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ABSTRACT 

 

Lytic polysaccharide monooxygenases (LPMO), a family of copper-dependent oxidative 

enzymes, boost the degradation of crystalline polysaccharides, such as cellulose and chitin, by 

breaking an internal glycosidic bond thereby exposing the polymer for further degradation. 

Recently, the sequence diversity of LPMOs has increased significantly, with newer sequences 

identified in organisms across the tree of life. Accurate functional assignment of yet unknown 

sequences into LPMOs family is an important step towards production of enzymatic mixture 

adept at efficiently degrading recalcitrant polysaccharides. While, multiple experimental 

methods are used for accurate identification of LPMOs, a computational method that can 

accurately classify sequences into LPMOs is needed to match the sequences generated. Thus, to 

screen potential LPMOs, we developed a machine learning based tool that employs two different 

approaches to functionally classify a given protein sequence(s) as belonging to LPMO family or 

not. As proof of concept, we worked on classifying sequences belonging to either AA9 or AA10 

family of LPMO. The first approach uses traditional neural network based prediction after 

calculating sequence features. The second approach uses bi-directional long short-term memory 

(LSTM) units, a type of recurrent neural network, which extracts important features directly 

from sequence and utilizes an internal state, i.e., memory, to process input data. The optimized 

model trained from both the approaches was cross validated on a validation set to test the 

precision and recall. Specifically, feature-based traditional neural network approach was able to 

correctly discriminate AA9 LPMO sequences from non-AA9 LPMOs with a recall of 96.4%, 

precision of 100% and AA10 LPMO sequences from non-AA10 LPMOs with a recall of 86.9%, 

precision of 100%. On the other hand, LSTM had a recall of 93.4%, precision of 90.7% on AA9 

dataset and recall of 91.7%, precision of 89.6% on AA10 dataset. Further, we validated our 

method with an independent benchmark set of LPMO sequences, where we observed significant 

precision and recall compared to dbCAN2, an existing HMM-profile based CAZyme predicting 

tool. The working code can be freely found at: https://github.com/PulkiD/PreDSLpmo. 

Keywords: Lytic polysaccharide monooxygenases, deep neural network, long short-term 

memory, proteome.  

https://github.com/PulkiD/PreDSLpmo
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INTRODUCTION 

 

General Background 

Biofuels are mooted as a sustainable source of energy that can meet the increasing energy 

demands of developing countries in Asia [1]. One of the steps taken is transitioning from fossil 

fuels (fast depleting and causing pollution) to an eco-friendly environment through production 

and usage of biofuels via industrial biotechnology methods. These methods explore various 

approaches to degrade renewable plant biomass which consist of mixed sugars and 

polysaccharides. However, one of the major bottlenecks is the conversion of crystalline form of 

complex polysaccharides like cellulose and starch to its amorphous form. This limitation can be 

imparted to recalcitrant nature of these polymers towards various physical, chemical, physio-

chemical, thermal, and enzymatic processes thereby making them less cost effective for 

industrial purpose [2]. Hence, enzymes that can enhance the activity of biomass degradation 

offer great promise in improvement of industrial bioethanol production. 

 

Lytic polysaccharide monooxygenases (LPMOs), a class of enzymes identified in last decade or 

so, has ability to directly disrupt glycosidic bond present on crystalline surfaces i.e., the region 

inaccessible to conventional hydrolytic enzymes have attracted scientific community [3]. Hence, 

makes it more attractive to the scientific community. Originally, LPMOs were originally 

classified as carbohydrate binding module family 33 (CBM33) in bacteria and glycoside 

hydrolase family 61 (GH61) in fungi [4]. However, in recent years, carbohydrate-active enzymes 

(CAZy) have reclassified them into auxiliary activity (AA) class of enzymes [5]. Thus, based on 

the substrate it acts on, LPMOs are classified into six families of AA (AA9, AA10, AA11, 

AA13, AA14, and AA15). Further, they are classified into different types (Type1, Type2, and 

Type3) on the basis of carbon they attack in glycosidic bond.  Detailed explanations on the 

LPMOs are reported in [3, 4, 6, and 7].  

 

Currently, LPMOs have been identified in bacteria, fungi, viruses, and eukaryotes. Besides, new 

LPMO sequences are being identified from already known organisms’ proteomes and also from 

new proteomes deposited at NCBI. For example, LPMO reported from Vibrio cholera, Bacillus 
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anthracis, Bacillus cereus, Serratia marcescens, Listeria monocytogenes, Pseudomonas 

aeruginosa, and Enterococcus faecalis [8, 9, 10, 11, and 12]. However, lack of an automated 

method from CAZy server [5] to identify potential LPMOs in new proteomes and metagenomes 

presents a major challenge. 

To address the above challenge, Xu and his teammates integrated three tools in a meta-server 

called dbCAN2 [13] (http://cys.bios.niu.edu/dbCAN2) for automated annotation of CAZymes. 

The three tools works by running HMMER [14], Hotpep [15], and DIAMOND [16] against 

dbCAN hidden Markov model database, CAZyme pre-annotated sequence database, and 

CAZyme short peptide database, respectively. 

 

  

http://cys.bios.niu.edu/dbCAN2
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Hypothesis 

Since LPMOs’ discovery almost a decade ago, the usual method of characterization is via 

experimental methods, such as High-Performance Anion-Exchange Chromatography with Pulsed 

Amperometric Detection (HPAE-PAD) and/or colorimetric assays. The limitations of such 

experimental methods are high-cost and time. Hence, automated functional annotation using a 

computational approach that is able to identify LPMO sequences correctly can aid in 

identification of sequences from proteomic or metagenomic sequence data for further 

characterization. Hence, using various supervised machine learning algorithm and deep learning 

we have tried to develop a tool for functional annotation of sub-family of LPMOs. 
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MATERIALS AND METHODS 

 

Method overview 

The first approach developed in our study employs a traditional neural network for classification 

of sequences after calculating sequence features. The features are conjoint triad, di-peptide 

composition, tri-peptide composition, Moran autocorrelation, Geary autocorrelation, and 

Normalized Moreau-Broto autocorrelation. The second approach used in our study is bi-

directional long short-term memory (LSTM), a type of deep learning method that extracts 

important features from sequences itself by utilizing an internal state (i.e., memory) to process 

input data. The optimized model trained from both the approaches was cross validated on a 

validation set as well as on an independent benchmark set to test the precision and recall. Figure 

1 illustrates the workflow used in the study. 

 

Dataset collection and cleaning 

AA9 and AA10 sequences were downloaded from CAZy [5] (accessed on 3
rd

 August, 2018). In 

order to construct a negative set we took sequences from other family of AAs listed in Table 1. 

Sequences downloaded to construct positive set and negative set were removed if they had 

unrecognized residues labelled as “X” in their sequence and or were partial in nature. 

 

In AA10 model, we used CD-HIT [17], an online tool to cluster and compare large sequences, to 

remove redundant sequences for building positive dataset.   

 

Validation set for AA9 and AA10 models was constructed by downloading new sequences 

reported to be AA9 and AA10 by CAZy [5] as on 20
th

 November, 2018. The number of new 

AA9 and AA10 sequences were 44 and 505, respectively 

 

Positive and negative set construction 

To construct the training and test set for further steps we followed the 60:40 ratio. We used 60 % 

of the total number of sequences from each positive and negative set to construct a training set. 

And, 40 % of the total number of sequences from each positive and negative set was used to  



6 | P a g e  
 

construct a test set. Further, we tried to keep the ratio of positive and negative set to 1:1 ratio in 

both training and test set.  

 

Sequence based feature generation 

Both training and test set sequences were independently given as an input to in-house developed 

R script that made use of ProtR package [18] to generate sequence based physiochemical and 

structural protein features. They were Di-peptide, Tri-peptide, Conjoint Triad, Moran 

autocorrelation (AC), Geary (AC), and Normalized Moreau-Broto (AC).  

 Di-peptide composition feature-set: This feature generates 400 dimensional descriptors 

and can be described as follows: 

𝑓 𝑟 ,𝑠 =
𝑁𝑟𝑠

𝑁 − 1
    𝑟, 𝑠 = 1, 2, 3, … , 20 

 

where; Nrs is the number of di-peptide, which signifies type r and type s amino acid. 

 Tri-peptide composition feature-set: Tri-peptide feature of ProtR generates 8000 

dimensional descriptors and can be defined as follows: 

 

𝑓 𝑟 ,𝑠,𝑡 =  
𝑁𝑟𝑠𝑡

 𝑁 − 2 
   𝑟, 𝑠, 𝑡 = 1, 2, … , 20 

where, Nrst is the number of tri-peptide, which signifies type r, type s, and type t amino 

acid. 

 Conjoint-Triad feature-set: Protein interactions like electrostatic and hydrophobic 

interactions are governed by the type of amino acid present in the protein. Hence, 

conjoint triad makes use of one amino acid and its neighbouring amino acid to form a 

triad to calculate the descriptors based on amino acid biochemical classification. First, 

vector V and F are used to represent protein sequence, where V is the sequence feature 

vector having vi (i = 1 to 343) thereby representing one of the triads. F is the counting 

vector where each fi (i = 1 to 343) represents frequency vi. Further, d is calculated as 

follows: 

𝑑 =  
𝑓𝑖 − min(𝑓1, 𝑓2, … , 𝑓343 )

max(𝑓1, 𝑓2, … , 𝑓343 )
 



7 | P a g e  
 

 Moran AC feature: The Moran AC features are calculated on the basis of amino acid 

properties distributed in the given protein sequence and can be mathematically 

represented as: 

 

𝐼 𝑑 =  

1
 𝑁 − 𝑑 

  𝑃𝑖 −  𝑃 ′  𝑃 𝑖 + 𝑑  –  𝑃 ′ 
 𝑁−𝑑 
𝑖=1

1
𝑁    𝑃𝑖 −  𝑃 ′ 2𝑁

𝐼=1

   𝑑 = 1, 2, … , 30 

 

where, d, Pi, and P(i+d) represents lag in the autocorrelation, property of amino acid at i
th

 

position, and property of amino acid at (i + d)
th

 position, respectively. While 𝑃 ′ can be 

calculated as: 

𝑃 ′ =  
 𝑃𝑖

𝑁
𝑖=1

𝑁
 

 

