PERFORMANCE EVALUATION OF SEQUENCE BATCH REACTOR USING DOMESTIC AND SYNTHETIC WASTEWATER

A

PROJECT REPORT

Submitted in partial fulfilment of the requirements for the award of the degree

of

BACHELOR OF TECHNOLOGY

IN

CIVIL ENGINEERING

Under the supervision

of

Mr Anirban Dhulia

(Assistant Professor)

by

NITESH CHANDEL (151654)

AMIT SINGH (151661)

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY WAKNAGHAT, SOLAN – 173234 HIMACHAL PRADESH, INDIA MAY – 2019

STUDENT'S DECLARATION

I hereby declare that the work presented in the project report entitled "Performance Evaluation of Sequence Batch Reactor using Domestic and Synthetic Wastewater" submitted for partial fulfilment of the requirements for the degree of bachelor of technology in civil engineering at Jaypee University of Information Technology, Waknaghat is an authentic record of my work carried out under the supervision of Mr Anirban Dhulia. This work has not been submitted elsewhere for the reward of any other degree/diploma. I am fully responsible for the contents of my project report.

Signature of Student

Name - Nitesh Chandel, Amit Singh

Roll no-151654, 151661

Department of Civil Engineering

Jaypee University of Information Technology, Waknaghat, india

Date: 8th MAY, 2019

CERTIFICATE

This is to certify that the work which is being presented in the project report titled "Performance Evaluation of Sequence Batch Reactor Using Domestic and Synthetic Wastewater" in partial fulfilment of the requirements for the award of the degree of Bachelor of Technology in Civil Engineering submitted to the Department of Civil Engineering, Jaypee University of Information Technology, Waknaghat is an authentic record of work carried out by Nitesh Chandel (151654), Amit Singh (151661) during a period from August, 2018 to November, 2018 under the supervision of Mr Anirban Dhulia Department of Civil Engineering, Jaypee University of Information Technology, Waknaghat. The above statement is correct to the best of our knowledge.

The above statement made is correct to the best of our knowledge.

Date:-....

Signature of supervisor	Dr. Ashok Kumar Gupta	External
Mr. Anirban Dhulia	Professor & Head of	Examiner
Assistant Professor	Department	
Department of Civil	Department of Civil	
JUIT Waknaghat	JUIT Waknaghat	

ACKNOWLEDGMENTS

I would like to thank so many people who have helped in every possible way in successful completion of this project. Firstly I would like to express my gratitude to my project guide Mr. Anirban Dhulia, who have provided me an opportunity to do this project under his guidance. He has provided valuable ideas and support during the course of this work. This work would not have been possible without his support.

I would like to thank our project coordinator and all other faculty members and technical staff of Department of civil engineering of Jaypee University of Information Technology for providing valuable input throughout the course of this work.

I would also like to thank staff of the Wastewater Treatment Plant at Jaypee University of Information Technology, Waknaghat for their support and help in the sample collection and analysis and finally my institute Jaypee University of Information Technology.

TABLE OF CONTENTS

STUDENT'S DECLARATIONI
CERTIFICATEII
ACKNOWLEDGMENTS III
LIST OF FIGURES
LIST OF TABLES
LIST OF ABBREVATIONS IX
ABSTRACT X
CHAPTER 1 1
INTRODUCTION1
1.1 OBJECTIVES
CHAPTER 2
LITERATURE REVIEW
2.1 SEQUENCING BATCH REACTOR
2.2 BACTERIAL GROWTH IN A BATCH REACTOR
2.5 NTRIFICATION
2.5 FACTORS AFFECTING SBR PERFORMANCE
2.6 USES OF SBR
2.7 SUMMARY RELATED TO SBR
2.10 SUMMARY DISCUSSION
CHAPTER 3
METHODOLOGY

3.1 EXPERIMENTAL SETUP	24
3.2 REACTOR DESIGN	25
3.3 WASTEWATER SAMPLES	25
3.4 COLLECTION OF SLUDGE	
3.5 REACTOR OPERATION	
3.6 PARAMETERS TO BE ANALYSED	27
CHAPTER 4	28
DATA ANALYSIS	28
4.1RESULTS AND DISCUSSION	28
4.1.1 BOD REMOVAL EFFICIENCY	28
4.1.2COD REMOVAL EFFICIENCY	29
4.1.3 DISSOLVED OXYGEN CONCENTRATION VARIATION IN THE REACTOR	29
4.1.4 TSS, TS, TDS REMOVAL EFFICIENCY	30
4.1.5 BOD REMOVAL EFFICIENCY	32
4.1.6 COD REMOVAL EFFICIENCY	
4.1.7 DISSOLVED OXYGEN CONCENTRATION VARIATION IN THE REACTOR	33
4.1.8 TSS, TS, TDS REMOVAL EFFICIENCY	34
4.1.9 BOD REMOVAL EFFICIENCY	
4.1.10 COD REMOVAL EFFICIENCY	37
4.1.11 DISSOLVED OXYGEN CONCENTRATION VARIATION IN THE REACTOR	39
4.1.12 TSS,TS.TDS REMOVAL EFFICIENCY	40
4.1.13 TS, TDS REMOVAL EFFICIENCY	43
4.1.14 COD REMOVAL EFFICIENCY	
4.1.15 DO VARIATION EFFICIENCY	
CHAPTER 6	48
CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK	
	48
	40
6.1 CONCLUSION	
6.2 SUGGESTIONS FOR FUTURE WORK	49
REFERENCES	50
APPENDIX A	52
A.1 REACTOR OPERATION	52
A.2 SAMPLING	54

APPENDIX B	
TABLE OF RESULTS	

LIST OF FIGURES

Figure A. 1 Mixing and Aeration in the Reactor	. 52
Figure A. 2 SBR Operation taking place	. 52
Figure A. 3 SBR Operation taking place	. 53
Figure A. 4 SBR Operation taking place	. 54
Figure A. 5 Wastewater Sample Taken From Wastewater treatment plant	. 55

LIST OF TABLES

Table 2. 1 Summary of Studies Related to SBR	9
Table 3. 1 Cycle and phase durations	26
Table B. 1 TSS Removal For Domestic Wastewater having 8 hr cycle	56
Table B. 2 TS Removal For Domestic Wastewater having 8 hr cycle	57
Table B. 3 TDS Removal For Domestic Wastewater having 8 hr cycle	58
Table B. 4 DO Variation For Domestic Wastewater having 8 hr cycle	59
Table B.5 COD Removal For Domestic Wastewater having 8 hr cycle	60
Table B. 6 BOD Removal For Domestic Wastewater having 8 hr cycle	61
Table B. 7 TSS Removal For Domestic Wastewater having 6 hr cycle	62
Table B. 8 TS Removal For Domestic Wastewater having 6 hr cycle	63
Table B. 9 TDS Removal For Domestic Wastewater having 6 hr cycle	64
Table B. 10 BOD Removal For Domestic Wastewater having 6 hr cycle	65
Table B. 11 COD Removal For Domestic Wastewater having 6 hr cycle	66
Table B. 12 DO variation For Domestic Wastewater having 6 hr cycle	67
Table B. 13 TSS Removal For Domestic Wastewater having 4 hr cycle	68
Table B. 14 TS Removal For Domestic Wastewater having 4 hr cycle	69
Table B. 15 TDS Removal For Domestic Wastewater having 4 hr cycle	70
Table B. 16 BOD Removal For Domestic Wastewater having 4 hr cycle	71
Table B. 17 COD Removal For Domestic Wastewater having 4 hr cycle	72
Table B. 18 DO variation For Domestic Wastewater having 4 hr cycle	73
Table B. 19 TDS Removal For synthetic Wastewater having 4 hr cycle	74
Table B. 20 TS Removal Day Wise For Synthetic Wastewater having 4 hr cycle	75
Table B. 21 COD Removal For Synthetic Wastewater having 4 hr cycle	76
Table B. 22 DO Variation For Synthetic Wastewater having 4 hr cycle	77
Table B. 23 TDS Removal For synthetic Wastewater having 6 hr cycle	78
Table B. 24 TS Removal For Synthetic Wastewater having 6 hr cycle	79
Table B. 25 COD Removal For Synthetic Wastewater having 6 hr cycle	80
Table B. 26 DO Variation For Synthetic Wastewater having 6 hr cycle	81
Table B. 27 TDS Removal For synthetic Wastewater having 8 hr cycle	82
Table B. 28 TS Removal For Synthetic Wastewater having 8 hr cycle	83
Table B. 29 COD Removal For Synthetic Wastewater having 8 hr cycle	84
Table B. 30 DO Variation For Synthetic Wastewater having 8 hr cycle	85

LIST OF ABBREVATIONS

BOD	Bio Chemical Oxygen Demand
COD	Chemical Oxygen Demand
SBR	Sequencing Batch Reactor
TSS	Total suspended Solids
TDS	Total dissolved solids
ASP	Activated sludge process
TS	Total Solids
HRT	Hydraulic Retention Time
SRT	Sludge Retention Time
EPS	Extracellular Polymeric Substance

ABSTRACT

Sequence batch reactor is a modified version of conventional ASP also it requires less space and less cost. In Sequence batch reactor separate settling tank is not needed settling or clarification can be done in a single tank and also separate aeration tank is not needed aeration is given in the single tank only. Sequence Batch Reactor requires less space than conventional ASP as an additional settling tank is not there in a Sequence Batch Reactor. In Sequence Batch Reactor separation of sludge from the wastewater happen in a single reactor. This study aims to compare firstly the performance and treatment capability of two lab scale Sequencing Batch Reactor (SBR) fed domestic and synthetic wastewater under different case of operations for total solids, total suspended solids, total dissolved solids, biochemical oxygen demand (BOD), chemical oxygen demand (COD) and also to analyse the response of two lab scale SBRs feed with synthetic and domestic wastewater. In this work domestic and synthetic wastewater is treated in a single batch reactor. The outcome of this work shows competent results having removal rates for TDS, TS, TSS COD, BOD in domestic wastewater was 87 %, 84 %. 73 %, 86 %, 86 % respectively analysed for 20 days of reactor operation having 8hr cycle time. Also synthetically prepared wastewater is analysed in a different reactor and removal rates for TDS, TS, COD was found to be 83 % 83 % 88 % and 84 % 84 % 89 % and 85 % 85 % 91 % for 4hr, 6hr, 8hr respectively analysed for 30 days.

CHAPTER 1

INTRODUCTION

In the past few years there is increase in awareness of the negative impact that wastewater discharges have on the aquatic life i.e. eutrophication when the wastewater is discharged in ponds lakes etc. that has led to the introduction of more strict legislation for controlling the effluents quality that is discharged from wastewater treatment plants. So to satisfy with these more stringent effluent quality standards, new wastewater treatment techniques have been introduced or the older techniques have been improved. The purpose of wastewater treatment is to lessen the unfavourable impacts of pollutants present in the wastewater on the nature and human health. Initially treatment of wastewater focused on the removal of contaminants such as suspended solids (SS), chemical oxygen demand, COD, and biochemical oxygen demand, BOD). Later the importance of the nutrient (N and P) nitrogen and phosphorous removal was recognised.

Wastewater treatment process consists consist of 3 - 4 stages of treatment.

- Preliminary treatment-This process focuses on removing large particles from the wastewater to prevent damage and also hinders efficiency treatment operations.
- Secondary treatment- In secondary treatment process biodegradable organic matter are removed which is either dissolved or suspended.
- Tertiary treatment- In this process residual SS are removed and disinfection is done.

The treatment of wastewater is done by four methods namely. In first method i.e. Physical methods tanks etc. are used for the removal of impurity from wastewater. In second i.e. Mechanical treatment we use machines for wastewater treatment. Third is biological method if we use bacteria and other micro-organisms for removal of pollutants from wastewater. For removal of pollutants from wastewater biological methods is used because it is more advantageous than other method used for wastewater treatment. The last method is Chemical this is used to increase the productivity of various phases in the treatment process. A sequencing batch reactor (SBR) is a fill-and-draw process (Secondary treatment process) for wastewater that is considered as biological methods of wastewater treatment. In SBR the treatment of wastewater is done in a reactor which is a fill and draw reactor commonly

known as batch reactor to eliminate pollutants from wastewater. These are widely used in the chemical and pharmaceutical industries. Sequencing batch reactor means the sequence of steps reactor under- goes as it receives wastewater. In this all operations are performed in a single tank. It means that SBR performs equalization, aeration and clarification steps in a single reactor. The conventional activated sludge process used for wastewater treatment was first made as a batch system, but due to certain problems like clogging of aeration diffusers and high operating time the system was changed to continuous flow system. During the past decades, due to advancement in technology electronic and mechanical timers, level sensors, jet aerators are being made which solves the problems which has encountered earlier in a batch system led to the reintroduction of batch treatment system. In recent years, SBRs have gained popularity for treatment of wastewater due recent technological advancement, which makes it more efficient than conventional activated sludge systems. In this it is very simple to increase the efficiency of treatment wastewater by changing the time duration of each phase.

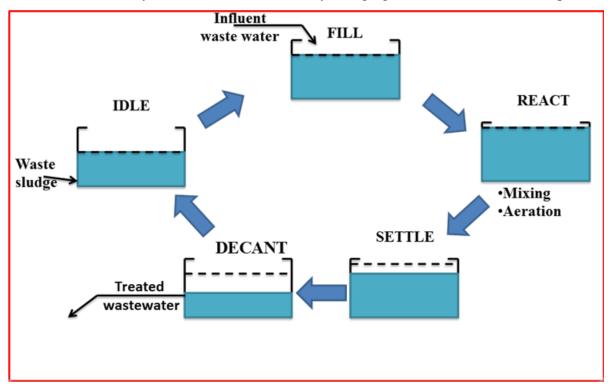


Figure 1.1 Schematic diagram of SBR Process

1.1 OBJECTIVES

• To study the performance of SBR for parameters Total Suspended Solids, Total Dissolved Solids, Total solids, COD, BOD.

