Grade), Dept. of CSE and IT).

The matter embodied in the report has not been submitted for the award of any other degree or

diploma.

Pratyush Kumar (161202)

Varan Kaushal (161255)

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Dr. Hari Singh

Assistant Professor (Senior Grade), Dept. of CSE and IT

III

ACKNOWLEDGEMENT

We take this opportunity to express our profound gratitude and deep regards to our guide Dr.

Hari Singh (Assistant Professor (Senior Grade), Dept. of CSE and IT) for his exemplary

guidance, monitoring and constant encouragement throughout the course of this project. The

blessing, help and guidance given by him, time to time shall carry us a long way in the

journey of life on which we are about to embark.

We are also obliged to staff members of JUIT College, for the valuable information provided by

them in their respective fields. We are grateful for their cooperation during the period of our

assignment.

Lastly, we thank almighty, our parents and our classmates for their constant encouragement without

which this assignment would not have been possible.

IV

Contents

1. Introduction 1-10

 1.1 Abstract

 1.2 Problem Statement

 1.3 Our Approach

 2. Literature Surveyed 11-17

 2.1 List of Literature Surveyed

 2.2 Description of Literature Surveyed

3. System Development 18-24

 3.1 Framework for Training Deep Learning Models

 3.2 Training Deep Learning Model using Pytorch Framework

 3.3 Using Cuda Processor

 3.4 Pre Processing the Image

 3.5 Image Processing

 3.6 Splitting the Dataset

 3.7 Applying the Model

4. Algorithm 25-34

 4.1 Activation Function and Initialisation Methods

 4.2 Batch Normalisation and Dropout

 4.3 Optimisation Algorithms

V

5. Test, Result and Performance Analysis 35-41

 5.1. Ratio of Dataset Splitting

 5.2. Testing Loss and accuracy on ResNet Model

 5.3. Testing Loss and accuracy on ResNet Model

 5.4. Testing Loss and accuracy on ResNet Model

 6. Conclusion and Future Work 42

7. References 43

VI

List of Figures & Tables

Figure 1.1) Correlation between AI, ML, DL and data science.

Figure 1.2) Image Processing and Computer Vision

Figure 1.3) Characters of Hindi Language

Figure 1.4) Characters of Tamil Language

Figure 1.5) Representing correct prediction and wrong prediction using Confusion
Matrix

Figure 2.1) Alexnet Architecture

Figure 2.2.) VGG-Net Architecture

Figure 2.3) GoogleNet Architecture

Figure 2.4.) Residual Learning

Figure 2.5) VGG-19 and Resnet architecture

Figure 3.1) Importing Pytorch Libraries

Figure 3.2.) GPU vs CPU performance

Figure 3.3.) Preprocessing code

Figure 3.4.) Illustration of Image Processing

Figure 3.5.) Appling Vertical Sobel on the image

Figure 3.6.) Applying Horizontal SObel on the image

Figure 3.7.) Applying Laplacian filter on the image

Figure 3.8.) Resnet Summary

Figure 3.9.) AlexNet Summary

VII

Figure 3.10.) VGG-Net Architecture Summary

Figure 4.1.) Sigmoid Function

Figure 4.2.) Hyberbolic Tangent/ tanh function

Figure 4.3.) ReLuU function
Figure 4.4.) Leaky ReLU

Figure 4.5.) Dropout

Figure 5.1.) Splitting the dataset

Figure 5.2.) Resnet_Hindi_Loss with Epochs

Figure 5.3.) ResNet_Hindi_Training Accuracy

Figure 5.4.) ResNet_Hindi_Testing Accuracy

 Figure 5.5.) Resnet_RMSprop_hindi_loss

Figure 5.6.) Resnet_RMSprop_training_accuracy

Figure 5.7.) Resnet_RMSprop_testing_accuracy

Figure 5.8.) Resnet_Tamil_Loss with Epochs

Figure 5.9.) Resnet_Tamil_Training Accuracy

Figure 5.10.) ResNet_Tamil_Testing Accuracy

Figure 5.11.) Alexnet_Hindi_Loss with Epochs

Figure 5.12.) AlexNet_Hindi_Training Accuracy

Figure 5.13.) AlexNet_Hindi_Testing Accuracy

Figure 5.14.) Alexnet_RMSprop_loss

Figure 5.15.) Alexnet_RMSprop_training_error

Figure 5.16.) Alexnet_RMSprop_test_loss

Figure 5.17.) AlexNet_Tamil_Loss with Epochs

VIII

Figure 5.18.) AlexNet_Tamil_Training Accuracy

Figure 5.19.) AlexNet_Tamil_Testing Accuracy

Figure 5.20.) VGGNet_Hindi_Loss with Epochs

Figure 5.21.) VGGNet_Hindi_Training Accuracy

Figure 5.22.) VGGNet_Hindi_Testing Accuracy

Figure 5.23.) VGGNet_RMSprop_loss

Figure 5.24.) VGGNet_RMSprop_train

Figure 5.25.) VGGNet_RMSprop_test

Figure 5.26.) VGGNet_Tamil_Loss with Epochs

Figure 5.27.) VGGNet_Tamil_Training Accuracy

Figure 5.28.) VGGNet_Tamil_Testing Accuracy

Table 1: Accuracy for Hindi Language

Table 2: Accuracy for Tamil Language

I

1

1. Introduction

1.1 Abstract

Since the invention of the first artificial neuron, McCulloch Pitts Neuron by Warren

McCulloch and Walter Pitts in 1943 which works on dassifying two seg ts using a

linearly separable line, the world has witnessed evolutionary development in the field of

Artificial Intelligence and its subdomains Machine Learning and Deep Learning.

1.1.1 Corr€?Iation between

Deep Learning and Data Science

enc€§, Machine L€§arning,

Source: htt s://miro.medium.com/max/922/1*32k RO9NhW 1210-cZr

Figure 1.1) Correlation between AI, ML, DL and data science.

From the above figure (Vein Diagram) we could understand that deep learning is the

subset of machine learning which in turn is the subset of artificial intelligence and the

data science overlaps with some aspects of all three as it also involves aspects such as

data collection (which can be either done manually or through sensors) and basic

visualisation and analysis (calculating mean/ median/ etc.) and thus some aspects of it

lies outside the spectrum of AI, ML, and DL.

