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ABSTRACT 

Chaotic systems have properties such as ergodicity, sensitivity to initial 

conditions/parameter mismatches, mixing property, deterministic dynamics, structure 

complexity, to mention a few, that map nicely with cryptographic requirements such as 

confusion, diffusion, deterministic pseudo-randomness, algorithm complexity. 

Furthermore, the possibility of chaotic synchronization, where the master system 

(transmitter) is driving the slave system (receiver) by its output signal, made it probable 

for the possible utilization of chaotic systems to implement security in the 

communication systems. Many methods like chaotic masking, chaotic modulation, 

inclusion, chaotic shift keying (CSK) had been showed. Different modifications of these 

methods also exist in the literature to improve the security, but almost all suffer from 

the same drawback. Therefore, the implementation of chaotic systems in security still 

remains a challenge. In this work, possibilities on how it might be possible to design a 

chaotic communication system are explored.  
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CHAPTER 1 

OVERVIEW OF CHAOS COMMUNICATION 

1.1 Objective  

Spread-spectrum signals are well known to be resistant to interferers (natural and 

manmade) and multipath effects, conducive to secure communications by lowering the 

average spectral density, and effective for use in multiple access systems where users 

simultaneously re-use the shared communications bandwidth. A notional depiction of 

the spectral power density of a modulated data signal both before and after spreading is 

shown in Figure 1. 

 

 

 

 

The extension of spread-spectrum signaling techniques to chaotic communications 

gained active interest in the early 1990s since frequency bandlimited chaotic spreading 

sequences are known to closely mimic Shannon’s ideal noise-like waveform; the 

chaotic waveform is a near-optimal approximation of a transmission with maximum 

capacity for carrying information in a Gaussian white noise channel. Compared to other 

spread communication systems, chaotic waveforms may be viewed as having the 

potential for higher throughputs (as a result of higher SNR) or a lower power spectral 
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density (increasing spectral re-use) for the same data throughput. Further, the impulsive 

autocorrelation also gives chaotic waveforms superior multipath and co-interference 

characteristics as compared to traditional spread-spectrum signals like CDMA. 

By contrast with a conventional digital modulation scheme, where the transmitted 

symbols are mapped to a finite set of periodic waveform segments for transmission, 

every transmitted symbol in a chaotic modulation scheme produces a different non 

periodic waveform segment. Because the cross correlations between pieces of periodic 

segments are lower than between pieces of periodic waveforms, chaotic modulation 

ought to offer better performance under multipath propagation conditions. Thus, chaotic 

modulation offers a potentially simple solution for robust wideband communications. 

 

1.2 Chaos Theory 

Chaos theory, a branch of the theory of the interesting nonlinear systems, exhibits an 

interesting nonlinear phenomenon and has been intensively studied in the past four 

decades. Initially, it was studied by researchers with strong mathematical background 

rather than circuit-designers or electronic engineers/ scientists. This is mainly due to the 

fact that circuit design and implementation cannot match up with the mathematical 

equations needed due to technical and practical problems. With the advance in circuit 

technology and digital signal processing in the past few decades, the use of chaos 

phenomena in daily real-life engineering products become possible. Various 

applications and products were reported, including but not limited to the following; 

utilizing the advantage of chaotic dynamic behaviour in washing machine technologies, 

reaction rate control in chemical technologies, treating cardiac arrhythmia and providing 

a secure communication channel by using a chaotic carrier. Therefore, more and more 

applications have utilized chaos theory. We are particularly interested in the area of 

secure communications. Chaotic signals in the time domain are neither periodic nor 

quasi-periodic and are unpredictable on the long term. This unpredictable phenomenon 

man- ifests itself as a wideband noise-like power spectrum in the frequency domain. 

The chaotic dynamic system can be classified into continuous-time and discretetime. A 

set of differential equations can be used to derive a continuous-time chaotic system as 

shown below: 

g(x,t) = ˙x, x(t0) = x0           (1.1) 
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where g is the set of differential equations to define the dynamical system, x is a vector 

represents the current state of the system at time t. In our thesis, we will focus on 

discrete time chaotic systems, the chaotic signal sampled at k th iteration can be given 

by:  

xk = g(xk−1) = g (k) (x0)     (1.2) 

where x is the state vector, and g(·) is the iterative function also known as "chaotic 

map".In addition to it random and non-periodic behaviours, another unique property of 

chaotic systems is their bifurcation behaviours, where the chaotic system is sensitive for 

environment changes and highly dependent on its initial conditions. Small difference in 

the initial condition produces a very different chaotic signal after a short time period. 

Therefore, one can produce a large number of chaotic signals even with a very simple 

dynamic deterministic equation. 

1.3 Why do we need a chaotic carrier in Communication Systems ? 

When a sinusoidal carrier is used, the transmitted power is concentrated in a narrow 

band, thereby resulting in high power spectral density. This has a number of serious 

drawbacks:- 

 Multipath propagation is always present in many important radio applications 

such as mobile telephony and wireless LAN. It results in very high attenuation 

over narrow frequency bands. This means that the SNR may become very low or 

even a dropout may occur in a narrowband communications system. 

 Due to the high transmitted power spectral density, narrowband communications 

cause high levels of interference with other users. Therefore, they are not 

suitable for unlicensed radio applications. 

 Narrowband signals are sensitive to narrowband interference. 

 Because of the high transmitted power spectral density, the probability of 

interception of narrowband communications is high. 

 The reception of messages by an unauthorized receiver is very simple because 

limited a priori knowledge is required for demodulation. 
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CHAPTER 2 

CONVENTIONS OF PHYSICS 

2.1 Description 

Spread-spectrum signals are well known to be resistant to interferers (natural and 

manmade) and multipath effects, conducive to secure communications by lowering the 

average spectral density, and effective for use in multiple access systems where users 

simultaneously re-use the shared communications bandwidth. The extension of spread-

spectrum signaling techniques to chaotic communications gained active interest in the 

early 1990ssince frequency bandlimited chaotic spreading sequences are known to 

closely mimic Shannon’s ideal noise-like waveform; the chaotic waveform is a near-

optimal approximation of a transmission with maximum capacity for carrying 

information in a Gaussian white noise channel. Compared to other spread 

communication systems, chaotic waveforms may be viewed as having the potential for 

higher throughputs (as a result of higher SNR) or a lower power spectral density 

(increasing spectral re-use) for the same data throughput. Further, the impulsive 

autocorrelation also gives chaotic waveforms superior multipath and co-interference 

characteristics as compared to traditional spread-spectrum signals like CDMA. 

