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1. Introduction 

 
1.1 Abstract 

 
Since the invention of the first artificial neuron, McCulloch Pitts Neuron by Warren 

McCulloch and Walter Pitts in 1943 which works on dassifying two seg  ts using a  

linearly separable line, the world has witnessed evolutionary development in the field of 

Artificial Intelligence and its subdomains Machine Learning and Deep Learning. 

 

1.1.1 Corr€?Iation between 

Deep Learning and Data Science 

enc€§, Machine L€§arning, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Source: htt   s://miro.medium.com/max/922/1*32k RO9NhW 1210-cZr 

 
Figure 1.1 ) Correlation between AI, ML, DL and data science. 

 
From the above figure ( Vein Diagram) we could understand that deep learning is the 

subset of machine learning which in turn is the subset of artificial intelligence  and the 

data science overlaps with some aspects of all three as it also involves aspects such as 

data collection ( which can be either done manually or through sensors ) and basic 

visualisation and analysis ( calculating mean/ median/ etc.) and thus some aspects of it 

lies outside the spectrum of AI, ML, and DL. 
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Deep Learning Models has accelerated the pace of development and deployment of 

machine learning applications in our daily lives from sequence generation to image 

classification by leveraging the advantage of being highly efficient to be trained on large 

size of dataset and is used primarily in achieving all machine learning task. 

 
Our endeavour in this project is to gain leverage of the deep learning models developed 

over the past years to classify text characters of two Indian languages i.e. Hindi and 

Tamil. 

 
Text Classification has become an important application of Deep Learning in today’s 

world and one of the world’s most intense research areas. If a mobile application could 

classify text of different languages correctly, then it could be efficient for common users 

to communicate effectively anywhere and at anytime. 

 
In case of language translation i.e translating any foreign language to user’s own native 

language, it must go@rough the first step of identifying the text correctly, which is an 

important application of image processing and subsequently computer vision today. 

 
1.1.2 What is Computer Vision and Image Processing ? 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.2.) Image Processing and Computer Vision 

 
Image Processing: It is a technique which takes an image as an input and generates an 

image as output by performing some modification on the desired attributes (color/ 

intensity/ use removal/ compression etc). Image processing eases the task of 

performing computer vision. 
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Computer Vision: It is an interdisciplinary science that allows a computer to gain a 

high-level understanding of digital images and videos and determine what the computer 

"sees" or "recognizes" objects and automate the task done by this ability on the various 

application which requires these functionalities. 

 
Object Detection for self-autonomous cars, the model building of a location, image 

classification on social media applications, providing vicarious experience through 

augmented reality ( AR ) or virtual reality ( VR ) are some of the commonly observed 

applications of computer vision. 

 
1.2 ProbI€?m Stat€?FD€?Flt: 

 
We have collected data of two indian languages ( Hindi and Tamil ) of all the possible 

characters and our task is to train a deep learning model so that it could successfully 

classify the characters of the dataset curated and pre-processed ( multi-class 

classification ) with maximum attainable accuracy by trying it the model on various 

possible combinations of hyperparameters ( epoch/ learning rate/ optimisation 

algorithm/ activation functions ) and minimising the error using backpropagation 

technique so that it can make more no. of correct predictions both on the training data 

and test data. 

 
Our project is an application of supervised learning in machine learning. 

 
Supervised Learning : Given a labeled training dataset , we train it on some model of 

our own by inferring the relationship between inputs(x’s) and output(y’s) and try to find 

the best updated parameter and test the model on unseen data points. 

 
Unsupervised Learning : Given an unlabeled dataset , we try to either group the data 

points on the basis of some attributes(demographics/behaviour/like/dislike) or generate 

new sequence of inputs based on the available inputs. 

 

 
"Supervised Learning(Classification/Regression) has created 99% of all economic value 

in Artificial Intelligence" Andrew NG (CEO , deepIearning.ai) 
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1.3 Our Approach 

 
We have approached this project through the well known six elements of machine 

learning, used in learning machine learning. 

 
There are six elements of machine learning 

 
1. Data 

 
2. Defining a Task 

 
3. Applying Model 

 
4. Calculating Loss 

 
5. Learning Algorithm 

 
6. Evaluation 

 
 

 
1. Data : (The fossil fuel of machine learning) 

A typical dataset required to perform any ML prediction is of high dimensions 

meaning it consists of millions of rows/data points/observations with typically 

thousands or may be millions of columns/parameters/features.A dataset could be 

presented with inputs as well as its corresponding outputs which is ideal for 

performing any supervised learning task by learning the relationship between ilp 

and o/p and if the dataset doesn’t contain any corresponding output w.r.t to 

inputs then we can only perform unsupervised learning task. 

 
Our source of the data for this project of collecting hindi and tamil language is 

Kaggle ( an online competition website ). 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.3 ) Characters of Hindi Language 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.4 ) Characters of Tamil Langauage 
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Data Curation (Pre-processing the data) : 
 

The data that has to be feeded to the model for training should be in machine 

readable form i.e. it should be encoded as number. 

 
In the above case image could be represented in 3 channels, i.e RGB and could be 

represented in pixel value. 

 
2. Task: ( Setting an objective of the project with the curated dataset ) 

 
Based on the procured/curated dataset we can define our task accordingly. If we have 

labeled training dataset i.e. it contains input(x’s) and its corresponding labels(y's) we 

can easily perform supervised learning(classification/regression) and if we don’t have 

labeled training dataset doesn’t contains corresponding labels(y’s) we can only perform 

unsupervised learning(clustering/generation). 

 
Classification(binary/multi) : The data point is tried to be mapped with some 

category/label. The label could be binary such as (like/dislike) or multi such as 

classifying the alphabets of english language(A-Z). 

 
We are performing Multi-class classification in this project. 

