
DYNAMIC LOAD BALANCING

IN

CLOUD STORAGE

Project Report submitted in fulfillment of the requirement for the degree of Bachelor of

Technology

in

Computer Science & Engineering

By

Shagun Dogra (121283)

Under the supervision of

Mr. Punit Gupta

to

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology Waknaghat, Solan-173234,

Himachal Pradesh

i

Certificate

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Dynamic Load Balancing in

Cloud Storage” in fulfillment of the requirements for the award of the degree of Bachelor of

Technology in Computer Science and Engineering Technology submitted in the department

of Computer Science & Engineering and Information Technology, Jaypee University of

Information Technology, Waknaghat is an authentic record of my own work carried out over a

period from August 2015 to May 2016 under the supervision of Mr. Punit Gupta (Assistant

Professor (Grade-I), Information Technology). The matter embodied in the report has not been

submitted for the award of any other degree or diploma.

(Student Signature)

Student Name: Shagun Dogra

Student Roll No:121283

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

(Supervisor Signature)

Supervisor Name: Mr. Punit Gupta

Designation : Assistant Professor (Grade-I)

Department name : Information Technology

Dated :

ii

Acknowledgement

I would like to use this opportunity to express my gratitude to everyone who supported me

throughout the course of this B.Tech project. I am thankful for their aspiring guidance,

invaluably constructive criticism and friendly advice during the project work. I am sincerely

grateful to them for sharing their truthful and inspiring views on a number of issues related to

the project.

I am especially grateful to Mr. Punit Gupta, Project Supervisor, for his valuable suggestions,

support and constant encouragement during the course of the project. His perpetual energy,

motivation, enthusiasm and immense knowledge inspired me to discipline myself in efficiently

executing my multiple responsibilities simultaneously.

Date:

 Shagun Dogra (121283)

iii

Table of Contents

Certificate ii

Acknowledgment iii

List of figures vi

List of Tables vii

List of Graphs vii

List of Abbreviations viii

Abstract ix

Chapter No. Title Page No.

Chapter 1 Introduction 1

1.1. Cloud Computing 1

1.2. Cloud Storage 9

1.3. Load Balancing 10

1.4. Problem Statement 12

1.5. Objective 12

1.6. Organization of report 13

Chapter 2 Literature Review 14

2.1. Scalable Load Balancing Algorithm 14

2.2. Energy Efficient Load Balancing Algorithm 22

2.3. Conclusion 32

Chapter 3 Proposed Work 33

3.1. Proposed Approach 33

3.2. DVFS and its Simulation 33

iv

3.3. Inter Quartile Range and its Simulation 36

3.4. Utilization After Allocation(UAA) and its Simulation 43

Chapter 4 Simulation and Result Analysis 44

4.1. Simulation Environment 44

4.2. Comparative Study of Existing Algorithms 48

4.3. Comparative Graph of Simulated Algorithms 48

4.4. Energy comparison of all simulated Algorithms 52

Chapter 5 Conclusion and Future Work 53

5.1. Conclusion 53

5.2. Future Work 53

References 54

vi

 List of Figures

Figure

No.

Figure Name Page No.

1 Three components make up a cloud computing solution 2

2 Software as a service (SaaS) 2

3 Platform as a service (PaaS) 3

4 Hardware as a service (HaaS) 4

5 Layered Architecture of Cloud Computing 5

6 characteristics of cloud 7

7 Full Virtualization 8

8 Para Virtualization 9

9 Summary of available mechanisms for holistic application

scalability

20

10 System Architecture of proposed algorithm 21

11 Flow of proposed work 23

12 Initial state of datacenter 24

13 Identify under/overloaded and heated hosts 24

14 VM migrates on appropriate target hosts 25

15 The system architecture 27

16 Screenshot of dvfs simulation with fcfs case1

34

17 Screenshot of dvfs simulation with fcfs case2

35

18 Screenshot of dvfs simulation with rr case1

35

19 Screenshot of dvfs simulation with rr case2

36

20 Screenshot of IQRrs simulation with fcfs case1 39

21 Screenshot of IQRrs simulation with fcfs case2 40

22 Screenshot of IQRrs simulation with rr case1

40

23 Screenshot of IQRrs simulation with rr case2

41

24 Screenshot of IQRmc simulation with fcfs case1 41

25 Screenshot of IQRmc simulation with rr case1

42

vii

26 Screenshot of IQRmc simulation with rr case2

42

 27 Layered CloudSim Architecture 46

28 CloudSim Class Design Diagram 47

viii

List of Tables

Table

No.

Table Name Page No.

1 Comparison b/w resource allocation and task scheduling 17

2 Comparison table of LBA in cloud computing environment 18

3 Simulation Results 27

4 Comparison of LB techniques based on various metrics 30

5 Analysis of existing LB techniques 31

6 Test case scenarios 43

List of Graphs

Graph

No.

Graph

Name

Page No.

1 Different test cases for DVFS simulation using FCFS

environment

49

2 Different test cases for DVFS simulation using RR 50

3 Different test cases for IQRrs simulation with RR

50

4 Comparison of Energy of DVFS and UAA

51

5 Comparison of Energy of DVFS and IQRrs 51

6 Comparison of Energy of DVFS and IQRmc 52

7 Comparative graph of all the simulated algorithms 52

ix

List of Abbreviations

QoS Quality of service

VM Virtual machine

PaaS Platform as a Service

SaaS Software as a Service

IaaS Infrastructure as a Service

HaaS Hardware as a Service

API Application Program Interface

FCFS First Come First Serve

RR Round Robin

DVFS Dynamic Voltage and Frequency Scaling

IQR Inter Quartile Range

AWS Amazon Web Services

LBMM Load Balancing Min-Min

SLA Service Level Agreement

ABC Artificial Bee Colony

LBACO Load Balancing Ant Colony

ACO Ant colony

LBA Load Balancing Algorithms

UAA utilization after allocation

x

Abstract

“Cloud computing” is a term, which involves virtualization, distributed computing,

networking, software and web services. A cloud consists of several elements such as

clients, datacenter and distributed servers. It includes fault tolerance, high availability,

scalability, flexibility, reduced overhead for users, reduced cost of ownership, on

demand services etc.

From few last decades, there is a rapid growth of data in cyberspace therefore cloud is

becoming an important service in internet computing. Infrastructure as a Service

provides on-demand virtual machines to users. In accordance with the client’s

demand at a datacenter, host creates VMs which increase the load on the host. If the

load of any host exceeds its capacity, then it affects their efficiency. Load balancing

plays an important role in the deployment of virtual machines onto physical hosts.

Resource requirement of virtual machine is hard to predict. Thus to deal with this

issue, lots of load balancing methods are present. So in this paper we discuss these

load balancing methods to provide overview of latest approaches in IaaS. Different

load balancing methods have different parameters. So, we compared them on the basis

of parameters used for their method. We have proposed our own load balancing

method after comparing all available methods.

1

CHAPTER 1

INTRODUCTION

Cloud computing is emerging as a new paradigm of large scale distributed computing. It has

moved computing and data away from desktop and portable PCs, into large data centres [1]. It

is one of the technologies that provide cloud storage to manage the data. Cloud storage act as

a repository in which the data is maintained, managed and is made available to the end users.