2

Deep Learning Models has accelerated the pace of development and deployment of

machine learning applications in our daily lives from sequence generation to image

classification by leveraging the advantage of being highly efficient to be trained on large

size of dataset and is used primarily in achieving all machine learning task.

Our endeavour in this project is to gain leverage of the deep learning models developed

over the past years to classify text characters of two Indian languages i.e. Hindi and

Tamil.

Text Classification has become an important application of Deep Learning in today’s

world and one of the world’s most intense research areas. If a mobile application could

classify text of different languages correctly, then it could be efficient for common users

to communicate effectively anywhere and at anytime.

In case of language translation i.e translating any foreign language to user’s own native

language, it must go@rough the first step of identifying the text correctly, which is an

important application of image processing and subsequently computer vision today.

1.1.2 What is Computer Vision and Image Processing ?

Figure 1.2.) Image Processing and Computer Vision

Image Processing: It is a technique which takes an image as an input and generates an

image as output by performing some modification on the desired attributes (color/

intensity/ use removal/ compression etc). Image processing eases the task of

performing computer vision.

3

Computer Vision: It is an interdisciplinary science that allows a computer to gain a

high-level understanding of digital images and videos and determine what the computer

"sees" or "recognizes" objects and automate the task done by this ability on the various

application which requires these functionalities.

Object Detection for self-autonomous cars, the model building of a location, image

classification on social media applications, providing vicarious experience through

augmented reality (AR) or virtual reality (VR) are some of the commonly observed

applications of computer vision.

1.2 ProbI€?m Stat€?FD€?Flt:

We have collected data of two indian languages (Hindi and Tamil) of all the possible

characters and our task is to train a deep learning model so that it could successfully

classify the characters of the dataset curated and pre-processed (multi-class

classification) with maximum attainable accuracy by trying it the model on various

possible combinations of hyperparameters (epoch/ learning rate/ optimisation

algorithm/ activation functions) and minimising the error using backpropagation

technique so that it can make more no. of correct predictions both on the training data

and test data.

Our project is an application of supervised learning in machine learning.

Supervised Learning : Given a labeled training dataset , we train it on some model of

our own by inferring the relationship between inputs(x’s) and output(y’s) and try to find

the best updated parameter and test the model on unseen data points.

Unsupervised Learning : Given an unlabeled dataset , we try to either group the data

points on the basis of some attributes(demographics/behaviour/like/dislike) or generate

new sequence of inputs based on the available inputs.

"Supervised Learning(Classification/Regression) has created 99% of all economic value

in Artificial Intelligence" Andrew NG (CEO , deepIearning.ai)

4

1.3 Our Approach

We have approached this project through the well known six elements of machine

learning, used in learning machine learning.

There are six elements of machine learning

1. Data

2. Defining a Task

3. Applying Model

4. Calculating Loss

5. Learning Algorithm

6. Evaluation

1. Data : (The fossil fuel of machine learning)

A typical dataset required to perform any ML prediction is of high dimensions

meaning it consists of millions of rows/data points/observations with typically

thousands or may be millions of columns/parameters/features.A dataset could be

presented with inputs as well as its corresponding outputs which is ideal for

performing any supervised learning task by learning the relationship between ilp

and o/p and if the dataset doesn’t contain any corresponding output w.r.t to

inputs then we can only perform unsupervised learning task.

Our source of the data for this project of collecting hindi and tamil language is

Kaggle (an online competition website).

Figure 1.3) Characters of Hindi Language

Figure 1.4) Characters of Tamil Langauage

7

Data Curation (Pre-processing the data) :

The data that has to be feeded to the model for training should be in machine

readable form i.e. it should be encoded as number.

In the above case image could be represented in 3 channels, i.e RGB and could be

represented in pixel value.

2. Task: (Setting an objective of the project with the curated dataset)

Based on the procured/curated dataset we can define our task accordingly. If we have

labeled training dataset i.e. it contains input(x’s) and its corresponding labels(y's) we

can easily perform supervised learning(classification/regression) and if we don’t have

labeled training dataset doesn’t contains corresponding labels(y’s) we can only perform

unsupervised learning(clustering/generation).

Classification(binary/multi) : The data point is tried to be mapped with some

category/label. The label could be binary such as (like/dislike) or multi such as

classifying the alphabets of english language(A-Z).

We are performing Multi-class classification in this project.

3. Model : (Mathematical formulation of a task)

y=f(x)[unknown relation]

Our approximation function : ^y=^f(x)

A ML/DL model is typically the approximation of an ml engineer for finding the

relationship between data points(x’s) and its corresponding labels(y’s) denoted by

y=f(x). The model could be simple or complex depending on the no. of parameters it

has.

In this project we have worked on Convolutional Neural Network model and it’s various

architectures proposed over the years by the researchers.

8

4. Loss Function : (How could we say which model best fit for estimating the

correct relationship for the task ?)

e
Loss function calculates the difference between true output (y) and the approximated

value (^f(x)) . It is represented with L.

If L=0 then the estimate of our model is exactly accurate

Different loss functions are '

a. Square Error Loss

b. Cross Entropy Loss

c. KL divergence

d. Hinge Loss

e. Huber Loss etc

The lower the loss better the model is in terms of accurate prediction.

5. Learning Algorithm : (How do we estimate different parameters ?)

Under this element, the success of machine learning lies.

Parameter estimation in machine learning is a kind of a search operation.We can

compute the parameters through learning algorithm and it becomes an optimisation

problem where we try to optimise the parameters by minimising the loss. Hence,

learning algorithm and loss function goes hand in hand.

Some of the popular learning algorithm/optimisation solver are

a. Gradient Descent

b. Adagrad

c. RMSProp

d. ADAM

e. Backpropagation

9

6. Evaluation : (How do we compute the accuracy of a MLJ'DL model ?)

Accuracy = (No. of correct prediction)/(Total no. of prediction)

Calculating accuracy indicates how efficient the model is and is more interpretable for

the end user than the loss function.

Top-K Accuracy : Out of the top-k prediction made by the prediction if we can find the

correct output among these then we can accept the model.

Top-K Accuracy = (No. of correct prediction made in top-k) / (Total no. of prediction)

Evaluation has to be done on the test data (data points which hasn’t been seen by the

machine).

The standard evaluation metric in case of object detection where some action is

required to be taken are precision and recall.