 
3. Model : ( Mathematical formulation of a task ) 

y=f(x)[unknown relation] 

Our approximation function : ^y=^f(x) 

 
A ML/DL model is typically the approximation of an ml engineer for finding the 

relationship between data points(x’s) and its corresponding labels(y’s) denoted by 

y=f(x). The model could be simple or complex depending on the no. of parameters it 

has. 

 
In this project we have worked on Convolutional Neural Network model and it’s various 

architectures proposed over the years by the researchers. 
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4. Loss Function : (How could we say which model best fit for estimating the 

correct relationship for the task ? ) 

 
e 
Loss function calculates the difference between true output (y) and the approximated 

value (^f(x)) . It is represented with L. 

 
If L=0 then the estimate of our model is exactly accurate 

Different loss functions are ' 

a. Square Error Loss 

b. Cross Entropy Loss 

c. KL divergence 

d. Hinge Loss 

e. Huber Loss etc 

 
The lower the loss better the model is in terms of accurate prediction. 

 
5. Learning Algorithm : (How do we estimate different parameters ?) 

 
Under this element, the success of machine learning lies. 

 
Parameter estimation in machine learning is a kind of a search operation.We can 

compute the parameters through learning algorithm and it becomes an optimisation 

problem where we try to optimise the parameters by minimising the loss. Hence, 

learning algorithm and loss function goes hand in hand. 

 
Some of the popular learning algorithm/optimisation solver are 

 
a. Gradient Descent 

b. Adagrad 

c. RMSProp 

d. ADAM 

e. Backpropagation 
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6. Evaluation : (How do we compute the accuracy of a MLJ'DL model ?) 

 
Accuracy = (No. of correct prediction )/(Total no. of prediction) 

 
Calculating accuracy indicates how efficient the model  is and is more interpretable for 

the end user than the loss function. 

 
Top-K Accuracy : Out of the top-k prediction made by the prediction if we can find the 

correct output among these then we can accept the model. 

 
Top-K Accuracy = (No. of correct prediction made in top-k) / (Total no. of prediction) 

 
Evaluation has to be done on the test data (data points which hasn’t been seen by the 

machine). 

 
The standard evaluation metric in case of object detection where some action  is  

required to be taken are precision and recall. 

 
Precision = (No. of correct action) / (Total no. of action taken ) 

 
Recall = (Actual no. of correct action) / (Total No. of times correct action to be taken) 
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Source : https://miro.medium.com/max/848/1”7SgzmX05T81Ojaor9s5HWO.png 

 
 
 

Figure 1.5 ) Representing correct prediction and wrong prediction using Confusion Matrix 

 
 

Example: Out of 1200 total images, if the model could correctly classify 1080 images  

then the model is said to be trained with the 90 %age accuracy. 
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2. Literature Survey 

 
2.1. List of Literatur€§ Survey§2d 

 
We have surveyed research paper written by well known researchers over the past 

years, over the work they have done in the field of Image Classification from the 

improved Yuan Lecun ( improved LeNet 5 ) original research paper of 1998 to the most 

efficient and better than human performance of the model ResNet developed by 

Microsoft in 2015. 

 
A.) Improved Lenet-5 

B.) AlexNet 

C.) VGG-Net 

 
D.) GoogleNet 

E.) Resnet 

 
2.2 Description of LitE§ratur€§ SurvE§yed 

 
A.) “ Digital Recognition based on improved LeNet Convolutional Neural Network 
" by Li Sun, Lishan Jia 

 
In this paper we have studied, 

 
An improved model over the LeNet-5 model published in 1998 which contains 8 layers 

including i/p and o/p layers in contrast to original network consisting of 9 layers. 

 
The activation function used is logistic compared to hyberbolic tangent function used in 

original network and works best in the combination of learning rate=1, epochs and batch 

Size is 25. 

 
Some of the pertinent improvements made in the paper were 
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Parameters ( Original Network of LeNet 5 ) = 60, 000 

Parameters ( Improved LeNet-5 ) = 32, 194 

Misrecognition Rate ( Original Network of LeNet 5 ) = 0.98% 

 

 
Misrecognition Rate ( Improved LeNet-5 ) = 0.86% 

 
 
 

B. ) “ALexNet" by Alex Krizhevsky, Geoffrey E. Hinton, IIya Sutskever 

 
In this paper delivered in 2012 at the ImageNet challenge, the authors of the paper 

presented a different kind of CNN Architecture which has been proven to be trained with 

the lowest possible error till 2012 of 16.4 %age. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The Cnn Architecture of AlexNet looks as follows: 
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Source: https://miro.medium.com/max/3072/1’qyc21qM0oxWEuRaj-XJKcw.png 

 
Figure 2.1) Alexnet Architecture 

 
 
 

The Top-5 error rate observed at the ImageNet  dataset was 16.4 percentage. 

 
 
 
 
 
 
 
 
 
 
 
 

3. "  VGG-NET  " by Karen Simonyan and Andrew Zisserman 



14 
 

 
 

 

This model gets popular by the name of VGG Net and is given in the year 2014 and 

emphasises on the addition of more and more depth to the model taking the depth of 

the model to 16 layers with the use of simple 3*3 filter. 

 
The architecture of VGG-Net is as follow: 

 

224 220 3 224 22- 64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. ) VGG-Net Architecture 

 
 
 
 
 
 
 
 
 
 
 
 

D. ) Going Deeper with Convolutions ( GoogleNet ) 
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This model is even more deeper than AlexNet and VGG-16 as it takes the depth to even 

larger extent with introducing 22 layers into the picture. This model uses the concept of 

Inception model which signifies using multiple filters ( 1*1, 3’3, 5*5 ) and introduces the 

concept of auxiliary loss i.e checking the loss in between the layers to avoid the problem 

of vanishing gradient during backpropagation. 