Large generated application datasets can flexibly be stored or deleted in the cloud and from

here end users’ access this data by using cloud storage services interface, without accessing

any storage server in real. It has widely been adopted by the industry, though there are many

existing issues like Load Balancing, Virtual Machine Migration, Server Consolidation,

Energy Management, etc. that are not fully addressed to which Central to these issues is the

issue of load balancing that is a mechanism to achieve a high user satisfaction and resource

utilization ratio by distributing the dynamic workload evenly across all the nodes in the whole

cloud.

In this work, we have proposed the load balancing approach to balance the load in terms

of requests of overloaded servers in the cloud storage.

1.1. Cloud Computing

Cloud computing is computing in which large groups of remote servers are networked to

allow centralized data storage and online access to computer services or resources. Cloud

computing, or in simpler shorthand just "the cloud", also focuses on maximizing the

effectiveness of the shared resources. Cloud resources are usually not only shared by

multiple users but are also dynamically reallocated per demand. This can work for

allocating resources to users.

2

 Figure 1: Three components make up a cloud computing solution
[2]

1.1.1. Service Models

Service means different types of applications provided by different servers

across the cloud. It is generally given as “as a service”. Cloud service delivery

is divided into three models. The three service models are [2]:

 Software as a Service (SaaS)

 Platform as a Service (PaaS)

 Infrastructure as a Service (IaaS)

1.1.1.1 Software as a Service (SaaS)

In SaaS, the user uses different software applications from different servers through

the Internet. The user uses the software as it is without any change and it doesn’t require

integration to other systems. The provider does all the upgrades and patching while

keeping the infrastructure running [2].

Figure 2: Software as a service (SaaS)[2]

3

1.1.1.2 Platform as a Service (PaaS)

PaaS provides all the resources that are required for building applications and

services completely from the Internet, without downloading or installing software [2].

PaaS services are software design, development, testing, deployment, and hosting. Other

services can be team collaboration, database integration, web service integration, data

security, storage and versioning etc.

Figure 3: Platform as a service (PaaS) [2]

1.1.1.3 Infrastructure as a Service (IaaS)

IaaS is also known as Hardware as a Service (HaaS). In this infrastructure or actual

hardware is provided to customers who are responsible to install operating systems and

necessary software as per their usage. IaaS cloud is usually provided to users in the form

of Virtual Machines (VMs), such as Amazon EC2. In an IaaS cloud, users can apply VMs

on-demand to deploy and run their applications also provide services to their clients which

will be helpful to clients.[3]

4

Figure 4: Hardware as a service (HaaS) [2]

1.1.2. Deployment Mode

Cloud computing model can be categories into three deployment models:

 Public Cloud

 Private Cloud

 Hybrid Cloud

1.1.2.1 Public Cloud

 A cloud is called a "public cloud" when the services are rendered over a network that is

open for public use. Public cloud services may be free or offered on a pay-per-usage model.

Generally, public cloud service providers like Amazon AWS, Microsoft and Google own and

operate the infrastructure at their data center and access is generally via the Internet.

1.1.2.2 Private Cloud

 Private cloud is cloud infrastructure operated solely for a single organization, whether

managed internally or by a third-party, and hosted either internally or externally. Undertaking

a private cloud project requires a significant level and degree of engagement to virtualize the

business environment, and requires the organization to reevaluate decisions about existing

resources.

5

1.1.2.3 Hybrid Cloud

 Hybrid cloud is a composition of two or more clouds (private, community or public) that

remain distinct entities but are bound together, offering the benefits of multiple deployment

models. Hybrid cloud can also mean the ability to connect collocation, managed and/or

dedicated services with cloud resources.

1.1.3. Layered Architecture of Cloud Computing

Figure 5: Layered Architecture of Cloud Computing[3]

Here figure 1.1 shows the layered architecture of cloud computing. In figure 1.1, load

balancing is one of the cloud services in cloud computing.

6

1.1.4. Characteristics

Cloud computing exhibits the following key characteristics:

 Agility improves with users' ability to re-provision technological infrastructure

resources.

 API accessibility to software that enables machines to interact with cloud software in

the same way that a traditional user interface (e.g., a computer desktop) facilitates

interaction between humans and computers. Cloud computing systems typically use

(REST)-based APIs.

 Cost reductions claimed by cloud providers. A public-cloud delivery model converts

capital expenditure to operational expenditure which lowers barriers to entry, as

infrastructure is typically provided by a third party and does not need to be purchased

for one-time or infrequent intensive computing tasks.

 Device and location independence enable users to access systems using a web browser

regardless of their location or what device they use (e.g., PC, mobile phone). As

infrastructure is off-site (typically provided by a third-party) and accessed via the

Internet, users can connect from anywhere.

 Maintenance of cloud computing applications is easier, because they do not need to be

installed on each user's computer and can be accessed from different places.

 Productivity may be increased when multiple users can work on the same data

simultaneously, rather than waiting for it to be saved and emailed. Time may be saved

as information does not need to be re-entered when fields are matched, nor do users

need to install application software upgrades to their computer.

 Reliability improves with the use of multiple redundant sites, which makes well-

designed cloud computing suitable for business continuity and disaster recovery.

 Scalability and elasticity via dynamic ("on-demand") provisioning of resources on a

fine-grained, self-service basis in near real-time, without users having to engineer for

peak loads.

7

The National Institute of Standards and Technology's definition of cloud computing identifies

"five essential characteristics": [4]

1) On-demand self-service: A business will secure cloud-hosting services through a cloud

host provider which could be your usual software vendor. You have access to your

services and the power to change cloud services through an online control panel or

directly with the provider. You can add or delete users and change storage networks

and software as needed.

2) Broad network access.Your team can access business management solutions using

their smartphones, tablets, laptops, and office computers. They can use these devices

wherever they are located with a simple online access point.

3) Resource pooling. The cloud enables your employees to enter and use data within the

business management software hosted in the cloud at the same time, from any location,

and at any time. This is an attractive feature for multiple business offices and field

service or sales teams that are usually outside the office.

4) Rapid elasticity. If anything, the cloud is flexible and scalable to suit your immediate

business needs. You can quickly and easily add or remove users, software features, and

other resources.

5) Measured service. Going back to the affordable nature of the cloud, you only pay for

what you use. You and your cloud provider can measure storage levels, processing,

bandwidth, and the number of user accounts and you are billed appropriately. The

amount of resources that you may use can be monitored and controlled from both your

side and your cloud provider’s side which provides transparency.

Figure 6: Characteristics of Cloud[3]

8

1.1.5. Virtualization

It is a very useful concept in context of cloud systems. Virtualisation means “something

which isn’t real”, but gives all the facilities of a real. It is the software implementation of a

computer which will execute different programs like a real machine. Virtualisation is related to

cloud, because using virtualisation an end user can use different services of a cloud. The

remote data center will provide different services in a fully or partial virtualised manner. The

two types of virtualization are found in case of clouds as given in [2] :

1) Full Virtualization

2) Para Virtualisation

1.1.5.1 Full Virtualisation

In case of full virtualisation a complete installation of one machine is done on the another

machine. It will result in a virtual machine which will have all the software’s that are

present in the actual server. Here the remote datacenter delivers the services in a fully

virtualised manner.