Precision = (No. of correct action) / (Total no. of action taken)

Recall = (Actual no. of correct action) / (Total No. of times correct action to be taken)

10

Actual = Yes A ual No

TP

FP

P
re

d
ic

te
d
=
 N

o

TN

Source : https://miro.medium.com/max/848/1”7SgzmX05T81Ojaor9s5HWO.png

Figure 1.5) Representing correct prediction and wrong prediction using Confusion Matrix

Example: Out of 1200 total images, if the model could correctly classify 1080 images

then the model is said to be trained with the 90 %age accuracy.

11

2. Literature Survey

2.1. List of Literatur€§ Survey§2d

We have surveyed research paper written by well known researchers over the past

years, over the work they have done in the field of Image Classification from the

improved Yuan Lecun (improved LeNet 5) original research paper of 1998 to the most

efficient and better than human performance of the model ResNet developed by

Microsoft in 2015.

A.) Improved Lenet-5

B.) AlexNet

C.) VGG-Net

D.) GoogleNet

E.) Resnet

2.2 Description of LitE§ratur€§ SurvE§yed

A.) “ Digital Recognition based on improved LeNet Convolutional Neural Network
" by Li Sun, Lishan Jia

In this paper we have studied,

An improved model over the LeNet-5 model published in 1998 which contains 8 layers

including i/p and o/p layers in contrast to original network consisting of 9 layers.

The activation function used is logistic compared to hyberbolic tangent function used in

original network and works best in the combination of learning rate=1, epochs and batch

Size is 25.

Some of the pertinent improvements made in the paper were

12

Parameters (Original Network of LeNet 5) = 60, 000

Parameters (Improved LeNet-5) = 32, 194

Misrecognition Rate (Original Network of LeNet 5) = 0.98%

Misrecognition Rate (Improved LeNet-5) = 0.86%

B.) “ALexNet" by Alex Krizhevsky, Geoffrey E. Hinton, IIya Sutskever

In this paper delivered in 2012 at the ImageNet challenge, the authors of the paper

presented a different kind of CNN Architecture which has been proven to be trained with

the lowest possible error till 2012 of 16.4 %age.

The Cnn Architecture of AlexNet looks as follows:

13

1Z8

lfl

Source: https://miro.medium.com/max/3072/1’qyc21qM0oxWEuRaj-XJKcw.png

Figure 2.1) Alexnet Architecture

The Top-5 error rate observed at the ImageNet dataset was 16.4 percentage.

3. " VGG-NET " by Karen Simonyan and Andrew Zisserman

14

This model gets popular by the name of VGG Net and is given in the year 2014 and

emphasises on the addition of more and more depth to the model taking the depth of

the model to 16 layers with the use of simple 3*3 filter.

The architecture of VGG-Net is as follow:

224 220 3 224 22- 64

Figure 2.2.) VGG-Net Architecture

D.) Going Deeper with Convolutions (GoogleNet)

15

This model is even more deeper than AlexNet and VGG-16 as it takes the depth to even

larger extent with introducing 22 layers into the picture. This model uses the concept of

Inception model which signifies using multiple filters (1*1, 3’3, 5*5) and introduces the

concept of auxiliary loss i.e checking the loss in between the layers to avoid the problem

of vanishing gradient during backpropagation.

This model has been trained with the loss of 6.7 percentage.

Figure 2.3) GoogleNet Architecture

16

weight layer

relu

weight layer

r f2 u

E.) Deep Residual Learning for Image Recognition

This CNN architecture has three layers of architecture.

1.) Resnet 51

2.) Resnet 101

3.) Resnet 151

This architecture introduces the concept of residual learning, i.e at every layer, the input

is passed as it is and the residual of it too. Due to the depth it takes time to train the

network. Resnet won the 101 architecture. The top-5 error rate was 3.57 percentage.

X

T(x)

X

identity

Figure 2.4.) Residual Learning

Figure 2.5) VGG-19 and Resnet architecture

18

3. System Development

3.1. Framework for training Deep Learning Models.

Some of the widely popular used framework for training deep learning model are:

A.) Tensorflow (developed by Google)

B.) Pytorch (developed by Facebook)

C.) Sonnet

D.) Keras

E.) MXNet

F.) Swift

G.) Chainer

H.) DL4J

I.) ONNX

3.2. Training D€§ep Learning Model using Pytorch FramE§wOFk

Originally developed by Facebook but used now a day by most of the companies and

startups for training the model to achieve a specific task. Pytorch has some specific

in-built function which can be used for minimising the training time of the model from

hours to minutes specifically in the case of image classification.

Some of the in-built functions are:

A.) Compose (used in pre-processing the image)

B.) “NN” module helps in applying fully-connected layers and help in applying

backpropagation and loss easily.

19

LOSSES in Pytorch:

a

Loss with PyTorch can be calculated using nn module. PyTorch provides losses such

as cross-entropy loss (nn. CrossEntropyLoss). In general, loss is assigned to the

criterion. To actually compute the loss, you first define criterion then pass it in the output

of your network and the correct labels. The output of the criterion is the loss for the

network.

Autograd:

Torch provides a module called Autograd which calculates the gradients of tensors. We

use Autograd to calculate the gradients of all our weight parameters with respect to the

loss.

We can also download the model in pytorch with pretrained weights

Using the following code:

resnet = models.resnet18(pretrained= True)

The above is the example of downloading resnet architecture with pretrained weights.

The biggest advantage of pytorch over tensorflow is that it operates on a dynamically

updated graph meaning we can change the architecture as per our wish and train it

using various combination of hyperparameters.

20G

180

1f0

140

120

• 1C D

8c

0 10000 20000 30000 AOOOO °G000 60000 70000

20

Some of the common used pytorch IibFaries art:

import torchvision.transforms as transforms

import torchvision.datasets as datasets

from torch.utils.data import DataLoader, Dataset, random_sp1it

import €orch.nn as nn

import €orcA.nn.functional as K

from torch.optim mpcrt lr_sc&eduJer

import torchvision.models as models

Figure 3.1) Importing Pytorch Libraries

3.3 Using Cuda Proc€§ssor

21

Figure 3.2.) GPU vs CPU performance

Matrix multiplication is a heavy task in training any deep neural network and takes a lot

of time as with convolutional and fully connected layers, it may involve millions of

parameters and generally training it on normal CPU could take up to much larger time

depending on the dataset, but if we train it on GPU such as CUDA, the processing time

decreases as the speedup observed is much higher in case of GPU.