• To analyse the response of two lab scale SBRs feed with synthetic and domestic wastewater for different cycle times.

1.2 NEED FOR STUDY

Conventional activated sludge process because it require separate clarifier or a settling tank so it space and cost requirement is more and sequence batch reactor .In SBR we can modify cycle time such as cycle of 4h,6h,8h according to pollutants present in the wastewater. If the pollutants present in the wastewater is more so more cycle time is given in the treatment process so that the effluent meets effluent discharge standards set by various environmental authorities. Potential cost of an SBR system is low as separate clarifiers are not used because equalisation, primary clarification and secondary clarification can be achieved in single tank due to which its potential cost decreases. In this we have Cyclic operations by which data gathering become very SBR system has very low operational costs than conventional system SBR can handle large variations in organic loadings as compared to conventional activated sludge process. As in this we have a settling period so we can easily identify problems of bacteria growth and settling problems and also can correct and control them. SBRs also perform well under shock loadings and varying influent flow rates.

CHAPTER 2

LITERATURE REVIEW

2.1 SEQUENCING BATCH REACTOR

During the early 19th century, for biological treatment of wastewater is done by activated sludge process is used and this process is developed by Ardern Locket and Flower. These analysts used crude sewage in the sequence batch reactor and later came up with an idea of sequence batch reactor which can be operated in a single tank or reactor with different phases such as filling of influent wastewater, reaction of influent wastewater by proper mixing and aeration, settling of sludge, decanting of treated wastewater so that. The treated effluent which was taken from the SBR treatment for testing different parameters had found to be of good quality but it experiences many functional problems such as clogging of aerators pores which advocate the development of continuous-flow ASP which has two tanks, one is known as aeration tank and another is equalization tank. After that Further advancement in the process of sequence batch reactor process happened in 1950's when a researcher named Pasveer and associates of his repeatedly used concepts of batch treatment in their varying volume ASP. After that in 1970's major advancement took place in the SBR technology in countries like US and Australia with the help of Environment Protection Agency (EPA). EPA also published design manuals for design of Sequence Batch Reactor in 1986 and 1992 which leads to broad scale implementation of the Sequence Batch Reactor. Due to technological advancement the operational difficulties experienced prior has been resolved, especially the use of jet aerators which solve the problem of clogging of pores of aerators and also good microprocessor control system. In today's time SBR has found its implementation on a large scale applicability (earlier there is a question mark on large scale applicability) which is due to technological modifications in the Sequence Batch Reactor treatment process, which will leads to greater efficiency of existing wastewater treatment facilities. The removal efficiency of Sequence batch reactor is generally high than ASP but it will also depend on the design of SBR and the manner of its working. Sequence Batch Reactor can attain good Biological Oxygen Demand removal capacity. Biological Oxygen Demand removal capacity is 85 % for ASP to 93-95 % for SBR. In SBR BOD discharge limits is smaller than 20 mg/L and thus can be achieved consistently. TKN levels of smaller than 8 mg/L can be accomplished by successive anoxic phase in which reformation of NH₃ to nitrates with the help of nitrifying

bacteria which is also called nitrification phase and anaerobic phase conversion of nitrates to nitrogen gas with the help of denitrifying bacteria which is also called the denitrification phase. Low phosphorus levels which is smaller than 1- 2 mg/L can be accomplished by employing a conjunction of biological treatment and chemical agents such as aluminium in treatment cycle.

2.2 BACTERIAL GROWTH IN A BATCH REACTOR

In a batch reactor if more and more mechanical mixing is provided EPS (Extracellular polymeric substances) is released in the system by microorganisms present in the system. The EPS excreted by the microorganisms in the wastewater leads to decrement in affinity of cell towards water and also changes charges on the surface of the cell which leads to better bacterial growth and better adherence of microbial cells and granulation by which large diameter granules are formed and ultimately leads to large bacteria growth in the system. Initially there is flocs of sludge in the system but as reactor runs continuously these flocs are converted large diameter granules having an average diameter of 0.2mm. These granules are formed due to interaction by inter particle bridging process among EPS, microbial cell, and ions. Bacteria can reproduce by binary fission, either by sexual mode or by budding. In a batch reactor food comes in terms of organic matter when we fed it with wastewater and sludge is inoculated which has microorganisms in it. These microorganisms reproduce by binary fission as more and more organic matter comes in they reproduce and there population becomes very large with time. These microorganisms when food supply is over these microorganisms eat their own protoplasm and at final stage of treatment process microorganism concentration decreases. Bacteria growth in reactor takes place in 4 phases.

- The Lag Phase: In Bacterial physiology lag phase is the phase which is essential so that bacteria cells will adapt to new environment. In this phase size of the bacteria increases but bacteria concentration is almost constant.
- The log phase: This phase is also known as exponential phase. During this phase growth in bacteria population takes place in an exponential manner means its number increases in an exponential manner and bacteria cells division takes place as fast as possible if the organic matter is readily available to them.
- The Stationary Phase: During this phase, bacteria growth is limited due to depletion of organic matter essential food is not available for microorganism bacteria

concentration remains relatively constant as growth rate of bacteria is equal to death rate of bacteria. Bacterial growth is constant.

 The Death Phase: In the death phase, due to non-availability of food i.e. organic matter microorganisms eat their own protoplasm due to which death of these microorganisms will takes place. No bacteria growth will take place in this phase.

2.3 NITRIFICATION

Nitrification is the process of change of NH_3 into NO_2 - and then it goes from NO_2 - to NO_3 for this conversion from ammonia to nitrite a special type of bacteria is used commonly known as autotrophic bacteria which leads to completion of nitrification process

Majority of the organic nitrogen immediately gets converted to NH_3 and high percentage of this NH_3 instantly gets converted into ionic NH_3 . The ionic and gaseous form of ammonia are also influenced by amount of H^+ ions in the water. More acetic solution favour the ionic form ammonia and basic solution favours gaseous form ammonia as the PH of waste water ranges from (6 to 9) almost all the ammonia present in ionic form.

The Nitrification process is a two stage process and the microorganisms present in nitrification activity are known as nitrifying bacteria named as Nitrosomonas and Nitrobacter. These microorganisms are known as autotrophs as these microorganisms obtain their energy for their maturation from the oxidation of nonorganic resources such as carbon dioxide (CO₂ compounds) and alkaline bicarbonate. These nitrifiers are highly dependent upon temperature, dissolved oxygen and PH lower the DO lesser will be the activity of nitrifier and higher temperature promotes the growth of nitrifier. The oxidation of NH₃-N to NO₂-N can only be done by Nitrosomonas bacteria, while the oxidation of NO₂-N to NO₃-N is done by nitrobacter bacteria. The conversion of ammonia nitrogen to nitrite nitrogen occurs in a two-step reaction listed below:

$$NH_4^+ + 1.5 \ 0_2 \rightarrow 2H^+ + H_2O + NO_2^-$$
 (Nitrosomonas) (2)

 $NO_2^+ + 0.5 \ 0_2 \rightarrow NO_2^- \text{ (Nitrobacter)} \tag{3}$

Combining Equations (2) and (3):

$$NH_4^+ + 20_2 + NO_3 - + 2H^+ + H_2 O$$
(4)

For the above reaction to happen, 4.56 mg of 0_2 are needed per milligram ammonium nitrogen.

2.4 BIOLOGICAL DENITRIFICATION MECHANISM

After nitrification N_2 is still there in the water as nitrates it is not as toxic as ammonia but still is harmful so the complete removal of nitrogen from the system is called denitrification. In this process the nitrate is converted into nitrogen gas (N2) with the help of heterotrophic bacteria. These bacteria needs food and to oxidize that food they need oxygen if DO is not present they use nitrate which is useful for denitrification. After that nitrate is converted into nitrogen gas and released from the system

2.5 FACTORS AFFECTING SBR PERFORMANCE

- pH: PH is plays a very important role in the good BOD,COD,TS,AMMONIA removing efficiency of the SBR .optimum pH condition is required for the growth of bacteria . For the removal of nitrogen pH should be between 6 to8, because the nitrifiers are dependent upon the pH, high pH will lead to decrease the functioning of nitrifiers.
- Temperature: Growth of bacteria depend upon the temperature very low temperature will decrease the growth and also decrease the removal efficiency of SBR. The sludge settlement became worse when the temperature decreases because of the less growth of bacteria the nitrification and denitrification effect was almost lost and seriously affected. Autotrophic bacteria growth depend upon temperature high temperature will lead faster growth and lower temperature will lead to slower growth. These bacteria is essential for the nitrification.
- Dissolved oxygen: DO is one of the most important factor in the performance of SBR Bacteria uses DO for the removal of microorganisms present in the wastewater also DO is very important in the nitrification process or we can say that DO is very essential for the nitrogen removal. DO is controlled and supplied by the aerators, if DO concentration decreases the efficiency to remove ammonia decreases so aeration time should be selected to achieve full nitrification for the best results.
- Cycle time: The cycle in SBR is bifurcated into five phases: First phase is fill phase second is react third is settle followed by draw and idle phases as shown above. There

are many types of fill and react phases, which depend upon aeration and mixing processes. By changing the cycle time we can conclude that at which cycle time the best removal efficiency is achieved. by changing the cycle time for example is mixing and aeration increases the nitrification processes improves because of the availability of good amount of DO for the autotrophs to remove nitrogen.

Mixing: mixing improves the biomass settling and the reactor performance. A stirrer is used to provide mixing for proper dispersion of sludge in the reactor and also so that sludge remain suspended in the reactor the stirring rate used is 1500-3000rpm and it mounted above the reactor. The removal efficiency of COD increases at this mixing rate .

2.6 USES OF SBR

Sequence batch reactor is very useful in the treatment of wastewater. SBR treats the wastewater by the process discussed earlier with the help of sludge and providing aeration and proper mixing.

- In a sequence batch reactor single tank is used we have no separate tank for settling so settling, mixing and aeration can be attained in a single tank.
- Effluent quality of discharge water meets the requirement of BOD, COD, TS, TDS, TSS for surfaces discharge.
- Power consumption of SBR is less than the conventional plant with better power savings at lower flows.
- High rate removal of total solids, BOD, COD and nitrogen which makes SBR highly efficient.
- Required less space and cost than that of conventional plant.
- SBR can be used for various types of wastewater like domestic, synthetic wastewater, brewery wastewater, swine wastewater etc.

2.7 SUMMARY RELATED TO SBR

A summary of various studies involving use of SBR is presented in Table 2.1.

Sl. No	Title	Journal Name (Year)	Author	Methodology	Conclusion
1	The key role	Journal of	Wang, Xiao-chun,	In this two	It is seen that
	of inoculated	environmental	Zhong-lin Chen,	inoculation	when granular
	sludge in fast	Sciences.	Jing Kang, Xia	sludge is taken	sludge which
	start-up of	(2019)	Zhao, Ji-min Shen,	one is granular	is stored is fed
	sequencing		and Liu Yang.	sludge which	in the reactor
	batch reactor			is stored	this sludge
	for the			sludge and	generate fully
	cultivation of			another is	grown
	aerobic			activated	granular after
	granular			sludge.	20 days of
	sludge.				operation and
					has more
					bacteria
					concentration
					as compared
					to when
					activated
					sludge is used.
2	A sequential	Journal of	Zi Jun Yong,	In this	Study was
	treatment of	Environmenta	Mohammed J.K.	research 6	done to treat
	intermediate	1	Bashir, Choon Aun	reactors were	COD, BOD.
	tropical	Management.	NG, Sumathi	used with a	NH3-N, TSS
	landfill	(2018)	SethuPathi	capacity of 1.5	and other
	leachate using			litre made	parameters
	a SBR and			from	using SBR
	coagulation.			polypropylene	followed with
					coagulation

Table 2.1	Summarv	of Studies	Related to SBR	ł
1 4010 -1 1	S annual J	01 0100	11010100000000	•

				SRT and HRT	using Alum in
				were fixed at	it. The
				30 and 20	efficiency of
				days. Sludge	treatment of
				was added in a	wastewater is
				ratio of 1:9.	found to be
				Sludge was	85.99 %,
				from palm oil	95.25 %,
				mill.	92.82 % and
					87.81 % for
					chemical
					oxygen
					demand,
					ammonia
					nitrogen and
					total
					suspended
					solids.
3	Use of	Bioresource	Liu, Yi, Jixiang	In this	Study shows
	magnetic	Technology.	Li,WenshanGuo,	research	that, by
	powder to	(2018).	HuuHao Ngo,	magnetic	adding
	effectively		Jiajun Hu, and	powder is	magnetic
	improve the		Min-tianGao.	added in an	powder in
	performance			SBR and its	SBR had 8.98
	of sequencing			consequence	% and 5.76 %
	batch reactors			is studied.	higher
	(SBRs) in				removal
	municipal				efficiencies
	wastewater				than that of
	treatment.				the
					conventional
					for ammonia
					and chemical

					oxygen
					demand.
4	Roles of	Chemical	Liu, Jun, Jun Li,	In this study	The SBR
	bacterial and	Engineering	Sarah Piché-	two SBRs are	which is fed
	epistylis	Journal.	Choquette, and	used having	with domestic
	populations in	(2018)	Balasubramanian	same sludge is	wastewater
	aerobic		Sellamuthu.	fed with	has fully
	granular SBRs			domestic or	grown aerobic
	treating			synthetic	granules
	domestic and			wastewater.	hence more
	synthetic				bacterial
	wastewaters				growth than
					synthetic
					waste water
					and also has
					greater
					treatment
					efficiency.
5	Organic micro	Bioresource	Wei, C.H., Wang,	The expulsion	The
	pollutants	Technology.	N., HoppeJones,	of 27 (OMPs)	experimental
	removal in	(2018)	C., Leiknes, T.,	in municipal	results
	sequential		Amy, G., Fang, Q.,	synthetic	indicated that
	batch reactor		Hu, X. and Rong,	wastewater	9 (organic
	followed by		Н.	was analysed	micro-
	nanofiltration			by using batch	pollutants)
	from			reactor which	shows good
	municipal			is of aerobic	organic
	wastewater			type and a	removal
	treatment.			batch reactor	which is over
				accompanied	60 %, six
				by	OMPs shows
				nanofiltration.	average biotic