 Geary AC feature: Likewise Moran AC, Geary AC is also based on amino acid 

properties distributed in the given protein sequences and can be calculated as follows: 

𝐶  𝑑 =  

1
2 𝑁 − 𝑑 

   𝑃𝑖 −  𝑃  𝑖+𝑑  
2𝑁−𝑑

𝑖 = 1

1
𝑁    𝑃𝑖 −  𝑃 ′ 2𝑁

𝑖=1

    𝑑 = 1, 2, … , 30 

 

where, d, Pi, and P(i+d) represents lag in the autocorrelation, property of amino acid at i
th

 

position, and property of amino acid at (i + d)
th

 position, respectively. While 𝑃 ′ can be 

calculated as: 

𝑃 ′ =  
 𝑃𝑖

𝑁
𝑖=1

𝑁
 

 

 Normalized Moreau-Broto AC feature: The Moreau-Broto AC feature can be denoted 

as: 

𝐴𝐶 𝑑 =   𝑃𝑖𝑃 𝑖+𝑑 

𝑁−𝑑

𝑖=1

    𝑑 = 1, 2, … , 𝑛𝑙𝑎𝑔 

 

While the normalized Moreau-Broto autocorrelation can be calculated as follows: 
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𝐴𝑇𝑆 𝑑 =  
𝐴𝐶 𝑑 

 𝑁 − 𝑑 
    𝑑 = 1, 2, … , 𝑛𝑙𝑎𝑔 

 

where, d, Pi, P(i+d), and nlag represents lag in the autocorrelation, property of amino acid 

at i
th

 position, property of amino acid at (i + d)
th

 position, and maximum value of lag, 

respectively. 

 

Model generation for each feature 

Each features-set were then used as an input file into the in-house developed Python scripts. The 

scripts implemented various machine learning algorithms from scikit-learn [19], keras[27], 

tensorflow[28] package, and machine learning libraries for Python. 

 Stochastic Gradient Descent (SGD): The SGD tries to optimize differentiable loss 

function through an iterative process to come-up with least loss value that can classify the 

given data set with maximum accuracy. Hence, for a given loss function we tuned two 

parameters; number of iterations ranging from 10 to 500 with steps of 10 and 

regularization term alpha ranging from 1 to 1.0E
-07

 with steps of 10. The loss functions 

used are as follows: 

 Log loss: It gives a probabilistic classifier called logistic regression. 

 Modified Huber loss: A smooth loss function that can bring tolerance to outliers and 

probability estimates too. 

 Hinge loss: It is an soft margin loss that gives linear SVM. 

SGD can be implemented in the Python script through SGDClassifier() function in 

package sklearn.linear_model. 

 Support Vector Machine (SVM): SVM are non-probabilistic binary linear classifier and 

comes under supervised learning models. In Python, SVC() forms its basis on libsvm. 

Since we only implemented Gaussian radial basis function kernel, we tuned C (a 

regularization parameter that provides the ability to generalized the classifier to unseen 

data) from 5 to 50 with steps of 5 and Gamma (is inverse of the standard deviation of 

Gaussian function) from 0.01 to 0.05 with steps of 0.01. 
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 Neural Network: In this type of machine learning technique, a network consists of basic 

units called neurons that are densely interconnected to solve a specific problem. Figure 

3A demonstrates a typical neural network where an input vector is fed into the input layer 

which is connected to a hidden layer composed of many neurons. Neurons in hidden 

layers are the place where all computation such as activation function is applied. After 

computation, the outputs are conveyed to output layer, which on the basis of maximum 

probability assigns a class to the input sample. 

 

In our work, we implemented a 2-hidden layer neural network. The neural network is fed 

with descriptor vectors generated from the ProtR package; hence the number of neurons 

equals in the input layers equals the number of descriptors in each feature-set. The hidden 

layer implements ReLu [29] activation function and is composed of 30 and 15 neurons in 

the first and second hidden layer, respectively. Because the classification performed here 

is binary in nature, we used a sigmoid activation function in the output layer to calculate 

the probability of sequence being in either positive or negative class. 

 Long short-term memory (LSTM): We designed a LSTM based network as portrayed 

in Figure 3B. Initially, all 20 amino acids had a unique integer assigned to them. Further, 

due to presence of proteins with varying sequence lengths, we padded the sequence to a 

length of 300 in the case of AA9 and 350 in the case of AA10. The padding length was 

chosen based on the mean value of protein sequence length in training data of AA9 and 

AA10. The padded sequences were then fed into the embedding layer of the neural 

network architecture that had neurons equal to the total length of padding sequence, i.e., 

300 for AA9 and 350 for AA10. Word embeddings are generally used to increase the 

expressiveness of the network and hence constitutes the learning performance of the 

network [22, 23]. 

 

The output from the embedding layer was fed into the bi-directional LSTM units whose 

output was further fed into a fully connected dense neural network (DNN). Figure 3B 

illustrates the network we used in our work. Optimized values of number of LSTM units 

in a LSTM layer, number of LSTM layer, number of neurons in dense neural network,  
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and number of layers of DNN to attain the best F-score were 400, 1, (100, 50), and 2, 

respectively. 

 

Consensus approach 

In the case of feature based learning, only those sequences were labelled as potential LPMO that 

were predicted to be part of the family by all six feature-sets (Figure 2).  

 

Validation of models 

To perform validation of various algorithm variants and ensemble methods, maximum voting 

was performed to screen-out potential LPMOs from list of candidate sequences predicted as 

LPMO from each feature set. Figure 2 describes the workflow used for validation of AA9 and 

AA10 models. Performance of the various algorithm variants and ensemble approach was 

evaluated for test set and validation set using precision and recall. They were calculated as 

follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃 + 𝐹𝑃)
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝐶𝑜𝑛𝑖𝑑𝑖𝑡𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃 + 𝐹𝑁)
 

 

where, TP (True Positive): Annotated as AA9 or AA10 by CAZy and predicted as AA9 

or AA10 by a given method 

FP (False Positive): Predicted as AA9 or AA10 by a given method but not labelled as 

AA9 or AA10 by CAZy 

FN (False Negative): Annotated as AA9 by CAZy but not by a given method 
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RESULTS AND DISCUSSION 

 

The total number of sequences downloaded for each family was as follows: AA1, AA2, AA3, 

AA4, AA6, AA7, AA8, AA9, AA10, AA11, and AA13 were 3620, 543, 1052, 34, 474, 92, 108, 

484, 3565, 103, and 25, respectively. The next step was filtering the sequences. After removing 

sequences that were either partially deposited or containing residues labelled X, the final number 

of sequences in all the families are as follows: AA1, AA2, AA3, AA4, AA6, AA7, AA8, AA9, 

AA10, AA11, and AA13 had 1067, 199, 690, 34, 471, 86, 32, 418, 3554, 96, and 25, 

respectively. Removal of noisy sequences from the positive and negative set drastically reduced 

the total number of sequences in each family. 

 

In the case of AA10 model, we used a cut-off of 70% similarity in CD-HIT [17] to remove 

redundant sequences so that we were able to form a balanced training and test set for the various 

approaches used in the manuscript. This reduced the number of AA10 sequences from 3554 to 

517 in AA10 dataset. 

 

Though LPMOs are classified into six AA families, we considered the machine learning based 

model development for AA9 and AA10 families since the number of sequences in these two 

families are significantly higher than the other four (AA11, AA13, AA14, and AA15). Thus, the 

positive set had 418 sequences for AA9 and 517 sequences for AA10 family, respectively. To 

avoid any hindrance in prediction performance of the model, we built positive and negative set in 

such a way that the ratio of number of sequences in positive and negative set is 1:1 [20]. Table 1 

depicts the distribution of sequences in positive and negative set.  

 

Using ProtR [18] package in in-house developed R scripts, we generated 12 feature-set for the 

AA9 and AA10 sequences. In order to identify which feature is significant to the input data, we 

used the Gini index of Random forest in Wekav3.8 [21], where it gives values to descriptors 

generated from 0.1 to 1. We arbitrarily set a threshold of 0.6 and above as the criteria to select 

the 6 feature-set that had a value of 0.6 and above in the descriptors generated (Appendix). 

Specifically, the features are: conjoint triad (343 descriptors), dipeptide composition (400 
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descriptors), tripeptide composition (8000 descriptors), Moran autocorrelation (240 descriptors), 

Geary autocorrelation (240 descriptors), and Normalized Moreau-Broto autocorrelation (240 

descriptors). Thus, for each sequence there were 9463 descriptors generated. 

 

The features generated were then used as input into the various machine learning algorithms, 

such as Stochastic Gradient Descent (SGD), Support Vector machine (SVM), and Neural 

Network (NN). We made use of GridSearchCV(), a python function which implements “fit” 

and “score” method, to exhaustively search between various parameters tuned to get best 

classifier for SGD and SVM techniques. To trace abstract patterns from the raw data, which most 

likely remain undiscovered by feature based methods, we applied bi-directional long short-term 

memory (LSTM). The capability of LSTMs to retain information from more than 1000 time 

steps has led to its wide applications in bioinformatics in recent years [24, 25, and 26]. 

 

For theAA9 dataset, SGD with various loss functions (hinge, log, and modified Huber) and SVM 

with a radial basis function kernel had recall of 0.922, 0.904, 0.892, and 0.922, respectively on 

the validation set. Also, a NN with 2-hidden layers had a recall of 0.964, while LSTM gave 

0.934. For the AA10 dataset, we observed similar results, where a feature-based NN with 2-

hidden layers outperformed other traditional machine learning methods with recall of 0.869, 

while SVM with radial basis function, SGD with log loss, hinge loss, and modified Huber loss, 

and LSTM had recall of 0.84, 0.748, 0.806, 0.845 and 0.917, respectively (Table 2). 

 

We further evaluated our different learning methods on independent set. As shown in Table 2, 

feature-based NN outperformed other learning methods on validation set of both the AA9 and 

AA10 datasets. Since feature-based NN had fewer false positives and false negatives, we 

propose feature-based NN as best model for classification of LPMOs into AA9 or AA10 family 

with current data available.  
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CONCLUSION 

We have successfully collected, analyzed, and generated sequence-based functional annotation 

of LPMOs. Specifically, we were able to use six sequence-based physiochemical feature-set (di-

peptide composition, tri-peptide composition, conjoint triad, Moran AC, Geary AC, normalized 

Moreau-Broto AC) in feature-based neural network. For the AA9 based model, feature-based 

NN gave F-score of 0.982 on validation set and 0.939 on independent set. Similarly, the F-score 

of our proposed method for AA10 model was 0.930 on validation set and 0.726 on independent 

set. While the validation set is from well-curated AA9 and AA10 sequences, five and 216 

sequences were not identified by our method as AA9 and AA10, respectively. 