 
This model has been trained with the loss of 6.7 percentage. 

 

 

 
 

Figure 2.3) GoogleNet Architecture 
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E. ) Deep Residual Learning for Image Recognition 

 
This CNN architecture has three layers of architecture. 

 
1.) Resnet 51 

2.) Resnet 101 

3.) Resnet 151 

 
This architecture introduces the concept of residual learning, i.e at every layer, the input 

is passed as it is and the residual of it too. Due to the depth it takes time to train the 

network. Resnet won the 101 architecture. The top-5 error rate was 3.57 percentage. 

 
 
 
 
 
 
 
 
 

X 

 

 

T(x) 

 
X 

identity 

 
 
 

 

Figure 2.4. ) Residual  Learning 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.5) VGG-19 and Resnet architecture 
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3. System Development 

 
3.1. Framework for training Deep Learning Models. 

 
Some of the widely popular used framework for training deep learning model are: 

A.) Tensorflow ( developed by Google ) 

B.) Pytorch ( developed by Facebook ) 

C.) Sonnet 

D.) Keras 

E.) MXNet 

F.) Swift 

G.) Chainer 

H.) DL4J 

I.) ONNX 

 
3.2. Training D€§ep Learning Model using Pytorch FramE§wOFk 

 

Originally developed by Facebook but used now a day by most of the companies and 

startups for training the model to achieve a specific task. Pytorch has some specific 

in-built function which can be used for minimising the training time of the model from 

hours to minutes specifically in the case of image classification. 

 
Some of the in-built functions are: 

 
A.) Compose ( used in pre-processing the image ) 

 
B.) “NN” module helps in applying fully-connected layers and help in applying 

backpropagation and loss easily. 
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LOSSES in Pytorch: 

 
a 

Loss with PyTorch can be calculated using nn module. PyTorch provides losses such 

as cross-entropy loss (nn. CrossEntropyLoss). In general, loss is assigned to the 

criterion. To actually compute the loss, you first define criterion then pass it in the output 

of your network and the correct labels. The output of the criterion is the loss for the 

network. 

 

Autograd: 

 

Torch provides a module called Autograd which calculates the gradients of tensors. We 

use Autograd to calculate the gradients of all our weight parameters with respect to the 

loss. 

 

 
We can also download the model in pytorch with pretrained weights 

Using the following code: 

 
resnet = models.resnet18(pretrained= True) 

 
The above is the example of downloading resnet architecture with pretrained weights. 

 
The biggest advantage of pytorch over tensorflow is that it operates on a dynamically 

updated graph meaning we can change the architecture as per our wish and train it 

using various combination of hyperparameters. 
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Some of the common used pytorch IibFaries art: 

 
 
 

import torchvision.transforms as transforms 

import torchvision.datasets as datasets 

from torch.utils.data import DataLoader, Dataset, random_sp1it 

import €orch.nn as nn 

import €orcA.nn.functional as K 

 

from torch.optim mpcrt lr_sc&eduJer 

import torchvision.models as models 

 

 
Figure 3.1) Importing Pytorch Libraries 

 

3.3 Using Cuda Proc€§ssor 
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Figure 3.2.) GPU vs CPU performance 
 
 
 
 
 

Matrix multiplication is a heavy task in training any deep neural network and takes a lot 

of time as with convolutional and fully connected layers, it may involve millions of 

parameters and generally training it on normal CPU could take up to much larger time 

depending on the dataset, but if we train it on GPU such as CUDA, the processing time 

decreases as the speedup observed is much higher in case of GPU. 

 
3.4. ) Pri Proc$§sSiB§j thR Image 

 
The code for preprocessing the image is: 

 
 

 

transforms.Normalize([O i85, D.45C, 

? 4D0], [0 229, 0 224, 0 225])]) 

 
 

train_loader = torch.utils.data.DataLoader(train_data, batch_size=64, 

shuffle=True)   

test loader = 

shuffle-True) 

torch.utils.data.DataLoader(test data. batch size=b(, 

 

Figure  3.3.) Preprocessing code 

 
The above code converts the pixel values into tensors ( a fancy name for arrays ), and 

perform normalisation of the value. 

 
Then after splitting the dataset, we  can  load  the  dataset  into  train  loader  and  

test loader as per our desired batch size of training and testing. 

 
Note: We may have to apply different normalisation technique depending upon the 

model we intend to use to train the model. 
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3.5.) ImB§jR PFOCE§SSI B§j 

 
In machine learning we deal with digital data of an image in order to make it suitable for 

processing , but an image may have different ranges of colour. so while scanning an 

image it generates analog data which is not suitable r extracting the right information 

from that image. To get the desired information first we need to convert the analog data 

of image to digital format. The process of gathering the required data from an image is 

referred as Image Processing. There are various mobile phone applications which help 

us to get desired photographs e.g. retrica. In-display fingerprint sensors also use the 

concept of image processing. 

Sampling and quantization are the basics of image processing. We have various 

algorithms by which we can perform sampling and quantization. In sampling the 

coordinate values are digitized and in quantization the amplitude values are digitized. 
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Figure 3.4.) Illustration of Image Processing 

 

Why Image Processing? 

 
Image processing is not only limited to photoshop softwares, it has wide variety of 

applications  in medical  field,  biometric verification, face recognition, 

remote sensing, digital video processing and much more. In the field of machine 

learning, image processing is mostly used to proc s our raw data into useful form. 

Mostly, this is done to enhance the performance of machine learning algorithms by 

choosing the correct image processing technique. 

The type of technique to be used depends on what our machine learning model aims 

at. The cost/loss functions in machine learning can help us determine that which 

technique fits good for best possible output. 