2.2 Principles of  Chaos Theory 

Chaos theory is the field of study of the behavior of dynamical systems that are highly 

sensitive to initial conditions. Small differences in initial conditions (such as those due 

to rounding errors in numerical computation) yield widely diverging outcomes for such 

dynamical systems, rendering long-term prediction impossible in general. This happens 

even though these systems are deterministic, meaning that their future behavior is fully 

determined by their initial conditions, with no random elements involved. In other 

words, the deterministic nature of these systems does not make them 

predictable.Thisbehavior is known as deterministic chaos, or simply chaos. 

Lorenz, a meteorologist, was running computerized equations to theoretically model 

and predict weather conditions. Having run a particular sequence, he decided to 

replicate it. Lorenz reentered the number from his printout, taken half-way through the 

sequence, and left it to run. What he found upon his return was, contrary to his 
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expectations, these results were radically different from his first outcomes. Lorenz had, 

in fact, entered not precisely the same number, .506127, but the rounded figure of .506. 

According to all scientific expectations at that time, the resulting sequence should have 

differed only very slightly from the original trial, because measurement to three decimal 

places was considered to be fairly precise. Because the two figures were considered to 

be almost the same, the results should have likewise been similar.  

 

2.2.1 The Butterfly Effect 

The phrase refers to the idea that a butterfly's wings might create tiny changes in the 

atmosphere that may ultimately alter the path of a tornado or delay, accelerate or even 

prevent the occurrence of a tornado in another location. The butterfly does not power or 

directly create the tornado, but the term is intended to imply that the flap of the 

butterfly's wings can cause the tornado: in the sense that the flap of the wings is a part 

of the initial conditions; one set of conditions leads to a tornado while the other set of 

conditions doesn't. The flapping wing represents a small change in the initial condition 

of the system, which cascades to large-scale alterations of events (compare: domino 

effect). Had the butterfly not flapped its wings, the trajectory of the system might have 

been vastly different—but it's also equally possible that the set of conditions without the 

butterfly flapping its wings is the set that leads to a tornado. Thus the Butterfly Effect is 

a phrase that encapsulates the more technical notion of sensitive dependence on initial 

conditions in chaos theory. The idea is that small variations in the initial conditions of a 

dynamical system produce large variations in the long term behavior of the system. 

Sensitive dependence is also found in non-dynamical systems: for example, a ball 

placed at the crest of a hill might roll into any of several valleys depending on slight 

differences in initial position. 

2.2.2 Unpredictability 

Unpredictability of a system does not mean the absence of order as the name of chaos 

theory implies; it means: a confusing interaction between order and randomness. The 

natural shape of chaos takes the form of strange attractors: “strange” meaning the 

complex geometry of unpredictability; “attractor” meaning the system’s long-term 
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mode of behavior, the point to which a system returns after a disturbance, like 

homeostasis or equilibrium. The order found  

2.2.3 Order\disorder 

Chaos is not simply disorder. Chaos explores the transitions between order and disorder, 

which often occur in surprising ways. 

2.2.4 Mixing 

Turbulence ensures that two adjacent points in a complex system will eventually end up 

in very different positions after some time has elapsed. Examples: Two neighboring 

water molecules may end up in different parts of the ocean or even in different oceans. 

A group of helium balloons that launch together will eventually land in drastically 

different places. Mixing is thorough because turbulence occurs at all scales. It is also 

nonlinear: fluids cannot be unmixed. 

2.3 Feedback 

Systems often become chaotic when there is feedback present.  

 

2.4 fractals 

A fractal is a never-ending pattern. Fractals are infinitely complex patterns that are self-

similar across different scales. They are created by repeating a simple process over and 

over in an ongoing feedback loop. Driven by recursion, fractals are images of dynamic 

systems – the pictures of Chaos. Geometrically, they exist in between our familiar 

dimensions. Fractal patterns are extremely familiar, since nature is full of fractals. 

 

2.5 Non-Linear Systems 

A non-linear system  is a system in which the output is not directly proportional to the 

input. Nonlinear systems may appear chaotic, unpredictable or counterintuitive, 

contrasting with the much simpler linear systems. 

 

 

https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Proportionality_(mathematics)#Direct_proportionality
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2.5.1 Dynamic Systems 

The dynamics is a rule that transforms one point in the phase space (that is, a world 

state), representing the state of the system "now", into another point (= world state), 

representing the state of the system one time unit "later".. In mathematical language, the 

dynamics is a function mapping world states into world states.  The state of the system 

at any point depends on its prior states and is the starting point for future states. 

Behavior emerges in the moment, but the effects of each behavioral decision 

accumulate over longer time scales, as each change sets the stage for future changes. 

Development occurs within a system, which is the result of (a) components, (b) patterns 

of relationships among components, (c) processes that arise from the interaction of 

components, and (d) outcome .  Any change in a system impacts other components of 

the system. In this way, it is possible to say what state the system will be in at a 

particular time in the future. 

 

2.5.2 Linear Dynamic systems 

Linear dynamical systems are dynamical systems whose evaluation functions are linear. 

While dynamical systems in general do not have closed-form solutions, linear 

dynamical systems can be solved exactly, and they have a rich set of mathematical 

properties. Linear systems can also be used to understand the qualitative behavior of 

general dynamical systems, by calculating the equilibrium points of the system and 

approximating it as a linear system around each such point. 

 

2.6 Chaos Vs Complexity 

We can now consider further the similarities and differences between chaotic systems 

and complex systems. Each shares common features, but the two concepts are very 

different. Chaosis the generation of complicated, aperiodic, seemingly random 

behaviour from the iteration of a simple rule. This complicatedness is not complex in 

the sense of complex systems science, but rather it is chaotic in a very precise 

mathematical sense. Complexity is the generation of rich, collective dynamical 

behaviour from simple interactionsbetween large numbers of subunits. Chaotic systems 
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are not necessarily complex, and complex systems are not necessarily .The interactions 

between the subunits of a complex system determine(or generate) properties in the unit 

system that cannot be reduced to the subunits (and that cannot be readily deduced from 

the subunits and their interactions). Such properties are known as emergent properties. 