3.4.) Pri Proc$§sSiB§j thR Image

The code for preprocessing the image is:

transforms.Normalize([O i85, D.45C,

? 4D0], [0 229, 0 224, 0 225])])

train_loader = torch.utils.data.DataLoader(train_data, batch_size=64,

shuffle=True)

test loader =

shuffle-True)

torch.utils.data.DataLoader(test data. batch size=b(,

Figure 3.3.) Preprocessing code

The above code converts the pixel values into tensors (a fancy name for arrays), and

perform normalisation of the value.

Then after splitting the dataset, we can load the dataset into train loader and

test loader as per our desired batch size of training and testing.

Note: We may have to apply different normalisation technique depending upon the

model we intend to use to train the model.

22

3.5.) ImB§jR PFOCE§SSI B§j

In machine learning we deal with digital data of an image in order to make it suitable for

processing , but an image may have different ranges of colour. so while scanning an

image it generates analog data which is not suitable r extracting the right information

from that image. To get the desired information first we need to convert the analog data

of image to digital format. The process of gathering the required data from an image is

referred as Image Processing. There are various mobile phone applications which help

us to get desired photographs e.g. retrica. In-display fingerprint sensors also use the

concept of image processing.

Sampling and quantization are the basics of image processing. We have various

algorithms by which we can perform sampling and quantization. In sampling the

coordinate values are digitized and in quantization the amplitude values are digitized.

23

Figure 3.4.) Illustration of Image Processing

Why Image Processing?

Image processing is not only limited to photoshop softwares, it has wide variety of

applications in medical field, biometric verification, face recognition,

remote sensing, digital video processing and much more. In the field of machine

learning, image processing is mostly used to proc s our raw data into useful form.

Mostly, this is done to enhance the performance of machine learning algorithms by

choosing the correct image processing technique.

The type of technique to be used depends on what our machine learning model aims

at. The cost/loss functions in machine learning can help us determine that which

technique fits good for best possible output.

In text classification models, the input data(training data) is processed before hand. It is

a good deal to process the raw data with different techniques so that it is converted into

useful format. It is a must that our model is trained only with fruitful information. This

approach leads to improve the accuracy of our machine learning model.

Edge Detection

There are different techniques to process the image for gathering useful information,

one of them is edge detection. As the name suggests this technique is used to detect

edges in image by defining boundaries of an object present in image. The basics of

edge detection is that it identifies the points on an image where the brightness levels

changes sharply. By identifying the vertical and horizontal edges, we are able to define

the boundaries of an object. There are many techniques for detecting edges. The

detection techniques can be further classified on basis of first order and second order

derivatives.

24

In first order derivatives the derivative of all the intensity values are taken and the point

with highest derivative is considered. Examples of first order derivatives are: Sobel and

Canny.In second order derivatives, differentiating the first derivative gives us the second

derivative and finding the points for which it is zero gives us maximum or minimum.

Example: laplacian.

Sobel

In sobel there are two types of for detecting edges. The vertical mask and the

horizontal mask with size 3x3. ’ *nrfirnl mnrI‹ in ii ñ In hntnrf rfiral h¿ nnd

horizontal mask is used to detect the horizontal eclqes. Allotting more weights to them

helps getting more edges.

Vertical mask:

-1

0

1

-2

0

2

-1

0

1

On applying vertical sobel filter on one of the text image that we have, we get the

images with the vertical edges.

25

Figure 3.5.) Appling Vertical Sobel on the image

Horizontal mask:

On applying horizontal sobel filter on one of the text image that we have, we get the

images with the vertical edges.

26

Figure 3.6.) Applying Horizontal SObeI on the image

Canny

Canny edge detection is mostly used where we need smooth edges. It is mostly used in

medical image analysis. There are five steps in Canny with which we get our desired

output.

The image is smoothened with a Gaussian filter for noise reduction.

Equation for Gaussian Filter:

H,
 i

exp —
(‹

2.
(k+*))2 (Q (k+›))2

2

By using finite-difference approximations for partial derivatives we then calculate

gradient magnitude(G) and orientation(6).

27

G and 0 are calculated as:

We apply non-maxima suppression to the gradient magnitude for thinning the edges.

Then there is double threshold step in which we classify pixels as strong, weak and non-

relevant.

Edge Tracking by hysteresis is the final step in which we process weak pixels to strong

if one pixel around them is a strong.

28

One srrong pixel around

Laplacian

It is an second order derivative edge detection techniqug which finds inner and outer

edges rather than vertical and horizontal ones. Positive laplacian mask is used to find

the outer edges of an image and negative mask is used to find the inner edges. To get

the resultant image we don’t have to use both the operators, either of them can give the

resultant image by adding or subtracting the original image.

29

Negative Laplacian operator:

On applying lapacian (gaussian) filter on the text image we get the edges in both the

direction as;

Figure 3.7.) Applying Laplacian filter on the image

3.6) Splitting the Dataset

We have split the dataset into training set and test set in 80:20 ratio.

30

The training dataset is the one on which the model would be trained meaning it will

learn the value of all the weights using iteration over the trained dataset and try to make

predictions after minimising the loss.

The test dataset is the one which the model has not seen before and the closer the

accuracy observed on both the train and test dataset, the better performing the model is

for deployment in the practical field.

3.7.) Applying Th§2 Mod€§I

For our project, we have used the dataset to train on three different model whose

literature we have surveyed so far namely:

A.) AlexNet

B.) VGG-Net

C.) ResNet

31

The summary of Resnet is:

esilet{

(cenvy I : £onv 2dt 3. 64. ker ne l_sl:e- (7, z) , star de-(z, z) , pa4d t•g- (1 3), b tae->ol se)
(bn1) : 8at‹h ow 2d(6a, eps- Ie - 0s, «o•ent v -6. 1, all I ne- true, t rack_runnt ng_s t at s -True)
(relu) : ReLU (tnp tae e-True)

(=axpoo I › : ›!axoeol ?d (k. --: lps1:e- i, s tetde -t, paddi ng- t , dll at ton-1. c elf _r•ode- rai se)
(laye 1). sequential(

(9) Bas tc B }9c k (

(conv 1) : Conv 2d(64, 64, ke rne1_s I : e- (3, 3) , st r Ide- (1, 1) , padd t ng• (1, \) , bt as -Fat se)