In text classification models, the input data(training data) is processed before hand. It is 

a good deal to process the raw data with different techniques so that it is converted into 

useful format. It is a must that our model is trained only with fruitful information. This 

approach leads to improve the accuracy of our machine learning model. 

Edge Detection 
 

There are different techniques to process the image for gathering useful information, 

one of them is edge detection. As the name suggests this technique is used to detect 

edges in image by defining boundaries of an object present in image. The basics of 

edge detection is that it identifies the points on an image where the brightness levels 

changes sharply. By identifying the vertical and horizontal edges, we are able to define 

the boundaries of an object. There are many techniques for detecting edges. The 

detection techniques can be further classified on basis of first order and second order 

derivatives. 
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In first order derivatives the derivative of all the intensity values are taken and the point 

with highest derivative is considered. Examples of first order derivatives are: Sobel and 

Canny.In second order derivatives, differentiating the first derivative gives us the second 

derivative and finding the points for which it is zero gives us maximum or minimum. 

Example: laplacian. 

 

Sobel 

 
In sobel there are two  types of for detecting edges. The vertical mask and the 

horizontal mask with size 3x3. ’ *nrfirnl  mnrI‹  in ii  ñ In  hntnrf  rfiral  h¿  nnd 

horizontal mask is used to detect the horizontal eclqes. Allotting more weights to them 

helps getting more edges. 

 
 
 

Vertical mask: 
 
 

 
-1 

 
0 

 
1 

 
-2 

 
0 

 
2 

 
-1 

 
0 

 
1 

 

 
On applying vertical sobel filter on one of the text image that we have, we get the 

images with the vertical edges. 
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Figure 3.5.) Appling Vertical Sobel on the image 
 

Horizontal mask: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

On applying horizontal sobel filter on one of the text image that we have, we get the 

images with the vertical edges. 
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Figure 3.6.) Applying Horizontal SObeI on the image 
 
 
 
 
 
 

 

Canny 
 

Canny edge detection is mostly used where we need smooth edges. It is mostly used in 

medical image analysis. There are five steps in Canny with which we get our desired 

output. 

 

The image is smoothened with a Gaussian filter for noise reduction. 

Equation for Gaussian Filter: 

H, 
 i 

exp — 
(‹
 

2. 
(k+*))2 (Q (k+›))2 

2 

 

 

By using finite-difference approximations for partial derivatives we then calculate 

gradient magnitude(G) and orientation(6). 
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G and 0 are calculated as: 

 
 
 
 
 
 
 
 
 
 

We apply non-maxima suppression to the gradient magnitude for thinning the edges. 
 
 
 
 
 

 
 

 
 
 
 
 

 
Then there is double threshold step in which we classify pixels as strong, weak and non-

relevant. 

 
 

 
Edge Tracking by hysteresis is the final step in which we process weak pixels to strong 

if one pixel around them is a strong. 
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One srrong pixel around 

 
 
 
 
 
 
 
 
 
 
 
 

Laplacian 
 

It is an second order derivative edge detection techniqug which finds inner and outer 

edges rather than vertical and horizontal ones. Positive laplacian mask is used to find 

the outer edges of an image and negative mask is used to find the inner edges. To get 

the resultant image we don’t have to use both the operators, either of them can give the 

resultant image by adding or subtracting the original image. 



 

 

 
29 

 
 
 
 
 
 

 

Negative Laplacian operator: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

On applying lapacian (gaussian) filter on the text image we get the edges in both the 

direction as; 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.7.) Applying Laplacian filter on the image 

 
3.6) Splitting the Dataset 

 
We have split the dataset into training set and test set in 80:20 ratio. 
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The training dataset is the one on which the model would be trained meaning it will 

learn the value of all the weights using iteration over the trained dataset and try to make 

predictions after minimising the loss. 

 
The test dataset is the one which the model has not seen before and the closer the 

accuracy observed on both the train and test dataset, the better performing the model is 

for deployment in the practical field. 

 
3.7. ) Applying Th§2 Mod€§I 

 
For our project, we have used the dataset to train on three different model whose 

literature we have surveyed so far namely: 

 
A.) AlexNet 

B.) VGG-Net 

C.) ResNet 
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The summary of Resnet is: 

 
esilet{ 

( cenvy I : £onv 2dt 3. 64. ker ne l_sl:e- ( 7,  z) ,  star de-(z,  z ) ,  pa4d t•g- ( 1  3),  b tae->ol se) 
(bn1) : 8at‹h ow 2d(6a, eps- Ie - 0s,  «o•ent v  -6.  1,  all  I ne- true,  t rack_runnt ng_s t at s -True ) 
(relu) : ReLU ( tnp tae e-True) 

(=axpoo I › : ›!axoeol ?d (k. --: lps1:e- i, s tetde -t, paddi ng- t , dll at ton-1. c elf _r•ode- rai se ) 
(laye 1). sequential( 

(9) Bas tc B }9c k ( 

(conv 1) : Conv 2d(64, 64, ke rne1_s I : e- (3, 3) ,  st r Ide- ( 1,  1) ,  padd t ng• (1,  \ ) ,  bt as -Fat se) 

(bn1) : Batc hf}or  zt2d(b4,  eps -Ie  - 6 5.  aoment uo•0.1,  afff ne• True,  I ra<k_runn I ng_s t at S-True) 

( relu ) : Re LU ( :t np\ace -1r ue) 

(conv2) Convzd (bA, 64, ke rnel s I be- ( 3, y › , st r tde- ( 1, 1) , paddIng-( 1, 1 ) , bl as•Fa\ se (bn2) :  

Batc hlJono2d(64,  ep s -1e -6S.       -   ntua-e.1,  af f'  ne- True,  I tae k_runn I ng_stat S-True ) 