In this way it is possible to have an upward (or generative) hierarchy of such levels, in 

which one level of organisation determines the level above it, and that level then 

determines the features of the level above it. Emergent properties may also be universal 

or multiply realisable in the sense that there are many diverse ways in which the same 

emergent property can be generated. For example, temperature is multiply realisable: 

many configurations of the same substance can generate the same temperature, and 

many different types of substance can generate the same temperature. The properties of 

a complex system are multiply realisable since they satisfy universal laws—that is, they 

have universal properties that are independent of the microscopic details of the system. 

Emergent properties are neither identical with nor reducible to the lower‐level 

properties of the subunits because there are many ways for emergent properties to be 

produced.A necessary condition, owing to nonlinearity, of both chaos and complexity is 

sensitivity to initial conditions. This means that two states that are very close together 

initially and that operate under the same simple rules will nevertheless follow very 

different trajectories over time. This sensitivity makes it difficult to predict the 

evolution of a system, as this requires the initial state of the system to be described with 

perfect accuracy. There will always be some error in how this is performed and it is this 

error that gets exponentially worse over time. It is possible to see how this might pose 

problems for replication of initial conditions in various types of trial and intervention. 

There are several less well‐understood, but nonetheless important properties that are 

characteristic features of complex systems. Complex systems often exhibit 

self‐organisation, which happens when systems spontaneously order themselves 

(generally in an optimal or more stable way) without “external” tuning of a control 

parameter (see below). This feature is not found in chaotic systems and is often called 

anti‐chaos.Such systems also tend to be out of equilibrium, which means that the system 

never settles in to a steady state of behaviour. This is related to the concept of openness: 

a system is open if it is not or cannot be screened off from its environment. In 

closedsystems, outside influences (exogenous variables) can be ignored. For open 
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systems, this is not the case. Most real‐world systems are open, thus this presents 

problems both for modelling and experimenting on such systems, because the effect of 

exogenous influences must be taken into account. Such influences can be magnified 

over time by sensitivity to initial conditions. 

Another important feature of a complex system is the idea of feedback, in which the 

output of some process within the system is “recycled” and becomes a new input for the 

system. Feedback can be positive or negative: negative feedback works by reversing the 

direction of change of some variable; positive feedback increases the rate of change of 

the variable in a certain direction. In complex systems, feedback occurs between levels 

of organisation, micro and macro, so that the micro‐level interactions between the 

subunits generate some pattern in the macro‐level that then “back‐reacts” onto the 

subunits, causing them to generate a new pattern, which back‐reacts again and so on. 

This kind of “global to local” positive feedback is called coevolution, a term originating 

in evolutionary biology to describe the way organisms create their environment and are 

in turn moulded by that environment. 

If a system is stable under small changes in its variables, so that it does not change 

radically when interventions occur then it is said to be robust. Generally, complex 

systems increase in robustness over time because of their ability to organise themselves 

relative to their environment. However, it is possible for single events to alter a complex 

system in a way that persists for a long time (this is called path‐dependence). For a 

complex system, “history matters. 

The key differences between chaotic systems and complex ones lie, therefore, in the 

number of interacting parts and the effect that this has on the properties and behaviour 

of the system as a whole. . Complex systems are coherent units in a way that chaotic 

systems are not, involving instead interactions between units. This simple difference 

concerning units and subunits can be brought out using concepts from the theory of 

critical phenomena, which is central to complexity science. 
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CHAPTER 3 

BACKGROUND OF CHAOTIC COMMUNICATION 

3.1 Description 

A solution that reflects the unpredictable nature of our world is the "Chaos Theory". It 

provides the required kind of system behavior (non-linear, dynamic, unpredictable . 

Overview of Chaos Communications and etc), thus it has been widely studied by 

mathematicians and scientists alike. A chaotic system is a deterministic system that 

exhibits non-linear systems behavior with certain distinguished features . There are a lot 

of definitions for the chaotic system, which is in simple term "A system that becomes 

aperiodic (non-linear) if its parameter, internal variable, external signals, control 

variable, or even initial value is chosen in a specific way", we call this unpredictable 

behavior of a deterministic system as chaos theory or chaos system. So we use some 

chaotic map to generate chaotic signals. 

3.2 Chaotic Maps 

Generations of chaotic maps came from many different directions. It can be a complex 

or simple control system, a mathematical equation such as a differential equation, or a 

simple circuit modelling like Chua circuit. Such a mathematical model of chaos theory 

often involves repeated iteration of simple mathematical formulas.  

Some chaotic mapping are described as below: 

3.2.1 Logistic Map 

The logistic map is a polynomial mapping (equivalently, recurrence relation) of degree 

2, often cited as an archetypal example of how complex, chaotic behaviour can arise 

from very simple non-linear dynamical equations. Mathematically, the logistic map is 

written as: 

 

 

 

 

https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Map_(mathematics)
https://en.wikipedia.org/wiki/Recurrence_relation
https://en.wikipedia.org/wiki/Quadratic_function
https://en.wikipedia.org/wiki/Quadratic_function
https://en.wikipedia.org/wiki/Chaos_theory
https://en.wikipedia.org/wiki/Non-linear
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The plot of  Logistic mapping as shown below:- 

 

3.2.2 Bernoulli’s map / Folded - Baker’s map   

In dynamical systems theory, the bernoulli's map is a chaotic map from the unit square 

into itself. It is named after a kneading operation thatbakers apply to dough: the dough 

is cut in half, and the two halves are stacked on one another, and compressed. 

The baker's map can be understood as the bilateral shift operator of a bi-infinite two-

state lattice model. The baker's map is topologically conjugate to the horseshoe map. 

In physics, a chain of coupled baker's maps can be used to model 

deterministic diffusion. 