					removal
					having
					efficiency of
					about (30 –
					70 %) and Ten
					OMPs showed
					low Organic
					removal
					which is less
					than 40 %.
6	A sequential	Journal of	Zi Jun Yong,	Six sequence	The outcome
	treatment of	Environmenta	Mohammed J.K.	batch reactor	of the study
	intermediate	1	Bashir, Choon Aun	is used made	shows good
	tropical	Management.	NG, Sumathi	up of	removal
	landfill	(2018)	SethuPathi	polypropylene	efficiencies
	leachate using			having 1.5	chemical
	a SBR and			litres of	oxygen
	coagulation.			capacity	demand, total
				parameters	suspended
				such as COD,	solids, and
				Ammonia, and	ammonia
				total	nitrogen
				suspended	having values
				solids are	84 %, 92 %
				tested after	and 94 %
				that alum is	respectively.
				used for	
				coagulation.	
7	Evaluation of	Biotechnolog	Beatriz Gil-Pulido,	sequence	The outcome
	dairy	y Reports.	Emma Tarpey,	batch reactor	of the study
	processing	(2018)	Eduardo	is used made	shows good
	wastewater bio		L.Almeida,	up of	removal

	treatment in an		William Finnegan	polypropylene	efficiencies
	IASBR		Xinmin Zhan		chemical
	system:		Alan D.W.	litres of	oxygen
	aeration rate		Dobson, Nial		demand, total
	impacts on		O'Leary.	six such	suspended
	performance		- <u>-</u>	reactors are	solids, and
	and microbial			used	ammonia
	ecology.			parameters	nitrogen
	6,			such as COD,	having values
				Ammonia, and	84 %, 92 %
				total	and 94 %
				suspended	respectively.
				solids are	
				tested after	
				that alum is	
				used for	
				coagulation.	
8	Effect of	Chemospher.	Liqiu Zhang	sequence	Partial
	cadmium on	(2018)	Jingjing Fan	batch reactor	nitification
	the		HangN. Nguyen	having 5 L	activity in
	performance		Shugeng Li	working	presence of
	of partial		Debora F	volume is	cadmium are
	nitrification		Rodrigues.	used for the	studied and it
	using			treatment of	is found that
	sequencing			landfill	partial
	batch reactor.			leachate	nitrification
				which	are not
				contains hefty	affected when
				metals.	concentration
					of cadmium is
					less than
					$5mg\l$ but
					when it above

					10 mg\L PN is
					affected its
					removal rate
					gets decreased
					by 30 %.
9	Development	Journal of	Batoul Bashiri,	In this	Outcome of
	of aerobic	Environmenta	Narges Fallah,	research two	this study
	granules from	1 Chemical	Babak	wastewater is	showed that
	Slaughterhous	Engineering.	Bonakdarpour,	used one is	chemical
	e wastewater	(2018)	Shilan Elyasi.	synthetically	oxygen
	in treating real			prepared and	demand
	dyeing			another is	maximal
	wastewater by			collected from	removal
	Sequencing			dyeing	efficiency was
	Batch Reactor.			industry.	found to be 87
					% while
					maximum
					removal
					efficiency for
					dyeing is 43
					% only. It is
					also seen that
					if
					concentration
					of dyeing
					wastewater is
					increased to
					hundred
					percent the
					aerobic
					granules gets
					destroyed.

10	Evaluation of	Process Safety	Abedinzadeh, N.,	Sequence	Fenton
	colour and	and	Shariat, M.,	Batch Reactor	oxidation used
	COD removal	Environmenta	Monavari, S. M.,	is used having	in this leads
	by Fenton	1 Protection.	& Pendashteh, A.	3.5 litres	higher
	from	(2018)		working	removal rates
	Biologically			volume and a	for chemical
	(SBR) pre-			wastewater	oxygen
	treated pulp			sample from a	demand and
	and paper			pulp paper	colour by this
	wastewater.			industry.	the total
					chemical
					oxygen
					demand
					removal
					efficiency was
					found 97.9 %
					and colour
					removal
					efficiency of
					93.8 %
					respectively.
11	Effects of	Bioresource	Zhao, J., Li, Y.,	Two 4-L	The result
	carbon sources	Technology.	Chen, X. and Li,	sequence	shows that by
	on sludge	(2018)	Υ.	batch reactor	using different
	performance			were taken by	carbon
	and microbial			the	sources in the
	community for			researchers	two reactor
	4-			and fed with	doesn't affect
	chlorophenol			synthetic	efficiency and
	wastewater			wastewater.	bacterial
	treatment in			One SBR is	growth in the
	sequencing			fed with starch	reactor means
	batch reactors.			which act as a	the two

				carbon source,	reactor has
				and in another	same
				reactor	contaminants
				sodium	removal
				acetate act as	efficiency.
				a carbon	·
				source.	
12	Effect of	Biotechnolog	Yuanyuan Zhao,	Three similar	This study
	different	y Reports.	Hee-Deung Park	batch reactor	used IASBRs
	salinity	(2018)	Jeong-Hoon Park,	were used	for treatment
	adaptation on		Fushuang Zhang,	having a	of dairy
	the		Chen Chen	capacity of 81.	wastewater
	performance		Xiangkun Li ,	Three reactors	and the
	and microbial		Dan Zhao Fangbo	used are	wastewater is
	community in		Zhao.	having	analysed for
	a sequencing			dissimilar	chemical
	batch reactor.			aeration	oxygen
				scheme	demand, N
				having values	and P. It is
				of 0.6, 0.8, 0.9	seen that
				litres per	aeration
				minute.	scheme 0.6
					L\min is most
					efficient
					giving 93 %
					efficiency.
13	Efficiency of	Data in brief	Abdolkazem Neisi,	Study of	Showed that
	sequencing	(2018)	Shirin Afshin,	biodegradatio	the mixed
	batch reactor		Yousef	n of Methyl	microbial
	for removal		Rashtbari, Ali	Tertiary Butyl	mass degrades
	of organic		Akbar Babaei,	Ether was the	the high
	matter in the		Yusef Omidi	aim using	concentration

	effluent of		Khaniabadi, Anvar	SBR at a pilot	of methanol
	petroleum		Asadi ,	scale.	(250 mg/L),
	Wastewater.		Mohammad	The reactor	and
			Shirmardi,	was made of	concentration
			Mehdi Vosoughi.	thick glass	of MTBE up
				cylinder	to 70 mg/L in
				(3mm) with	a 24 h cycle.
				internal	Analysis also
				diameter of 12	proved that
				cm and 60 cm	the mixed
				height.	microbial
					mass helps to
					biodegrade the
					COD up to
					1350 (mg/L)
					in effluent.
					Aerobic SBR
					can be used
					for biological
					treatment of
					the petroleum
					wastewater
					containing
					pollutants
					named as
					Methanol,
					MTBE with
					good
					efficiency.
14	Influence of	Journal of Bio	Quan Li, Shaopo	Here the lab	According to
	temperature on	resource	Wang, Pengda	scale sequence	results the
	an Anammox	Technology.	Zhang, Jingjie Yu,	batch reactor	nitrogen
	sequencing	(2018)	Chunsheng Qiu,	of working	removal

	batch reactor		Jianfeng	volume 14 L	efficiency and
	(SBR) under		Zheng.	was used. The	anammox was
	lower nitrogen			synthetic	lower under
	load.			wastewater	lower
				was fed in the	temperature
				bioreactor	.The
				with the help	Anammox
				of the pump	bacteria
				along with	shifted from
				controlling	Ca. Brocadia
				temperature.	to Ca when
				A mechanical	the
				mixer, a valve	temperature
				and switches	decreases
				for controlling	from 34 °C to
				parameters are	15 °C.
				used.	
15	Improving	Bioresource	Yue Yuan, Jinjin	Two SBR	In this it was
	municipal	Technology	Liu, Bin Ma, Ye	which were	seen that
	wastewater	(2016)	Liu,Bo Wang,	compared and	removal
	nitrogen and		Young Zhen Peng	one was fed	efficiency of
	phosphorous			with sludge	TN and
	removal by			alkaline	phosphorous
	feeding sludge			fermentation	were found to
	fermentation			product as	be 82.9 % and
	products to			carbon source	96 % in
	SBR.			and other	sludge fed
				without the	reactor and
				sludge.	without fed
					without fed
					without fed was 55.9 %

					(phosphorous)
					. Compared
					with other
					Biological
					Nutrient
					Removal the
					sludge fed
					reactor could
					be more
					efficient and
					reduces the
					sludge per
					day.
16	High	Journal of	Zinadini, Sirus,	Two SBR	The one
	frequency	Environmenta	MasoudRahimi,	were used one	having
	ultrasound-	1 Chemical	Ali Akbar	having	ultrasound
	induced	Engineering.	Zinatizadeh, and	ultrasound in	(1.8 MHz)
	sequence batch	(2015)	Zahra	it another one	which is of
	reactor as a		ShaykhiMehrabadi	having no	high
	practical			ultrasound in	frequency led
	solution for			it.	to increase in
	high rate				settling ability
	wastewater				with no
	treatment.				harmful effect
					on bacterial
					growth hence
					treatment
					efficiency is
15		T 1 ^		T	increased.
17	Use of	Journal of	Alemayehu	In this	The nitrate
	sequencing	environmental	Mekonen,Pradeep	research	removal
	batch reactor	engineering	Kumar, and	removal	efficiency was

	for biological	(2015)	Arvind Kumar.	efficiency of	remarkably
	Denitrification			SBR for	high and was
	of high nitrate-			drinking water	in the range of
	containing			is accessed in	88.7 – 92.3 %.
	water.			terms of	Aerobic phase
				nitrate	time of 4, 6,
				concentration.	and 8 h were
					generally
					required to
					bring nitrate
					conc. in water
					to allowable
					limits.
18	Response of a	Water	Pei Huang,	Two lab scale	Stage1
	sludge-	Research.	Ramesh Goel	SBR were	(Synthetic for
	minimizing	(2015)		used, one in	63 days),
	lab-scale BNR			sludge	stage 2
	reactor when			minimising	(mixture of
	the operation			mode and	real and
	is changed to			other as	synthetic),
	real primary			conventional	Stage 3 (only
	effluent from			activated	effluent). It is
	synthetic			sludge mode	seen that the
	wastewater.			for more than	modified
				300 days.	sequence
				Firstly, both	batch reactor
				were started	yielded 66 %
				using	less biomass
				synthetic	as compared
				wastewater	to activated
				and then the	sequence
				effluent.	batch reactor
					and also

					modified
					sequence
					batch reactor
					generates 50
					% smaller
					biomass than
					control-
					sequence
					batch reactor
					when there is
					change from
					synthetic
					wastewater to
					original
					wastewater.
19	Temperature	Journal of	Damir Brdjanovic,	This study	It is seen that
	effects on	environmental	Mark C. M. van	shows that	the effect of
	physiology of	engineering	Loosdrecht,	sludge were	temperature
	biological	(2014)	Christine M.	inoculated at	on the kinetics
	Phosphorus		Hooijmans,3	21 °C in an	of the
	removal.		Guy J. Alaerts, and	anoxic-oxic	processes
			Josef J. Heijnen.	acetate fed	were very
				reactor.	strong under
					anoxic as well
					as oxic phase.
					The anoxic
					acetate uptake
					or we can say
					that
					phosphorous
					release rate
					showed a
					maximum at

					21 °C.
					However, a
					continuous
					increase was
					seen in the
					temperature
					gap of
					6 - 31 °C for
					the conversion
					rates under the
					oxic phase.
20	Cultivation of	Bioresource	Rosman, Noor	In this rubber	A chemical
	aerobic	Technology	Hasyimah, Aznah	wastewater is	oxygen
	granular	(2013)	Nor Anuar,	used in SBR	demand
	sludge for		Inawati Othman,	for treatment	removal rate
	rubber		Hasnida Harun,	having cycle	of 97.5 % and
	wastewater		Muhammad Zuhdi	time of 3 h	NH3 removal
	treatment.		Sulong, Siti Hanna	and aerobic	rate of 95.8 %,
			Elias, Mohd Arif	granular	TKN removal
			Hakimi Mat	sludge is	rate of 88.9 %
			Hassan,	cultured in the	were
			Shreesivadass	reactor at 26	observed.
			Chelliapan, and	°C and at pH	
			Zaini Ujang .	of 7.5.	

2.10 SUMMARY DISCUSSION

- The seed sludge was taken from an aeration tank of wastewater treatment plant which will lead to bacterial growth in SBR for decomposition of organic matter present in influent wastewater these bacteria needs oxygen for decomposition of organic matter present in the waste water so aerators are used for that.
- 2. Aerobic granular sludge is used. A well-developed spherical shaped aerobic granules formed within 20 days by which there is better microbial activity and better growth of

bacteria which will enhance the performance of the reactor also the domestication time for these granules is less i.e. 22 days while in case of activated sludge formation of mature granules take about 70 days so aerobic granular sludge effectively shortens the domestication time and increases settling ability and microbial activity.

- 3. Due to formation of aerobic granules as discussed above a chemical oxygen demand removal rate of 97.5 % was achieved and NH3 removal rate of 95.7 % was observed. In addition TKN removal rate of 88.9 % were observed in the batch reactor for treatment of wastewater.
- 4. It is seen that if we use high frequency ultrasound it will make the system more reliable by increasing the settling velocity without having any adverse effect on microbial activity and its growth.
- If we use magnetic powder in sequencing batch reactor it will give us higher removal efficiencies for ammonia and chemical oxygen demand i.e.(7.76 % and 4.76 % higher) as compared to conventional SBR (without magnetic powder).