Figure 7: Full Virtualization
[2]

Full virtualization has been successful for several purposes as pointed out in [2]:

 Sharing a computer system among multiple users.

 Isolating users from each other and from the control program

 Emulating hardware on another machine

1.1.5.2 Para virtualization

9

In par virtualisation, the hardware allows multiple operating systems to run on single

machine by efficient use of system resources such as memory and processor. E.g. VMware

software. Here all the services are not fully available, rather the services are provided

partially.

Figure 8: Para Virtualization
[2]

.

Para virtualization has the following advantages as given in [2]:

 Disaster recovery: In the event of a system failure, guest instances are moved to

another hardware until the machine is repaired or replaced.

 Migration: As the hardware can be replaced easily, hence migrating or moving the

different parts of a new machine is faster and easier.

 Capacity management: In a virtualised environment, it is easier and faster to add

more hard drive capacity and processing power. As the system parts or hardware can be

moved or replaced or repaired easily, capacity management is simple and easy.

1.2 Cloud Storage

Storage of data over the Internet is one of the essential application of cloud computing.

Cloud storage is capable of providing the users to store the enterprise data in the different

storage servers of different vendors instead of storing the data in particular storage server.

Cloud storage implements the location transparency, so that user can never know where his

data stored in the cloud storage but it provides the abstract view of local storage. Cloud

storage is simply an alias used to pointing out to virtual storage in the cloud environment.

10

Hence in cloud storage, client’s data can be accumulated on one or many of the systems that

participate in the cloud environment. But the real repository area may significantly vary

from time to time or even moment to moment, as the cloud powerfully oversees accessible

storage areas. Anyway, despite the fact that the storage place is virtual, the client gets a

static view of his data area and can trivially work with his cloud storage which physically

resides far away from the client [5].

Economically, in comparison to dedicated physical resource, virtual resources are less

expensive. Concerning security, enterprise data put away in the cloud storage is safe from

unintentional eradication or equipment failures, on the grounds that it is replicated over

numerous physical devices. Because various replicas of the information are kept ceaselessly,

the cloud storage keeps on working as typical regardless of the possibility that one or more

machines get disconnected from the net [5].

1.3 Load Balancing

It is a mechanism that distributes the dynamic local workload evenly across all the nodes

in the whole cloud to avoid a situation where some nodes are heavily loaded while others are

idle or doing little work. It helps to achieve a high user satisfaction and resource utilization

ratio, hence improving the overall performance and resource utility of the system. It also

ensures that every computing resource is distributed efficiently and fairly[4]. It further

prevents bottlenecks of the system which may occur due to load imbalance. When one or

more components of any service fail, load balancing helps in continuation of the service by

implementing fair-over, i.e. in provisioning and de-provisioning of instances of applications

without fail. The goal of load balancing is improving the performance by balancing the load

among these various resources (network links, central processing units, disk drives.) to

achieve optimal resource utilization, maximum throughput, maximum response time, and

avoiding overload. To distribute load on different systems, different load balancing

algorithms are used.

1.3.1. Goals of Load balancing

11

In order to balance the requests of the resources it is important to recognize a few major

goals of load balancing algorithms:

a) Cost effectiveness: primary aim is to achieve an overall improvement in system

performance at a reasonable cost.

b) Scalability and flexibility: the distributed system in which the algorithm is

implemented may change in size or topology. So the algorithm must be scalable and

flexible enough to allow such changes to be handled easily.

c) Priority: prioritization of the resources or jobs need to be done on beforehand

through the algorithm itself for better service to the important or high prioritized jobs

in spite of equal service provision for all the jobs regardless of their origin.

1.3.2. Metrics for Load Balancing

Various important matrices used for load balancing algorithms are discussed as

follow:[6]

 Throughput is utilized to ascertain the number of job whose processing has been

accomplished. It ought to be maximized to enhance the execution of the system.

 Overhead Associated decides the measure of cost of actualizing a load balancing

technique in term of time. It is made out of extra cost because of migration of

jobs, between various process interactions and processors. This ought to be least

so a load adjusting strategy can perform effectively.

 Fault Tolerance: The capacity of an algorithm to perform uniform load balancing

despite subjective nod or connection failure. The load balancer ought to be a fault

tolerant strategy.

 Migration time: The total duration to move the tasks or processes among the

nodes available in the system. It ought to be least in order to upgrade the

execution of the system.

12

 Response Time: The measure of time elapsed to react by a specific load adjusting

mechanism in a disseminated system. It ought to be least.

 Resource Utilization: It is utilized to analyses the use of resources. It ought to be

advanced for an effective burden adjusting.

 Scalability: It is the capacity of an algorithm to operate load balancing efficiently

the size of system increased or decreased. It ought to be enhanced.

 Performance: It is utilized to check the effectiveness of the system. This must be

enhanced at a sensible expense, e.g. minimize tasks response time while keeping

worthy deferrals.

1.4. Problem Statement

As we can see that from past few decades, there is a huge proliferation of data in

cyberspace. In order to manage data efficiently, cloud provides remote services to

subscribed clients through Internet. . In this system few of the storage server gets huge

clients requests where as other servers remain idle or least loaded. This unequal

distribution of load on servers leads to degradation of the performance of overall system

and increases the response time of submitted requests. If the load of any server exceeds its

capacity, then it affects their efficiency. Load balancing plays an important role in the

deployment of virtual machines onto physical hosts. Handling this challenge related to the

load balancing in the cloud keeping in account the energy efficiency and scalability of the

system and develop a method which minimizes the response time and maximizes the

overall throughput of the system is our main concern.

1.5. Objective

 Designing a scalable and energy-efficient load balancing algorithm for handling

dynamic load on the hosts.

 Enhances the power efficiency of the system as well as takes into consideration the

system scalability.

13

 Reduces the waiting time of client requests in server queue for processing.

 Enhance the utilization of server.

 Reduce the overall response time of system.

1.6. Organization of report

This report is organized into five chapters.

Chapter 1 describes what is cloud computing, various core services provided by cloud

computing, its service and deployment models, cloud storage, load balancing in cloud

storage, goals and metrics of load balancing, problem statement and objective of report.

Chapter 2 describes about the previous research work related to the proposed problem

statement.

Chapter 3 describes about the proposed work, simulation of existing algorithms of

countering load balancing and studying their outcomes.

Chapter 4 describes about simulation environment, comparison charts and graphs of

the studied and simulated algorithms on various parameters of quality of service.

Chapter 5 describes the conclusion of the report and future work.

14

CHAPTER 2

LITERATURE REVIEWED

The following sections describe the literature background for the proposed problem

statement given in chapter 1. Here, various authors had proposed their approaches to

solve the various issues related to proposed problem statement related to our problem

statement till now. We have categories the literature into two different sections: Scalable

load balancing algorithms and Energy efficient load balancing algorithms.