As with many deterministic dynamical systems, the baker's map is studied by its action 

on the space of functions defined on the unit square. The baker's map defines an 

operator on the space of functions, known as the transfer operator of the map. The 

baker's map is an exactly solvable model of deterministic chaos, in that 

the eigenfunctions and eigenvalues of the transfer operator can be explicitly determined. 

The folded baker's map acts on the unit square as 
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The Bernoulli map can be understood as the map that progressively lops digits off the 

dyadic expansion of x. Unlike the tent map, the baker's map is invertible. 

The plot of  Logistic mapping as shown below:- 

 

 

3.2.3 Tent Map 

In mathematics, the tent map with parameter μ is the real-valued function fμ defined by 

 

the name being due to the tent-like shape of the graph of fμ. For the values of the 

parameter μ within 0 and 2, fμ maps the unit interval [0, 1] into itself, thus defining 

a discrete-time dynamical system on it (equivalently, a recurrence relation). In 

particular, iterating a point x0 in [0, 1] gives rise to a sequence  : 

 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
 Mapping

 X(n)

 X
(n

+
1
)



 
 

27 
 

where μ is a positive real constant. Choosing for instance the parameter μ=2, the effect 

of the function fμ may be viewed as the result of the operation of folding the unit 

interval in two, then stretching the resulting interval [0,1/2] to get again the interval 

[0,1]. Iterating the procedure, any point x0 of the interval assumes new subsequent 

positions as described above, generating a sequence xn in [0,1]. The plot of  tent map is 

shown as 

 

 

3.2.4 Quadratic Map 

A quadratic map is a quadratic recurrence equation of the form 

 

While some quadratic maps are solvable in closed form (for example, the three solvable 

cases of the logistic map), most are not. A simple example of a quadratic map with a 

closed-form solution is 
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When it is used as an evolution function of the discrete nonlinear dynamical system and 

it is known as the quadratic mapping. The quadratic mapping plot is shown as 

 

 

 

3.3 Chaos Shift Keying (CSK) 

In binary chaos shift keying modulation, chaotic signals carrying different bit energies 

are used to transmit the binary information . An information signal is encoded by 

transmitting one chaotic signal x1(t) or x0(t) at a time. For example, if the information 

signal binary bit "1" occurrs at time t, the chaos signal x1(t) is to be sent, and for 

information bit "0", the chaos signal x0(t) is to be sent. The two chaotic signals can 

come from two different chaos systems or the same system with different parameters. 

The transmitted signal is given by  
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We concentrate on antipodal CSK modulation technique. Both of the chaotic signals are 

inverted copies of each other (x0(t) = −x1(t)). The transmitted signal can then be 

expressed as 

 

The demodulation can be coherent and non-coherent. The coherent demodulation can be 

seen as a correlator, where the receiver does contain copies of the chaos generator 

system information (x1(t) and x0(t) ). Depending on the transmitted signal, one of these 

copies will synchronized with the received. Overview of Chaos Communications signal 

and the the other will be de-synchronized at the receiver. Hence, the match/mismatch 

will tell about the transmitted information bits. 

3.4 Differential Chaos Shift Keying (DCSK) 

The differential chaos shift keying was introduced in [55] and shows to outperform 

CSK schemes when the channel condition is so poor that it is impossible to achieve 

chaotic synchronization. This modulation scheme is similar to that of the differential 

phase shift keying (DPSK) except that the transmitted signal is a chaotic - generated 

signal. In DCSK modulation, each transmitted symbol duration is divided into two 

identical time slots. The first time slot serves as a reference while the second slot carries 

the information. If bit "1" is to be sent, the chaotic reference signal (in first slot) is 

repeated in the second slot; if bit "0" is to be sent, an inverted copy of the reference 

signal (in first slot) will be sent. Hence, the transmitted signal for information bit "1" is 

given by 

 

if the information bits is "0", 
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At the receiver the two received signals are correlated and the decision is made by a 

zero threshold comparator. The biggest drawbacks of DCSK are the Eb is double and 

the symbol rate is halved. However, it also offers several advantages over CSK in high 

noise channel environments. DCSK does not require synchronization and is not 

sensitive to channel distortion as some other coherent methods are; this is so since both 

the reference signal and the information signal pass through the same channel. 

 

3.5 CSK Theoretical Background 

The performance of the CSK system in an AWGN environment can be derived 

following the method used . For a correlator type of receiver, the correlator output for 

the lth bit yl is given by  

 

whererk = sk + ηk is the received signal in an AWGN environment during the k th chip 

period, ηk being additive Gaussian white noise. Now we have: 

 

The first term is the required signal and second term is noise. According to the Central 

Limit Theorem, if we consider a sum of a large number of random variables in the 

system, we can assume that the system to follow a normal distribution. Hence the BER 

for the CSK can be formulated as follows: 
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whereerfc(.) is the complementary error function defined as 

 

3.6 Chaos CDMA 

Conventional CDMA spread spectrum has an explosive impact on our daily personal 

communications. The CDMA system can be seen in our daily communication devices, 

especially in third generation (3G) mobile systems, where it aims to provide us with the 

ability to use voice and data services between the mobile terminals. In order to provide 

these services, we must provide an efficient radio link that provides high-frequency, 

low-power and multiple access communication, where every user appears as white 

noise signal to all other users using the same link. To do so, we can either spread each 

symbol using a pseudorandom sequence to increase the bandwidth of the transmitted 

signal, or represent each symbol by a piece of"noiselike" waveform. Hence, the chaos 

noise generator can be used. 

The properties of chaotic signals suitable for CDMA have been widely studied and 

shown to provide advantage over the conventional methods of generating the spreading 

code sequence. The natural property of chaotic signals that produces a bifurcation 

behavior makes it possible to generate "noise-like" signals, theoretically and practically. 

In the conventional noise generator, the pseudo random generator or specially designed 

CDMA code sequence is produced by visiting each state of the system once in a 

deterministic manner. With only a finite number of states to visit, this sequence is 
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necessarily to be periodic. On the other hand, the chaotic system in theory has an 

infinite number of analog states and therefore produces an output sequence which never 

repeat itself. Hence, exploiting the random, noise-like and aperiodic properties of chaos 

theory makes it possible to use chaos in generating a new class of CDMA code 

sequences. 