(bn1) : Batc hf}or zt2d(b4, eps -Ie - 6 5. aoment uo•0.1, afff ne• True, I ra<k_runn I ng_s t at S-True)

(relu) : Re LU (:t np\ace -1r ue)

(conv2) Convzd (bA, 64, ke rnel s I be- (3, y › , st r tde- (1, 1) , paddIng-(1, 1) , bl as•Fa\ se (bn2) :

Batc hlJono2d(64, ep s -1e -6S. - ntua-e.1, af f' ne- True, I tae k_runn I ng_stat S-True)

(1.) : Bas It B Doc k (

(‹onvl) : Conv 2d(64, 64, ke rne]_ s } be • (s, 3,)

st r Ide- (1. 1,)

pad d tng • { t.. 1) . bt as -r a T seI

(bn1) : Ba tc hlJor'n2d (64, eps -te -e5, ...ant u•-e.1, aft tne-Tr‘ue, t rac k_runn1ng_s t at S-tr‘ue

(re Tu) : R eLL/(S np2ace -Tr ue)

(conv2) : Conv24 (64, 64, ke rnet_ s I be- (3, 3) , st r tde- (t, 11, pa4d t ng• (\, T), bt as•r aT s e)

(bn2) : Ba t c hI?orm2 d (6a , eps • 1.e -e s . - ...ant ue•8.1, all I ne•Tru9, E rSd k_hunn1hg_St 6£ S-T rub)

(I ayer2) : Sequent la l (

0) : Bas 1c B Ioc k (

(convl)- Conv2d (64, lbs, kernel s1:e • (3, 3) , stride•(y, 2 } , padd tng- (\ , 1) , bta s-raw se)

(bn3) : Batc hl‹orm2d (128. ep s- Ie -B5, momentum-e. 1. aff1ne-True . track_runn I ng_st at s- T rue)

(cpu) : 9eLU (I np\ace -1r ue)

(canv2-) C ctnv 2d(1 2 8, L28, kerne 1 sE ze- (3, 3) , st r I de- (1, 1) , paddI ng• (1, 1), bias- Fa I se)

(bn2) : Batc htJorm2d (128, ep s - Ie - 05, eoment om•e . 1, af 11ne• True , track_runn I ng_sr at s• I rue)

(dooms anp1e) : Sequen t1 a1 (

t e) : Con \'2d {64. 228, ker ne I_s I :e- (1, 1) , str t de- (2, 2,) bias -F a1se)

(I) : Oatc h1Jorm2d(128, ep s - e -05, mo/eentun-0. I, aft1ne-7rue, track_r unnI ng_s c at s•t rue)

Figure 3.8.) Resnet Summary

32

The summary of Alexnet Model is:

AT ex Net (

(f eatures) : Sequent ia 1(

(0) : Conv2d (3, 64, kernel _s i ze- (11, 11) , st ride- (4, a j , padding- (2, 2))

(1) : ReLU(tnplace-Tru€)

(2) : NaxPool2d(kernel_size=3, stride-2, padding=0, dilation=l, ceil_mode=False)

(3) : Conv2d (64, 192, k erne1_s:t ze• (S, S), st r t de• (1, 1) , padding- (2, 2))
(4 : ReLU(inp1ace-True)

(5) : F\axPoo 1 2d (kerne1_s i z e-1, stride -2, paddi ng•6, d11at1on-1, cei 1_mode- False)

(6) : Conv2d (192, 384, kerne1_si ze= (3, 3) , st r ide = (1, 1) , paddi ng•(1, 1) }

(7): ReLU(inplace=True)

(8) : Con v2d(3Ba, 256, kenne1 _size- (3, 3) , st r1de• (1, 1) , paddlng•(1, 1))

(9) : ReLU(i np1ace-True)

(16) : C onv 2d (256, 2 56, ke oneUs i ze- (3, 3) , st r1de -(1, 1) , paddy ng• (1, 1))

(ll) : ReLU (in pt a ce - T ru e)

(12): flaxPgol2d(kernel_size-3, stride•2, padding-0, dilation•1, ceil_mode•False)

(avgpoo I) : Adaptive A 'gPoo12 d(output_s 1ze •(6, 6))

(c1 as si £1er) : Sequent 1 a1 (
(B) : Dropout(p=0.5, inplace-False)

(1) : L1near(ln_featur$S•92l6, Out_features-4e96, bias•True)

(2) : ReLU(inp1ace=True)

(3) : Dropout (p-0. s, 1np1ace-Fat se)
(4 } : L1nea r (in features =4096. out Ie at ures=4096. bias = True)

(S) : ReLv(i np1ac e -True }

(6): L1near(in_features•4086, out_features-1000, bias•True)

Figure 3.9.) AlexNet Summary

VGG-Net:

The summary of VGG-Net 16 is:

v 6f

(tea tures) : Sequential (

{0) : tonv2d t 3, 64, keenel_s I :e- (3, 3), st eiae • (1. I) , padd1eg-{1. t))
(fi) : 8dtchHors2 d (6A, ep s-ie - IS , no ntu•-8. I , a ttl ne-True , tr•sc k_runnl ng_s tat s- Ti•ue)

(2) : Re LU(1np1ace•Tru-e)

(3) : Conv2d (6a. la. kerna1 S tze•(3, 3,) str1de- (1. 1), paddlng• (1, 1) j

(4) : BatchHoi o2d (04, ep s-ze es, •mnt•••e .t, a fftne-true, track_run01ft@ SUS 5 •Tf‘ug)

(s) : Re LU(tnpSace-True)
(6) : 'tu.1vv12d (kerne1_sI ze• 2, str I de•2, padding-6, dJ 2 at1on• 1, eel J_node• raJ se)
t) : Conv2d (6d, 128, kerne 2_s I ze- (3, 3) , str1de - (1, 1) , paddlng• (1, 1))

(8) : eacchuor-2d (128, eps-Ie -6S, x•>•encu••0.1, aMilne-True, t rack_runn1ng_st at s- True)

(9) : Ne LU (inp1ace-True)

(26) : C onv3d (139, 338, kerne t_sI z e• (3. 3 j . st ride• (I, 2 } , padding- (,3 7))