2.1 Scalable load balancing algorithms:

Title: Analysis of Load Balancing Techniques in Cloud Computing

Author: Amandeep Kaur Sidhu, Supriya Kinger

Abstract: Amandeep et al. [4] has presented a concept of Cloud Computing along with

research challenges in load balancing. Following load balancing algorithms are currently

prevalent in clouds:

 Round Robin: In this algorithm, the processes are divided between all processors.

Each process is assigned to the processor in a round robin order. The process

allocation order is maintained locally independent of the allocations from remote

processors. Though the work load distributions between processors are equal but the

job processing time for different processes are not same.

 Connection Mechanism: Load balancing algorithm can also be based on least

connection mechanism which is a part of dynamic scheduling algorithm. It needs to

count the number of connections for each server dynamically to estimate the load. The

load balancer records the connection number of each server. The number of

connection increases when a new connection is dispatched to it, and decreases the

number when connection finishes or timeout happens.

15

 Randomized: Randomized algorithm is of type static in nature. In this algorithm a

process can be handled by a particular node n with a probability p. The process

allocation order is maintained for each processor independent of allocation from

remote processor. This algorithm works well in case of processes are of equal loaded.

However, problem arises when loads are of different computational complexities.

Randomized algorithm does not maintain deterministic approach. It works well when

Round Robin algorithm generates overhead for process queue.

 Equally Spread Current Execution Algorithm: Equally spread current execution

algorithm process handle with priorities. it distribute the load randomly by checking

the size and transfer the load to that virtual machine which is lightly loaded or handle

that task easy and take less time , and give maximize throughput. It is spread spectrum

technique in which the load balancer spread the load of the job in hand into multiple

virtual machines.

 Throttled Load Balancing Algorithm: Throttled is completely based on virtual

machine. In this client first requesting the load balancer to check the right virtual

machine which access that load easily and perform the operations which is given by

the client or user. In this algorithm the client first requests the load balancer to find a

suitable Virtual Machine to perform the required operation.

 A Task Scheduling Algorithm Based on Load Balancing: Y. Fang et al. discussed a

two-level task scheduling mechanism based on load balancing to meet dynamic

requirements of users and obtain high resource utilization. It achieves load balancing

by first mapping tasks to virtual machines and then virtual machines to host resources

thereby improving the task response time, resource utilization and overall performance

of the cloud computing environment.

 Min-Min Algorithm: It begins with a set of all unassigned tasks. First of all,

minimum completion time for all tasks is found. Then among these minimum times

the minimum value is selected which is the minimum time among all the tasks on any

resources. Then according to that minimum time, the task is scheduled on the

corresponding machine. Then the execution time for all other tasks is updated on that

16

machine by adding the execution time of the assigned task to the execution times of

other tasks on that machine and assigned task is removed from the list of the tasks that

are to be assigned to the machines.

 Max-Min Algorithm: Max-Min is almost same as the min-min algorithm except the

following: after finding out minimum execution times, the maximum value is selected

which is the maximum time among all the tasks on any resources. Then according to

that maximum time, the task is scheduled on the corresponding machine. Then the

execution time for all other tasks is updated on that machine by adding the execution

time of the assigned task to the execution times of other tasks on that machine and

assigned task is removed from the list of the tasks that are to be assigned to the

machines.

Title: A comparative study into distributed load balancing algorithms for

cloud computing

Author: Randles, Martin, David Lamb, and A. Taleb-Bendiab

Abstract: Randles et al [7] has comparatively analyzed the distributed load balancing algorithms

in cloud computing. Authors have compared the following distributed load balancing algorithms:

 Honeybee ForagingBehavior

 Biased RandomSampling

 ActiveClustering

Honeybee Foraging Behavior: This algorithm inspired by behavior of honeybees

foraging and harvesting food. This approach is employed as a searching technique. In

honeybee load balancing approach, set of servers are divided into virtual servers. Each

virtual server is serving a virtual service request queue. To measure the bee’s quality,

cost of serving the request is calculated which gives theprofit.

Biased Random Sampling: in this approach, load of a server is measured by its

connectivity in a virtual graph. Initially a network is created with virtual nodes that

representeachserver.Degreeofeachservernodeismappedtoavailableresources.

17

Number of incoming edges gets connected with randomly selected nodes. Through this

edge dynamics load allocation is required for load balancing. When a node process a new

task, it deletes an inward edge, represent reduction in tasks. Adversely, when a node

completes its task, a new incoming edge is added. The process of increment and

decrement is performed via Random Sampling. During sampling, at each step node select

its one of neighbor randomly.

Active Clustering: It is self-aggregation algorithm to reconstruct the network. This

approach works on the principle of similarity group. Active clustering consists of

following iteration:

 At any time (random), a node acts as an initiator and select randomly different

type of nodes from its neighbors.

 The matchmaker node leads to a link to be created between one matchmaker

nodes.

 The matchmaker deletes that links.

Title: A Comparative Study of Load Balancing Algorithms in Cloud

Computing Environment

Authors: MayankaKatyal, Atul Mishra

Abstract: Mayanka Katyal et al [8] have presented various load balancing schemes in

different cloud environment based on requirements specified in Service Level Agreement

(SLA). Authours took into account two major tasks for load balancing, one is the

resource provisioning or resource allocation and other is task scheduling in distributed

environment. Table 2.gives the comparison of resource allocation and task scheduling

and specifies the issues resolved by each technique of load balancing.

Table 1: Comparison between Resource Allocation and Task Scheduling

18

Based on resource provisioning and scheduling, four cases can be examined under

different performance criteria so as to get efficient load balancing scheme.

Case 1: Hosts and VMs, both are provisioned in space sharing manner.

Case 2: Hosts and VMs, both are provisioned to VMs and tasks respectively in time

sharing manner.

Case 3: Hosts are provisioned to VMs in space sharing manner and VMs are provisioned

to tasks in time sharing manner.

Case 4: Hosts are provisioned to VMs in time sharing manner and VMs are provisioned

to tasks in space sharing manner.

Further they propose that in distributed scenario, failure intensity of a node is not

neglected. Hence, the system is fault tolerant and balanced as well as no single node is

overloaded to make load balancing decision. Comparison of different static and dynamic

load balancing algorithms is given in Table 3. It also compares them on the basis of

spatial distribution of nodes.

Table 2: Comparison Table of LBA in Cloud Computing Environment

In this paper, they discussed various load balancing schemes, each having some pros and

cons. On one hand static load balancing scheme provide easiest simulation and

19

monitoring of environment but fail to model heterogeneous nature of cloud. On the other

hand, dynamic load balancing algorithm are difficult to simulate but are best suited in

heterogeneous environment of cloud computing. Also the level at node which

implements this static and dynamic algorithm plays a vital role in deciding the

effectiveness of algorithm. Unlike centralized algorithm, distributed nature of algorithm

provides better fault tolerance but requires higher degree of replication and on the other

hand, hierarchical algorithm divide the load at different levels of hierarchy with upper

level nodes requesting for services of lower level nodes in balanced manner. Hence,

dynamic load balancing techniques in distributed or hierarchical environment provide

better performance.