The fundamental difference between a traditional direct sequence spread-spectrum 

communication system and a coherent chaotic sequence spread spectrum 

communication system is the absence of apparent periodicity in the chaotic waveform. 

The chaotic sequence is effectively a quadrature pair of independent Gaussian random 

variables as opposed to a (possibly pulseshaped) string of constant-amplitude square-

wave pulses. In general, any correlation, definable characteristic, or waveform feature 

can be viewed as lowering the entropy of the signal, moving away from Shannon’s ideal 

noise-like waveform. As an example, consider the time-domain spreading sequences 

shown in Figure , where a four times oversampled chaotic sequence (dark) is plotted 

next to a comparable four times oversampled pulse-shaped DS spreading sequence 

(light). 

 

Figure: comparision of traditional & DS spread spectrum 

 

The combination of a quadrature pair of the chaotic spreading sequences will result in a 

uniformly distributed phase for the chaotic spreading sequence as opposed to a non-

random cyclo-stationary distribution for the DS spreading sequence. 

 



 
 

33 
 

 

 

Transitioning from a time-domain view to the frequency domain or a statistical analysis 

yields other verifications that the chaotic sequence modulated waveforms approximate 

the maximal entropy noise-like signals that Shannon described as optimal for 

transmission through AWGN channels. Chaotic waveforms have ideal flat spectral 

power densities and Gaussian distributed amplitudes on each of their in-phase and 

quadrature components, compared to peak-ish uniform amplitude distributions at four 

distinct phases for the traditional DS spreading waveform. These characteristics will be 

discussed and quantified thoroughly in this dissertation by the use of time domain, 

frequency domain, and statistical measures. 
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CHAPTER-4 

    ELECTRONIC CIRCUITS & CHAOS 

 

4.1 Introduction 

Chua's circuit (also known as a Chua circuit) is a simple electronic circuit that exhibits 

classic chaos theory behavior. This means roughly that it is a "nonperiodic oscillator"; it 

produces an oscillating waveform that, unlike an ordinaryelectronic oscillator, never 

"repeats". It was invented in 1983 by Leon O. Chua, who was a visitor at Waseda 

University inJapan at that time. The ease of construction of the circuit has made it a 

ubiquitous real-world example of a chaotic system, leading some to declare it "a 

paradigm for chaos. 

4.2 Chua Equations 

By rescaling the circuit variables vC1, vC2, and iL, we obtain the following 

dimensionless Chua Equations involving 3 dimensionless state variables x, y, z, and 

only 2 dimensionless parameters α and β : 

 

Chua  

Equations 

x˙y˙z˙===α(y−ϕ(x))x−y+z−βy 
 

 

where α and β are real numbers, and ϕ(x) is a scalar function of the single variable x. 

The Chua Equations are simpler than the Lorenz Equations in the sense that it contains 

only one scalar nonlinearity, whereas the Lorenz Equations contains 3 nonlinear terms, 

each consisting of a product of two variables . In the original version studied in-depth 

in, ϕ(x) is defined as a piecewise-linear function 

 

ϕ(x)=△x+g(x)=m1x+12(m0−m1)[|x+1|−|x−1|] 

where m0 and m1 denote the slope of the inner and outer segments of the piecewise-

linear function respectively. Although simpler smooth scalar functions, such as 

polynomials, could be chosen for ϕ(x) without affecting the qualitative behaviors of the 

Chua Equations, a continuous (but not differentiable) piecewise-linear function was 

chosen strategically from the outset in order to devise a rigorous proof showing the 

experimentally and numerically derived double scroll attractor is indeed chaotic. Unlike 

the Lorenz attractor , it was possible to prove the double scroll attractor from the Chua 

Circuit is chaotic by virtue of the fact that certain Poincare return maps associated with 

the attractor can be derived explicitly in analytical form via compositions of eigen 

vectors within each linear region of the 3-dimensional state space. 

. 

https://en.wikipedia.org/wiki/Electronic_circuit
https://en.wikipedia.org/wiki/Chaos_theory
https://en.wikipedia.org/wiki/Electronic_oscillator
https://en.wikipedia.org/wiki/Leon_O._Chua
https://en.wikipedia.org/wiki/Waseda_University
https://en.wikipedia.org/wiki/Waseda_University
https://en.wikipedia.org/wiki/Japan
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4.3  Circuit Diagram and Realization 

 
The circuit diagram contains 5 circuit elements. The first four elements on the left are 

standard off-the-shelf linear passive electrical components; namely, inductance L > 

0, resistance R > 0, and two capacitances C1 > 0 and C2 > 0. They are called passive 

elements because they do not need a power supply (e.g., battery). Interconnection of 

passive elements always leads to trivial dynamics, with all element voltages and 

currents tending to zero. 

 

Fig: A Simple Chua’s circuit 

4.3.1 Local Activity is Necessary for Chaos 
The simplest circuit that could give rise to oscillatory or chaotic waveforms must 

include at least one locally active , nonlinear element, powered by a battery, such as 

the Chua diode , characterized by a current vs. voltage nonlinear function iR=g(vR), 

whose slope must be negative somewhere on the curve. Such an element is called a 

locally active resistor. Although the function g(∙) may assume many shapes,the original 

Chua circuit specifies the 3-segment piecewise-linear odd-symmetric characteristic, 

where m0 denotes the slope of the middle segment and m1 denotes the slope of the two 

outer segments ; namely, 

 

g(vR)=⎧⎩⎨m1vR+m1−m0m0vRm1vR+m0−m1,ifvR≤−1,if−1≤vR≤1,if1≤Vr 

where the coordinate of the two symmetric breakpoints are normalized, without loss of 

generality, to vR = ±1. 

4.3.2 The Chua Diode is Locally Active 
The Chua diode is not an off-the-shelf component. However, there are many ways to 

synthesize such an element using off-the-shelf components and a power supply, such as 

batteries. The circuit for realizing the Chua diode need not concern us since the 
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dynamical behavior of the Chua Circuit depends only on the 4 parameter 

values L, R, C1, C2 and the nonlinear characteristic function g(∙). 