 

The reason these sequences were not identified by feature-based NN approach as AA9 or AA10 

LPMO is most probably because of insufficient descriptors for these sequences. Alternatively, 

the current used sequence based feature-set may not be able to capture the signal to identify a 

sequence as AA9 or AA10 LPMO. The method can be improved in the future either by using 

more descriptors or by using more labeled sequence data for accurate prediction through deep 

learning methods such as LSTMs. 
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APPENDIX 

List of descriptors having a Gini index of ≥ 0.6 in each feature-set for AA9. 

AA9 

Feature-set Significant descriptors (Gini index >= 0.6) 
Di-peptide composition VQ, EF, SW, AN, FN, WE, GW, CL, LR, HN, AA, WR, KA, 

LM, HA, and WN 

Tri-peptide composition GHF, KSY, VPQ, KGY, EAP, NVR, PEW, AFS, CSS, SWF, 

TKK, SGA, WEA, MPW, QSY, FEF, ESF, FKS, MYR, SSN, 

HHF, EGR, INV, KKL, GGQ, RPM, VFT, SDM, NDS, QNR, 

SNM, QGQ, ELS, TYA, DME, SES, MQP, EGD, MLN, HCK, 

VNT, DDK, RVV, QEG, PSC, FPH, ERR, ILT, DVN, PHY, 

WQN, LGQ, RRN, KAF, SEQ, LED, SVC, WSI, GWC, QPL, 

AHS, GVM, VFQ, DRH, GMY, SAE, SYN, HKH, FYA, IYN, 

VPK, YWY, YKA, NTV, SWD, KFW, YTV, SHR, TSE, RFE, 

EKM, LML, EYP, RMR, EVY, PWG, DEC, YAQ, PQW, 

QPF, MYC, DNS, AEF, PGW, INS, WDK, YKK, KNW, TPN, 

LTG, WDD, QEN, QAP, HET, TWD, VQQ, GVP, YQQ, 

TWA, GRT, KCL, DPR, GCI, DIH, YDG, GRE, DTG, TMV, 

LRT, EIE, RAY, EWK, FQQ, CKL, TIK, GEI, KPW, RFF, 

AHG, PPP, AQP, IWG, QRF, WPF, DRS, RQW, STI, YWI, 

WAE, PIV, QQD, ERE, AIK, NHR, VET, NSE, PMC, DVR, 

IQS, EEK, SRW, EAY, CPD, RSI, QLQ, HIT, AIP, TVH, 

NVM, VEL, PLS, RWA, SSH, GIY, DSP, TAT, CNP, GEF, 

RCP, RWG, AIF, YFN, GQI, VLF, TLE, GWS, ADH, VSC, 

RTT, SFD, DST, VTR, FKK, RFA, EIA, DHS, TQN, NST, 

and PKA 

Conjoint Triad VS571, VS671, and VS762 

Moran autocorrelation BHAR880101.lag5, CIDH920105.lag3, BHAR880101.lag3, 

and CIDH920105.lag27 

Geary autocorrelation CIDH920105.lag12, CIDH920105.lag19, CIDH920105.lag3 

CIDH920105.lag14,CIDH920105.lag7, and BHAR880101.lag5 

Normalized Moreau-Broto 

autocorrelation 

CIDH920105.lag16, CIDH920105.lag9 BHAR880101.lag6 

CIDH920105.lag15, CIDH920105.lag7, and 

CIDH920105.lag23 
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List of descriptors having a Gini index of ≥ 0.6 in each feature-set for AA10. 

AA10 

Feature-set Significant descriptors (Gini index >= 0.6) 
Di-peptide composition QA, RN, IA, FF, KK, MD, EN, PA, and AA 

Tri-peptide composition CQP, LKV, WEY, SSQ, KVS, RSL, DNR, KPR, YFQ, LAL, 

WQI, RVM, TPM, RDM, MRR, REV, AVC, PQI, CWR, IRQ, 

VQD, EED, TIH, WGQ, PHQ, MMG, VLH, LFI, SKK, QKK, 

KWQ, DQH, MRG, CAH, MLF, HDN, AEF, SNE, FMH, 

GPN, NYQ, LNN, YFA, EGE, LFA, GHR, DTC, SYT, PYH, 

KGY, NVH, QIE, GKD, TPN, YND, QFT, WFY, SQK, YNP, 

GQN, IPA, DMI, RMG, GIW, GKN, SIE, WGP, TYR, YIR, 

QHA, LHC, AQL, FMS, FPP, NNC, YNK, AIC, LFL, YER, 

FKG, VYI, NFR, NQE, VTE, KAV, LKL, NTI, IKS, SYF, 

DVM, KSN, CNF, GDG, HNT, FAN, ENI, PVK, FST, IRT, 

LEN, ILF, PYT, LHN, KTF, DAW, AWQ, RLV, FFK, RYR, 

AFK, SKA, NHT, HII, QLV, AHV, EDT, ILN, PAN, QPA, 

YFS, RRL, HIE, TFS, LRC, PRT, RLP, WVC, MVI, MPT, 

LHW, NER, EFF, VRT, REY, ANH, RSP, QWD, VVR, RND, 

DTH, WND, KVR, WIN, KAF, LQD, LSN, LAW, NEL, FKL, 

GGK, FER, MHG, VQG, LGF, RNT, PSA, FTR, WES, AEP, 

GCF, NFD, PMR, DDL, VKE, LIE, CNA, QAD, IDC, IQN, 

TCV, LGS, LTV, FVA, VRI, HHP, GVG, TVW, GRR, SNI, 

AVK, DDE, DFR, KED, VMD, MDK, KTM, MRQ, FSS, 

NCL, MAS, EIS, DHP, PTS, DLK, FTF, SPS, TAG, SFR, 

IGV, TIW, VDP, YGN, VSA, EVE, TNS, and LPC 

Conjoint Triad VS761, VS751, VS111, and VS641 

Moran autocorrelation CIDH920105.lag17, CIDH920105.lag30, CIDH920105.lag29, 

and CIDH920105.lag5 

Geary autocorrelation CIDH920105.lag27, CIDH920105.lag28, CIDH920105.lag22, 

and CIDH920105.lag7 

Normalized Moreau-Broto 

autocorrelation 

CIDH920105.lag10, BHAR880101.lag6, and 

CIDH920105.lag19 
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Python script to filter out noise from sequence data 

Author: Pulkit Anupam Srivastava 

Date: 27 July, 2018 

Version: 2.0 

from Bio import SeqIO 

import glob 

import os 

# 

#Path to directory where sequences are kept 

path = " ../Projects/FinalYear/Sequences/” 

chcklist = list() 

for filename in glob.glob(os.path.join(path, '*.fasta')): 

    str2ryt_seq = "" 

    Sequ = SeqIO.to_dict(SeqIO.parse(filename, "fasta")) 

    for key in Sequ: 

        if ("X" not in Sequ[key].seq)  

        and ("partial" not in Sequ[key].format("fasta"))  

        and (key not in chcklist): 

            str2ryt_seq += Sequ[key].format("fasta") 

            chcklist.append(key) 

    with open(filename, "w+") as f: 

        f.write(str2ryt_seq) 

    f.close() 
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Python script to generate training and test dataset (AA10 family) 

Author: Pulkit Anupam Srivastava 

Date: 28 July, 2018 

from Bio import SeqIO 

import random 

from random import shuffle 

# 

#Positive Data-set 

# 

Sequ = SeqIO.to_dict(SeqIO.parse("../Projects/FinalYear/AAs/AA10/InitialFiles/AA10.fasta", 

"fasta")) 

Sequ_keysList = [i for i in Sequ] 

rand_train = list() 

AllNumbers = [i for i in range(0, len(Sequ_keysList))] 

shuffle(AllNumbers) 

rand_train = AllNumbers[:2132] 

rand_test = AllNumbers[-1421:] 

# 

#Training file 

# 

with open ("../Projects/FinalYear/AAs/AA10/TrainingFile/AA10.fasta", "w+") as f_Sequ_Train: 

    for i in rand_train: 

        f_Sequ_Train.write(Sequ[Sequ_keysList[i]].format("fasta")) 

f_Sequ_Train.close() 

# 

#Test File 

# 

with open ("../Projects/FinalYear/AAs/AA10/TestFile/AA10.fasta", "w+") as f_Sequ_Test: 

    for i in rand_test: 

        f_Sequ_Test.write(Sequ[Sequ_keysList[i]].format("fasta")) 

f_Sequ_Test.close() 

# 

#Negative Data-set 

# 

Non_Train = {"AA1":415,"AA2":199,"AA3":415,"AA4":34,"AA6":415, 

             "AA7":86,"AA8":32,"AA9":415,"AA11":96,"AA13":25} 

Non_Test = {"AA1":681,"AA2":0,"AA3":275,"AA4":0,"AA6":56, 

            "AA7":0,"AA8":0,"AA9":3,"AA11":0,"AA13":0} 

for fil in Non_Test: 

    num = Non_Test[fil]*-1 

    Sequ_N = 

SeqIO.to_dict(SeqIO.parse("../Projects/FinalYear/AAs/AA10/InitialFiles/NonAA10/"+fil+".fasta", 

"fasta")) 

    Sequ_N_keysList = [i for i in Sequ_N] 

    rand_train = list() 

    AllNumbers = [i for i in range(0, len(Sequ_N_keysList))] 

    shuffle(AllNumbers) 

    rand_train = AllNumbers[:Non_Train[fil]] 

    rand_test = AllNumbers[num:] 

    # 

    #Trainig File 

    # 

    with open ("../Projects/FinalYear/AAs/AA10/TrainingFile/NonAA10.fasta", "a+") as 

f_Sequ_N_Train: 

        for i in rand_train: 

            f_Sequ_N_Train.write(Sequ_N[Sequ_N_keysList[i]].format("fasta")) 

    f_Sequ_N_Train.close() 