CHAPTER 3

METHODOLOGY

3.1 EXPERIMENTAL SETUP

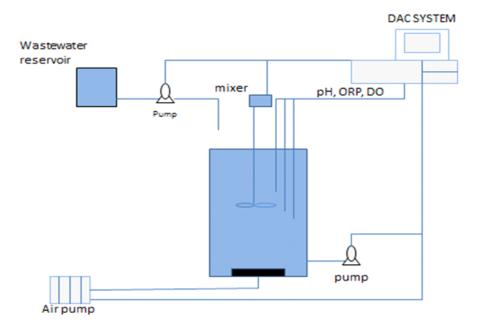


Figure 3. 1 Schematic diagram of SBR

Reactor-A reactor (fig 2.1) is constructed in which influent wastewater comes in and gets treated having working volume of 3L and total volume of 6l having three openings.

Mixer-A stirrer (fig 2.1) is used for proper dispersion of sludge in the reactor and also so that sludge remain suspended in the reactor the stirring rate used is 1500-3000rpm and it mounted above the reactor.

Air Pumps-These are used to give aeration (fig 2.1) in the reactor which is necessary for microorganisms to oxidise organic matter. Aerators having capacity 1.51\min is used.

Pipes-They are connected (fig 2.1) to aerator for carrying the air to the reactor for treatment process.

Diffusers-These are connected to aerators pipes for proper dispersion of air in the reactor for proper decomposition of biomass.

Controllers-They are fitted to aerator pipes to regulate the flow air going the reactors for treatment process.

3.2 REACTOR DESIGN

The experiment was conducted using two lab (fig 2.2) scale sequencing batch reactors (SBR), having a working volume of 3 L with a total volume 6 L (fig 2.2). The lab scale SBR system was installed at the environmental lab in Jaypee University of Information Technology. The body of the SBR was fabricated using a transparent acrylic sheet tube with an inner diameter of 190 mm and outer diameter of 200 mm and a total height of 20.6 cm having 5 cm free,5 cm for sludge retention, and remaining 10.6 cm as working height. Reactor is constructed with 3 opening one is 5 cm from top another 5cm from bottom and one at the middle of the reactor as shown in the figure above. The whole system consisted of the body of the reactor, for feeding and discharging of influent and effluent respectively two peristaltic pumps are used and 3 probes are used for the measurement of temperature dissolved oxygen content (DO) and ph. Aerators was used for air supply into the reactor and two stone diffusers are used for proper dispersion of air. Mixing was provided by mechanical mixers.

3.3 WASTEWATER SAMPLES

There are two types of wastewater samples used in this operation one is domestic wastewater The domestic wastewater is collected from wastewater treatment plant of Jaypee University of Information Technology Waknaghat, Solan and another is synthetic wastewater which is prepared synthetically in the lab whose composition is given in table 3.1 given below, The domestic wastewater is collected from wastewater treatment plant on regular basis for 3months and fed regularly in the reactor while the synthetic wastewater is prepared in the lab. Regularly for another 3 months and also fed regularly into the reactor, In the reactor after treatment of domestic and synthetic wastewater parameters such as BOD, COD, TSS, TDS, TS and DO are checked on regular basis.

3.4 COLLECTION OF SLUDGE

The sludge is collected from the aeration tank of wastewater treatment plant of Jaypee University of Information Technology Waknaghat Solan. Which is stored in the dark at 4 °C

so that no bacteria growth takes place in that sludge. The seed sludge in 1:5 is inoculated i.e. one part of sludge in 5 parts of wastewater. The sludge collected is aerobic granular sludge which is having high settling velocity and also high bacteria richness. Bacteria richness is due to conversion flocs of sludge to aerobic granules of sludge which is of spherical shape and large diameter as diameter of aerobic granules increased during granulation process epistylis bacteria stick to surface of granules formed by aerobic granulation process which led to rise in efficiency and effectiveness of water treatment process. Sludge plays a very important role in the reactor operation as it contains microorganisms which is necessary for the treatment of wastewater.

3.5 REACTOR OPERATION

Data are collected at a liquid temperature of 25 ± 2 °C. In this we use two SBR which was filled with 3 L (fig3.1) of influent wastewater. In which seed sludge in 1:5 is inoculated. First SBR is filled with domestic wastewater and another with synthetic wastewater. The operating cycle of SBR consists of five phases, FILL, REACT, SETTLE, DECANT and IDLE. In this we perform three cycles of 5 phases having time duration of 6h, 8h, 4h. When the fill stage starts, the influent wastewater comes in the reactor body. After that react phase consists an aerobic and anaerobic process. The wastewater in the reactor body was mixed by a 4 bladed stirrer blades having radius of 2 cm and air was supplied at the rate of 1.5 L/min with aerators fitted with air diffusers during the aerobic phase in the reactor basin and porous diffusers are used for proper dispersion of air. During settle period a layer of thick sludge was formed at the bottom which was removed during the idle phase. During draw stage clear water is obtained at the top as sludge gets settled down the clear water at the top is known as which was then supernatant was removed with peristaltic pumps. The effluent decanted was collected and sample analysis is done.

Table 3.1 Cycle and p	hase durations
-----------------------	----------------

Cycle Time (h)	Fill Time (h)	React Time (h)	Settle Time (h)	Decant Time (h)
4	0.5	2	2	0.5
6	0.5	3	3	0.5
8	0.5	4	4	0.5

3.6 PARAMETERS TO BE ANALYSED

The influent and the effluent wastewater water are analysed for various parameters listed below

- Biochemical oxygen demand
- Chemical oxygen demand
- Suspended solids
- Dissolved solids
- Total solids
- Dissolved Oxygen
- pH

The BOD, COD, TSS, TDS, TS were measured as per standard method according to (APHA, 2005).DO is measured using DO meter and pH using pH strips.

CHAPTER 4

DATA ANALYSIS

4.1RESULTS AND DISCUSSION

4.1.1 BOD REMOVAL EFFICIENCY

The BOD₅ value in wastewater is used to know how much organic matter is removed in the treatment process. our experiment started by filling 3L of raw influent wastewater into the lab scale SBR basin, having an average influent BOD₅ 151 mg\l. As seen in fig-4.1 effluent BOD₅ concentrations in the first 5 to 7 days had high values and reactor efficiency is almost constant (65%) and very less after that reactor efficiency increases upto 86% and there is decrement in effluent concentration this is due to reason that bacteria growth rate becomes higher due to conversion flocs of sludge to aerobic granules of sludge which is of spherical shape and large diameter due to increase in diameter of aerobic granules and because of its spherical shape bacteria stick to the surface of granules which led to increase efficiency which is also seen in the graph as efficiency increases towards the end.

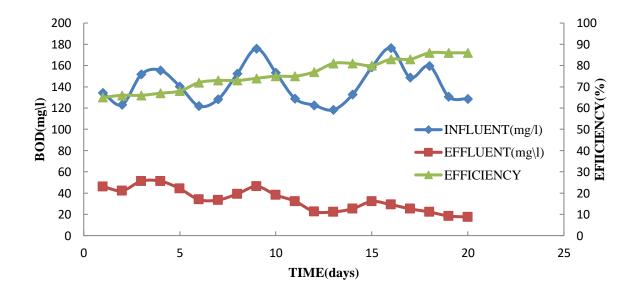


Figure 4. 1 BOD Removal Domestic Wastewater 8hr Cycle Time

4.1.2COD REMOVAL EFFICIENCY

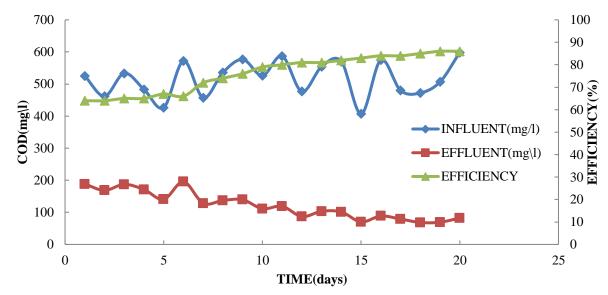


Figure 4. 2 COD Removal Domestic Wastewater 8hr Cycle Time

In the water treatment process during its first few days, the COD concentration decrement was unsatisfactory which is due to acclimatizing process of the microorganisms with the wastewater present in the bioreactor. after 5-7 days of operation aerobic granulation process starts in the reactor leading to better efficiency. In the first few days COD removal efficiency was about (fig-4.2) 65 % but later aerobic granulation process starts and removal efficiency increases up to (fig-4.2) 86 % which gives satisfactory results.

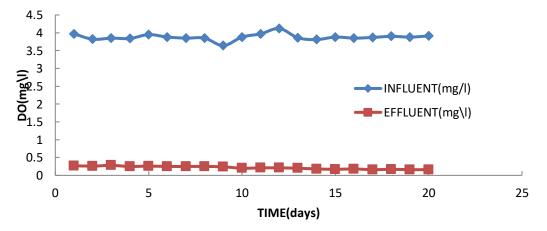
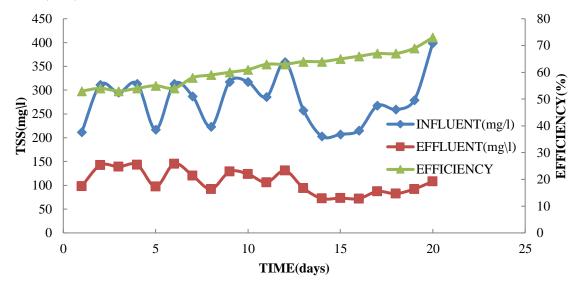



Figure 4. 3 Variation of DO with Time Domestic Wastewater 8hr Cycle Time

In the batch reactor the influent DO concentration was around (fig-4.3) 3.88 mg/L microorganisms present in the batch reactor reproduce itself by binary fission as more and more organic matter comes in the basin they reproduce and there population becomes very large with time. These microorganisms present in the reactor require oxygen to breakdown organic matter that's why DO concentration decreases at effluent level to approximately 0.22 mg/L when food supply is over these microorganisms eat their own protoplasm and at final stage of treatment process microorganism concentration decreases at the end of process.

4.1.4 TSS, TS, TDS REMOVAL EFFICIENCY

Figure 4. 4 TSS Removal Domestic Wastewater 8hr Cycle Time

Total suspended solids (TSS) vary from the influent concentration range of (fig-4.4) 211 - 398 mg/L to effluent concentration range of (fig-4.4) 72 - 145 mg/L giving an average removal efficiency of 55 % in the first 5 - 7 days after that removal efficiency increases to 73 % at the end of the 20th day which is due to bacteria growth which led to increased bacteria concentration or we can say that microbial growth in the bioreactor which led to increased efficiency and settling ability of the sludge so there is good separation of sludge from the treated effluent thus a clear effluent is obtained at the top in the batch reactor due to well settling granules.

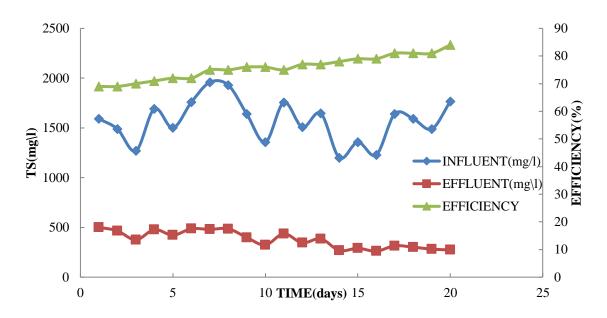


Figure 4. 5 TS Removal Domestic Wastewater 8hr Cycle Time

Total solids (TS) varied from the initial value in the range of (fig-4.5) 1500 - 1958 mg/L to effluent value in the range of (fig-4.5) 237 - 617 mg/L at the end of 20th day of the experiment and the average removal rate initially in first few days was about 70 % but as number of days increases its efficiency increases up to 84 % the reason behind that is our HRT and SRT are very less. So at the start of the experiment SRT and HRT are less so microbial population is less after few days of operation aerobic granulation process starts due to which bacteria population increases and efficiency increases.

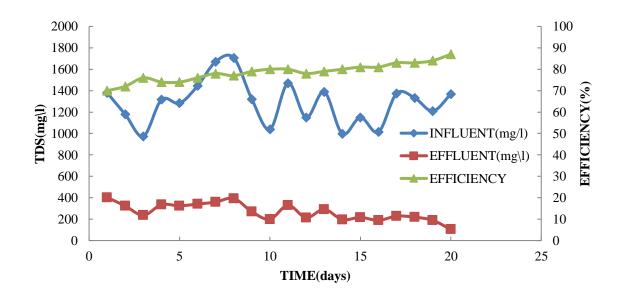



Figure 4.6 TDS Removal Domestic Wastewater 8hr Cycle Time

Total dissolved solids (TDS) influent concentration vary in the range from (fig-4.6) 900 - 1734 mg/L to (fig-4.6) 140 - 461 mg/L effluent concentration. In this the same pattern has been followed having low efficiency in first few days and efficiency increases after that. As aerobic granulation process starts after running the reactor for first few days which leads to better biomass growth and better bacteria concentration in the reactor parameters such as nitrogen, phosphates etc. decreases which decreases TDS concentration in the reactor.

4.1.5 BOD REMOVAL EFFICIENCY

Figure 4.7 BOD Removal Domestic Wastewater 6hr Cycle Time.

The BOD₅ value in wastewater is used to know how much organic matter is removed in the treatment process. our experiment started by filling 3 L of raw influent wastewater into the lab scale SBR basin, having an average influent BOD₅ 154 mg\L. As seen in fig-4.7 effluent BOD₅ concentrations in the first 5 to 7 days had high values and reactor efficiency is almost constant (64 %) and very less after that reactor efficiency increases up to 90 % and there is decrement in effluent concentration this is due to reason that bacteria growth rate becomes higher due to conversion flocs of sludge to aerobic granules of sludge which is of spherical shape and large diameter due to increase in diameter of aerobic granules and because of its spherical shape bacteria stick to the surface of granules which led to increase efficiency which is also seen in the graph as efficiency increases towards the end.