Any locally active device requires a power supply for the same reason a mobile phone 

cannot function without batteries .  

Figure 2: Realization of Chua diode using two Op Amps and six linear resistors. 

 

Figure 3: Realization of Chua diode using standard diode. 

 

 

Figure below shows the complete Chua Circuit, including the circuit schematic diagram 

(enclosed inside the box NR) for realizing the Chua diode, using 2 standard Operational 

Amplifiers (Op Amps) and 6 linear resistors. 
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The two vertical terminals emanating from each Op Amp (labeled V+ and V−, 

respectively) in Figure 4 must be connected to the plus and minus terminals of a 9 volt 

battery, respectively. 

 

4.4 Oscilloscope Displays of Chaos 
 

Using the Chua Circuit shown in Figure , 

the voltage waveforms vC1(t) and vC2(t) across capacitors C1 and C2, and the current 

waveform iL(t) through the inductor L in Figure 1, were observed using an oscilloscope 

and displayed in Figure.. 

The Lissajous figures associated with 3 permutated pairs of waveforms are displayed on 

the right column Figure  namely, in the vC1−iL plane in Figure  the vC1−vC2 plane in 

Figure 5(e), and the vC2−iL plane Figure 5(f). They are 2-dimensional projections of 

the chaotic attractor, called the double scroll, traced out by the 3 waveforms from the 

left column in the 3-dimensional vC1−vC2−iL space. 

It is important to point out that the Chua Circuit is not an analog computer. Rather it is 

a physical system where the voltage, current, and power associated with each of the 5 

circuit elements in Figure can be measured and observed on an oscilloscope, and where 

the power flow among the elements makes physical sense. In an analog 

computer(usually using Op Amps interconnected with other electronic components to 

mimic some prescribed set of differential equations), the measured voltages have no 

physical meanings because the corresponding currents and powers can not be identified, 

let alone measured, from the analog computer. 
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 The three waveforms displayed in (a), (b), and (c) (left column) correspond to 

to vC1(t), vC2(t) and iL(t), respectively. 

4.5 Matlab Code for chua’s circuit 

Chua diode 

function out = RealChua(t,in) 

 

x = in(1); 

y = in(2);  

z = in(3); 

 

C1  = 10*10^(-9);   %10nF 

C2  = 100*10^(-9);  %100nF 
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R = 1800;           %1.8k Ohms 

G = 1/R; 

 

R1 = 220; 

R2 = 220; 

R3 = 2200; 

R4 = 22000; 

R5 = 22000; 

R6 = 3300; 

 

Esat = 9; 

E1 = R3/(R2+R3)*Esat; 

E2 = R6/(R5+R6)*Esat; 

 

m12 = -1/R6; 

m02 = 1/R4; 

m01 = 1/R1; 

m11 = -1/R3; 

 

m1 = m12+m11; 

 

if(E1>E2) 

m0 = m11 + m02; 

else 

m0 = m12 + m01;    

end 

 

mm1 = m01 + m02; 

Emax = max([E1 E2]); 

Emin = min([E1 E2]); 

 

 

if abs(x) <Emin 

   g = x*m1;      

elseif abs(x) <Emax 

    g = x*m0; 

if x > 0 

    g = g + Emin*(m1-m0);     

else 

    g = g + Emin*(m0-m1);   

end 

 

elseif abs(x) >= Emax 

    g = x*mm1;     

if x > 0 

        g = g + Emax*(m0-mm1) + Emin*(m1-m0); 

else 

        g = g + Emax*(mm1-m0) +  Emin*(m0-m1); 

end 
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end 

R7  = 100;   

R8  = 1000;  

R9  = 1000;  

R10 = 1800; 

C   = 100*10^(-9); %100nF 

L = R7*R9*C*R10/R8; %18mH 

 

xdot = (1/C1)*(G*(y-x)-g); 

ydot = (1/C2)*(G*(x-y)+z); 

zdot  = -(1/L)*y; 

 

out = [xdotydotzdot]'; 

 

Chua Circuit- 

 

[t,y] = ode45(@RealChua,[0 0.05],[-0.5 -0.2 0]); 

subplot(3,1,1) 

plot(t,y(:,1),'r') 

xlabel('t'); 

ylabel('Vc1'); 

subplot(3,1,2) 

plot(t,y(:,2),'g') 

xlabel('t'); 

ylabel('Vc2'); 

subplot(3,1,3) 

plot(t,y(:,3),'b') 

xlabel('t'); 

ylabel('Il1'); 

grid 

 

 

 

 

4.6 Control of Chua's-circuit  
 

To control the system it is important to know where errors occur. The errors that occur 

can come from the tolerances of the resistor, conductor and operational amplifiers. And 

because this system is chaotic, the small tolerances can result in large differences. If all 

resistors and conductors have their maximum tolerance offset there will be a worst-case 

scenario. For a resistor a tolerance of one percent is acceptable. For the conductor that is 

ten percent. The maximum output voltage of the operational amplifier varies between 

twelve and fourteen volt . 
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4.7 Double-scroll attractor 

 sometimes known as Chua's attractor is a strange attractor observed from a physical 

electronic chaotic circuit (generally, Chua's circuit) with a single nonlinear resistor 

(see Chua's Diode). The double-scroll system is often described by a system of three 

nonlinear ordinary differential equations and a 3-segment piecewise-linear equation 

(see Chua's equations). This makes the system easily simulated numerically and easily 

manifested physically due to Chua's circuits' simple design. 

Using a Chua's circuit, this shape is viewed on an oscilloscope using the X, Y, and Z 

output signals of the circuit. This chaotic attractor is known as the double scroll because 

of its shape in three-dimensional space, which is similar to two saturn-like rings 

connected by swirling lines. 