    # 

    #Test File 

    # 

    c=0 

    with open ("../Projects/FinalYear/AAs/AA10/TestFile/NonAA10.fasta", "a+") as f_Sequ_N_Test: 

        for i in rand_test: 

            if (c<(num*-1)): 

                f_Sequ_N_Test.write(Sequ_N[Sequ_N_keysList[i]].format("fasta")) 

                c+=1 

            else: 

                break 

    f_Sequ_N_Test.close() 
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R script to generate protein sequence feature-sets for training dataset (AA10 

family) 

Author: Pulkit Anupam Srivastava 

Date: 7 August, 2018 

Version: 3.0 

library("protr") 

library("foreign") 

seq_class1 = readFASTA("./Projects/FinalYear/AAs/AA10/TrainingFile/AA10.fasta") 

seq_class2 = readFASTA("./Projects/FinalYear/AAs/AA10/TrainingFile/NonAA10.fasta") 

# 

seq_class1 = seq_class1[(sapply(seq_class1, protcheck))] 

seq_class2 = seq_class2[(sapply(seq_class2, protcheck))] 

# 

#Feature-sets 

# 

func2perform=c('extractDC','extractTC','extractMoreauBroto','extractCTDC', 

               'extractCTDT','extractCTDD','extractAPAAC','extractPAAC', 

               'extractCTriad','extractMoran','extractGeary','extractQSO','extractSOCN') 

# 

for (f in func2perform) { 

  class1 = t(sapply(seq_class1, f)) 

  class2 = t(sapply(seq_class2, f)) 

  # 

  dir.create(file.path("./Projects/FinalYear/AAs/AA10/Feature_TrainingFiles/", f), showWarnings = 

FALSE) 

  # 

  

outputfile_csv_class1=paste("./Projects/FinalYear/AAs/AA10/Feature_TrainingFiles/",f,"/",f,"_AA10

.csv", sep="") 

  

outputfile_csv_class2=paste("./Projects/FinalYear/AAs/AA10/Feature_TrainingFiles/",f,"/",f,"_NonA

A10.csv", sep="") 

  # 

  write.csv(class1,outputfile_csv_class1,sep=",",row.names=TRUE) 

  write.csv(class2,outputfile_csv_class2,sep=",",row.names=TRUE) 

  # 

  data_class1 = read.csv(outputfile_csv_class1,header=TRUE) 

  colnames(data_class1)[1]<-"ID" 

  data_class1$label <- "AA10" 

  # 

  data_class2 = read.csv(outputfile_csv_class2,header=TRUE) 

  colnames(data_class2)[1]<-"ID" 

  data_class2$label <- "NonAA10" 

  # 

  outputfile_csv=paste("./Projects/FinalYear/AAs/AA10/Feature_TrainingFiles/",f,"/",f,".csv", 

sep="") 

  mydata=rbind(data_class1, data_class2) 

  write.csv(mydata,outputfile_csv,sep=",",row.names=TRUE) 

} 
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R script to generate protein sequence feature-sets for test dataset (AA10 

family) 

Author: Pulkit Anupam Srivastava 

Date: 7 August, 2018 

Version: 3.0 

library("protr") 

library("foreign") 

seq_class1 = readFASTA("./Projects/FinalYear/AAs/AA10/TestFile/AA10.fasta") 

seq_class2 = readFASTA("./Projects/FinalYear/AAs/AA10/TestFile/NonAA10.fasta") 

# 

seq_class1 = seq_class1[(sapply(seq_class1, protcheck))] 

seq_class2 = seq_class2[(sapply(seq_class2, protcheck))] 

# 

#Feature-sets that had descriptors with gini index >= 0.6 

# 

func2perform=c('extractDC','extractTC','extractMoreauBroto', 

               'extractCTriad','extractMoran','extractGeary') 

# 

for (f in func2perform) { 

  class1 = t(sapply(seq_class1, f)) 

  class2 = t(sapply(seq_class2, f)) 

  # 

  dir.create(file.path("./Projects/FinalYear/AAs/AA10/Feature_TestFiles/", f), showWarnings = 

FALSE) 

  # 

  

outputfile_csv_class1=paste("./Projects/FinalYear/AAs/AA10/Feature_TestFiles/",f,"/",f,"_AA10.csv

", sep="") 

  

outputfile_csv_class2=paste("./Projects/FinalYear/AAs/AA10/Feature_TestFiles/",f,"/",f,"_NonAA10.

csv", sep="") 

  # 

  write.csv(class1,outputfile_csv_class1,sep=",",row.names=TRUE) 

  write.csv(class2,outputfile_csv_class2,sep=",",row.names=TRUE) 

  # 

  data_class1 = read.csv(outputfile_csv_class1,header=TRUE) 

  colnames(data_class1)[1]<-"ID" 

  data_class1$label <- "AA10" 

  # 

  data_class2 = read.csv(outputfile_csv_class2,header=TRUE) 

  colnames(data_class2)[1]<-"ID" 

  data_class2$label <- "NonAA10" 

  # 

  outputfile_csv=paste("./Projects/FinalYear/AAs/AA10/Feature_TestFiles/",f,"/",f,".csv", sep="") 

  mydata=rbind(data_class1, data_class2) 

  write.csv(mydata,outputfile_csv,sep=",",row.names=TRUE) 

} 
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Python script to generate optimized models for each feature using modified 

Huber as loss function in SGD (AA10 family) 

Author: Pulkit Anupam Srivastava 

Date: 9 November, 2018 

Version: 5.0 

from io import StringIO 

import pandas as pd 

import numpy as np 

import pickle 

from sklearn import grid_search 

from sklearn.metrics import confusion_matrix, classification_report 

from sklearn.model_selection import train_test_split,GridSearchCV 

from sklearn.linear_model import SGDClassifier 

from sklearn.metrics import precision_recall_curve, average_precision_score, roc_curve, auc 

import matplotlib.pyplot as plt 

from sklearn.utils.fixes import signature 

from sklearn.metrics import average_precision_score 

# 

def saveBestModel(X_train, X_test, Y_train, Y_test, func, best_param): 

    A_opt = best_param['alpha'] 

    P_opt = best_param['max_iter'] 

    classifier = SGDClassifier(alpha = A_opt, loss = "modified_huber", 

                               class_weight='balanced', penalty = 'elasticnet', max_iter = P_opt) 

    classifier.fit(X_train,Y_train) 

    # 

    #Save Best Model 

    # 

    ModelFileName = 

"../Projects/FinalYear/AAs/AA10/OptimisedModels/SGD_modified_huber_CV10/"+func+".sav" 

    pickle.dump(classifier, open(ModelFileName, 'wb')) 

    # 

    Y_score = classifier.decision_function(X_test) 

    # 

    #Generate PR Curve 

    # 

    precision, recall, _ = precision_recall_curve(Y_test, Y_score) 

    average_precision = average_precision_score(Y_test, Y_score) 

    step_kwargs = ({'step': 'post'} if 'step' in signature(plt.fill_between).parameters else {}) 

    plt.step(recall, precision, color='b', alpha=0.2,where='post') 

    plt.fill_between(recall, precision, alpha=0.2, color='navy', **step_kwargs) 

    plt.xlabel('Recall') 

    plt.ylabel('Precision') 

    plt.ylim([0.0, 1.05]) 

    plt.xlim([0.0, 1.0]) 

    plt.title('Precision-Recall curve') 

    add_PR = 

"../Projects/FinalYear/AAs/AA10/OptimisedModels/SGD_modified_huber_CV10/PR_Curve/PR_"+func+".png" 

    plt.savefig(add_PR) 

    plt.close() 

    # 

    #Generate ROC Curve 

    # 

    fpr, tpr, _ = roc_curve(Y_test, Y_score) 

    roc_auc = auc(fpr, tpr) 

    plt.figure() 

    lw = 2 

    plt.plot(fpr, tpr, color='darkorange',lw=lw, label='ROC curve (AUC = %0.2f)' % roc_auc) 

    plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') 

    plt.xlim([0.0, 1.0]) 

    plt.ylim([0.0, 1.05]) 

    plt.xlabel('False Positive Rate') 

    plt.ylabel('True Positive Rate') 

    plt.title('Receiver operating characteristic') 

    add_ROC = 

"../Projects/FinalYear/AAs/AA10/OptimisedModels/SGD_modified_huber_CV10/ROC_Curve/ROC_"+func+".pn

g" 

    plt.legend(loc="lower right") 

    plt.savefig(add_ROC) 
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    plt.close() 

    # 

    return classifier 

# 

def combinePredTest(Y_test, Y_pred, ID_Test): 

    str2ryt = "Test\tPredicted\tID\n" 

    for i in range(0,len(ID_Test)): 

        str2ryt += Y_test[i]+"\t"+Y_pred[i]+"\t"+ID_Test[i]+"\n" 

    return str2ryt 

# 

def getBestModel(X_train, X_test, Y_train, Y_test, ID_Test, path2dirs, func): 

    Alpha = [10 ** x for x in range(-7, 1)] 

    Max_iter = [x for x in range(50, 510, 10)] #max_iter 

    param_grid = {'alpha': Alpha, 'max_iter': Max_iter} 

    sgd = SGDClassifier(loss = "modified_huber", class_weight='balanced', penalty = 'elasticnet') 

    grid_search = GridSearchCV(sgd, param_grid, cv=10) 

    grid_search.fit(X_train,Y_train) 

    # 

    BestModel = saveBestModel(X_train, X_test, Y_train, Y_test, func, grid_search.best_params_) 

    Y_pred = BestModel.predict(X_test) 

    ModelStatFile = path2dirs+func+"/"+func+"_ModelStats_SGD_modified_huber_CV10.txt" 

    with open(ModelStatFile, "w+") as f2: 

        f2.write(classification_report(Y_test,Y_pred)) 

    f2.close() 

    # 

    PredTest = combinePredTest(Y_test, Y_pred, ID_Test) 

    PredTestFile = path2dirs+func+"/"+func+"_PredTest_SGD_modified_huber_CV10.txt" 

    with open(PredTestFile, "w+") as f3: 

        f3.write(PredTest) 

    f3.close() 

    # 

    str2ryt = func+"\t"+str(grid_search.best_params_['alpha'])+"\t"+ 

    "\t"+str(grid_search.best_params_['max_iter'])+"\n" 

    with 

open("../Projects/FinalYear/AAs/AA10/OptimisedModels/SGD_modified_huber_CV10/ModelStats.txt","a+"