4.1.6 COD REMOVAL EFFICIENCY

In the water treatment process during its first few days, the COD concentration decrement was unsatisfactory which is due to acclimatizing process of the microorganisms with the wastewater present in the bioreactor. After 5-7 days of operation aerobic granulation process starts in the reactor leading to better efficiency. In the first few days COD removal efficiency was about (fig-4.8) 65 % but later aerobic granulation process starts and removal efficiency increases up to (fig-4.2) 91 % which gives satisfactory results.

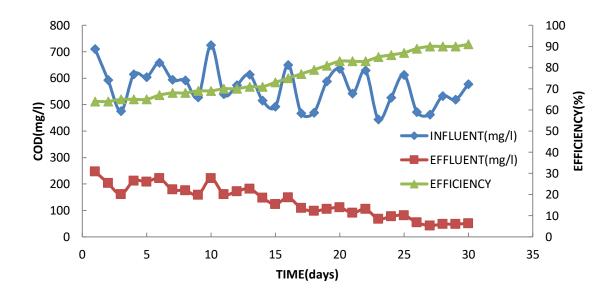


Figure 4.8 COD Removal Domestic Wastewater 6hr Cycle Time

4.1.7 DISSOLVED OXYGEN CONCENTRATION VARIATION IN THE REACTOR

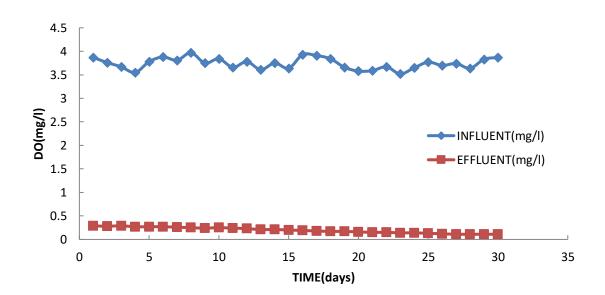
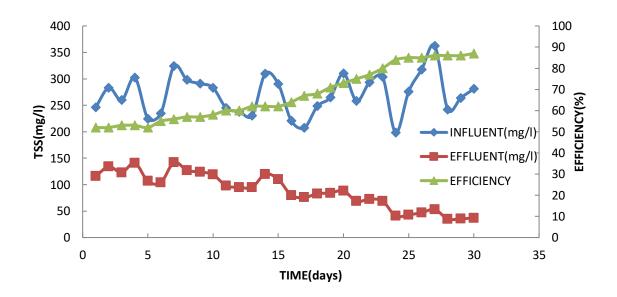



Figure 4.8 Variation of DO with Time Domestic Wastewater 6hr Cycle Time

In the batch reactor the influent DO concentration was around (fig-4.9) 3.87 mg/l microorganisms present in the batch reactor reproduce itself by binary fission as more and more organic matter comes in the basin they reproduce and there population becomes very large with time. These microorganisms present in the reactor require oxygen to breakdown organic matter that's why DO concentration decreases at effluent level to approximately 0.22mg/l when food supply is over these microorganisms eat there own protoplasm and at final stage of treatment process microorganism concentration decreases at the end of process.

4.1.8 TSS, TS, TDS REMOVAL EFFICIENCY

Figure 4.9 TSS Removal Domestic Wastewater 6hr Cycle Time

Total suspended solids(TSS) vary from the influent concentration range of (fig-4.10) 198-363mg/l to effluent concentration range of (fig-4.10) 35-145mg/l giving an average removal efficiency of 52% in the first 5-7 days after that removal efficiency increases to 87 % at the end of the 30th day which is due to bacteria growth which led to increased bacteria concentration or we can say that microbial growth in the bioreactor which led to increased efficiency and settling ability of the sludge so there is good separation of sludge from the treated effluent thus a clear effluent is obtained at the top in the batch reactor due to well settling granules.

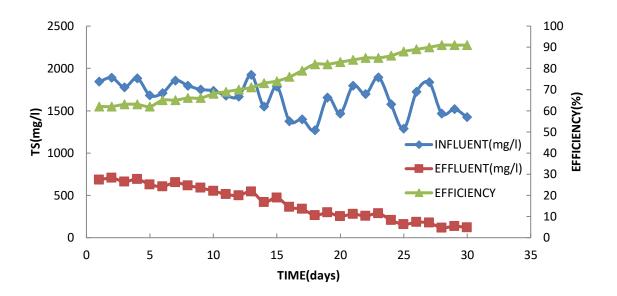


Figure 4.10 TS Removal Domestic Wastewater 6hr Cycle Time

Total solids (TS) varied from the initial value in the range of (fig-4.11) 1288-1923 mg/l to effluent value in the range of (fig-4.11) 118-622mg/l at the end of 20th day of the experiment and the average removal rate initially in first few days was about 62% but as number of days increases its efficiency increases upto 91% the reason behind that is our HRT and SRT are very less. So at the start of the experiment SRT and HRT are less so microbial population is less after few days of operation aerobic granulation process starts due to which bacteria population increases and efficiency increases.

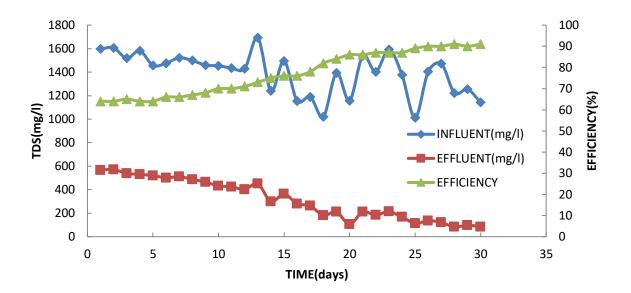


Figure 4 11 TDS Removal Domestic Wastewater 6hr Cycle Time

Total dissolved solids (TDS) influent concentration vary in the range from (fig-4.12) 1000-1700mg/l to (fig-4.6) 83-572mg/l effluent concentration. In this the same pattern has been followed having low efficiency in first few days and efficiency increases after that. As aerobic granulation process starts after running the reactor for first few days which leads to better biomass growth and better bacteria concentration in the reactor parameters such as nitrogen, phosphates etc. decreases which decreases TDS concentration in the reactor.

4.1.9 BOD REMOVAL EFFICIENCY

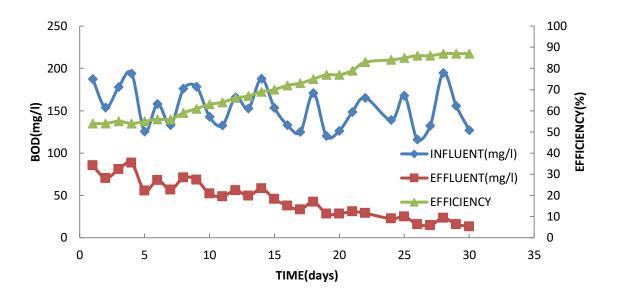


Figure 4.12 BOD Removal Domestic Wastewater 4hr Cycle Time

The BOD₅ value in wastewater is used to know how much organic matter is removed in the treatment process. our experiment started by filling 3L of raw influent wastewater into the lab scale SBR basin, having an average influent BOD₅ 154 mg/l. As seen in fig-4.13 effluent BOD₅ concentrations in the first 5 to 7 days had high values and reactor efficiency is almost constant (54%) and very less after that reactor efficiency increases upto 87% and there is decrement in effluent concentration this is due to reason that bacteria growth rate becomes higher due to conversion flocs of sludge to aerobic granules of sludge which is of spherical shape and large diameter due to increase in diameter of aerobic granules and because of its spherical shape bacteria stick to the surface of granules which led to increases efficiency which is also seen in the graph as efficiency increases towards the end.

4.1.10 COD REMOVAL EFFICIENCY

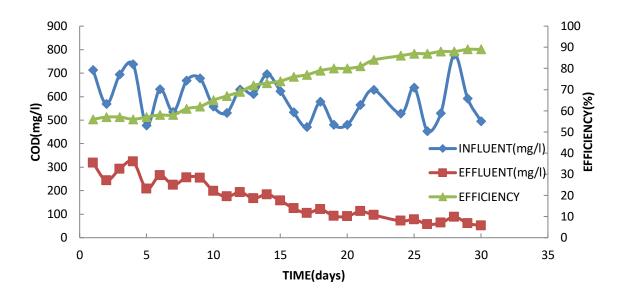


Figure 4.13 COD Removal Domestic Wastewater 4hr Cycle Time

In the water treatment process during its first few days, the COD concentration decrement was unsatisfactory which is due to acclimatizing process of the microorganisms with the wastewater present in the bioreactor. after 5-7 days of operation aerobic granulation process starts in the reactor leading to better efficiency. In the first few days COD removal efficiency was about (fig-4.14) 56% but later aerobic granulation process starts and removal efficiency increases upto (fig-4.14) 89% which gives satisfactory results.

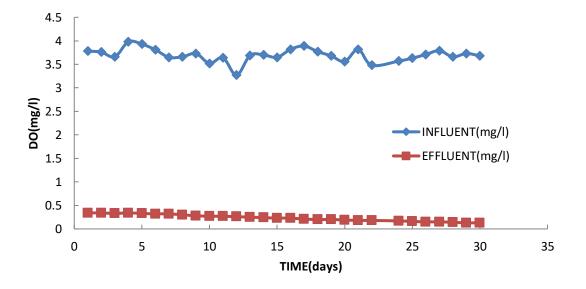


Figure 4.14 DO variation Domestic Wastewater 4hr Cycle Time

In the batch reactor the influent DO concentration was around (fig-4.15) 3.98 mg/l microorganisms present in the batch reactor reproduce itself by binary fission as more and more organic matter comes in the basin they reproduce and there population becomes very large with time. These microorganisms present in the reactor require oxygen to breakdown organic matter that's why DO concentration decreases at effluent level to approximately 0.13mg/l when food supply is over these microorganisms eat their own protoplasm and at final stage of treatment process microorganism concentration decreases at the end of process

4.1.12 TSS, TS. TDS REMOVAL EFFICIENCY

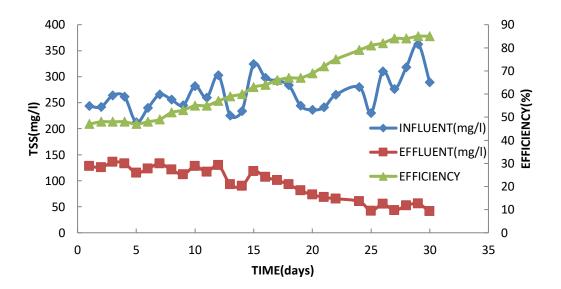


Figure 4.15 TSS removal Domestic Wastewater 4hr Cycle Time

Total suspended solids(TSS) vary from the influent concentration range of (fig-4.16) 198-363mg/l to effluent concentration range of (fig-4.16) 35-145mg/l giving an average removal efficiency of 47% in the first 5-7 days after that removal efficiency increases to 85 % at the end of the 30th day which is due to bacteria growth which led to increased bacteria concentration or we can say that microbial growth in the bioreactor which led to increased efficiency and settling ability of the sludge so there is good separation of sludge from the treated effluent thus a clear effluent is obtained at the top in the batch reactor due to well settling granules.

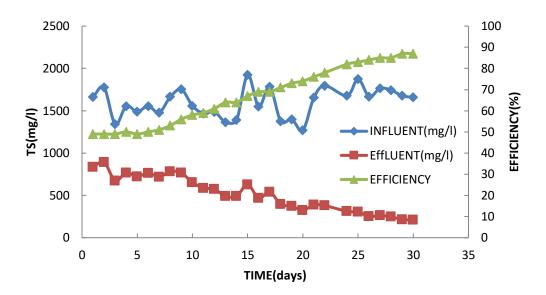


Figure 4.16 TS removal Domestic Wastewater 4hr Cycle Time

Total solids (TS) varied from the initial value in the range of (fig-4.17) 1288-1821 mg/l to effluent value in the range of (fig-4.17) 208-892mg/l at the end of 20th day of the experiment and the average removal rate initially in first few days was about 62% but as number of days increases its efficiency increases upto 91% the reason behind that is our HRT and SRT are very less. So at the start of the experiment SRT and HRT are less so microbial population is less after few days of operation aerobic granulation process starts due to which bacteria population increases and efficiency increases.

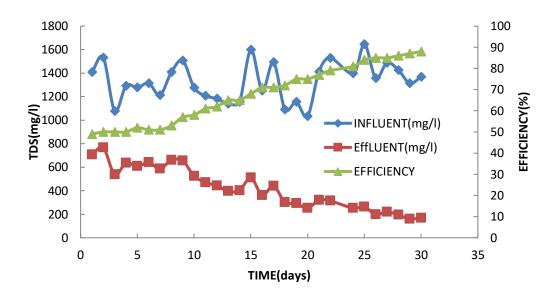


Figure 4.17 TDS removal Domestic Wastewater 4hr Cycle Time

Total dissolved solids (TDS) influent concentration vary in the range from (fig-4.18) 1000-1700mg/l to (fig-4.18) 150-710mg/l effluent concentration. In this the same pattern has been followed having low efficiency in first few days and efficiency increases after that. As aerobic granulation process starts after running the reactor for first few days which leads to better biomass growth and better bacteria concentration in the reactor parameters such as nitrogen, phosphates etc. decreases which decreases TDS concentration in the reactor.