 

 

https://en.wikipedia.org/wiki/Strange_attractor
https://en.wikipedia.org/wiki/Chaos_theory
https://en.wikipedia.org/wiki/Chua%27s_circuit
https://en.wikipedia.org/wiki/Nonlinear_system
https://en.wikipedia.org/wiki/Chua%27s_Diode
https://en.wikipedia.org/wiki/Chua%27s_circuit
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4.8  Implementation using PSpice 

  
 

 

4.9 Circuit Simulation & Results  

 

 
Fig: Voltage across capacitor C1 

 

 
Fig: Voltage across capacitor C2 
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Fig:Double Scroll Attractor 

 

 

 

4.10 Conclusion 

  

There are a lot of conclusions that can be drawn. It is shown that the output signals of 

v1  and v2 are different when the adjustable resistor is changed one thousand to  

two thousand ohm and turned round. There is also a difference in the quantity of  

stable points. When the resistor is changed from two thousand ohm downwards to one  

thousand ohm there are more stable points.  

Chua's circuit is build from different components. Each component has a certain  

tolerance. But because it is a chaotic circuit, a little difference in the component, can  

lead to large differences in the nl-ltc.nmhg voltages.  
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CHAPTER 5 

PROJECT DESCRIPTION 

5.1 Practical Aspects 

Given a practically infinite sequence that approximates additive white Gaussian noise, 

the goal becomes harnessing this sequence to create a robust maximum entropy chaotic 

communication system. The statistical properties discussed in the previous chapter must 

be retained throughout the chaotic circuit initialization and control, data modulation, 

subsequent filtering, data conversion, and RF upconversion. Most of the previous work 

in chaotic communication systems focused on employing the chaotic circuit to modulate 

user data; common methods include phase shift keying, pulse amplitude modulation, 

carrier frequency hopping, and/or combinations thereof. Preferably, the modulation 

scheme will not change the statistical characteristics of the signal, yet offer 

compatability with higher capacity modulation schemes like QAM variants.  

Finally, considerations must be given to application of the chaotic communication 

system, quantified as frequency re-use characteristics, signal entropy and features, 

size/weight/power (SWaP), along with any unintended consequences of design choices. 

Summarizing the ideal characteristics of a practical communication system based on a 

digital chaotic circuit: 

 A practically infinite chaotic sequence provides the fundamental code 

permitting the intended user to receive the information. To approach both 

Shannon’s information capacity ideal noise-like waveform, the transmitted 

waveform should be indistinguishable from maximal entropy AWGN.  

 A robust chaotic sequence synchronization method is absolutely required for 

a chaotic waveform since the sequence has a naturally impulsive autocorrelation. 

This synchronization scheme must also contend with the traditional non 

idealities like frequency offsets, timing offsets, clock jitter, and gain control. 

 An efficient data modulation scheme is required to encode and decode the user 

information in a coherent fashion that fully utilizes the transmission bandwidth.  
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 Successful integration of the RF transmit chain into the baseband processing 

is required to mitigate the effects of D/A conversion, frequency upconversion 

from IF to RF, and transmission through the antenna.  

 An optimized receiver architecture that adapts to signal dynamics and can ef- 

ficiently convert the spread wavefom to meaningful information. The basic 

structures for frequency, phase, and time tracking are derived as generalizations 

of direct sequence spread spectrum receiver technology. 

5.2 Chaotic Communications Transmitter 

The fundamental understanding of the data modulation process, predicted effects and 

performance in different transmission channel conditions, and a limited amount of 

implementation criteria have been established. The chaotic phase shift keying 

modulation shows the greatest practical applicability to coherent communication system 

design, with theoretical Eb/N0 performance approaching that of traditional PSK 

modulations and consists of a relatively simple modulation mechanism. 

5.3 Data Source and Symbol Formatting 

The data source and symbol formatting blocks provide a QPSK formatted symbol that 

can be directly phase modulated (complex multiplication) by the chaotic spreading 

sequence. At the conclusion of the preamble, a pair of disambiguity symbols are 

transmitted to assist the receiver in receiving a selectable frequency 

inverted/noninverted signal. The symbols are formatted using a traditional Gray code as 

shown in Figure, ensuring that most symbol errors result in the error of only one bit. 

 

Figure: Grey coded data symbol 
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5.4 Chaotic Sequence Generation 

The chaotic sequence generator, which includes the Box-Muller transformation NLP, 

provides a steady stream of quadrature standard normal random variables for phase 

modulation of the QPSK-formatted data symbols. . To set the state of the chaotic 

sequence generator, it is assumed that both the transmitter and the receiver share an 

initial condition (key) that is loaded during initialization of the sequence generator. 

5.5 Chaotic Communications Receiver 

The traditionally difficult task in implementing a coherent chaotic communication 

system has been satisfactorily synchronizing the chaotic circuits at the transmitter and 

receiver. In general, coherent chaotic receivers can recreate exact duplicates of the 

chaotic sample functions used at the transmitter to modulate data; non-coherent 

receivers lack the ability to recreate or maintain a lock on all possible chaotic state 

evolutions experienced at the transmitter. 

5.6 Chaotic Receiver Timing Control 

The impulsive autocorrelation of the chaotic waveform necessitates a highly robust 

timing control methodology that ensures the relative delay between the received chaotic 

waveform and the internally generated chaotic sequence is less than one spreading chip 

duration. Moreover, the ability to time synchronize the received and internally 

generated chaotic signals within approximately 0.1 spreading chip durations (10 ns) is 

prefered to reduce receiver implementation loss and susceptibility to time tracking loop 

errors. 

 

 

5.7 Simulation Result 

Our simulation result presents chaotic hop communication system wherein hoping is not 

in terms of frequency but in terms of  different chaotic sequences. 
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Figure: Carriers for QPSK technique 

 

 

Figure: Input sequence and Carrier signal 
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Figure: Modulated Signal and Chaotic generator 

 

Figure: PSD of different Signals 
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BER Comparison  

 

 

Figure: BER comparison 
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CHAPTER 6 

PROPOSED METHOD OF CHAOTIC COMMUNICATION 

6.1 Chaos based digital Communication Systems 

One approach employed to achieve secure communications uses a chaotic signal to 

mask the sensitive information signal. In this approach, a synchronous chaotic system is 

used in the receiver to identify the chaotic part of the signal, which then is subtracted to 

reveal the information signal. Difficulties in this approach have been highlighted in the 

literature; however, several researchers have successfully demonstrated this approach in 

simulation and with hardware . Short investigated the level of security afforded by this 

approach, concluding that chaotic masking can offer some privacy but is not yet capable 

of providing a high level of communication security. 