) as f1: 

        f1.write(str2ryt) 

    f1.close() 

    # 

# 

path2dirs_Train = "../Projects/FinalYear/AAs/AA10/Feature_TrainingFiles/" 

path2dirs_Test = "../Projects/FinalYear/AAs/AA10/Feature_TestFiles/" 

func2change = ["extractCTriad","extractDC", "extractGeary", 

               "extractMoran", "extractMoreauBroto", "extractTC"] 

for i in func2change: 

    CSVFile_Train = path2dirs_Train+i+"/"+i+".csv" 

    CSVFile_Test = path2dirs_Test+i+"/"+i+".csv" 

    # 

    df = pd.read_csv(CSVFile_Train,index_col=0) 

    df_Train = df.dropna() 

    df_Train.reset_index(drop=True, inplace=True) 

    # 

    df = pd.read_csv(CSVFile_Test,index_col=0) 

    df_Test = df.dropna() 

    df_Test.reset_index(drop=True, inplace=True) 

    # 

    X_Train = df_Train.drop(['ID', 'label'], axis = 1) 

    Y_Train = df_Train['label'] 

    X_Test = df_Test.drop(['ID', 'label'], axis = 1) 

    Y_Test = df_Test['label'] 

    ID_Test = df_Test['ID'] 

    getBestModel(X_Train, X_Test, Y_Train, Y_Test, ID_Test, path2dirs_Train, i) 
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Python script to generate optimized models for each feature using hinge as 

loss function in SGD (AA10 family) 

Author: Pulkit Anupam Srivastava 

Date: 9 November, 2018 

Version: 5.0 

from io import StringIO 

import pandas as pd 

import numpy as np 

import pickle 

from sklearn import grid_search 

from sklearn.metrics import confusion_matrix, classification_report 

from sklearn.model_selection import train_test_split,GridSearchCV 

from sklearn.linear_model import SGDClassifier 

from sklearn.metrics import precision_recall_curve, average_precision_score, roc_curve, auc 

import matplotlib.pyplot as plt 

from sklearn.utils.fixes import signature 

from sklearn.metrics import average_precision_score 

# 

def saveBestModel(X_train, X_test, Y_train, Y_test, func, best_param): 

    A_opt = best_param['alpha'] 

    P_opt = best_param['max_iter'] 

    classifier = SGDClassifier(alpha = A_opt, loss = "hinge", 

                               class_weight='balanced', penalty = 'elasticnet', max_iter = P_opt) 

    classifier.fit(X_train,Y_train) 

    # 

    #Save Best Model 

    # 

    ModelFileName = "../Projects/FinalYear/AAs/AA10/OptimisedModels/SGD_hinge_CV10/"+func+".sav" 

    pickle.dump(classifier, open(ModelFileName, 'wb')) 

    # 

    Y_score = classifier.decision_function(X_test) 

    # 

    #Generate PR Curve 

    # 

    precision, recall, _ = precision_recall_curve(Y_test, Y_score) 

    average_precision = average_precision_score(Y_test, Y_score) 

    step_kwargs = ({'step': 'post'} if 'step' in signature(plt.fill_between).parameters else {}) 

    plt.step(recall, precision, color='b', alpha=0.2,where='post') 

    plt.fill_between(recall, precision, alpha=0.2, color='navy', **step_kwargs) 

    plt.xlabel('Recall') 

    plt.ylabel('Precision') 

    plt.ylim([0.0, 1.05]) 

    plt.xlim([0.0, 1.0]) 

    plt.title('Precision-Recall curve') 

    add_PR = 

"../Projects/FinalYear/AAs/AA10/OptimisedModels/SGD_hinge_CV10/PR_Curve/PR_"+func+".png" 

    plt.savefig(add_PR) 

    plt.close() 

    # 

    #Generate ROC Curve 

    # 

    fpr, tpr, _ = roc_curve(Y_test, Y_score) 

    roc_auc = auc(fpr, tpr) 

    plt.figure() 

    lw = 2 

    plt.plot(fpr, tpr, color='darkorange',lw=lw, label='ROC curve (AUC = %0.2f)' % roc_auc) 

    plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') 

    plt.xlim([0.0, 1.0]) 

    plt.ylim([0.0, 1.05]) 

    plt.xlabel('False Positive Rate') 

    plt.ylabel('True Positive Rate') 

    plt.title('Receiver operating characteristic') 

    add_ROC = 

"../Projects/FinalYear/AAs/AA10/OptimisedModels/SGD_hinge_CV10/ROC_Curve/ROC_"+func+".png" 

    plt.legend(loc="lower right") 

    plt.savefig(add_ROC) 

    plt.close() 

    # 
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    return classifier 

# 

def combinePredTest(Y_test, Y_pred, ID_Test): 

    str2ryt = "Test\tPredicted\tID\n" 

    for i in range(0,len(ID_Test)): 

        str2ryt += Y_test[i]+"\t"+Y_pred[i]+"\t"+ID_Test[i]+"\n" 

    return str2ryt 

# 

def getBestModel(X_train, X_test, Y_train, Y_test, ID_Test, path2dirs, func): 

    Alpha = [10 ** x for x in range(-7, 1)] 

    Max_iter = [x for x in range(50, 510, 10)] #max_iter 

    param_grid = {'alpha': Alpha, 'max_iter': Max_iter} 

    sgd = SGDClassifier(loss = "hinge", class_weight='balanced', penalty = 'elasticnet') 

    grid_search = GridSearchCV(sgd, param_grid, cv=10) 

    grid_search.fit(X_train,Y_train) 

    # 

    BestModel = saveBestModel(X_train, X_test, Y_train, Y_test, func, grid_search.best_params_) 

    Y_pred = BestModel.predict(X_test) 

    ModelStatFile = path2dirs+func+"/"+func+"_ModelStats_SGD_hinge_CV10.txt" 

    with open(ModelStatFile, "w+") as f2: 

        f2.write(classification_report(Y_test,Y_pred)) 

    f2.close() 

    # 

    PredTest = combinePredTest(Y_test, Y_pred, ID_Test) 

    PredTestFile = path2dirs+func+"/"+func+"_PredTest_SGD_hinge_CV10.txt" 

    with open(PredTestFile, "w+") as f3: 

        f3.write(PredTest) 

    f3.close() 

    # 

    str2ryt = func+"\t"+str(grid_search.best_params_['alpha'])+"\t"+ 

    "\t"+str(grid_search.best_params_['max_iter'])+"\n" 

    with 

open("../Projects/FinalYear/AAs/AA10/OptimisedModels/SGD_hinge_CV10/ModelStats.txt","a+") as f1: 

        f1.write(str2ryt) 

    f1.close() 

    # 

# 

path2dirs_Train = "../Projects/FinalYear/AAs/AA10/Feature_TrainingFiles/" 

path2dirs_Test = "../Projects/FinalYear/AAs/AA10/Feature_TestFiles/" 

func2change = ["extractCTriad","extractDC", "extractGeary", 

               "extractMoran", "extractMoreauBroto", "extractTC"] 

for i in func2change: 

    CSVFile_Train = path2dirs_Train+i+"/"+i+".csv" 

    CSVFile_Test = path2dirs_Test+i+"/"+i+".csv" 

    # 

    df = pd.read_csv(CSVFile_Train,index_col=0) 

    df_Train = df.dropna() 

    df_Train.reset_index(drop=True, inplace=True) 

    # 

    df = pd.read_csv(CSVFile_Test,index_col=0) 

    df_Test = df.dropna() 

    df_Test.reset_index(drop=True, inplace=True) 

    # 

    X_Train = df_Train.drop(['ID', 'label'], axis = 1) 

    Y_Train = df_Train['label'] 

    X_Test = df_Test.drop(['ID', 'label'], axis = 1) 

    Y_Test = df_Test['label'] 

    ID_Test = df_Test['ID'] 

    getBestModel(X_Train, X_Test, Y_Train, Y_Test, ID_Test, path2dirs_Train, i) 
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Python script to generate optimized models for each feature using log as loss 

function in SGD (AA10 family) 

Author: Pulkit Anupam Srivastava 

Date: 9 November, 2018 

Version: 5.0 

from io import StringIO 

import pandas as pd 

import numpy as np 

import pickle 

from sklearn import grid_search 

from sklearn.metrics import confusion_matrix, classification_report 

from sklearn.model_selection import train_test_split,GridSearchCV 

from sklearn.linear_model import SGDClassifier 

from sklearn.metrics import precision_recall_curve, average_precision_score, roc_curve, auc 

import matplotlib.pyplot as plt 

from sklearn.utils.fixes import signature 

from sklearn.metrics import average_precision_score 

# 

def saveBestModel(X_train, X_test, Y_train, Y_test, func, best_param): 

    A_opt = best_param['alpha'] 

    P_opt = best_param['max_iter'] 

    classifier = SGDClassifier(alpha = A_opt, loss = "log", 

                               class_weight='balanced', penalty = 'elasticnet', max_iter = P_opt) 

    classifier.fit(X_train,Y_train) 

    # 

    #Save Best Model 

    # 

    ModelFileName = "../Projects/FinalYear/AAs/AA10/OptimisedModels/SGD_log_CV10/"+func+".sav" 

    pickle.dump(classifier, open(ModelFileName, 'wb')) 

    Y_score = classifier.decision_function(X_test) 

    # 

    #Generate PR Curve 

    # 

    precision, recall, _ = precision_recall_curve(Y_test, Y_score) 

    average_precision = average_precision_score(Y_test, Y_score) 

    step_kwargs = ({'step': 'post'} if 'step' in signature(plt.fill_between).parameters else {}) 

    plt.step(recall, precision, color='b', alpha=0.2,where='post') 

    plt.fill_between(recall, precision, alpha=0.2, color='navy', **step_kwargs) 

    plt.xlabel('Recall') 

    plt.ylabel('Precision') 

    plt.ylim([0.0, 1.05]) 

    plt.xlim([0.0, 1.0]) 

    plt.title('Precision-Recall curve') 

    add_PR = 

"../Projects/FinalYear/AAs/AA10/OptimisedModels/SGD_log_CV10/PR_Curve/PR_"+func+".png" 

    plt.savefig(add_PR) 

    plt.close() 