Title: Dynamically Scaling Applications in the Cloud

Author: Luis M. Vaquero, Luis Rodero-Merino, RajkumarBuyya

Abstract: Luis et al[9] have proposed the most notable initiatives towards whole

application scalability in cloud environments. Having several servers and the

mechanisms to distribute load among nodes is a definitive step towards scaling a cloud

application. However, according to them, Network scalability is the often neglected

element of the datacentre infrastructure which needs to be considered towards complete

application scalability. Cloud applications should be able to request not only virtual

servers at multiple points in the network, but also bandwidth-provisioned network pipes

and other network resources to interconnect them. Clouds that offer simple virtual

hardware infrastructure such as VMs and networks are usually denoted IaaS Clouds. A

different abstraction level is given by PaaS clouds which supply a container-like

environment where users deploy their applications as software components. PaaS clouds

provide sets of “online libraries” and services for supporting application design,

implementation and maintenance. Despite being somewhat less flexible than IaaS clouds,

PaaS clouds are becoming important elements for building applications in a faster

manner and many important IT players such as Google and Microsoft have developed

new PaaS clouds systems such as Google App Engine and Microsoft Azure. Due to their

importance this document also discusses scalability in PaaS clouds at two different

20

levels: container level and database level. Figure 1 provides an overview of the

mechanisms handy to accomplish the goal of whole application scalability

Figure 9: Summary of available mechanisms for holistic application scalability

Title: Load Balancing Method for Infrastructure as a Service (IaaS) In

Cloud Computing

Authors: Nikhil S. Dharane, Abhijeet S. Kulkarni, Akshay U. Bhawthankar, A.A.

Deshmukh

Abstract: Nikhil et al [10] focuses on the IaaS cloud, its optimization and further the

authors give their proposed model for load balancing in IaaS. IaaS cloud is usually

provided to users in the form of Virtual Machines (VMs), such as Amazon EC2. In an

IaaS cloud, users can apply VMs on-demand to deploy and run their applications also

provide services to their clients which will be helpful to clients. IaaS has major issues

like resource management, network infrastructure, virtualization, data management etc.

IaaS provides benefits like: scalability, QoS, reduction in overheads, cost effectiveness.

Different types of resources like physical and logical are provided in IaaS. There are

physical servers with a large number of virtual machines. These virtual machines are

hosted with many heterogeneous applications. In order to optimize the utilization of

computing resources and also saving energy consumption of cloud data centers, the

applications running on the virtual machines will be migrated either to the same server or

to another physical or virtual server. Identifying when it is best to migrate an application

in a virtual machine has a direct impact on resource optimization. Performance

optimization can be best achieved by an efficiently monitoring the utilization of

21

computing resources. So, this calls for the need of comprehensive intelligent monitoring

agent to analyse the performances of virtual machines.

They further proposed a model that had two cases one for VM starting and other for load

is increasing or falling below threshold. Fig 1 shows system architecture. First we get the

next several hours prediction load of the starting VM. Then, we select n hosts that have

lower load. Then, one suitable host will be select from these n hosts for the VM running

on. The principle for choose this host is that, if this VM running on the host, the load-

balancing factor will be the minimum in next several hours.

For the second case which the load of some hosts exceeds or falls below the threshold,

several hosts with lowest load and highest load will be selected, and some suitable VMs

on high load hosts would be chosen to migration to the hosts with lower load. In the

extreme case, the load of every host is below the threshold, we need migrate the VMs of

some hosts and shutdown these hosts. Conversely, if the load of every host is higher than

the threshold, new hosts would start.

Figure 10 a: System Architecture of proposed algorithm

This graph shows that when number of hosts increases then load balancing factor

decreases. So load is perfectly balanced between all available hosts.

22

Figure 10 b: Number of host v/s load balancing factors

Title: Load balancing strategy of cloud computing based on artificial

bee algorithm

Author: Yao, Jing, and Ju-hou He

Abstract: Yao et al. [11] have proposed an improved Artificial Bee Colony algorithm.

They have experimentally represented that ABC based load balancing algorithm

outperform the basic ABC algorithm [24, 25]. Authors have said that previous load

balancing algorithms consider only lightly loaded node and execute a lot of requests e.g.

newly arrived request and requests coming from heavily loaded nodes. This leads to load

imbalance again.

2.2 Energy Efficient Load Balancing Algorithms:

Title: Energy Aware Load Balancing In Cloud Computing Using

Virtual Machines

Author: Maunika M. Ramani, Prof. Mohammed H. Bohara

Abstract: Maunika et al[12] in their proposed work considered the situation of over-

utilization, under-utilization using resource utilization threshold and control temperature

of the host using temperature threshold. Their goal is to save maximum energy of the

data centre. In this approach, they have identified the dynamic threshold value of

resource utilization and define temperature threshold. It reduces the consumption of

23

maximum resources, control the temperature of the processor and maximum minimize

the energy consumption.

They have proposed a technique, which base on threshold values of resource utilization,

temperature threshold values and VM consolidation. Resource utilization threshold

values are calculated dynamically. Using it has improved the resource utilization so

balance the workload in a better way. Temperature of CPU is calculated using a lumped

thermal model which controls the heat of CPU. Using these thresholds identifies over

loaded or heated hosts and under loaded or heated host. After that, using some ThaS

steps and VM consolidation to achieve the final goal. Figure 11 defines the workflow

diagram of our propose work.

Figure 11: Flow of proposed work

Steps of the propose work which defines the overall process of the work:

Step 1: Figure shows the of the initial state of the datacentre .In data centre have different

host with the workload. There are different types of load in the host machine as CPU

load, storage load, memory load, network related load, etc. Temperature of host also

calculated using lumped thermal model. Initial state defines as in figure 12.

24

Figure 12: Initial state of datacenter

Step 2: At the second stage calculate dynamic thresholds of resource utilization and

define temperature thresholds. Resource utilization threshold values identify over/under

loaded host machines. And, using a temperature threshold identifies high heated and low

heated host machines to control the temperature of resources and save the unnecessary

usage of energy. In figure13 define these hosts.

Figure 13: Identify under/overloaded and heated hosts.

25

Step 3:

Figure 14: VM migrates on appropriate target hosts.

Title: Energy Efficient Resource Management in Virtualized Cloud

Data Centers

Author: Anton Beloglazov and Rajkumar Buyya

Abstarct: Anton et al[13] proposed a decentralized architecture of the energy aware

resource management system for Cloud data centers. They have defined the problem of

minimizing the energy consumption while meeting QoS requirements and stated the

requirements for VM allocation policies. Moreover, they have proposed three stages of

continuous optimization of VM placement and presented heuristics for a simplified

version of the first stage. The heuristics have been evaluated by simulation using the

extended CloudSim toolkit. One of the heuristics leads to significant reduction of the

energy consumption by a Cloud data center – by 83% in comparison to a non power

aware system and by 66% in comparison to a system that applies only DVFS technique

but does not adapt allocation of VMs in run-time. Moreover, MM policy enables flexible

adjustment of SLA by setting appropriate values of the utilization thresholds: SLA can be

relaxed leading to further improvement of energy consumption. The policy supports

26

heterogeneity of both the hardware and VMs and does not require any knowledge about

particular applications running on the VMs. The policy is independent of the workload

type.