4.1.13 TS, TDS REMOVAL EFFICIENCY

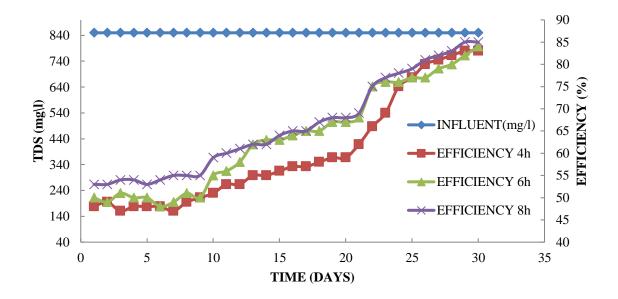


Figure 4.18 TDS Removal Synthetic Wastewater

Total dissolved solids (TDS) influent concentration was constant (fig-4.19) i.e. 850mg/l because it is synthetically prepared water so influent concentration remain constant. In every cycle it is observed that during first 10 days efficiency is less and unsatisfactory. Efficiency increases later because after that microorganisms gets acclimatize in wastewater during first 8-10 days. As aerobic granulation process starts after running the reactor for first 10 days which leads to better biomass growth and better bacteria concentration in the reactor which increases removal efficiency. At the end of 22nd day there is a rapid increase or kink in the graph which is due to formation of mature aerobic granules by which parameters such as nitrogen, phosphates etc. decreases which decreases.

If we compare the graphs of different cycles it is observed that removal efficiency of 4hr is lowest equal to 48 % in the first 8-10 days which is due to less aeration time and settling time in 4hr cycle. In 6hr cycle it is found that efficiency is slightly higher having an average value of 50 % and 8hr cycle having highest removal efficiency of 55 % which is highest among all three cycles compared in first 8-10 days which is due to better granules formed in 8 hr cycle as it is having higher reaction time. At later stages after 30 days of reactor operation efficiency for 4h,6h,8h are 83 %, 84 %, 85 respectively. After 30 days of reactor

operation similar trend is seen in efficiency that 8 hr cycle having maximum efficiency among other two cycles because of better granulation process in 8hr cycle.

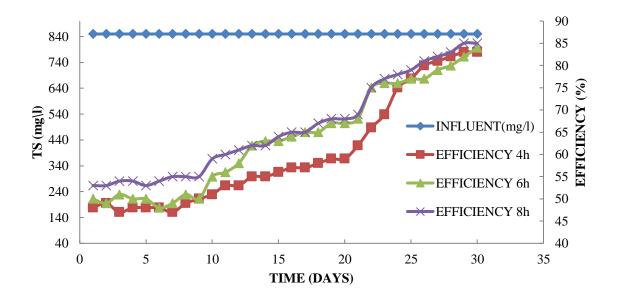


Figure 4.19 TS Removal Domestic Wastewater.

TDS and TS graph is having similar variation of graph as it is synthetically prepared and having 0 % of total suspended solids concentration. Total solids (TS) influent concentration was constant (fig-4.20) i.e. 850mg/l because it is synthetically prepared water so influent concentration remain constant. In every cycle it is observed that during first 10 days efficiency is less and unsatisfactory. Efficiency increases later because after that microorganisms gets acclimatize in wastewater during first 8-10 days. As aerobic granulation process starts after running the reactor for first 10 days which leads to better biomass growth and better bacteria concentration in the reactor which increases removal efficiency. At the end of 22^{nd} day there is a rapid increase or kink in the graph which is due to formation of

mature aerobic granules by which parameters such as nitrogen, phosphates etc. decreases which decreases.

If we compare the graphs of different cycles it is observed that removal efficiency of 4hr is lowest equal to 48 % in the first 8-10 days which is due to less aeration time and settling time in 4hr cycle. In 6hr cycle it is found that efficiency is slightly higher having an average value of 50 % and 8hr cycle having highest removal efficiency of 55 % which is highest among all three cycles compared in first 8-10 days which is due to better granules formed in 8 hr cycle as it is having higher reaction time. At later stages after 30 days of reactor operation efficiency for 4h,6h,8h are 83 %, 84 %, 85 respectively. After 30 days of reactor operation similar trend is seen in efficiency that 8 hr cycle having maximum efficiency among other two cycles because of better granulation process in 8hr cycle.

4.1.14 COD REMOVAL EFFICIENCY

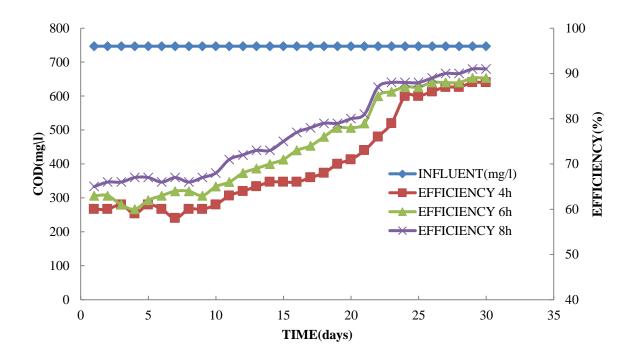


Figure 4. 20 COD Removal Synthetic Wastewater 4hr Cycle Time

In the synthetic wastewater treatment process during its first 7-10 days, the COD concentration decrement was unsatisfactory which is due to acclimatizing process of the microorganisms with the wastewater present in the bioreactor. After 8-10 days of operation aerobic granulation process starts in the reactor leading to better efficiency. Which is also seen in the graph above as after 9th day there is an upward kink in the graph. After that at the end of 23rd day fully grown aerobic granules formation takes place leading to higher removal efficiency having an average value of 87% in all three cycles.

As seen in graph of 4hr, 6hr, 8hr cycle in the first 8-10 days of reactor operation COD removal efficiency was about (fig-4.21) 60 %, 63 %, 65 % respectively. 8hr cycle having maximum removal efficiency due to better granulation. After 30 days of reactor operation similar trend is seen in efficiency that 8 hr cycle having maximum efficiency among other two cycles because of better granulation process in 8hr cycle

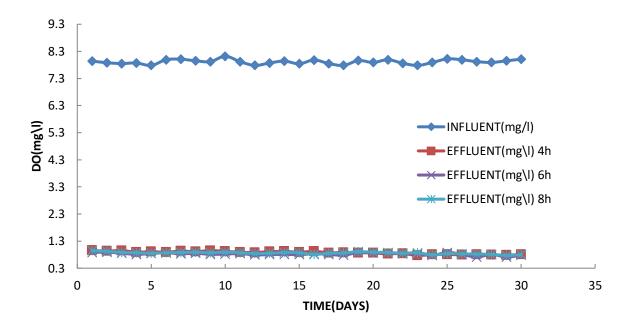


Figure 4.21 Variation of DO with Time of Synthetic Wastewater

In the process of wastewater treatment the influent DO concentration was around (fig-4.22) 8 mg/l which is generally higher than domestic wastewater this is due to the reason that in domestic wastewater microorganisms concentration are generally high which consumes DO but in synthetic wastewater there is no microorganisms initially so DO concentration is generally high but when sludge is added microorganisms growth takes place in the reactor where These microorganisms present in the reactor require oxygen to breakdown organic matter that's why DO concentration decreases at effluent level to approximately 0.92mg/l when food supply is over these microorganisms eat their own protoplasm and at final stage of treatment process microorganism concentration decreases at the end of process.

If we compare three cycles of synthetic wastewater i.e. is 4hr, 6hr, 8hr then it is observed that the variation is almost similar in all the three cycles which is a different trend to what we have seen in COD, TS, TDS. This is due to the reason that as increment in aeration time and bacteria concentration increase counterbalance each other.

CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

6.1 CONCLUSION

The main focus of the present study was to explore the performance of sequence batch reactor using synthetic and domestic Wastewater.

On the basis of the results presented following conclusions could be made.

- In the first 7-10 days the removal efficiency of COD, BOD, TSS, TS, TDS was unsatisfactory which is due to adapting process of microorganisms with the wastewater after that aerobic granulation process starts in the reactor leading to better efficiency in the system. Also a rapid increase in removal efficiency is seen in graph after 22 days of reactor operation which is due to mature granules formation in the reactor at the end of 22nd day.
- Removal efficiency also depends upon the cycle time of reactor operation as from results, removal efficiency increases with increase in cycle time. In domestic waste water removal efficiency of 4 hour cycle of COD,BOD,TS,TSS,TDS was 88 %, 87 %, 87 %, 85 % and 88 % respectively and in 6 hour cycle was 91 %, 90 %, 91 %, 87 % and 91 % and a similar trend is observed in synthetic wastewater i.e. 8 hr cycle having maximum removal efficiency for COD, TS, TDS are 91 %, 85 % and 85 % respectively.
- Removal efficiency of domestic wastewater is comes out to be higher than the synthetic wastewater because better bacteria growth in domestic wastewater then the synthetic which leads to better granulation process.

6.2 SUGGESTIONS FOR FUTURE WORK

In the present study the problems faced are clogging of aeration diffusers due to sludge present in it which decreases the aeration rate of the aerator which resists microbial growth in the reactor but even then the removal efficiency of COD, BOD, TSS, TDS, TS was satisfactory. However if advance mechanism like jet aerators are used in the future the results may get better because of the better microbial growth and granulation process.

REFERENCES

[1] Wang, X.C., Chen, Z.L., Kang, J., Zhao, X., Shen, J.M. and Yang, L., 2019. The key role of inoculated sludge in fast start-up of sequencing batch reactor for the domestication of aerobic granular sludge. *Journal of environmental sciences*, 78, pp.127-136.

[2] Yong, Z.J., Bashir, M.J., Ng, C.A., Sethupathi, S. and Lim, J.W., 2018. A sequential treatment of intermediate tropical landfill leachate using a sequencing batch reactor (SBR) and coagulation. *Journal of environmental management*, 205, pp.244-252.

[3] Liu, Y., Li, J., Guo, W., Ngo, H.H., Hu, J. and Gao, M.T., 2018. Use of magnetic powder to effectively improve the performance of sequencing batch reactors (SBRs) in municipal wastewater treatment. *Bioresource technology*, 248, pp.135-139.

[4] Liu, J., Li, J., Piché-Choquette, S. and Sellamuthu, B., 2018. Roles of bacterial and epistylis populations in aerobic granular SBRs treating domestic and synthetic wastewaters. *Chemical engineering journal*, *351*, pp.952-958.

[5] Wei, C.H., Wang, N., HoppeJones, C., Leiknes, T., Amy, G., Fang, Q., Hu, X. and Rong, H., 2018. Organic micropollutants removal in sequential batch reactor followed by nanofiltration from municipal wastewater treatment. *Bioresource technology*, *268*, pp.648-657.

[6] Yong, Z.J., Bashir, M.J., Ng, C.A., Sethupathi, S. and Lim, J.W., 2018. A sequential treatment of intermediate tropical landfill leachate using a sequencing batch reactor (SBR) and coagulation. *Journal of environmental management*, 205, pp.244-252.

[7] Gil-Pulido, B., Tarpey, E., Almeida, E.L., Finnegan, W., Zhan, X., Dobson, A.D. and O'Leary, N., 2018. Evaluation of dairy processing wastewater biotreatment in an IASBR system: Aeration rate impacts on performance and microbial ecology. *Biotechnology reports*, *19*, p.e00263.

[8] Zhang, L., Fan, J., Nguyen, H.N., Li, S. and Rodrigues, D.F., 2019. Effect of cadmium on the performance of partial nitrification using sequencing batch reactor. *Chemosphere*, 222, pp.913-922.

[9] Bashiri, B., Fallah, N., Bonakdarpour, B. and Elyasi, S., 2018. The development of aerobic granules from slaughterhouse wastewater in treating real dyeing wastewater by Sequencing Batch Reactor (SBR). *Journal of environmental chemical engineering*, *6*(4), pp.5536-5543.

[10] Abedinzadeh, N., Shariat, M., Monavari, S.M. and Pendashteh, A., 2018. Evaluation of color and COD removal by Fenton from biologically (SBR) pre-treated pulp and paper wastewater. *Process Safety and Environmental Protection*, *116*, pp.82-91.

[11] Zhao, J., Li, Y., Chen, X. and Li, Y., 2018. Effects of carbon sources on sludge performance and microbial community for 4-chlorophenol wastewater treatment in sequencing batch reactors. *Bioresource technology*, 255, pp.22-28.

[12] Zhao, Y., Park, H.D., Park, J.H., Zhang, F., Chen, C., Li, X., Zhao, D. and Zhao, F., 2016. Effect of different salinity adaptation on the performance and microbial community in a sequencing batch reactor. *Bioresource technology*, *216*, pp.808-816.

[13] Neisi, A., Afshin, S., Rashtbari, Y., Babaei, A.A., Khaniabadi, Y.O., Asadi, A., Shirmardi, M. and Vosoughi, M., 2018. Efficiency of sequencing batch reactor for removal of organic matter in the effluent of petroleum wastewater. *Data in brief*, *19*, pp.2041-2046.

[14] Li, Q., Wang, S., Zhang, P., Yu, J., Qiu, C. and Zheng, J., 2018. Influence of temperature on an Anammox sequencing batch reactor (SBR) system under lower nitrogen load. *Bioresource technology*, 269, pp.50-56.

[15] Yuan, Y., Liu, J., Ma, B., Liu, Y., Wang, B. and Peng, Y., 2016. Improving municipal wastewater nitrogen and phosphorous removal by feeding sludge fermentation products to sequencing batch reactor (SBR). *Bioresource technology*, 222, pp.326-334.

[16] Zinadini, S., Rahimi, M., Zinatizadeh, A.A. and Mehrabadi, Z.S., 2015. High frequency ultrasound-induced sequence batch reactor as a practical solution for high rate wastewater treatment. *Journal of Environmental Chemical Engineering*, *3*(1), pp.217-226.

[17] Mekonen, A., Kumar, P. and Kumar, A., 2001. Use of sequencing batch reactor for biological denitrification of high nitrate-containing water. *Journal of environmental engineering*, *127*(3), pp.273-278.

[18] Mekonen, A., Kumar, P. and Kumar, A., 2001. Use of sequencing batch reactor for biological denitrification of high nitrate-containing water. *Journal of environmental engineering*, *127*(3), pp.273-278.

[19] Brdjanovic, D., Loosdrecht, M.C.V., Hooijmans, C.M., Alaerts, G.J. and Heijnen, J.J., 1997. Temperature effects on physiology of biological phosphorus removal. *Journal of environmental engineering*, *123*(2), pp.144-153.