    # 

    #Generate ROC Curve 

    # 

    fpr, tpr, _ = roc_curve(Y_test, Y_score) 

    roc_auc = auc(fpr, tpr) 

    plt.figure() 

    lw = 2 

    plt.plot(fpr, tpr, color='darkorange',lw=lw, label='ROC curve (AUC = %0.2f)' % roc_auc) 

    plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') 

    plt.xlim([0.0, 1.0]) 

    plt.ylim([0.0, 1.05]) 

    plt.xlabel('False Positive Rate') 

    plt.ylabel('True Positive Rate') 

    plt.title('Receiver operating characteristic') 

    add_ROC = 

"../Projects/FinalYear/AAs/AA10/OptimisedModels/SGD_log_CV10/ROC_Curve/ROC_"+func+".png" 

    plt.legend(loc="lower right") 

    plt.savefig(add_ROC) 

    plt.close() 

    # 

    return classifier 
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# 

def combinePredTest(Y_test, Y_pred, ID_Test): 

    str2ryt = "Test\tPredicted\tID\n" 

    for i in range(0,len(ID_Test)): 

        str2ryt += Y_test[i]+"\t"+Y_pred[i]+"\t"+ID_Test[i]+"\n" 

    return str2ryt 

# 

def getBestModel(X_train, X_test, Y_train, Y_test, ID_Test, path2dirs, func): 

    Alpha = [10 ** x for x in range(-7, 1)] 

    Max_iter = [x for x in range(50, 510, 10)] #max_iter 

    param_grid = {'alpha': Alpha, 'max_iter': Max_iter} 

    sgd = SGDClassifier(loss = "log", class_weight='balanced', penalty = 'elasticnet') 

    grid_search = GridSearchCV(sgd, param_grid, cv=10) 

    grid_search.fit(X_train,Y_train) 

    # 

    BestModel = saveBestModel(X_train, X_test, Y_train, Y_test, func, grid_search.best_params_) 

    Y_pred = BestModel.predict(X_test) 

    ModelStatFile = path2dirs+func+"/"+func+"_ModelStats_SGD_log_CV10.txt" 

    with open(ModelStatFile, "w+") as f2: 

        f2.write(classification_report(Y_test,Y_pred)) 

    f2.close() 

    # 

    PredTest = combinePredTest(Y_test, Y_pred, ID_Test) 

    PredTestFile = path2dirs+func+"/"+func+"_PredTest_SGD_log_CV10.txt" 

    with open(PredTestFile, "w+") as f3: 

        f3.write(PredTest) 

    f3.close() 

    # 

    str2ryt = func+"\t"+str(grid_search.best_params_['alpha'])+"\t"+ 

    "\t"+str(grid_search.best_params_['max_iter'])+"\n" 

    with open("../Projects/FinalYear/AAs/AA10/OptimisedModels/SGD_log_CV10/ModelStats.txt","a+") 

as f1: 

        f1.write(str2ryt) 

    f1.close() 

    # 

# 

path2dirs_Train = "../Projects/FinalYear/AAs/AA10/Feature_TrainingFiles/" 

path2dirs_Test = "../Projects/FinalYear/AAs/AA10/Feature_TestFiles/" 

func2change = ["extractCTriad","extractDC", "extractGeary", 

               "extractMoran", "extractMoreauBroto", "extractTC"] 

for i in func2change: 

    CSVFile_Train = path2dirs_Train+i+"/"+i+".csv" 

    CSVFile_Test = path2dirs_Test+i+"/"+i+".csv" 

    # 

    df = pd.read_csv(CSVFile_Train,index_col=0) 

    df_Train = df.dropna() 

    df_Train.reset_index(drop=True, inplace=True) 

    # 

    df = pd.read_csv(CSVFile_Test,index_col=0) 

    df_Test = df.dropna() 

    df_Test.reset_index(drop=True, inplace=True) 

    # 

    X_Train = df_Train.drop(['ID', 'label'], axis = 1) 

    Y_Train = df_Train['label'] 

    X_Test = df_Test.drop(['ID', 'label'], axis = 1) 

    Y_Test = df_Test['label'] 

    ID_Test = df_Test['ID'] 

    getBestModel(X_Train, X_Test, Y_Train, Y_Test, ID_Test, path2dirs_Train, i) 
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Python script to generate optimized models for each feature using radial basis 

function as kernel in SVC (AA10 family) 

Author: Pulkit Anupam Srivastava 

Date: 11 August, 2018 

Version: 3.0 

from io import StringIO 

import pandas as pd 

import numpy as np 

import pickle 

from sklearn import grid_search 

from sklearn.svm import SVC 

from sklearn.metrics import confusion_matrix, classification_report 

from sklearn.model_selection import train_test_split,GridSearchCV 

from sklearn.metrics import precision_recall_curve, average_precision_score, roc_curve, auc 

import matplotlib.pyplot as plt 

from sklearn.utils.fixes import signature 

from sklearn.metrics import average_precision_score 

# 

def saveBestModel(X_train, X_test, Y_train, Y_test, func, best_param): 

    C_opt = best_param['C'] 

    gamma_opt = best_param['gamma'] 

    classifier = SVC(kernel='rbf', C = C_opt, gamma = gamma_opt) 

    classifier.fit(X_train,Y_train) 

    # 

    #Save Best Model 

    # 

    ModelFileName = "../Projects/FinalYear/AAs/AA10/OptimisedModels/SVC_rbf_CV10/"+func+".sav" 

    pickle.dump(classifier, open(ModelFileName, 'wb')) 

    # 

    Y_score = classifier.decision_function(X_test) 

    # 

    #Generate PR Curve 

    # 

    precision, recall, _ = precision_recall_curve(Y_test, Y_score) 

    average_precision = average_precision_score(Y_test, Y_score) 

    step_kwargs = ({'step': 'post'} if 'step' in signature(plt.fill_between).parameters else {}) 

    plt.step(recall, precision, color='b', alpha=0.2,where='post') 

    plt.fill_between(recall, precision, alpha=0.2, color='navy', **step_kwargs) 

    plt.xlabel('Recall') 

    plt.ylabel('Precision') 

    plt.ylim([0.0, 1.05]) 

    plt.xlim([0.0, 1.0]) 

    plt.title('Precision-Recall curve') 

    add_PR = 

"../Projects/FinalYear/AAs/AA10/OptimisedModels/SVC_rbf_CV10/PR_Curve/PR_"+func+".png" 

    plt.savefig(add_PR) 

    plt.close() 

    # 

    #Generate ROC Curve 

    # 

    fpr, tpr, _ = roc_curve(Y_test, Y_score) 

    roc_auc = auc(fpr, tpr) 

    plt.figure() 

    lw = 2 

    plt.plot(fpr, tpr, color='darkorange',lw=lw, label='ROC curve (AUC = %0.2f)' % roc_auc) 

    plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') 

    plt.xlim([0.0, 1.0]) 

    plt.ylim([0.0, 1.05]) 

    plt.xlabel('False Positive Rate') 

    plt.ylabel('True Positive Rate') 

    plt.title('Receiver operating characteristic') 

    add_ROC = 

"../Projects/FinalYear/AAs/AA10/OptimisedModels/SVC_rbf_CV10/ROC_Curve/ROC_"+func+".png" 

    plt.legend(loc="lower right") 

    plt.savefig(add_ROC) 

    plt.close() 

    # 

    return classifier 
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# 

def combinePredTest(Y_test, Y_pred, ID_Test): 

    str2ryt = "Test\tPredicted\tID\n" 

    for i in range(0,len(ID_Test)): 

        str2ryt += Y_test[i]+"\t"+Y_pred[i]+"\t"+ID_Test[i]+"\n" 

    return str2ryt 

# 

def getBestModel(X_train, X_test, Y_train, Y_test, ID_Test, path2dirs, func): 

    C = [k for k in range(5, 105,5)] 

    Gamma = np.arange(0.01, 0.08, 0.01) 

    param_grid = {'C': C, 'gamma' : Gamma} 

    grid_search = GridSearchCV(SVC(kernel='rbf'), param_grid, cv=10) 

    grid_search.fit(X_train,Y_train) 

    # 

    BestModel = saveBestModel(X_train, X_test, Y_train, Y_test, func, grid_search.best_params_) 

    Y_pred = BestModel.predict(X_test) 

    ModelStatFile = path2dirs+func+"/"+func+"_ModelStats_SVC_rbf_CV10.txt" 

    with open(ModelStatFile, "w+") as f2: 

        f2.write(classification_report(Y_test,Y_pred)) 

    f2.close() 

    # 

    PredTest = combinePredTest(Y_test, Y_pred, ID_Test) 

    PredTestFile = path2dirs+func+"/"+func+"_PredTest_SVC_rbf_CV10.txt" 

    with open(PredTestFile, "w+") as f3: 

        f3.write(PredTest) 

    f3.close() 

    # 

    str2ryt = 

func+"\t"+str(grid_search.best_params_['C'])+"\t"+"\t"+str(grid_search.best_params_['gamma'])+"\n

" 

    with open("../Projects/FinalYear/AAs/AA10/OptimisedModels/SVC_rbf_CV10/ModelStats.txt","a+") 

as f1: 

        f1.write(str2ryt) 

    f1.close() 

    # 

# 

path2dirs_Train = "../Projects/FinalYear/AAs/AA10/Feature_TrainingFiles/" 

path2dirs_Test = "../Projects/FinalYear/AAs/AA10/Feature_TestFiles/" 

func2change = ["extractCTriad","extractDC", "extractGeary", 

               "extractMoran", "extractMoreauBroto", "extractTC"] 

for i in func2change: 

    CSVFile_Train = path2dirs_Train+i+"/"+i+".csv" 

    CSVFile_Test = path2dirs_Test+i+"/"+i+".csv" 

    # 

    df = pd.read_csv(CSVFile_Train,index_col=0) 

    df_Train = df.dropna() 

    df_Train.reset_index(drop=True, inplace=True) 

    # 

    df = pd.read_csv(CSVFile_Test,index_col=0) 

    df_Test = df.dropna() 

    df_Test.reset_index(drop=True, inplace=True) 

    # 

    X_Train = df_Train.drop(['ID', 'label'], axis = 1) 

    Y_Train = df_Train['label'] 

    X_Test = df_Test.drop(['ID', 'label'], axis = 1) 

    Y_Test = df_Test['label'] 