(E 1) : But chko- 2d {22B, eps•1e -BS, a›oeent ue-0 - 1, af I One •True, t rack_running_s tct s• tree)
(G 2) : ReLU(1npI¥ ce•True)

(1 3) : ItaxPoo12d (kerne_s1ze-2, stride-2, pJdd\ng-e, d\ fat hon-1, ce I I_mde-F at se)

(14) : C onv2d (128, 256, kerne t_s \ ze• (3, 3), st r I de• (1, 1) , padding- 1, 1))

(is) : Bat chNom2d (2S6, eps•te -B5, ax›•encue•0. i, aftlne•7rue, t rack_runn1ng_st at s• True)

(j s) : ReLU(1npIace•True)
(t7) : £ onv2d (ISO , WSG, kerne I stze- (3, 3) , st rt de• (I, I) , padding- (I , 1))
l8) : 8at c 8orn24 (2SG, eps• Ie -8S, Int un-e.1, affine• rrue, tract_eurtn1og_stats• mar)

(19) : Rev u(I npl ace•True)

(20) : C o v2d (2 56, 2S6, kerne lustre- t 3. 3) , st r1ae•{ I , I) , padd$ rig- (I , 1))

(2 i) : Bat chfio+••2d (2S6, eps• Ie -BS, - ,t ue*-6. 1, all me •1rue. t raek runnln $ st at s -I -ue)

(2 2) : ReL U(tnpta c e • 1 r ue)

(2 3) : MxPo<t\ 2d (kerne t_ s tze• 2 , Smt de-2, padd:tn g-8. dt 'Iat 1on• 1. cet t_zode•FaI se)

(21) : Co nv2d (256 , 512. kernet_s}ze- 3. 3,) st rt de• (1, 1 , poddt ng- (1 , 3.))

{2S) : Bat chkp-2 d (512, eps•Ie -¥5, eoaentua- 0. 1, af Fine •True, t rack_runn}n stats•Tr•ue)

(26) : 9eLU(I npI¥ ce•T cue)

(2 7) : Conv2d (5 t2 , 5t2, kernel s\ze• [3. 3). str tde• (1, 1) , padd1np- 1. 1))

Figure 3.10.) VGG-Net architecture Summary

34

4. Algorithms

Once we have applied the model and applied forward propagation we would get a

certain loss value on the model(deviation from the original value), it can be optimised

through backpropagation, by applying different activation functions, initialisation

methods, optimisation methods and batch normalisations.

4.1. Activation Functions and Initialisation Methods

Need of Activation function: Without activation functions, a neural network can only

address linear relationship between the variables which we refer to as linear regression

model.So to solve complex problems like image dassification, object detection,

language translation we need activation function.

The representation powe f a deep Neural Network is due to its activation function.

Some of the most popular activation functions are:

e Sigmoid/Logistic

• tanh-Hyperbolic tangent

• ReLu-Rectified Linear units

• Leaky ReLu

Logistic Activation function:

This activation function is biologically motivated representing the rate of firing in the

neuron.

Mathematical representation: /(.r) = , ,' ,

This function ranges from 0 i‹› and has S-shape curve.

35

05

0.0

—8

—6 -4 —2 0 4 6 8

Figure 4.1.) Sigmoid Function

Relationship between logistic function and its differential:

The derivative of a Logistic function helps in calculation during Backpropagation.

Reasons due to which this function has lost its popularity :

• Gradient vanish due to saturated neuron.

• Its output isn't zero centred (yields only positive value) which makes optimization

harder.

Gradient Problem.

Mathemati Ily a neuron is said to be saturated when .‹) 0 or \

Or simply, A neuron is said to be saturated when it reaches its peak value which can be

maximum Or minimum.

1

' 1 + e • "

36

a
Consider the above example of a neural network in which the weight W211 needs to

be updated during backpropagation using gradient descent rule. If H21 is found to be 1

then its gradient will be zero, so there is no update in the value of W211.This is known

is vanishing gradient problem where the gradient of weight vanishes or goes down to

zero.

Not a zero centered function:

A function is said to be zero centered if it has equal masks on both sides of the

.Y — LYi.r, means it has both positive and negative values.but in case of a logistic function

the output is always positive and is accumulated towards one side of the plane.

Consider the following example of a neural network in which the weights w311 and

w312 needs to be updated, and we are using logistic activation function which isn’t zero

centered.

B3

Common part H 21 and h22 tJverall value

37

tanh/Hyperbolic tangent:
It is a zero centered function which ranges from — 1 /‹› 1. So tanh overcomes the

non-centered problem in logistic function.

Mathematically it is represented, : /{r —— ,“' ," ”,

Relationship with its derivative : /’(x) — I — (x))2

1 0

0.5

0.0

-0.5

-1 0

—3 —2 —1 0 1 2 3

Figure 4.2.) Hyberbolic Tangent/ tanh function

• Like sigmoid, tanh also has the vanishing gradient problem.

• /‹w// is computationally expensive().

ReLU function:

This function gives output x if x (input) is positive and zero otherwise.

38

ReLU function is not zero centered.

Figure 4-3-) ReLuU function

Mathematically it is represented as: f —— ar(0,.x)

This function doesn’t saturate in positive region.

ReLu is used in Convolution Neural Network. ReLu is less computationally expensive

than tanh and sigmoid because it involves simpler mathematical operations. That is a

good point to consider when we are designing deep neural nets.

Dying ReLU problem:

The downside for being zero for all negative values is a problem called “dying ReLU.” A

ReLU neuron is “dead” if it’s stuck in the negative side and always outputs 0. Because

the slope of ReLU in the negative range is also 0, once a neuron gets negative, it’s

unlikely for it to recover. Such neurons are not playing any role in discriminating the

39

input and is essentially useless, it might become the case where you may end up with a

large part of your network doing nothing.

Other variants of ReLU

Leaky Re LU:

Mathematical representation : /(.r) - I(0.01.I,.I)

Leaky ReLU: -I).(JL

Figure 4.4.) Leaky Re LU

• This function doesn’t saturate in positive or negative regions.

Initialization Methods:

the first step that should be in consideration while building a neural network is the

initialization of parameters, if done correctly then optimization will be achieved in the

least time otherwise converging to a minima using gradient descent will be impossible.