SYSTEM ARCHITECTURE

In this work the underlying infrastructure is represented by a large-scale Cloud data

center comprising n heterogeneous physical nodes. Each node has a CPU, which can be

multicore, with performance defined in Millions Instructions Per Second (MIPS).Users

submit requests for provisioning of m heterogeneous VMs with resource requirements

defined in MIPS, amount of RAM and network bandwidth. SLA violation occurs when a

VM cannot get the requested amount of resource, which may happen due to VM

consolidation. As shown in Figure 15, the system operation consists of the following

steps:

1) New requests for VM provisioning. Users submit requests for provisioning of VMs.

2) Dispatching requests for VM provisioning. The dispatcher distributes requests among

global managers.

3) Intercommunication between global managers. The global managers exchange

information about utilization of resources and VMs that have to be allocated.

4) Data about utilization of resources and VMs chosen to migrate. The local managers

propagate information about resource utilization and VMs chosen to migrate to the global

managers.

5) Migration commands. The global managers issue VM migration commands in order to

optimize current allocation.

6) Commands for VM resizing and adjusting of power states. The local managers

monitor their host nodes and issue commands for VM resizing and changes in power

states of nodes.

7) VM resizing, scheduling and migration actions. According to the received commands,

VMM performs actual resizing and migration of VMs as well as resource scheduling.

27

Figure 15: The system architecture

The simulation results are presented in Table 3. The results show that dynamic

reallocation of VMs according to current utilization of CPU can bring higher energy

savings comparing to static allocation policies. MM policy allows to achieve the best

energy savings: by 83%, 66% and 23% less energy consumption relatively to NPA,

DVFS and ST policies respectively with thresholds 30-70% and ensuring percentage of

SLA violations of 1.1%; and by 87%, 74% and 43% with thresholds 50-90% and 6.7% of

SLA violations. MM policy leads to more than 10 times fewer VM migrations than ST.

The results show the flexibility of the algorithm, as the thresholds can be adjusted

according to SLA requirements. Strict SLA (1.11%) allow achievement of the energy

consumption of 1.48 KWh. However, if SLA are relaxed (6.69%), the energy

consumption is further reduced to 1.14 KWh.

Table 3: Simulation Results

28

Title: Existing Load Balancing Techniques In Cloud Computing: A

Systematic Review

Author: Nidhi Jain Kansal, Inderveer Chana

Abstract: Nidhi et al. [14] discussed the existing load balancing techniques that are

currently prevalent in clouds and did the comparative study based on the parameters as

visible in the table

1. VectorDot: VectorDot uses dot product to distinguish nodes based on the item

requirements and helps in removing overloads on servers, switches and storage nodes.

2. CARTON: a mechanism CARTON for cloud control that unifies the use of LB and

DRL. LB (Load Balancing) is used to equally distribute the jobs to different servers so

that the associated costs can be minimized and DRL (Distributed Rate Limiting) is used

to make sure that the resources are distributed in a way to keep a fair resource allocation.

3. Compare and Balance: A distributed load balancing algorithm COMPARE AND

BALANCE is proposed that is based on sampling and reaches equilibrium very fast. This

algorithm assures that the migration of VMs is always from high-cost physical hosts to

low-cost host but assumes that each physical host has enough memory which is a weak

assumption.

4. Event-driven: This algorithm after receiving capacity events as input, analyses its

components in context of the resources and the global state of the game session, thereby

generating the game session load balancing actions. It is capable of scaling up and down

a game session on multiple resources according to the variable user load but has

occasional QoS breaches.

5. Scheduling strategy on LB of VM resources: This strategy achieves the best load

balancing and reduced dynamic migration by using a genetic algorithm. It helps in

resolving the issue of load imbalance and high cost of migration thus achieving better

resource utilization.

6. CLBVM: This policy improves the overall performance of the system but does not

consider the systems that are fault-tolerant.

7. LBVS: Storage virtualization is achieved using an architecture that is three-layered

and load balancing is achieved using two load balancing modules. It helps in improving

the efficiency of concurrent access by using replica balancing further reducing the

29

response time and enhancing the capacity of disaster recovery. This strategy also helps in

improving the use rate of storage resource, flexibility and robustness of the system.

8. Task Scheduling based on LB: It achieves load balancing by first map-ping tasks to

virtual machines and then virtual machines to host resources thereby improving the task

response time, resource utilization and overall performance of the cloud computing

environment.

9. Honeybee Foraging Behaviour: nature-inspired algorithm for self-organization. It

achieves global load balancing through local server actions. Performance of the system is

enhanced with increased sys-tem diversity but throughput is not increased with an

increase in system size. It is best suited for the conditions where the diverse population of

service types is required.

10. Biased Random Sampling: distributed and scalable load balancing approach that

uses random sampling of the system domain to achieve self-organization thus balancing

the load across all nodes of the system.

11. Active Clustering: a self-aggregation load balancing technique that is a self-

aggregation algorithm to optimize job assignments by connecting similar services using

local re-wiring.

12. ACCLB: a load balancing mechanism based on ant colony and complex network

theory (ACCLB) in an open cloud computing federation. It uses small-world and scale-

free characteristics of a complex network to achieve better load balancing.

13. (OLB + LBMM): combination of two. OLB scheduling algorithm, keeps every node

in working state to achieve the goal of load balance and LBMM scheduling algorithm is

utilized to minimize the execution time of each task on the node thereby minimizing the

overall completion time.

14. Decentralized content aware: It uses a parameter named as USP to specify the

unique and special property of the requests as well as computing nodes. USP helps the

scheduler to decide the best suitable node for processing the requests.

15. Server-based LB for Internet distributed services: a new server-based load

balancing policy for web servers which are distributed all over the world. It helps in

reducing the service response times by using a protocol that limits the redirection of

requests to the closest remote servers without overloading them.

30

16. Join-Idle-Queue: This algorithm provides large-scale load balancing with distributed

dispatchers by, first load balancing idle processors across dispatchers for the availability

of idle processors at each dispatcher and then, assigning jobs to processors to reduce

average queue length at each processor.

 17. Lock-free multiprocessing solution for LB: a lock-free multiprocessing load

balancing solution that avoids the use of shared memory in contrast to other

multiprocessing load balancing solutions which use shared memory and lock to maintain

a user session. It is achieved by modifying Linux kernel.

Table 4: Comparison of LB techniques based on various metrics

31

Table 5: Analysis of existing LB techniques

Title: Optimal Online Deterministic Algorithm and Adaptive Heuristics

for Energy and Performance Efficient Dynamic Consolidation of

Virtual Machines in Cloud Data Centers

Author: Anton Beloglazov and Rajkumar Buyya

32

Abstract: Anton et al [15] explained the rapid growth in demand for computational

power driven by modern service applications combined with the shift to the Cloud

computing model have led to the establishment of large-scale virtualized data centers.