    ID_Test = df_Test['ID'] 

    getBestModel(X_Train, X_Test, Y_Train, Y_Test, ID_Test, path2dirs_Train, i) 
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Python script to generate optimized model for each feature using feature 

based neural network (AA10 family) 

Author: Pulkit Anupam Srivastava 

Date: 06 Jan, 2019 

Version: 1.0 

import numpy as np 

import pandas as pd 

from sklearn import metrics 

# TensorFlow and tf.keras 

import tensorflow as tf 

from tensorflow import keras 

import matplotlib.pyplot as plt 

# 

def configureModel(numSamples, numFeatures, layer1, layer2, layer3, layer4): 

    model = tf.keras.models.Sequential([ 

        tf.keras.layers.Dense(layer1, input_shape = (numFeatures,), activation="relu"), 

        #tf.keras.layers.Dense(layer2, activation="relu"), 

        tf.keras.layers.Dense(layer3, activation="relu"), 

        tf.keras.layers.Dense(layer4, activation="sigmoid")]) #sigmoid for binary classificaiton 

    model.compile(optimizer = tf.keras.optimizers.Adam(lr = 0.001), 

                  loss = 'sparse_categorical_crossentropy', 

                  metrics = ['accuracy']) 

    return model 

# 

def getBestModel(X_Train, X_Test, Y_Train, Y_Test, ID_Test, path2dirs_Train, i): 

    #print (X_Test.shape,Y_Test.shape) 

    model_i = configureModel(X_Train.shape[0], X_Train.shape[1], 30, 30, 15, 2)#100, 50,25,2 

    history = model_i.fit(X_Train, Y_Train, batch_size = 50, epochs = 20, validation_data = 

(X_Test, Y_Test)) 

    saveModel_dir = "../Projects/FinalYear/AAs/AA10/ANN/OptimizedModel/"+i+".h5" 

    model_i.save(saveModel_dir) 

    # 

    history_dict = history.history 

    history_dict.keys() 

    acc = history.history['acc'] 

    val_acc = history.history['val_acc'] 

    loss = history.history['loss'] 

    val_loss = history.history['val_loss'] 

    epochs = range(1, len(acc) + 1) 

    # "bo" is for "blue dot" 

    plt.plot(epochs, acc, 'bo', label='Training loss') 

    # b is for "solid blue line" 

    plt.plot(epochs, val_acc, 'b', label='Validation loss') 

    plt.title('Training and validation loss') 

    plt.xlabel('Epochs') 

    plt.ylabel('Loss') 

    plt.legend() 

    plt.show() 

# 

path2dirs_Train = "../Projects/FinalYear/AAs/AA10/ANN/Feature_TrainingFiles/" 

path2dirs_Test = "../Projects/FinalYear/AAs/AA10/ANN/Feature_TestFiles/" 

func2change = ["extractCTriad","extractDC", "extractGeary", 

               "extractMoran", "extractMoreauBroto", "extractTC"] 

for i in func2change: 

    CSVFile_Train = path2dirs_Train+i+"/"+i+".csv" 

    CSVFile_Test = path2dirs_Test+i+"/"+i+".csv" 

    # 

    df = pd.read_csv(CSVFile_Train,index_col=0, dtype={'label':str}) 

    df_Train = df.dropna() 

    df_Train.reset_index(drop=True, inplace=True) 

    # 

    df = pd.read_csv(CSVFile_Test,index_col=0, dtype={'label':str}) 

    df_Test = df.dropna() 

    df_Test.reset_index(drop=True, inplace=True) 

    # 

    Y_Train, Y_Test, ID_Test = pd.DataFrame(), pd.DataFrame(), pd.DataFrame() 

    X_Train = df_Train.drop(['ID', 'label'], axis = 1) 

    Y_Train["label"] = df_Train['label'].replace(["AA10", "NonAA10"], [0, 1]) 
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    X_Test = df_Test.drop(['ID', 'label'], axis = 1) 

    Y_Test["label"] = df_Test['label'].replace(["AA10", "NonAA10"], [0, 1]) 

    ID_Test["label"] = df_Test['ID'].replace(["AA10", "NonAA10"], [0, 1]) 

    getBestModel(X_Train, X_Test, Y_Train, Y_Test, ID_Test, path2dirs_Train, i) 

    print (i) 

# 
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Python script to generate optimized model using long short-term memory 

units (AA10 family) 
Author: Pulkit Anupam Srivastava 

Date: 24 Jan, 2019 

Version: 9.0 

from sklearn import metrics 

from sklearn.metrics import classification_report 

# TensorFlow and tf.keras 

import tensorflow as tf 

from tensorflow import keras 

import matplotlib.pyplot as plt 

from keras.preprocessing.text import Tokenizer 

from keras.preprocessing.sequence import pad_sequences 

from keras.models import Sequential, load_model 

from keras.layers import Dense, Embedding, LSTM, Bidirectional, Dropout 

from sklearn.model_selection import train_test_split 

import pandas as pd 

import numpy as np 

import pickle 

def configureModel(): 

    model = Sequential() 

    model.add(Embedding(21, 300, input_length=350)) 

    model.add(Dropout(0.5)) 

    model.add(Bidirectional(LSTM(400, dropout=0.5, recurrent_dropout=0.5))) 

    model.add(Dropout(0.5)) 

    model.add(Dense(100, activation="relu")) 

    model.add(Dense(50, activation="relu")) 

    model.add(Dropout(0.5)) 

    model.add(Dense(2, activation="sigmoid")) #sigmoid for binary classificaiton 

    model.compile(optimizer = "adam", 

                  loss = 'sparse_categorical_crossentropy', 

                  metrics = ['accuracy']) 

    model.summary() 

    return model 

# 

def getBestModel(X_Train, X_Test, Y_Train, Y_Test): 

    total_AA=21 

    model_i = configureModel()#100, 50,25,2 

    history = model_i.fit(X_Train, Y_Train, batch_size = 50, epochs = 60, validation_data = 

(X_Test, Y_Test)) 

    saveModel_dir = 

"../Projects/FinalYear/AAs/AA10/RNN/OptimizedModel/Em300_BiLSTM400_D100_D50_Ep60/Em300_BiLSTM400_

D100_D50_Ep60.h5" 

    model_i.save(saveModel_dir) 

    #simple_save(session,export_dir,) 

    # 

    predictions = model_i.predict(X_Test) 

    Y_Pred = np.argmax(predictions, 1) 

    print (classification_report(Y_Test,Y_Pred)) 

    # 

    history_dict = history.history 

    history_dict.keys() 

    acc = history.history['acc'] 

    val_acc = history.history['val_acc'] 

    loss = history.history['loss'] 

    val_loss = history.history['val_loss'] 

    epochs = range(1, len(acc) + 1) 

    # "bo" is for "blue dot" 

    plt.plot(epochs, acc, 'bo', label='Training loss') 

    # b is for "solid blue line" 

    plt.plot(epochs, val_acc, 'b', label='Validation loss') 

    plt.title('Training and validation loss') 

    plt.xlabel('Epochs') 

    plt.ylabel('Accuracy') 

    plt.legend() 

    plt.show() 

# 

#Pre-processing 



34 | P a g e  
 

#Reading training and test file 

TrainFileData = pd.read_csv("../Projects/FinalYear/AAs/AA10/RNN/TrainingFile/TrainingFile.csv") 

TestFileData = pd.read_csv("../Projects/FinalYear/AAs/AA10/RNN/TestFile/TestFile.csv") 

#Initializing Token with num_words=21 since there are 20 amino acids 

tokenizer = Tokenizer(num_words=21, char_level=True, split='') 

#Training the tokenizer on training data 

tokenizer.fit_on_texts(TrainFileData['Sequence']) 

#Saving tokenizer for future use 

TokenizerFile = 

"../Projects/FinalYear/AAs/AA10/RNN/OptimizedModel/Em300_BiLSTM400_D100_D50_Ep60/tokenizer.pickle

" 

with open(TokenizerFile, 'wb') as handle: 

    pickle.dump(tokenizer, handle, protocol=pickle.HIGHEST_PROTOCOL) 

#Converting the each amino acid to a integer 

X_Train = tokenizer.texts_to_sequences(TrainFileData['Sequence']) 

X_Test = tokenizer.texts_to_sequences(TestFileData['Sequence']) 

#Padding the sequence to avoid mismatch in length 

X_Train = pad_sequences(X_Train, maxlen=350) 

X_Test = pad_sequences(X_Test, maxlen=350) 

#Label 

Y_Train = TrainFileData['Label'] 

Y_Test = TestFileData['Label'] 

#Calling RNN function 

getBestModel(X_Train, X_Test, Y_Train, Y_Test) 
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Python script uploaded on GitHub for Data Cleaning 
#!/usr/bin/env python3 

#Author: Pulkit Anupam Srivastava 

#Co-authors: Eric L. Hegg, Michigan State University 

#      Brian G. Fox, University of Wisconsin-Madison 

#      Ragothaman M. Yennamalli, Jaypee University of Information Technology 

#Version: 1.0 

#Last Modified: 26 Feb, 2019 

#Description: The script filters out protein sequences with "X" amino acid. 

#Input: Fasta filename containing protein sequences with unrecognized residues. 

#Ouput: A fasta file with filtered out protein sequences 

from Bio import SeqIO 

import glob 

import os 

import sys 

# 

def genCleanFile(filename): 

   path_name, file_name = os.path.split(filename) 

   Sequences = SeqIO.to_dict(SeqIO.parse(filename, "fasta")) 

   str2ryt_newFile = "" 

   for key in Sequences: 

      if ("X" not in Sequences[key].seq): 

          str2ryt_newFile += Sequences[key].format("fasta") 

   outfile = path_name+"/Cleaned_"+file_name 

   with open(outfile, "w+") as f: 

       f.write(str2ryt_newFile) 

   f.close() 

   return outfile 

# 
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Python script uploaded on GitHub for feature extraction 
#!/usr/bin/env Rscript 

#Author: Pulkit Anupam Srivastava 

#Co-authors: Eric L. Hegg, Michigan State University 

#      Brian G. Fox, University of Wisconsin-Madison 

#      Ragothaman M. Yennamalli, Jaypee University of Information Technology 

#Version: 1.0 

#Last Modified: 26 Feb, 2019 

#Description: The script generate feature-sets for given protein sequence(s). 