40

Types of Initialization methods:

Zero Initialization

Random Initialization

He Initialization

Xavier Initialization

Zero Initialization:

In zero initialization method, all the parameters are initialized to zero. But this problem

faces Symmetry breaking problem.This problem occurs because if we initialize all the

parameters with equal values, then at later instances the weights will remain equal and

will get updated equally. So, zero initialization is not a good technique.

Random Initialization:

Assigning random values to weights is better than just 0 assignment. But there is one

thing to keep in my mind is that what happens if weights are initialize igh values or

very low values and what is a reasonable initialization of weight values.This solution is

better but doesn’t properly fulfil the needs so, let us see a new technique.

He initialization:

This technique is used for ReLU function.we just simply multiply random initialization:

Xavier Initialization:

This initialization technique is used for i‹inh ñ'J /og/.till functions.This technique is

similar to He technique and random initialization is done with:

4.2. Batch Normalisation and Dropout

Batch normalization and drop out:

By normalizing the inputs we are able to bring all the inputs features to the same scale.

In the neural network, we need to compute the pre-activation for the first neuron of the

41

first layer a . We know that pre-activation is nothing but the weighted sum of inputs

plus bias. In other words, it is the dot product between the first row of the weight matrix

and the input matrix plus bias.

Since we are computing the mean and standard deviation from a single batch as

opposed to computing it from the entire data. Batch normalization is done individually at

each hidden neuron in the network.

Learning Gamma v and Beta g:

g›t» *’. •.

’».• t.» +

a
The parameters Gamma and Beta are learned along with other parameters of the

network. If Gamma (v) is equal to the mean (p) and Beta (g) is equal to the standard

deviation(a) then the activation h final is equal to the h norm, thus preserving the

representative power of the network.

Dropout:

It helps to reduce overfitting and generalization error. Dropout is a regularization

technique that “drops out” or “deactivates” few neurons in the neural network randomly

in order to avoid the problem of overfitting.

42

Original network Network with some nodes dropped out

Figure 4.5.) Dropout

In the regularisation method of dropout, we try to train the model on the network with

some neurons weight dropped to zero at certain layers.This decreases the

computational time and complexity. We can also decide on the percentages of neurons

to be dropped at which layer in the model.

4.3. Optimisation Algorithms:

We make a very regular use of optimisation algorithm in the field of machine learning to

optimise various hyperparameters involved in calculating the loss function and is useful

in training the model upto maximum accuracy. The hyperparameter we generally deal

with are weights of each connection between layers of neurons and their biases. We

generally try out various combination of optimisation algorithm, initialisation methods,

activation function and loss function to optimise the loss and accuracy level.

Some of the popular optimisation algorithms are:

1. Gradient Descent

43

2. ADAM

3. AdaGrad

4. RMSProp

5. Adagrad

Gradient Descent avcan further be classified into Mini-batch gradient descent

and Stochastic Gradient Descent.

44

5. Test, Result and Performance Analysis

5.1. Ratio of Dataset Splitting

We have split both the dataset of Hindi and Tamil language into 80:20 ratio. So, the

model will be trained on the 80% of the dataset and its accuracy would be tested on the

20% dataset.

We can split the dataset using random split function imported from torch.utiIs.data

library.

train_size = int(0.8 * 1en(full_data))

test size = len(full data) - train size

train_data, test_data = random_split(full_data, [train_size, test_size])

Figure 5.1.) Splitting the dataset

5.2. T€?Sting Loss and accuracy on R€?sNet ModE?I

We have trained the resnet model on both the dataset using the following

hyperparameter.

A.) Epochs(No. of Iteration): 10

B.) Loss Function: Cross Entropy Loss Function

C.) Optimisation Algorithm: ADAM

D.) Batch Size: 64

E.) Processor: 'Cuda 0

45

0

For Hindi Dataset:

tensor e.ee??, de ice=’cuJa:e’, grab fn=<nllrossBack ar1>:

0 30

0. 25

020

0IS

0 10

005

Loss with no. of iteration

0 00

0 2

4 6 8

p poc hs

Figure 5.2.) Resnet Hindi Loss with Epochs

Final loss: 0.0077

otal ima es: iG2i

pr’eflicticrs ISO

Acc ucac, vcsua

Figure 5.3.) ResNet Hindi Training Accuracy

Figure 5.4.) ResNet Hindi Testing Accuracy

0 A n J

0

46

With Optimisation RMSprop:

Figure 5.5.) Resnet RMSprop hindi loss

Figure 5.6.) Resnet RMSprop training accuracy

Figure 5.7.) Resnet RMSprop testing accuracy

47

For Tamil Language Dataset:

040

035

0 30

020

0 15

010

Lo ss with no of iteration

6 8

Figure 5.8.) Resnet Tamil Loss with Epochs

cotal images : lP2

correcr precicziors: 95S

Acct:racy: ?*2.5ST†87S

Figure 5.9.) Resnet Tamil Training Accuracy

-otal images : 2oi

correct preQictio is : 234

accuracy: ml.4O‹52E %

Figure 5.10.) ResNet Tamil Testing Accuracy

48

0 2 4 6 to

5.2. Testing Loss and accuracy on AlexNRt Model

We have trained the resnet model on both the dataset using the following

hyperparameter.

A.) Epochs(No. of Iteration): 12

B.) Loss Function: Cross Entropy Loss Function

C.) Optimisation Algorithm: ADAM

D.) Batch Size: 64

E.) Processor: 'Cuda 0

For Hindi Language:

Loss with no. of iteration

fipoc hs

Figure 5.11.) Alexnet Hindi Loss with Epochs

49

Total 1r«ages : 1e24
cor’oecc pred1ct1ons : 82
ccc uracy : se. sssazs x

Figure 5.12.) AIexNet_Hindi_Training Accuracy

tota1 images : 25d
correct predictions: 197

Accuracy: 76.953125 Z

Figure 5.13.) AIexNet_Hindi_Testing Accuracy

With optimisation Algorithm RMSprop:

Figure 5.14.) AIexnet_RMSprop_Ioss

Figure 5.15.) AIexnet_RMSprop_training_error

50

Figure 5.16.) Alexnet RMSprop test loss

For Tamil Language:

060

050

° D 45

40

0 30

L0Ss witn no ot iteration

10

Epochs

Figure 5.17.) AlexNet Tamil Loss with Epochs

Figure 5.18.) AlexNet Tamil Training Accuracy

ota inages:

correct predictions : 204

Figure 5.19.) AlexNet Tamil Testing Accuracy

0 7

06

04

51

5.4. TE§sting Loss and accuracy on VGG-Net ModE?I

We have trained the resnet model on both the dataset using the following

hyperparameter.