[20] Rosman, N.H., Anuar, A.N., Othman, I., Harun, H., Sulong, M.Z., Elias, S.H., Hassan, M.A.H.M., Chelliapan, S. and Ujang, Z., 2013. Cultivation of aerobic granular sludge for rubber wastewater treatment. *Bioresource technology*, *129*, pp.620-623.

APPENDIX A

A.1 REACTOR OPERATION

Figure A. 1 Mixing and Aeration in the Reactor

Figure A. 2 SBR Operation taking place.

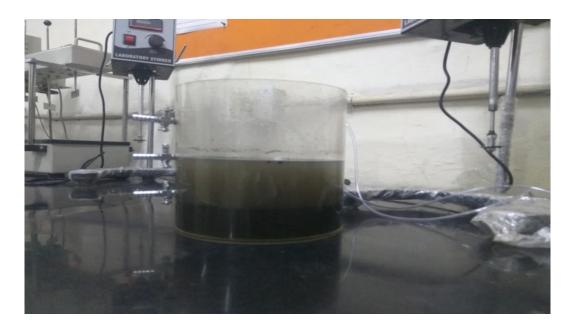


Figure A. 3 SBR Operation taking place

A.2 SAMPLING

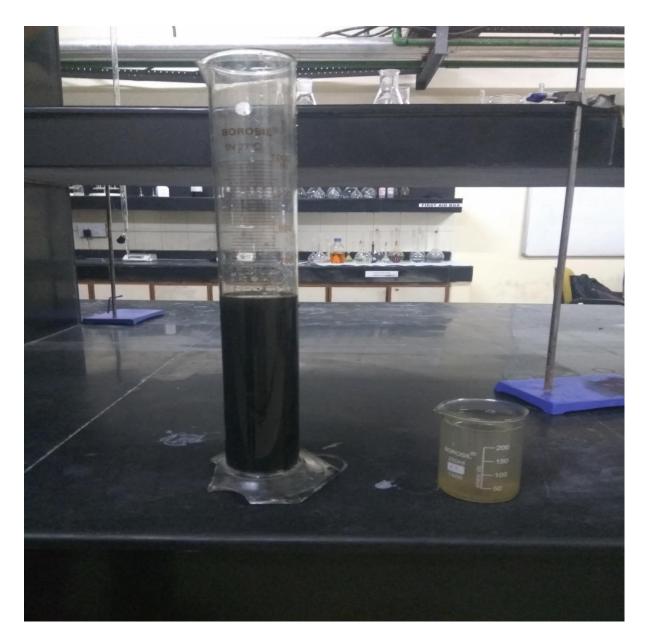


Figure A. 4 SBR Operation taking place

Figure A. 5 Wastewater Sample Taken From Wastewater treatment plant

APPENDIX B

TABLE OF RESULTS

Days	INFLUENT(mg/l)	EFFLUENT(mg\l)	REMOVAL EFFICIENCY (%)
1	211.95	98.31	53
2	311.25	142.21	54
3	294.89	138.94	53
4	313.55	143.21	54
5	217.2	97.21	55
6	313.22	145.21	54
7	287.23	120.35	58
8	223.33	92.12	59
9	317.6	128.78	60
10	317.3	123.56	61
11	285.76	106.23	63
12	358.79	130.72	63
13	257.76	93.88	64
14	202.83	72.23	64
15	207.22	73.12	65
16	215.34	72.14	66
17	267.33	87.12	67
18	259.32	82.56	67
19	279	92.33	69
20	398.67	108.21	73

Table B. 1 TSS Removal For Domestic Wastewater having 8 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg\l)	REMOVAL EFFICIENCY (%)
1	1592	501.23	69
2	1489	465.3	69
3	1269	375.12	70
4	1629	478.12	71
5	1500	422	72
6	1758	486	72
7	1958	480	75
8	1929	485.77	75
9	1638	398.34	76
10	1356	323.56	76
11	1756	436	75
12	1508	345	77
13	1646	385.41	77
14	1200	268.12	78
15	1357	290	79
16	1229	261.29	79
17	1641	315.22	81
18	1592	301.55	81
19	1489	281.32	81
20	1765	274.21`	84

Table B. 2 TS Removal For Domestic Wastewater having 8 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg\l)	REMOVAL EFFICIENCY (%)
1	1380.05	402.92	70
2	1177.75	323.09	72
3	974.11	236.18	76
4	1315.45	334.91	74
5	1282.8	324.79	74
6	1444.78	340.79	76
7	1670.77	359.65	78
8	1705.67	393.65	77
9	1320.4	269.56	79
10	1038.7	200	80
11	1470.24	329.77	80
12	1149.21	214.28	78
13	1388.24	291.53	79
14	997.17	195.89	80
15	1149.78	216.88	81
16	1013.66	189.15	81
17	1373.67	228.1	83
18	1332.68	218.99	83
19	1210	188.99	84
20	1366.33	104.45	87

Table B. 3 TDS Removal For Domestic Wastewater having 8 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg\l)
1	3.97	0.27
2	3.82	0.26
3	3.85	0.28
4	3.84	0.25
5	3.95	0.26
6	3.88	0.25
7	3.85	0.25
8	3.85	0.25
9	3.64	0.24
10	3.88	0.2
11	3.97	0.21
12	4.12	0.21
13	3.86	0.2
14	3.81	0.18
15	3.88	0.17
16	3.85	0.18
17	3.87	0.16
18	3.9	0.17
19	3.88	0.16
20	3.91	0.16

•

Table B. 4 DO Variation For Domestic Wastewater having 8 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg\l)	REMOVAL EFFICIENCY
			(%)
1	525.02	188.24	64
2	462.12	168.54	64
3	533.5	187.21	65
4	483.04	171.21	65
5	426.65	140.56	67
6	572	195.24	66
7	457.09	128.24	72
8	536	137.21	74
9	576.65	139.41	76
10	526.35	111.32	79
11	586.98	118.98	80
12	476.67	86.87	81
13	554.19	103.25	81
14	570.12	101.24	82
15	406.89	70.24	83
16	574.776	88.56	84
17	479.91	79.21	84
18	472.1132	68.42	85
19	506.56	69.32	86
20	598.3	82.21	86

Table B.5 COD Removal For Domestic Wastewater having 8 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg\l)	REMOVAL EFFICIENCY
			(%)
1	134.21	46.12	65
2	123.19	42.25	66
3	151.68	51.24	66
4	155.54	51.23	67
5	140.49	44.21	68
6	121.9	33.89	72
7	128.3	33.5	73
8	152.45	39.23	73
9	175.9	46.27	74
10	153.32	38.2	75
11	128.9	32.35	75
12	122.67	22.6	77
13	118.34	22.3	81
14	132.78	25.3	81
15	158.34	32.12	80
16	176.4	29.12	83
17	148.7	25.14	83
18	159.66	22.21	86
19	130.68	18.45	86
20	128.7	17.56	86

Table B. 6 BOD Removal For Domestic Wastewater having 8 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg/l)	REMOVAL
			EFFICIENCY
			(%)
1	246	116	52
2	283	134	52
3	259.8	123	53
4	302.4	141	53
5	224.69	106.7	52
6	234.8	104	55
7	324	142	56
8	298	127	57
9	291.1	124	57
10	283.23	118.98	58
11	245	98	60
12	238	95	60
13	230.5	95	62
14	310	120	62
15	290.4	110	62
16	220.6	80	64
17	207.4	75.84	67
18	248.38	82.8	68
19	264.8	84.23	71
20	310.4	88.4	73
21	258	68.6	75
22	293.6	72.6	77
23	303.5	69	80
24	198.36	40.8	84
25	276	43	85
26	317.8	47	85
27	362.6	53	86
28	242	35	86
29	264	35.5	86
30	281	37	87

Table B. 7 TSS Removal For Domestic Wastewater having 6 hr cycle

_

Days	INFLUENT(mg/l)	EFFLUENT(mg/l)	REMOVAL
			EFFICIENCY
			(%)
1	1843	682	62
2	1890	706	62
3	1778	662	63
4	1884	691	63
5	1682	627.4	62
6	1710	605	65
7	1856.6	652.8	65
8	1796.54	615	66
9	1751	589	66
10	1736.7	552	68
11	1680	513	69
12	1668	498	70
13	1923	545	71
14	1550	419.6	73
15	1785.9	473	74
16	1375	361	76
17	1398	338	79
18	1269	265	82
19	1657	296	82
20	1468	253	83
21	1795	280	84
22	1697	256	85
23	1895	288	85
24	1575.6	208	86
25	1288	157	88
26	1722	183	89
27	1836	175	90
28	1465	118	91
29	1518	135	91
30	1424	121	91

Table B. 8 TS Removal For Domestic Wastewater having 6 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg/l)	REMOVAL
			EFFICIENCY
			(%)
1	1597	566	64
2	1607	572	64
3	1518.2	539	65
4	1581.6	530	64
5	1457.47	520.7	64
6	1475.2	501	66
7	1522.6	510.8	66
8	1498.54	488	67
9	1459.9	465	68
10	1453.47	433.02	70
11	1435	425	70
12	1430	403	71
13	1692.5	450	73
14	1240	299	75
15	1495.6	363	76
16	1154.4	281	76
17	1190.55	262.2	78
18	1020.62	182	82
19	1392.2	211.77	84
20	1157	104.6	86
21	1537	211.4	86
22	1403	183.4	87
23	1591	214	87
24	1377.24	167.2	87
25	1012	114	89
26	1404.2	136	90
27	1473.4	122	90
28	1223	83	91
29	1254	98.5	90
30	1143	84	91

Table B. 9 TDS Removal For Domestic Wastewater having 6 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg/l)	REMOVAL EFFICIENCY
1	186.8	65	(%) 65
2	148.3	52	64
3	148.5	43	64
4	121.8	61	65
		57.3	
5	<u> </u>	57.5	65 67
7	148.4	47	67
8	155.7	48	68
9	132	41	68
10	191	62	67
11	142	43	69
12	155	45.2	70
13	153.4	45.6	70
14	132.8	36.8	72
15	124.6	32.4	73
16	169.3	41.5	75
17	119.9	27.6	76
18	126.1	28.3	77
19	147.36	29.56	79
20	164	27.8	82
21	138.48	21.58	84
22	167.36	24.42	85
23	117.58	16.65	85
24	131.67	15.76	86
25	193.38	19.28	87
26	155.9	14.84	87
27	128.6	9.46	88
28	148	15.2	89
29	132	13.8	89
30	165	15.87	90

Table B. 10 BOD Removal For Domestic Wastewater having 6 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg/l)	REMOVAL EFFICIENCY (%)
1	709.84	247	64
2	593.2	202.8	64
3	475.02	161	65
4	614.6	212	65
5	604.2	208.55	65
6	658.8	200.55	67
7	593.6	178.6	68
8	591.66	176	68
9	528	158.8	69
10	725.5	221	69
10	539.6	161.4	70
12	573.5	172	70
12	613.6	182	70
13	516	147.3	71
15	492.3	123.5	73
16	649.7	148.4	75
17	467.61	109.2	77
18	469.32	97.5	79
19	588.28	105.7	81
20	635.4	110.7	83
21	542.3	90.6	83
22	628.8	104.8	83
23	444.45	68.28	85
24	526.68	77.43	86
25	612.93	81.28	87
26	471.7	54.29	89
27	462.88	42.87	90
28	532.3	48	90
29	518.9	47.99	90
30	577.5	51.32	91

Table B. 11 COD Removal For Domestic Wastewater having 6 hr cycle

days	INFLUENT(mg/l)	EFFLUENT(mg/l)
1	3.87	0.28
2	3.76	0.28
3	3.67	0.27
4	3.55	0.28
5	3.78	0.27
6	3.88	0.26
7	3.81	0.24
8	3.97	0.24
9	3.75	0.23
10	3.84	0.22
11	3.66	0.21
12	3.78	0.19
13	3.61	0.19
14	3.75	0.18
15	3.64	0.17
16	3.93	0.17
17	3.91	0.18
18	3.84	0.16
19	3.66	0.15
20	3.58	0.14
21	3.59	0.14
22	3.67	0.14
23	3.52	0.14
24	3.65	0.15
25	3.77	0.14
26	3.7	0.14
27	3.74	0.13
28	3.64	0.13
29	3.83	0.12
30	3.87	0.12

Table B. 12 DO variation For Domestic Wastewater having 6 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg/l)	REMOVAL EFFICIENCY
1	243.6	128.2	(%) 47
2	243.0	125.6	47
3	263.98	125.0	48
4	261.66	133.1	48
5	212.33	115.2	47
6	240	123	48
7	265.66	133	49
8	256	121	52
9	245	112	53
10	282	128	55
11	259.8	117	55
12	302.56	129.6	57
13	225	93	59
14	233.7	90	60
15	324	118	63
16	298	107	64
17	291.77	100.6	66
18	283.7	92.7	67
19	244	81	67
20	236.23	73.2	69
21	241	68	72
22	265.3	65.5	75
24	280.05	60.2	79
25	230.34	42	81
26	310.12	55.4	82
27	276	43	84
28	318	52.5	84
29	362.7	55.9	85
30	289.19	41	85

Table B. 13 TSS Removal For Domestic Wastewater having 4 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg/l)	REMOVAL EFFICIENCY (%)
1	1664	836	49
2	1775	892	49
3	1342	673.53	49
4	1554	768.6	50
5	1489.9	723	49
6	1554.66	764	50
7	1478.9	719.4	51
8	1665	782	53
9	1752.2	765.67	56
10	1558.9	653.21	58
11	1467	587	59
12	1486	572.8	61
13	1365	489	64
14	1389	492	64
15	1924	628	67
16	1550	467.8	69
17	1784.8	541.45	69
18	1374	395	71
19	1399	373	73
20	1269.1	324	74
21	1654	388.6	76
22	1795.6	379.2	78
24	1678	312	82
25	1876	305	83
26	1668	252.41	84
27	1764.59	263.2	85
28	1743.87	247	85
29	1677	216	87
30	1658	209.34	87