 
(1. ) :  Bas It  B Doc k ( 

(‹onvl ) : Conv 2d(64, 64, ke rne]_ s } be • ( s, 3, ) 

 
 

st r Ide- ( 1. 1, ) 

 
 

pad d tng • { t.. 1 ) . bt as -r a T seI 

(bn1) :  Ba tc hlJor'n2d (64,   eps -te  -e5,       ...ant u•-e.1,  aft tne-Tr‘ue,   t rac k_runn1ng_s t at S-tr‘ue 

( re Tu ) : R eLL/( S np2ace -Tr ue ) 

(conv2) :  Conv24 (64,  64, ke rnet_ s I be- (3,   3) ,  st r tde- ( t,   11,   pa4d t ng• ( \,    T ), bt as•r aT s e ) 

( bn2 ) :  Ba t c hI?orm2 d ( 6a ,  eps • 1.e -e s . -     ...ant ue•8.1,  all I ne•Tru9,  E rSd  k_hunn1hg_St 6£ S-T rub ) 

 

 
( I ayer2) : Sequent la l ( 

0) : Bas 1c B Ioc k ( 

(convl)- Conv2d (64, lbs, kernel s1:e  • ( 3,  3 ) ,  stride•(y,  2 } ,  padd tng- ( \ ,  1) ,  bta s-raw se) 

(bn3) : Batc hl‹orm2d ( 128. ep s- Ie -B5, momentum-e. 1.  aff1ne-True .  track_runn I ng_st at s- T rue) 

( cpu) : 9eLU ( I np\ace -1r ue) 

(canv2-) C ctnv 2d( 1 2 8, L28, kerne 1 sE ze- (3, 3) , st r I de- ( 1, 1) , paddI ng• ( 1, 1), bias- Fa I se) 

(bn2) :  Batc htJorm2d ( 128,  ep s - Ie - 05,  eoment om•e . 1,   af 11ne• True ,  track_runn I ng_sr at s• I rue ) 

( dooms anp1e ) : Sequen t1 a1 ( 

t e) : Con \'2d {64. 228, ker ne I_s I :e- ( 1, 1) , str t de- ( 2, 2,) bias -F a1se) 

(I) :  Oatc h1Jorm2d( 128,  ep s -   e -05,  mo/eentun-0. I,    aft1ne-7rue,   track_r unnI ng_s c at s•t  rue ) 

 
 

Figure 3.8.) Resnet Summary 
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The summary of Alexnet Model is: 

 

AT ex Net ( 

( f eatures ) : Sequent ia 1( 

(0) : Conv2d ( 3, 64, kernel _s i ze- ( 11, 11) , st ride- (4, a j , padding- (2, 2) ) 

(1) : ReLU( tnplace-Tru€) 

(2) : NaxPool2d(kernel_size=3, stride-2, padding=0, dilation=l, ceil_mode=False) 

(3) :  Conv2d ( 64, 192,  k erne1_s:t ze• (S, S ), st r t de• (1, 1 ) ,  padding- (2, 2) ) 
(4 : ReLU( inp1ace-True) 

(5) : F\axPoo 1 2d ( kerne1_s i z e-1, stride -2, paddi ng•6,  d11at1on-1,  cei 1_mode- False) 

(6) :  Conv2d ( 192,  384,  kerne1_si ze= (3, 3) ,  st r ide = (1, 1) , paddi ng•( 1, 1) } 

(7): ReLU(inplace=True) 

(8) : Con v2d( 3Ba, 256, kenne1 _size- ( 3, 3) , st r1de• (1, 1) , paddlng•( 1, 1) ) 

(9) : ReLU( i np1ace-True ) 

( 16) : C onv 2d (256, 2 56, ke oneUs i ze- ( 3, 3 ) , st r1de -( 1, 1) , paddy ng• ( 1, 1 ) ) 

( ll ) : ReLU ( in pt a ce - T ru e ) 

(12): flaxPgol2d(kernel_size-3, stride•2, padding-0, dilation•1, ceil_mode•False) 

 

( avgpoo I ) : Adaptive A 'gPoo12 d(output_s 1ze •( 6,  6) ) 

( c1 as si £1er ) : Sequent 1 a1 ( 
(B) : Dropout(p=0.5, inplace-False) 

(1) : L1near(ln_featur$S•92l6, Out_features-4e96, bias•True) 

(2) : ReLU( inp1ace=True ) 

(3) : Dropout (p-0. s, 1np1ace-Fat se) 
(4 } :  L1nea r ( in features =4096.   out   Ie at ures=4096. bias = True ) 

( S ) : ReLv( i np1ac e -True } 

(6): L1near(in_features•4086, out_features-1000, bias•True) 

 

 

 

Figure 3.9.) AlexNet Summary 



 

 

 

 

 

VGG-Net: 

 
The summary of VGG-Net 16 is: 

 

v 6f 

( tea tures ) : Sequential ( 

{0) : tonv2d t 3, 64, keenel_s I :e- ( 3, 3), st eiae • (1. I ) , padd1eg-{1. t) ) 
( fi ) : 8dtchHors2 d (6A, ep s-ie - IS , no ntu•-8. I , a ttl ne-True , tr•sc k_runnl ng_s tat s- Ti•ue ) 

(2) : Re LU( 1np1ace•Tru-e) 

(3 ) : Conv2d (6a. la. kerna1 S tze•(3, 3,) str1de- (1. 1), paddlng• ( 1, 1) j 

(4 ) :   BatchHoi o2d (04,   ep s-ze  es,   •mnt•••e .t,  a fftne-true, track_run01ft@ SUS   5 •Tf‘ug) 

( s ) : Re LU( tnpSace-True) 
(6) : 'tu.1vv12d (kerne1_sI ze• 2, str I de•2, padding-6, dJ 2 at1on• 1, eel J_node• raJ se) 
t ) : Conv2d ( 6d, 128, kerne 2_s I ze- (3, 3) , str1de - (1, 1) , paddlng• (1, 1) ) 