#Input: Path to fasta file. Name of fasta file. 

#Output: Generates files containing descriptor value for all sequences in fasta file. 

library("protr") 

library("foreign") 

# 

args = commandArgs(TRUE) 

path2dir <- args[1] 

FastaFile <- args[2] 

# 

seq_class1 = readFASTA(FastaFile) 

seq_class1 = seq_class1[(sapply(seq_class1, protcheck))] 

#List of feature-sets 

func2perform=c('extractMoreauBroto','extractTC','extractDC', 

               'extractMoran','extractGeary','extractCTriad') 

#Iteration over list of feature-sets 

for (f in func2perform) 

{ 

  class1 = t(sapply(seq_class1, f)) 

  #Create a folder with feature-set name 

  dir.create(file.path(path2dir, f), showWarnings = FALSE) 

  # 

  outputfile_csv=file.path(path2dir,f,paste(f,".csv",sep="")) 

  write.csv(class1,outputfile_csv,sep=",",row.names=TRUE) 

  #Writes csv file having descriptor values for each protein sequence 

  data_class1 = read.csv(outputfile_csv,header=TRUE) 

  colnames(data_class1)[1]<-"ID" 

  data_class1$label <- "?" 

  mydata=rbind(data_class1) 

  write.csv(mydata,outputfile_csv,sep=",",row.names=TRUE) 

} 
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Python script uploaded on GitHub for feature-based neural network 

prediction 
#!/usr/bin/env python 

#Author: Pulkit Anupam Srivastava 

#Co-authors: Eric L. Hegg, Michigan State University 

#      Brian G. Fox, University of Wisconsin-Madison 

#      Ragothaman M. Yennamalli, Jaypee University of Information Technology 

#Version: 1.0 

#Last Modified: 26 Feb, 2019 

#Description: The script annotates a protein sequence as a member of given LPMO family or not. 

The prediction method 

#implemented in the script is feature based neural network, where descriptor value of protein 

sequences for each 

#fetaure-set is fed into the neural network. Once prediction is made by script for each feature-

set, the common 

#protein sequences predicted as a member of LPMO family in all feature-set is further labelled as 

potential LPMO. 

#Input: Path to fasta file. Name of the family of LPMO. 

#Output: A file with potential LPMO protein sequences. 

import numpy as np 

import pandas as pd 

import tensorflow as tf 

import glob 

import os 

import sys 

import subprocess 

import copy 

from tensorflow import keras 

from Bio import SeqIO 

from DataCleaning import genCleanFile 

#To extract IDs predicted as LPMO 

def getID(df): 

    ID_List = list() 

    for i in range(1,len(df)): 

        if (df.iloc[i].Predicted == 0): 

            #print ("D") 

            ID_List.append(df.iloc[i].ID) 

    return ID_List 

#To write a file having probability of a sequence to be LPMO or not 

def combinePredTest(Y_pred, ID_Test): 

    str2ryt = "Predicted\tID\n" 

    for i in range(0,len(ID_Test)): 

        str2ryt += str(Y_pred[i])+"\t"+ID_Test.iloc[i]+"\n" 

    return str2ryt 

#To annotate a sequence as member of given LPMO family 

def getPrediction(X_Test, ID_Test, path, func, family): 

    optimizedModel = os.path.join(sys.path[0],"Models",family,"fbdl",func+'.h5') 

    new_model = keras.models.load_model(optimizedModel) 

    predictions = new_model.predict(X_Test) 

    Y_Pred = np.argmax(predictions, 1) 

    # 

    PredTest = combinePredTest(Y_Pred, ID_Test) 

    PredTestFile = os.path.join(path,func,"FB_Predictions.txt") 

    with open(PredTestFile, "w+") as f_prediction: 

        f_prediction.write(PredTest) 

    f_prediction.close() 

#Input to be given while execution 

path2file = sys.argv[1] 

family = sys.argv[2] 

path, input_filename = os.path.split(path2file) 
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#To filter out protein sequence having unrecognized residues 

CleanedFastaFile = genCleanFile(path2file) 

#To generate descriptor value of protein sequences for each feature-set  

subprocess.call("Rscript "+os.path.join(sys.path[0],"ExtractFeatures.R ")+path+" 

"+CleanedFastaFile, shell=True) 

#List of feature-set 

func2change = ["extractGeary", "extractCTriad","extractDC", 

               "extractMoran", "extractMoreauBroto", "extractTC"] 

#Iteration over list of feature set for prediction of LPMO family members 

for i in func2change: 

    CSVFile = os.path.join(path,i,i+".csv") 

    df = pd.read_csv(CSVFile,index_col=0, dtype={'label':str}) 

    df_Test = df.dropna() 

    df_Test.reset_index(drop=True, inplace=True) 

    X_Test = df_Test.drop(['ID', 'label'], axis = 1) 

    ID = df_Test['ID'] 

    getPrediction(X_Test, ID, path, i, family) 

#For extracting common IDs 

first_list = second_list = common_list = list() 

for i in range(0,len(func2change)): 

    CSVFile = os.path.join(path,func2change[i],"FB_Predictions.txt") 

    df = pd.read_csv(CSVFile, sep = '\t') 

    if (i == 0): 

        ID_List_1 = getID(df) 

        first_list = copy.copy(ID_List_1) 

    else: 

        second_list = getID(df) 

        common_list = list() 

        for j in first_list: 

            if j in second_list: 

                common_list.append(j) 

        first_list = copy.copy(common_list) 

#For extracting Fasta sequence using common ID 

Sequences = SeqIO.to_dict(SeqIO.parse(CleanedFastaFile, "fasta")) 

str2ryt_newFile = "" 

for key in common_list: 

   str2ryt_newFile += Sequences[key].format("fasta") 

outSeqFile = os.path.join(path,"FB_Potential"+family+".fasta") 

with open(outSeqFile, "w+") as f_potentialLPMO: 

    f_potentialLPMO.write(str2ryt_newFile) 

f_potentialLPMO.close() 
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Python script uploaded on GitHub for long short-term memory (LSTMs) 

based prediction 
#!/usr/bin/env python 

#Author: Pulkit Anupam Srivastava 

#Co-authors: Eric L. Hegg, Michigan State University 

#      Brian G. Fox, University of Wisconsin-Madison 

#      Ragothaman M. Yennamalli, Jaypee University of Information Technology 

#Version: 1.0 

#Last Modified: 26 Feb, 2019 

#Description: The script annotates a protein sequence as a member of given LPMO family or not. 

The prediction method 

#implemented in the script is long short-term based neural network. 

#Input: Path to fasta file. Name of the family of LPMO. 

#Output: A file with potential LPMO protein sequences. 

from DataCleaning import genCleanFile 

from tensorflow import keras 

from keras.preprocessing.sequence import pad_sequences 

from keras.preprocessing.text import Tokenizer 

from Bio import SeqIO 

import pickle 

import glob 

import os 

import sys 

import numpy as np 

import pandas as pd 

import tensorflow as tf 

#Pre-processing of fasta file for prediction 

def PrepareFile(path, FastaFile): 

    str2ryt = "ID,Sequence\n" 

    Sequences = SeqIO.to_dict(SeqIO.parse(FastaFile, "fasta")) 

    for key in Sequences: 

        seq = Sequences[key].seq 

        str2ryt+= str(key)+","+str(seq)+"\n" 

    #Writing the pre-processed csv file 

    PreparedFile = os.path.join(path, "PreparedFile.csv") 

    with open(PreparedFile, "w+") as f_prepared: 

        f_prepared.write((str2ryt.strip())) 

    f_prepared.close() 

    return PreparedFile 

#To write a file having probability of a sequence to be LPMO or not 

def combinePredTest(Y_Pred, ID_Test, predictions): 

    str2ryt="ID\tConfidence\n" 

    for i in range(len(Y_Pred)): 

        if Y_Pred[i] == 1: 

            str2ryt+=ID_Test.iloc[i]+"\t"+str(predictions[i][1])+"\n" 

    return ((str2ryt.strip())) 

#To annotate a sequence as member of given LPMO family 

def getPrediction(X_Test, ID_Test, path, family): 

    optimizedModel = os.path.join(sys.path[0],'Models',family,'lstm','BestModel.h5') 

    new_model = keras.models.load_model(optimizedModel) 

    # 

    TokenizerFile = os.path.join(sys.path[0],'Models',family,'lstm','tokenizer.pickle') 

    with open(TokenizerFile, 'rb') as handle: 

        tokenizer = pickle.load(handle) 

    X_Test = tokenizer.texts_to_sequences(X_Test) 

    if ("AA9" in family): 

        X_Test = pad_sequences(X_Test, maxlen=300) 

    elif ("AA10" in family): 

        X_Test = pad_sequences(X_Test, maxlen=350) 

    # 
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    predictions = new_model.predict(X_Test) 

    Y_Pred = np.argmax(predictions, 1) 

    # 

    PredTest = combinePredTest(Y_Pred, ID_Test, predictions) 

    PredTestFile = os.path.join(path,"LSTM_Predictions.txt") 

    with open(PredTestFile, "w+") as f_prediction: 

        f_prediction.write(PredTest) 

    f_prediction.close() 

    return PredTest 

#Input to be given while execution 

path2file = sys.argv[1] 

family = sys.argv[2] 

path, input_filename = os.path.split(path2file) 

#To filter out protein sequence having unrecognized residues 

CleanedFastaFile = genCleanFile(path2file) 

#For Prediciton 

TestFileData = pd.read_csv(PrepareFile(path, CleanedFastaFile)) 

X_Test = TestFileData['Sequence'] 

ID_Test = TestFileData['ID'] 

common_list = getPrediction(X_Test, ID_Test, path, family) 

#For extracting Fasta sequence using ID 

Sequences = SeqIO.to_dict(SeqIO.parse(CleanedFastaFile, "fasta")) 

ID_List = pd.read_csv(os.path.join(path,"LSTM_Predictions.txt"), sep = "\t") 

common_list = ID_List['ID'] 

str2ryt_newFile = "" 

for key in common_list: 

   str2ryt_newFile += Sequences[key].format("fasta") 

outSeqFile = os.path.join(path,"LSTM_Potential"+family+".fasta") 

with open(outSeqFile, "w+") as f_potentialLPMO: 

    f_potentialLPMO.write(str2ryt_newFile) 

f_potentialLPMO.close() 