A.) Epochs(No. of Iteration): 12

B.) Loss Function: Cross Entropy Loss Function

C.) Optimisation Algorithm: ADAM

D.) Batch Size: 16

E.) Processor: 'Cuda 0 '

For Hindi Language:

Loss with no. of iteration

o 2 4 6 8 J0

Epochs

Figure 5.20.) VGGNet Hindi Loss with Epochs

52

Figure 5.21.) VGGNet Hindi Training Accuracy

Figure 5.22.) VGGNet Hindi Testing Accuracy

With Optimisation Algorithm RMSprop:

Figure 5.23.) VGGNet RMSprop loss

Figure 5.24.) VGGNet RMSprop train

53

OB

06

0 Z 4 8 10

Figure 5.25.) VGGNet RM Sprop test

For Tamil Language:

Lass with no. of iteration

Epochs

Figure 5.26.) VGGNet Tamil Loss with Epochs

-otel images: 1C2

Figure 5.27.) VGGNet Tamil Training Accuracy

-ota images : 256

cor•rect predict io‹,s : 2go

MCC nr’ac;r : I?.t:S?5 A

Figure 5.28.) VGGNet Tamil Testing Accuracy

54

6. Conclusion and Future Work

Based on the observed loss, training accuracy and test accuracy after training three

models (resnet, alexnet, vggnet) on the dataset of hindi and tamil language, we can

infer from the above observation that ResNet18 models work best in case of text

classification for our dataset and is more efficient than AlexNet and VGGNet.

Model Training Accuracy Test Accuracy

ResNet18 95.70 90.23

AlexNet 80.85 76.95

VGGNet 77.73 77.73

Table 1: Accuracy for Hindi Language

For Tamil Language:

Model Training Accuracy Test Accuracy

ResNet18 93.55 91.40

AlexNet 77.73 79.68

VGGNet 77.73 79.68

Table 2: Accuracy for Tamil Language

The depth of ResNet along with the concept of residual learning gives ResNet an advantage in

Image Glassification over other deep learning networks.

In the next semester, we want to make to train the dataset using other models such as YOLO(

You Only Look Once) and Detectron and try to improve the accuracy of the model trying

different hyperparameters.

55

References:

1. “ Digital Recognition based on improved LeNet Convolutional Neural Network ”

by Li Sun, Lishan Jia

2. “VGG-Net Architecture ” httDs://arxiv.org/pdf/1409.1556.pdf

3. “Going Deeper with Convolution ”

4. “Deep Residual Learning for Image Recognition

https://www.cv-foundation.oro/openaccess/content cvpr 2016/papers/He Deep Residu

al L eamino CVP R 2016 paDer.pdf

5. P orch.org

6. Forums.fast.ai

7. towardsdatascience.com

http://www.cv-foundation.oro/openaccess/contentcvpr2016/papers/HeDeepResidu
http://www.cv-foundation.oro/openaccess/contentcvpr2016/papers/HeDeepResidu
http://www.cv-foundation.oro/openaccess/contentcvpr2016/papers/HeDeepResidu
http://www.cv-foundation.oro/openaccess/contentcvpr2016/papers/HeDeepResidu

Pratyush and Varan Project Report-2

ORIGINALITY REPORT

16%

SIMILARITY INDEX

12%
INTERNET SOURCES

4%
PUBLICATIONS

9%
STUDENT PAPERS

PRIMARY SOURCES

towardsdatascience.com
Internet Source

www.tinymind.com
Internet Source

Submitted to Jaypee University of Information

Technology
Student Paper

medium.com
Internet Source

Submitted to Higher Education Commission

Pakistan
Student Paper

qims.amegroups.com
Internet Source

Submitted to University College London
Student Paper

Submitted to Asia Pacific Instutute of

Information Technology
Student Paper

7%

2%

1%

1%

<1%

<1%

<1%

<1%

1

2

3

4

5

6

7

8

http://www.tinymind.com/

 9
Logan R. Vallandingham, Quan Yu, Nakul

Sharma, Jo W. Strandhagen, Jan Ola

Strandhagen. "Grocery retail supply chain

planning and control: Impact of consumer trends

and enabling technologies", IFAC-

PapersOnLine, 2018
Publication

aidreams.co.uk
Internet Source

Submitted to UT, Dallas
Student Paper

Submitted to Jawaharlal Nehru University (JNU)
Student Paper

Submitted to CSU, San Jose State University
Student Paper

everything.explained.today
Internet Source

kr.mathworks.com
Internet Source

www.mdpi.com
Internet Source

Submitted to Instituto de Empress S.L.
Student Paper

Submitted to De Montfort University
Student Paper

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

10

11

12

13

14

15

16

17

18

http://www.mdpi.com/

www.inderscienceonline.com
Internet Source

Submitted to University of Newcastle upon Tyne
Student Paper

"Communications, Signal Processing, and

Systems", Springer Science and Business

Media LLC, 2020
Publication

Submitted to University of Sheffield
Student Paper

www.tutorialspoint.com
Internet Source

Submitted to National Technical University of

Athens
Student Paper

Submitted to Bournemouth University
Student Paper

Submitted to University of Bristol
Student Paper

Babak Ehteshami Bejnordi, Mitko Veta, Paul

Johannes van Diest, Bram van Ginneken et al.

"Diagnostic Assessment of Deep Learning

Algorithms for Detection of Lymph Node

Metastases in Women With Breast Cancer",

JAMA, 2017

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

19

20

21

22

23

24

25

26

27

http://www.inderscienceonline.com/
http://www.tutorialspoint.com/

Publication

28
Hisham El-Amir, Mahmoud Hamdy. "Deep

Learning Pipeline", Springer Science and

Business Media LLC, 2020
Publication

Submitted to Informatics Education Limited
Student Paper

Submitted to Turun yliopisto
Student Paper

<1%

<1%

<1%

Exclude quotes Off

Exclude bibliography Off

Exclude matches Off

29

30

		2020-07-15T17:39:23+0530
	varankaushal

		2020-07-15T19:32:33+0530
	PRATYUSH KUMAR

		2020-07-23T09:42:36+0530
	Hari Singh