The general format of our approach is shown in Fig . In the transmitter, an analog 

information signal is encoded on the carrier using modulation of a parameter in the 

chaotic oscillator. In the receiver, a synchronous chaotic subsystem is augmented with a 

filter designed specifically to continuously extract the signal from the modulated 

waveform. Proper choice of drive channel and modulation parameter assures 

synchronization in the receiver, independent of the modulation.  

 

6.2 The transmitter design 

Widespread recognition that a theoretical chaotic communication system can be 

constructed from a chaotic circuit began in the early 1990s, and since then, various 

demonstrations. of a chaotic transmitter have be implemented. The fundamental 

understanding of the data modulation process, predicted effects and performance in 

different transmission channel conditions, and a limited amount of implementation 
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criteria have been established. The chaotic phase shift keying modulation shows the 

greatest practical applicability to coherent communication system design, with 

theoretical Eb N0 performance approaching that of traditional PSK modulations and 

consists of a relatively simple modulation mechanism. This section focuses on the 

design and practical implementation of a chaotic phase shift keying transmitter that will 

form the first stage of the protoype coherent chaotic communication system. Since 

creating a chaotic waveform has been previously achieved, the emphasis is placed on 

creating efficient signal processing techniques that ensure the discrete-amplitude 

discrete-time chaotic sequence retains its maximal entropy characteristics once 

modulated and emitted. An evaluation of the analytical/simulated output waveform and 

comparison to measured hardware results is provided. 

Practical implementation of the chaotic phase shift keying (CPSK) waveform requires 

signal processing techniques that compensate for timing uncertainty, fixed point 

arithmetic, and secondary effects of all operations. The end goal is to modulate user 

data in a manner that can be demodulated intelligibly at the receiver, yet be 

indistinguishable from bandlimited AWGN in the transmission channel. The burden of 

the signal acquisition and synchronization is placed on the receiver, which must contend 

not only with non idealities in its own hardware, but with the phase, frequency, and 

timing drifts that occur in the transmission channel. 

 

 

6.3 The transmitter circuit 
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The transmitter, shown in Fig, is described mathematically by a dimensionless system 

of ordinary differential equations, which are 

 

Where, 

 

the non dimensional independent variable is related to time as 

 

 

 

 

 

-

+

U1A

TL082

3

2
1

8
4

R1

10k

R2

12k

V1

FREQ = 1000
VAMPL = 5
VOFF = 0

AC = 0

0

-

+

U1B

TL082

5

6
7

8
4

R3

12k

-

+

U2A

TL082

3

2
1

8
4

L1

1.8m

1

2

C1

0.001u

C2

0.01u

R4

1.68k

R5

220

R6

220

R7

750

D1

1N4148

D2

1N4148

R8

750

-

+

U2B

TL082

5

6
7

8
4

V2

12

V3

12

0

0

V4

12

V5

12

0

0

0

0



 
 

53 
 

The dependent states are 

 

The various dimensionless parameters are defined as 

 

6.4 The transmitter circuit Simulation(PSpice) 

 

Fig: Graph of Transmitted Signal(Using Sinusoidal signal) 
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6.5 The Receiver design 

The traditionally difficult task in implementing a coherent chaotic communication 

system has been satisfactorily synchronizing the chaotic circuits at the transmitter and 

receiver so that user data may be modulated, transmitted, and decoded efficiently. To 

date, there are believed to be no published chaotic circuit synchronization methods that 

are robust enough to provide the basis for a practical chaotic communications system. In 

fact, some1 have questioned the suitability of traditional control mechanisms like 

earlylate tracking loops for chaotic waveforms, while others have proposed iterative 

channel equalization methods as a solution to maintaining a robust chaotic circuit 

synchronization in varying channel conditions. This section outlines a prototype 

coherent chaotic communications receiver, including system-level architecture 

overview and comparison of predicted and measured performance. Detailed analysis 

leading to the core chaotic signal acquisition, chaotic circuit synchronization, and 

generalizations of direct sequence spread spectrum receiver processing is included . 

A three-part paper by Kolumban, Kennedy, and Chua was published from 1997 to 2000, 

exploring the role, techniques, and performance bounds of synchronization in coherent 

chaotic communication systems. In general, coherent chaotic receivers can recreate 

exact duplicates of the chaotic sample functions used at the transmitter to modulate 

data; noncoherent receivers lack the ability to recreate or maintain a lock on all possible 

chaotic state evolutions experienced at the transmitter. Kolumban’s work builds on the 

1990 observation by Pecora and Carroll that chaotic systems can be synchronized, 

focusing on the need and limits that synchronization plays. One limit of this paper is the 

reliance on analog chaotic circuits, derived from variations of Chua’s original chaotic 

circuits. The derived results significantly match those obtained in the simulation and 

hardware measurements for the chaotic communication system described in this 

dissertation, constructed using digitally generated discrete-time discrete-amplitude 

chaotic circuits 

 

6.6 The Receiver circuit  
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The receiver, shown in Fig., is modeled nondimensionally as 

 

In the dimensionless system, the dependent states are 
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6.6 The Receiver circuit Simulation(Using PSpice) 

 

Fig: The received sinusoidal signal 

 

 

6.7 Circuit Parameters 

 

 

6.8 Conclusion 
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A scheme capable of secure chaotic digital communication is presented and 

experimentally studied. Both the information input signal and the transmitted chaotic 

signal, are discrete (digital) signals. The chaotic nature of the transmitted signal was 

verified by its power spectrum, while the transmitter’s chaotic mode of operation was 

checked by its BER  calculation. In view of applications for this technology, we are 

concerned with the impact that channel effects will impart on this communication 

system. Specifically, amplitude attenuation, bandwidth limitation, phase distortion, and 

channel noise are effects that may be encountered in fielded systems. The popularity of 

chaos (and to a somewhat less extent its related fields of fractals and wavelets), is 

simultaneously a benefit and a detriment to its becoming an established subject worthy 

of serious consideration. On the one hand, this popularity finally brings an appreciation 

and interest from the general public for a highly mathematical subject that would 

normally be ignored by them. 
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