(8) : eacchuor-2d ( 128, eps-Ie -6S, x•>•encu••0.1, aMilne-True, t rack_runn1ng_st at s- True) 

( 9) : Ne LU ( inp1ace-True ) 

( 26) : C onv3d (139, 338, kerne t_sI z e• (3. 3 j . st ride• (I, 2 } , padding- (,3 7 ) ) 

( E 1)  : But chko-  2d {22B,   eps•1e -BS,  a›oeent ue-0 - 1, af I One •True,  t rack_running_s tct  s• tree ) 
( G 2) : ReLU(1npI¥ ce•True ) 

( 1 3) : ItaxPoo12d ( kerne\_s1ze-2, stride-2, pJdd\ng-e, d\ fat hon-1, ce I I_mde-F at se) 

(14) : C onv2d (128, 256, kerne t_s \ ze• (3, 3), st r I de• (1, 1) , padding- 1, 1) ) 

(is ) :  Bat chNom2d (2S6,  eps•te -B5,  ax›•encue•0. i,   aftlne•7rue,  t rack_runn1ng_st at s• True) 

( j s ) : ReLU(1npIace•True) 
( t7) : £ onv2d (ISO , WSG, kerne I stze- (3, 3) , st rt de• (I, I) , padding- (I , 1) ) 
l8) : 8at c 8orn24 (2SG,  eps• Ie -8S, Int un-e.1, affine• rrue, tract_eurtn1og_stats• mar ) 

( 19) : Rev u( I npl ace•True ) 

( 20) : C o v2d ( 2 56, 2S6, kerne lustre- t 3. 3) , st r1ae•{ I , I ) , padd$ rig- ( I , 1) ) 

( 2 i ) :  Bat chfio+••2d ( 2S6,  eps• Ie -BS, - ,t ue*-6. 1, all me •1rue. t raek runnln $ st at s -I -ue ) 

( 2 2) : ReL U( tnpta c e • 1 r ue ) 

( 2 3) : MxPo<t\ 2d ( kerne t_ s tze• 2 , Smt de-2, padd:tn g-8. dt 'Iat 1on• 1. cet t_zode•FaI se ) 

(21) :  Co nv2d (256 ,   512.  kernet_s}ze-   3.  3,)    st rt de• (1,    1  ,   poddt ng-  (1 ,   3.) ) 

{2S) : Bat chkp-2 d (512, eps•Ie -¥5, eoaentua- 0. 1, af Fine •True, t rack_runn}n stats•Tr•ue ) 

(26) : 9eLU( I npI¥ ce•T cue ) 

(2 7) : Conv2d (5 t2 , 5t2, kernel s\ze• [3. 3). str tde• ( 1, 1) , padd1np- 1. 1 ) ) 

 
 

Figure 3.10. ) VGG-Net architecture Summary 
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4. Algorithms 
 

 
Once we have applied the model and applied forward propagation we would get a 

certain loss value on the model( deviation from the original value ), it can be optimised 

through backpropagation, by applying different activation functions, initialisation 

methods, optimisation methods and batch normalisations. 

 

4.1. Activation Functions and Initialisation Methods 

 
Need of Activation function: Without activation functions, a neural network can only 

address linear relationship between the variables which we refer to as linear regression 

model.So to solve complex problems like image dassification, object detection, 

language translation we need activation function. 

 
The representation powe f a deep Neural Network is due to its activation function. 

Some of the most popular activation functions are: 

e Sigmoid/Logistic 

• tanh-Hyperbolic tangent 

• ReLu-Rectified Linear units 

• Leaky ReLu 

 

Logistic Activation function: 

This activation function is biologically motivated representing the rate of firing in the 

neuron. 

Mathematical representation: /(.r) = , ,' , 

This function ranges from 0 i‹› and has S-shape curve. 
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Figure 4.1.) Sigmoid Function 

 

Relationship between logistic function and its differential: 
 
 
 

 
The derivative of a Logistic function helps in calculation during Backpropagation. 

 
Reasons due to which this function has lost its popularity : 

 
• Gradient vanish due to saturated neuron. 

 
• Its output isn't zero centred (yields only positive value) which makes optimization 

harder. 

 
Gradient Problem. 

 
Mathemati Ily a neuron is said to be saturated when .‹) 0 or \ 

Or simply, A neuron is said to be saturated when it reaches its peak value which can be 

maximum Or minimum. 

1 

' 1 + e • " 
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a 
Consider the above example of a neural network in which the weight W211 needs to 

be updated during backpropagation using gradient descent rule. If H21 is found to be 1 

then its gradient will be zero, so there is no update in the value of W211.This is known 

is vanishing gradient problem where the gradient of weight vanishes or goes down to 

zero. 

 

Not a zero centered function: 

 
A function is said to be zero centered if it has equal masks on both sides of the 

.Y — LYi.r, means it has both positive and negative values.but in case of a logistic function 

the output is always positive and is accumulated towards one side of the plane. 

 
 

 
Consider the following example of a neural network in which the weights w311 and 

w312 needs to be updated, and we are using logistic activation function which isn’t zero 

centered. 

 
 
 
 
 

 
B3 

Common part H 21 and h22 tJverall value 
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tanh/Hyperbolic tangent: 
It is a zero centered function which ranges from — 1 /‹› 1. So tanh overcomes the 

non-centered problem in logistic function. 

 
Mathematically it is represented, : /{r —— ,“' ," ”, 

Relationship with its derivative : /’(x) — I — (x))2 

1 0 

 

 
0.5 

 

 
0.0 

 

 
-0.5 

 

 
-1 0    

—3 —2 —1 0 1 2 3 

 

Figure 4.2.) Hyberbolic Tangent/ tanh function 

 
• Like sigmoid, tanh also has the vanishing gradient problem. 