Table B. 14 TS Removal For Domestic Wastewater having 4 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg/l)	REMOVAL EFFICIENCY (%)
1	1409.4	707.8	49
2	1533.12	766.4	50
3	1078.2	537.73	50
4	1292.34	635.5	50
5	1277.57	607.8	52
6	1314.66	641	51
7	1213.24	586.4	51
8	1409	661	53
9	1507.2	653.67	57
10	1276.9	525.21	58
11	1207.2	470	61
12	1183.44	443.2	62
13	1140	396	65
14	1155.3	402	65
15	1600	510	68
16	1252	360.8	71
17	1493.02	440.85	71
18	1090.3	302.3	72
19	1155	292	75
20	1032.87	250.8	75
21	1413	320.6	77
22	1530.4	313.7	79
24	1397.95	251.8	81
25	1645.66	263	84
26	1357.88	197.01	85
27	1488.59	220.2	85
28	1426.87	194.5	86
29	1314.3	160.1	87
30	1368.81	168.34	88

Table B. 15 TDS Removal For Domestic Wastewater having 4 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg/l)	REMOVAL EFFICIENCY (%)
1	187.6	85.2	54
2	153.7	70.37	54
3	177.9	80.68	55
4	194	88.3	54
5	125.6	55.4	55
6	158	68.1	56
7	133	56.8	56
8	176	71	59
9	178.45	68.3	61
10	143	52	63
11	132.74	48.7	64
12	165.86	56	66
13	152.73	49.3	67
14	188	58	69
15	153.4	45.7	70
16	133	37.6	72
17	125	33.3	73
18	170.8	42.4	75
19	120	28.4	77
20	126.4	28.2	77
21	148.5	30.9	79
22	165.3	28.85	83
24	139	22.45	84
25	168	24.9	85
26	116	15.8	86
27	132.4	14.78	86
28	194.6	23.2	87
29	155.8	15.9	87
30	127	13.2	87

Table B. 16 BOD Removal For Domestic Wastewater having 4 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg/l)	REMOVAL
			EFFICIENCY
			(%)
1	712.88	318	56
2	568.69	243.5	57
3	693.81	293	57
4	737.2	323.87	56
5	477.28	208	57
6	632	265	58
7	535	224.52	58
8	668.8	256.17	61
9	677.92	254.51	62
10	557.7	199	65
11	530.96	174.8	67
12	630.26	193.31	69
13	610.92	167.6	72
14	695.6	184	73
15	623.6	158	74
16	533	124.4	76
17	471.2	104.6	77
18	577.8	121	79
19	480	92.2	80
20	480.32	91	80
21	564.3	112.2	81
22	628.14	96.43	84
24	528.2	71.3	86
25	638.4	77.3	87
26	452.4	57	87
27	529.6	63.21	88
28	778.4	88.3	88
29	592.4	61.53	89
30	495.3	51	89

Table B. 17 COD Removal For Domestic Wastewater having 4 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg/l)
1	3.78	0.34
2	3.76	0.34
3	3.66	0.33
4	3.98	0.34
5	3.93	0.33
6	3.81	0.32
7	3.65	0.32
8	3.66	0.3
9	3.73	0.28
10	3.52	0.27
11	3.64	0.27
12	3.27	0.26
13	3.69	0.25
14	3.7	0.24
15	3.65	0.23
16	3.82	0.23
17	3.89	0.21
18	3.77	0.2
19	3.68	0.2
20	3.56	0.19
21	3.82	0.18
22	3.48	0.18
24	3.57	0.17
25	3.63	0.16
26	3.71	0.15
27	3.79	0.15
28	3.66	0.14
29	3.73	0.13
30	3.68	0.13

Table B. 18 DO variation For Domestic Wastewater having 4 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg\l)	REMOVAL EFFICIENCY (%)
1	850	446	48
2	850	431	49
3	850	451	47
4	850	442.66	48
5	850	443.32	48
6	850	442	48
7	850	452	47
8	850	431.65	49
9	850	421.56	50
10	850	410.65	51
11	850	400.23	53
12	850	395.12	53
13	850	385.34	55
14	850	381.23	55
15	850	372.24	56
16	850	365.01	57
17	850	362.1	57
18	850	359.12	58
19	850	350.32	59
20	850	347.89	59
21	850	323.21	62
22	850	287.12	66
23	850	262.38	69
24	850	212.78	75
25	850	197.445	77
26	850	165.47	80
27	850	160.47	81
28	850	150.67	82
29	850	145.78	83
30	850	142.78	83

Table B. 19 TDS Removal For synthetic Wastewater having 4 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg\l)	REMOVAL EFFICIENCY (%)
1	850	446	48
2	850	431	49
3	850	451	47
4	850	442.66	48
5	850	443.32	48
6	850	442	48
7	850	452	47
8	850	431.65	49
9	850	421.56	50
10	850	410.65	51
11	850	400.23	53
12	850	395.12	53
13	850	385.34	55
14	850	381.23	55
15	850	372.24	56
16	850	365.01	57
17	850	362.1	57
18	850	359.12	58
19	850	350.32	59
20	850	347.89	59
21	850	323.21	62
22	850	287.12	66
23	850	262.38	69
24	850	212.78	75
25	850	197.445	77
26	850	165.47	80
27	850	160.47	81
28	850	150.67	82
29	850	145.78	83
30	850	142.78	83

Table B. 20 TS Removal For Synthetic Wastewater having 4 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg\l)	REMOVAL EFFICIENCY (%)
1	747	301.25	60
2	747	299.56	60
3	747	292.25	61
4	747	303.89	59
5	747	290.67	61
6	747	297.36	60
7	747	310	58
8	747	296.52	60
9	747	298.75	60
10	747	289.35	61
11	747	279.45	63
12	747	269.59	64
13	747	262.38	65
14	747	256.38	66
15	747	251.42	66
16	747	250.01	66
17	747	245.09	67
18	747	239.46	68
19	747	223.78	70
20	747	219.64	71
21	747	200.56	73
22	747	181.35	76
23	747	156.31	79
24	747	110.352	85
25	747	108.32	85
26	747	101.45	86
27	747	95.32	87
28	747	93.25	87
29	747	90.12	88
30	747	87.34	88

Table B. 21 COD Removal For Synthetic Wastewater having 4 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg\l)
1	7.94	0.96
2	7.88	0.93
3	7.85	0.95
4	7.87	0.89
5	7.78	0.91
6	7.99	0.89
7	8.01	0.93
8	7.95	0.91
9	7.92	0.95
10	8.12	0.92
11	7.92	0.89
12	7.78	0.88
13	7.87	0.91
14	7.94	0.92
15	7.84	0.89
16	7.98	0.92
17	7.85	0.87
18	7.78	0.88
19	7.96	0.87
20	7.89	0.86
21	7.99	0.83
22	7.86	0.84
23	7.78	0.77
24	7.89	0.8
25	8.02	0.81
26	7.99	0.79
27	7.92	0.81
28	7.89	0.79
29	7.95	0.78
30	8.01	0.81

Table B. 22 DO Variation For Synthetic Wastewater having 4 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg\l)	REMOVAL EFFICIENCY
1	850	422.34	(%) 50
2	850	431.87	49
3	850	431.87	51
4	850	422.78	50
5	850	425.98	50
6	850	442.67	48
7	850	429.38	49
8	850	417.32	51
9	850	400.56	50
10	850	380.56	55
11	850	370.92	56
12	850	360.01	58
13	850	321.25	62
14	850	317.32	63
15	850	310.25	63
16	850	302.12	64
17	850	300.54	65
18	850	295.42	65
19	850	284.51	67
20	850	281.56	67
21	850	272.45	68
22	850	210.14	75
23	850	200.57	76
24	850	199.87	76
25	850	195.67	77
26	850	191.75	77
27	850	180.15	79
28	850	171.78	80
29	850	150.11	82
30	850	139.65	84

Table B. 23 TDS Removal For synthetic Wastewater having 6 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg\l)	REMOVAL EFFICIENCY (%)
1	850	422.34	50
2	850	431.87	49
3	850	420.56	51
4	850	422.78	50
5	850	425.98	50
6	850	442.67	48
7	850	429.38	49
8	850	417.32	51
9	850	400.56	50
10	850	380.56	55
11	850	370.92	56
12	850	360.01	58
13	850	321.25	62
14	850	317.32	63
15	850	310.25	63
16	850	302.12	64
17	850	300.54	65
18	850	295.42	65
19	850	284.51	67
20	850	281.56	67
21	850	272.45	68
22	850	210.14	75
23	850	200.57	76
24	850	199.87	76
25	850	195.67	77
26	850	191.75	77
27	850	180.15	79
28	850	171.78	80
29	850	150.11	82
30	850	139.65	84

Table B. 24 TS Removal For Synthetic Wastewater having 6 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg\l)	REMOVAL EFFICIENCY
			(%)
1	747	277.32	63
2	747	275.36	63
3	747	290.56	61
4	747	301.67	60
5	747	281.32	62
6	747	277.98	63
7	747	267.57	64
8	747	268.32	64
9	747	275.56	63
10	747	261.32	65
11	747	251.26	66
12	747	241.26	68
13	747	232.77	69
14	747	219.45	70
15	747	215.15	71
16	747	202.54	73
17	747	196.32	74
18	747	181.54	76
19	747	162.12	78
20	747	159.98	78
21	747	156.31	79
22	747	111.98	85
23	747	101.63	86
24	747	98.31	87
25	747	95.61	87
26	747	92.12	88
27	747	91.89	88
28	747	88.31	88
29	747	81.29	89
30	747	79.25	89

Table B. 25 COD Removal For Synthetic Wastewater having 6 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg\l)
1	7.89	0.88
2	7.88	0.89
3	7.85	0.85
4	7.87	0.81
5	7.78	0.84
6	7.99	0.87
7	8.01	0.83
8	7.95	0.85
9	7.92	0.81
10	8.12	0.82
11	7.92	0.84
12	7.78	0.79
13	7.71	0.8
14	7.99	0.81
15	7.95	0.8
16	7.97	0.83
17	7.8	0.81
18	7.75	0.78
19	7.79	0.88
20	8.01	0.87
21	7.95	0.86
22	7.98	0.83
23	7.75	0.84
24	7.71	0.77
25	7.76	0.88
26	7.72	0.81
27	7.88	0.71
28	7.82	0.81
29	7.93	0.71
30	7.86	0.78

Table B. 26 DO Variation For Synthetic Wastewater having 6 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg\l)	REMOVAL EFFICIENCY (%)
1	850	401.36	53
2	850	399.62	53
3	850	395.23	54
4	850	390.76	54
5	850	396.23	53
6	850	387.74	54
7	850	381.87	55
8	850	384.26	55
9	850	382.16	55
10	850	345.23	59
11	850	338.62	60
12	850	331.24	61
13	850	323.25	62
14	850	320.12	62
15	850	305.45	64
16	850	298.65	65
17	850	292.35	65
18	850	281.24	67
19	850	275.89	68
20	850	271.56	68
21	850	265.32	69
22	850	207.29	75
23	850	195.54	77
24	850	191.56	78
25	850	175.56	79
26	850	163.76	81
27	850	150.91	82
28	850	144.21	83
29	850	129.52	85
30	850	125.81	85

Table B. 27 TDS Removal For synthetic Wastewater having 8 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg\l)	REMOVAL EFFICIENCY (%)
1	850	401.36	53
2	850	399.62	53
3	850	395.23	54
4	850	390.76	54
5	850	396.23	53
6	850	387.74	54
7	850	381.87	55
8	850	384.26	55
9	850	382.16	55
10	850	345.23	59
11	850	338.62	60
12	850	331.24	61
13	850	323.25	62
14	850	320.12	62
15	850	305.45	64
16	850	298.65	65
17	850	292.35	65
18	850	281.24	67
19	850	275.89	68
20	850	271.56	68
21	850	265.32	69
22	850	207.29	75
23	850	195.54	77
24	850	191.56	78
25	850	175.56	79
26	850	163.76	81
27	850	150.91	82
28	850	144.21	83
29	850	129.52	85
30	850	125.81	85

Table B. 28 TS Removal For Synthetic Wastewater having 8 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg\l)	REMOVAL EFFICIENCY
1	747	260.38	(%) 65
2	747	255.12	66
3	747	250.87	66
4	747	244.76	67
5	747	244.70	67
6	747	252.21	66
7	747	243.21	67
8	747	250.41 244.32	66 67
10	747	240.75	68
11	747	215.76	71
12	747	211.54	72
13	747	203.76	73
14	747	201.23	73
15	747	189.32	75
16	747	173.32	77
17	747	165.21	78
18	747	158.67	79
19	747	160.56	79
20	747	152.65	80
21	747	142.85	81
22	747	98.75	87
23	747	91.67	88
24	747	88.97	88
25	747	85.34	88
26	747	79.65	89
27	747	75.89	90
28	747	71.25	90
29	747	65.23	91
30	747	63.12	91

Table B. 29 COD Removal For Synthetic Wastewater having 8 hr cycle

Days	INFLUENT(mg/l)	EFFLUENT(mg\l)
1	7.91	0.95
2	7.85	0.92
3	7.89	0.88
4	7.87	0.87
5	7.76	0.85
6	8.01	0.87
7	8.04	0.88
8	7.92	0.89
9	7.88	0.87
10	7.99	0.89
11	7.95	0.87
12	7.81	0.84
13	7.85	0.85
14	8.01	0.88
15	7.96	0.87
16	7.82	0.81
17	7.78	0.85
18	7.74	0.86
19	7.76	0.91
20	7.78	0.89
21	7.91	0.88
22	7.95	0.85
23	8.01	0.87
24	7.97	0.79
25	7.87	0.84
26	7.86	0.83
27	7.98	0.82
28	7.96	0.81
29	8.01	0.77
30	8.05	0.8

Table B. 30 DO Variation For Synthetic Wastewater having 8 hr cycle