• /‹w// is computationally expensive( ). 

 

ReLU function: 

 
This function gives output x if x (input) is positive and zero otherwise. 
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ReLU function is not zero centered. 
 
 

 

 

 
Figure 4-3-) ReLuU function 

 
Mathematically it is represented as: f —— ar(0,.x) 

 
 
 

This function doesn’t saturate in positive region. 

 
ReLu is used in Convolution Neural Network. ReLu is less computationally expensive 

than tanh and sigmoid because it involves simpler mathematical operations. That is a 

good point to consider when we are designing deep neural nets. 

 
 
 
 
 
 
 

Dying ReLU problem: 

 
The downside for being zero for all negative values is a problem called “dying ReLU.” A 

ReLU neuron is “dead” if it’s stuck in the negative side and always outputs 0. Because 

the slope of ReLU in the negative range is also 0, once a neuron gets negative, it’s 

unlikely for it to recover. Such neurons are not playing any role in discriminating the 
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input and is essentially useless, it might become the case where you may end up with a 

large part of your network doing nothing. 

 
 

 
Other variants of ReLU 

Leaky Re LU: 

Mathematical representation : /(.r) - I(0.01.I,.I) 

 
 
 
 
 
 

Leaky ReLU: -I).(JL  

Figure 4.4.) Leaky Re LU 

 
• This function doesn’t saturate in positive or negative regions. 

 
Initialization Methods: 

 
the first step that should be in consideration while building a neural network is the 

initialization of parameters, if done correctly then optimization will be achieved in the 

least time otherwise converging to a minima using gradient descent will be impossible. 
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Types of Initialization methods: 

 
Zero Initialization 

Random Initialization 

He Initialization 

Xavier Initialization 

 
Zero Initialization: 

In zero initialization method, all the parameters are initialized to zero. But this problem 

faces Symmetry breaking problem.This problem occurs because if we initialize all the 

parameters with equal values, then at later instances the weights will remain equal and 

will get updated equally. So, zero initialization is not a good technique. 

 
Random Initialization: 

Assigning random values to weights is better than just 0 assignment. But there is one 

thing to keep in my mind is that what happens if weights are initialize igh values or 

very low values and what is a reasonable initialization of weight values.This solution is 

better but doesn’t properly fulfil the needs so, let us see a new technique. 

 
He initialization: 

 
This technique is used for ReLU function.we just simply multiply random initialization: 

 
 

Xavier Initialization: 

 
This initialization technique is used for i‹inh ñ'J /og/.till functions.This technique is 

similar to He technique and random initialization is done with: 

 
 
 
 
 

4.2. Batch Normalisation and Dropout 

 
Batch normalization and drop out: 

 
By normalizing the inputs we are able to bring all the inputs features to the same scale. 

In the neural network, we need to compute the pre-activation for the first neuron of the 
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first layer a . We know that pre-activation is nothing but the weighted sum of inputs 

plus bias. In other words, it is the dot product between the first row of the weight matrix 

and the input matrix plus bias. 

 
 

 
Since we are computing the mean and standard deviation from a single batch as 

opposed to computing it from the entire data. Batch normalization is done individually at 

each hidden neuron in the network. 

 
 
 

Learning Gamma v and Beta g: 

 

 
g›t» *’. •. 

 
 

 
’».• t.» + 

 
 

a 
The parameters Gamma and Beta are learned along with other parameters of the 

network. If Gamma (v) is equal to the mean (p) and Beta (g) is equal to the standard 

deviation(a) then the activation h final is equal to the h norm, thus preserving the 

representative power of the network. 

 
 
 

Dropout: 

 
 
 

It helps to reduce overfitting and generalization error. Dropout is a regularization 

technique that “drops out” or “deactivates” few neurons in the neural network randomly 

in order to avoid the problem of overfitting. 
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Original network Network with some nodes dropped out 

 
 

 
Figure 4.5.) Dropout 

 
 

In the regularisation method of dropout, we try to train the model on the network with 

some neurons weight dropped to zero at certain layers.This decreases the 

computational time and complexity. We can also decide on the percentages of neurons 

to be dropped at which layer in the model. 

 

 
4.3. Optimisation Algorithms: 

We make a very regular use of optimisation algorithm in the field of machine learning to 

optimise various hyperparameters involved in calculating the loss function and is useful 

in training the model upto maximum accuracy. The hyperparameter we generally deal 

with are weights of each connection between layers of neurons and their biases. We 

generally try out various combination of optimisation algorithm, initialisation methods, 

activation function and loss function to optimise the loss and accuracy level. 

 
Some of the popular optimisation algorithms are: 

 
1. Gradient Descent 
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2. ADAM 

3. AdaGrad 

4. RMSProp 

5. Adagrad 

 
Gradient Descent avcan further be classified into Mini-batch gradient descent 

and Stochastic Gradient Descent. 
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5. Test, Result and Performance Analysis 

 
5.1. Ratio of Dataset Splitting 

 
We have split both the dataset of Hindi and Tamil language into 80:20 ratio. So, the 

model will be trained on the 80% of the dataset and its accuracy would be tested on the 

20% dataset. 

 
We can split the dataset using random split function imported from torch.utiIs.data 

library. 

 
train_size = int(0.8 * 1en(full_data)) 

test size = len(full data) - train size 

 
train_data, test_data = random_split(full_data, [train_size, test_size]) 

 

Figure 5.1.) Splitting the dataset 

 

 

5.2. T€?Sting Loss and accuracy on R€?sNet ModE?I 

 
We have trained the resnet model on both the dataset using the following 

hyperparameter. 

 
A.) Epochs( No. of Iteration ): 10 

 

B.) Loss Function: Cross Entropy Loss Function 

C.) Optimisation Algorithm: ADAM 

D.) Batch Size: 64 

 

E.) Processor: 'Cuda 0 
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For Hindi Dataset: 

 
tensor e.ee??, de ice=’cuJa:e’, grab fn=<nllrossBack ar1>: 
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Loss with no. of iteration 
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Figure 5.2.) Resnet Hindi Loss with Epochs 

 

Final loss: 0.0077 
 
 

otal ima es: iG2i 

pr’eflicticrs ISO 

Acc ucac, vcsua 

Figure 5.3.) ResNet Hindi Training Accuracy 

 
 
 
 
 
 

 
Figure 5.4.) ResNet Hindi Testing Accuracy 
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With Optimisation RMSprop: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.5.) Resnet RMSprop hindi loss 

 
 
 
 
 
 
 
 
 

 
Figure 5.6.) Resnet RMSprop training accuracy 

 
 
 
 
 
 
 

Figure 5.7.) Resnet RMSprop testing accuracy 
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For Tamil Language Dataset: 
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Lo ss with no of iteration 
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Figure 5.8.) Resnet Tamil Loss with Epochs 

 
 
 

cotal images : lP2 

correcr precicziors: 95S 

Acct:racy: ?*2.5ST†87S 

 
 

Figure 5.9.) Resnet Tamil Training Accuracy 

 
 

-otal  images :  2oi 

correct preQictio is : 234 

accuracy: ml.4O‹52E % 

 

 
Figure 5.10.) ResNet Tamil Testing Accuracy 
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5.2. Testing Loss and accuracy on AlexNRt Model 

 

We   have   trained   the resnet  model on both the dataset using the following 

hyperparameter. 

 
A.) Epochs( No. of Iteration ): 12 

 

B.) Loss Function: Cross Entropy Loss Function 

C.) Optimisation Algorithm: ADAM 

D.) Batch Size: 64 

 

E.) Processor: 'Cuda 0 

For Hindi Language: 

Loss  with no. of iteration 

fipoc hs 

 

Figure 5.11.) Alexnet Hindi Loss with Epochs 
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Total 1r«ages : 1e24 
cor’oecc pred1ct1ons : 82 
ccc uracy : se. sssazs x 

Figure 5.12.) AIexNet_Hindi_Training Accuracy 

 
 

tota1 images : 25d 
correct predictions: 197 

Accuracy: 76.953125 Z 

 

Figure 5.13.) AIexNet_Hindi_Testing Accuracy 

With optimisation Algorithm RMSprop: 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.14.) AIexnet_RMSprop_Ioss 

 
 
 
 
 
 
 

 
Figure 5.15.) AIexnet_RMSprop_training_error 
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Figure 5.16.) Alexnet RMSprop test loss 
 
 

For Tamil Language: 
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Figure 5.17.) AlexNet  Tamil  Loss with Epochs 

 
 
 
 
 
 

Figure 5.18.) AlexNet  Tamil  Training Accuracy 
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Figure 5.19.) AlexNet Tamil Testing Accuracy 
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5.4. TE§sting Loss and accuracy on VGG-Net ModE?I 
 
 

We have trained the resnet model on both the dataset using the following 

hyperparameter. 

 
A.) Epochs( No. of Iteration ): 12 

 
 

B.) Loss Function: Cross Entropy Loss Function 

C.) Optimisation Algorithm: ADAM 

D.) Batch Size: 16 

 

E.) Processor: 'Cuda 0 ' 

 

For Hindi Language: 
 
 

Loss with no. of iteration 

 
 
 
 
 
 
 
 
 
 
 

 

o 2 4 6 8 J0 

Epochs 

Figure 5.20.) VGGNet Hindi Loss with Epochs 
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Figure 5.21.) VGGNet Hindi Training Accuracy 

 
 
 
 
 

Figure 5.22.) VGGNet Hindi Testing Accuracy 

With Optimisation Algorithm RMSprop: 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.23.) VGGNet  RMSprop  loss 

 
 
 
 
 
 
 

 
Figure 5.24.) VGGNet  RMSprop  train 



53 
 

OB 

 

06 

0 Z 4 8 10 

 
 
 
 
 
 
 
 
 
 

Figure 5.25.) VGGNet  RM Sprop  test 
 
 

For Tamil Language: 
 
 

Lass with no. of iteration 

Epochs 
 

Figure 5.26.) VGGNet Tamil Loss with Epochs 
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Figure 5.27.) VGGNet Tamil Training Accuracy 
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Figure 5.28.) VGGNet Tamil Testing Accuracy 
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6. Conclusion and Future Work 

 

Based on the observed loss, training accuracy and test accuracy after training three 

models (resnet, alexnet, vggnet ) on the dataset  of hindi and tamil language, we  can 

infer from the above observation that ResNet18 models work best in case of text 

classification for our dataset and is more efficient than AlexNet and VGGNet. 

 

 

Model Training Accuracy Test Accuracy 

ResNet18 95.70 90.23 

AlexNet 80.85 76.95 

VGGNet 77.73 77.73 

 

Table 1: Accuracy for Hindi Language 

 
For Tamil Language: 

 

 

Model Training Accuracy Test Accuracy 

ResNet18 93.55 91.40 

AlexNet 77.73 79.68 

VGGNet 77.73 79.68 

 

Table 2: Accuracy for Tamil Language 
 

The depth of ResNet along with the concept of residual learning gives ResNet an advantage in 

Image Glassification over other deep learning networks. 

 
In the next semester, we want to make to train the dataset using other models such as YOLO( 

You Only Look Once) and Detectron and try to improve the accuracy of the model trying 

different hyperparameters. 
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