Such data centers consume enormous amounts of electrical energy resulting in high

operating costs and carbon dioxide emissions. Dynamic consolidation of virtual

machines (VMs) using live migration and switching idle nodes to the sleep mode allow

Cloud providers to optimize resource usage and reduce energy consumption. However,

the obligation of providing high quality of service to customers leads to the necessity in

dealing with the energy-performance trade-off, as aggressive consolidation may lead to

performance degradation. Due to the variability of workloads experienced by modern

applications, the VM placement should be optimized continuously in an online manner.

Title: Cloud task scheduling based on load balancing ant colony

optimization

Author: Li, Kun, GaochaoXu, Guangyu Zhao, Yushuang Dong, and Dan Wang

Abstract: Kun-Li et al. [16] have proposed a scheduling algorithm based on the Load

Balancing Ant Colony Optimization (LBACO) which is an enhanced version of simple

ACO algorithm[27,28]. Authors have tried to balance the load and minimize the response

time of a tasks. Authors have simulated the approach using the Cloudsim simulator and

compared it with FCFS and basic ACO algorithm.

2.3 Conclusion

In the literature review, some authors have proposed problems related to scalable load

balancing approach and some authors have proposed energy efficient load balancing

approach to solve the issues related to proposed problem statement. Both types of

approaches have some pros and cons. So the applicability of the any approach depends

on the scenario used by the authors. The main motive of literature review is to thoroughly

analyze the research work related to proposed problem statement and design an approach

to solve the issues related to proposed problem statement.

33

CHAPTER 3

PROPOSED WORK

3.1. Proposed approach

We have proposed a distributed load balancing algorithms in cloud environment.

Keeping into the consideration the parameters of Quality of Service (QoS) which includes

scalability, energy efficiency, fault tolerance, flexibility, response time, migration time of the

resources. For this we have first studied already existing algorithms DVFS and IQR and

simulated them with RR and FCFS. Results are being noted down and comparative studies of

those graphs have been done to identify which parameters lack behind in the current scenario.

3.2. Dynamic Voltage and Frequency Scaling and its Simulation

DVFS is the simulation of a heterogeneous power aware data center that only applied

DVFS, but no dynamic optimization of the VM allocation. The adjustment of the hosts'

power consumption according to their CPU utilization is happening in the PowerDatacenter

class. The remaining configuration parameters are in the Constants and Random Constants

classes. The use of DVFS directly affects the performance of the CPU capacity (and hosts),

which are subject to regular changes during simulations. This also involves changing the

way the simulator handles the placement and management of virtual machines. For

example, if the system decides to reduce the frequency, the sum of capacities of all virtual

machines (VMs) may temporarily exceed the maximum capacity of the host. In this case,

the size of each VM must temporarily be adjusted downward in proportion to the capacity of

the new host. The same situation occurs when one or more new virtual machines have to be

added to a host already in use. If the sum of capacities of the virtual machines already

running in the host plus the capacities of new virtual machines created exceeds the capacity

34

of the host, the size of all virtual machines has to be decreased before adding the new virtual

machines to the host.

Each DVFS mode can be configured in different ways by setting specific parameters

values.[18]

 Sampling rate: defines the minimum time interval between two frequency

changes;

 Thresholds: The OnDemand and Conservative modes compare the current CPU

load with predefined thresholds. By setting custom values, the user can adapt their

behavior.

3.2.1 DVFS Simulation with FCFS

CASE 1: No. of Hosts: 50 and No. of VMs: 50

Figure 16: screenshot of dvfs simulation with fcfs case 1

35

CASE 2: No. of Hosts: 50 and No. of VMs: 25

.

Figure 17: Screenshot of dvfs simulation with fcfs case 2

3.2.1 DVFS Simulation with RR

CASE 1: No. of Hosts: 50 and No. of VMs: 50

Figure 18: Screenshot of dvfs simulation with rr case 1

36

CASE2: No. of Hosts: 50 and No. of VMs: 25

Figure 19: Screenshot of dvfs simulation with rr case 2

3.3. Inter Quartile Range and its Simulation

The interquartile range (IQR) is an estimate of variability, based on dividing a data set

into quartiles. It is the difference between the upper and lower quartile in a data set.

Steps for finding Interquartile Range:

1. Sort the data set in increasing order.

2. Find the median for the ordered set (Q2).

3. Divide the data set into two halves.

4. Find the median for the first half of the ordered data set (Lower Quartile Q1).

5. Find the median for the second half of the ordered data set (Upper Quartile Q3).

6. IQR = Upper Quartile – Lower Quartile.

37

Here data set defines set of the host utilization. We propose a method based on two

threshold values, lower threshold and upper threshold. The median for the first half of the

ordered data set (host utilization) is used to calculate the lower threshold value, while

median of second half of the ordered data set (host utilization) is used to calculate the

upper threshold value. This is shown in example as follows:

Let us assume the utilization of each host (in terms of percentage).

List of host utilization [23,65,10,75,50,84,15,30,90,12]

1. After sorting [10, 12, 15, 23, 30, 50, 65, 75, 84, 90]

2. Median = (30+50) / 2 =40

3. First half [10, 12, 15, 23, 30], Second half [50, 65, 75, 84, 90]

4. Median of the first half =15, which is used as lower threshold value.

5. Median of Second half = 75, which is used as upper threshold value.

Adaptive Heuristics for Dynamic VM Consolidation

Dynamic consolidation problems:

1. Determining when a host is considered as being overloaded

2. Determining when a host is considered as being underloaded

3. Selection of VMs that should be migrated from an overloaded host

4. Finding a new placement of VMs selected for migration from overloaded and

underloaded hosts.

Algorithm 1[15]: VM placement Optimization

1. Input: hostList Output: migrationMap

2. foreach host in hostList do

3. if isHostOverloaded (host) then

4. vmsToMigrate.add(getVmsToMigrateFromOverloadedHost (host)

38

5. migrationMap.add(getNewVmPlacement (vmsToMigrate))

6. vmsToMigrate.clear()

7. foreach host in hostList do

8. if isHostUnderloaded (host) then

9. vmsToMigrate.add(host.getVmList()

10. migrationMap.add(getNewVmPlacement (vmsToMigrate))

11. return migrationMap

Algorithm 2[16]: VM placement algo for Overloaded Host

1. For each VM in VMmigrationList1 {

2. For each Host in MostLikelyOverloadedHostList {

3. If (this host is suitable for VM) {

4. Calculate utlzAfterAllocation;

5. Calculate powerAfterAllocation;

6. If ((utlzAfterAllocation> prevUtlzOnThisHost)

&& (powerAfterAllocation < minpower))

7. targetHost = thisHost

8. }

9. }

10. Add (VM, Host) pair to MigrationMap

11. }

Algorithm 3[16]: VM placemen algo for Underloaded Host

1. For each VM in VMmigrationList2 {

2. For each Host in MostLikelyUnderloadedHostList {

39

3. If (this host is suitable for VM) {

4. Calculate utlzAfterAllocation;

5. Calculate powerAfterAllocation;

6. If ((utlzAfterAllocation > prevUtlzOnThisHost)

&& (powerAfterAllocation < minpower)) {

7. targetHost = thisHost

8. }

9. }

10. }

11. Add (VM, Host) pair to MigrationMap

12. }

VM Selection is done on basis of one of the three:

 Minimum Migration Time (MMT)

 Random Choice (RC)

 Maximum Correlation (MC)

3.3.1. IQRrs Simulation with FCFS

CASE1: No. of Hosts: 50 and No. of VMs: 50

Figure 20: Screenshot of IQRrs simulation with fcfs case1

40

CASE2: No. of Hosts: 25 and No. of VMs: 50

Figure 21: Screenshot of IQRrs simulation with fcfs case2

3.3.2. IQRrs Simulation with RR

CASE1: No. of Hosts: 50 and No. of VMs: 50

Figure 22: Screenshot of IQRrs simulation with rr case1

41

CASE2: No. of Hosts: 50 and No. of VMs: 25

Figure 23: Screenshot of IQRrs simulation with rr case2

3.3.3. IQRmc Simulation with FCFS

CASE1: No. of Hosts: 50 and No. of VMs: 50

Figure 24: Screenshot of IQRmc simulation with fcfs case1

42

3.3.2. IQRmc Simulation with RR

CASE1: No. of Hosts: 50 and No. of VMs: 50

Figure 25: Screenshot of IQRmc simulation with rr case1

CASE2: No. of Hosts: 50 and No. of VMs: 25

Figure 26: Screenshot of IQRmc simulation with rr case2

43

3.4. Utilization After Allocation (UAA) and its Simulation

For finding host for VM to be placed in it. This is the proposed algorithm.

Take variable min_power that is assigned max value. Initially allocated host is null

Void utilizationAfterAllocation(vm,executedHost)

for (each host in hostList) {

if (executedHosts contains host)

continue

if (host.isSuitableForVm){

if (cpuUtilisation !=0 &&overutilised Host After Allocation)

continue }

try{

utilization after alloaction get Utilisation After Allocation

if (powerafteralloaction !=-1) {

if (powerafteralloaction < minPower){

minPower= powerafteralloaction

allocatedHost=host }

catch (Exception e)

 return allocatedHost

44

CHAPTER 4

SIMULATION AND RESULT

ANALYSIS

4.1 Simulation Environment

We have analyzed the performance of existing algorithm using simulations. We have

designed our simulation environment in Java for which we have used Netbeans7.0 tool.

To model and schedule the different applications for cloud is a challenging task which

requires different load and energy performance. To overcome this challenge University

of Melbourne, Australia provided CloudSim: simulation framework that provides

simulation, power to manage services and modeling the cloud infrastructure. It is

designed in the JAVA and is an open source simulator and works on both windows and

UNIX/Linux. The CloudSim toolkit supports both system and behavior modeling of

Cloud system components such as data centers, virtual machines (VMs) and resource

provisioning policies. It implements generic application provisioning techniques that can

be extended with ease and limited effort.

4.1.1 Advantages of CloudSim

The main advantages of using CloudSim for initial performance testing include:

(i) time effectiveness: it requires very less effort and time to implement Cloud-based

application provisioning test environment.

(ii) flexibility and applicability: developers can model and test the performance of

their application services in heterogeneous Cloud environments (Amazon EC2,

Microsoft Azure) with little programming and deployment effort.

45

4.1.2 Features of CloudSim

CloudSim offers the following novel features:

(i) Support for modeling and simulation of largescale Cloud computing

environments, including data centers, on a single physical computing node;

(ii) a self-contained platform for modeling Clouds, service brokers, provisioning, and

allocation policies;

(iii) support for simulation of network connections among the simulated system

elements;

(iv) facility for simulation of federated Cloud environment that inter-networks

resources from both private and public domains, a feature critical for research

studies related to Cloud-Bursts and automatic application scaling

(v) availability of a virtualization engine that aids in the creation and management of

multiple, independent, and co-hosted virtualized services on a data center node

(vi) flexibility to switch between space-shared and time-shared allocation of

processing cores to virtualized services.

These compelling features of CloudSim would speed up the development of new

application provisioning algorithms for Cloud computing.

4.1.3 CloudSim Architecture

Figure 16 shows the multi-layered design of the CloudSim software framework and its

architectural components. Initial releases of CloudSim used SimJava as the discrete event

simulation engine that supports several core functionalities, such as queuing and

processing of events, creation of Cloud system entities (services, host, data center,

broker, VMs), communication between components, and management of the simulation

clock. However in the current release, the SimJava layer has been removed in order to

allow some advanced operations that are not supported by it.

46

The CloudSim simulation layer provides support for modeling and simulation of

virtualized Cloud-based datacenter environments including dedicated management

interfaces for VMs, memory, storage, and bandwidth. The fundamental issues, such as

provisioning of hosts to VMs, managing application execution, and monitoring dynamic

system state, are handled by this layer.

The top-most layer in the CloudSim stack is the User Code that exposes basic entities

for hosts (number of machines, their specification, and so on), applications (number of

tasks and their requirements), VMs, number of users and their application types, and

broker scheduling policies. By extending the basic entities given at this layer, a Cloud

application developer can perform the following activities: (i) generate a mix of workload

request distributions, application configurations; (ii) model Cloud availability scenarios

and perform robust tests based on the custom configurations; and (iii) implement custom

application provisioning techniques for clouds and their federation.

Figure 27: Layered CloudSim Architecture

The finer details related to the fundamental classes of CloudSim, which are also the

building blocks of the simulator are shown in the figure given below which is the overall

Class design diagram for CloudSim:

47

Figure 28: CloudSim Class Design Diagram

4.1.4 CloudSim core simulation framework

GridSim is one of the building blocks of CloudSim. However, GridSim uses the

SimJava library as a framework for event handling and inter-entity message passing.

SimJava has several limitations that impose some restrictions with regard to creation of

scalable simulation environments such as:

 It does not allow resetting the simulation programmatically at run-time.

 It does not support creation of new simulation entity at run-time (once

simulation has been initiated).

 Multi-threaded nature of SimJava leads to performance overhead with the

increase in system size. The performance degradation is caused by the

excessive context switching between threads.

 Multi-threading brings additional complexity with regard to system debugging.

48

4.2. Comparative Study of Existing Algorithms

Comparison charts and graphs of the studied and simulated algorithms on various

parameters of quality.

Techniques Performance Response

time

Scalability Overhead Throughput Resource

Utilization

Fault

Tolerance

Migration

Time

Honeybee

Foraging

Yes No Yes No Yes No No No

Biased

Random

Sampling

Yes No Yes No Yes No No No

Active

Clustering

Yes No Yes No Yes No No No

ACCLB Yes No Yes No No Yes Yes No

Two-phase

scheduling
Yes No No No No Yes No No

ACCLB (Ant Colony and Complex Network Theory)

Two-Phase Scheduling (OLB + LBMM)

4.3. Comparative Graphs Of Simulated Algorithms with different

Test Cases

 Test Case 1 Test Case 2 Test Case 3 Test Case 4

No. of VM 50 25 8 40

No. of Hosts 50 50 35 30

49

VM configuration:

VM_MIPS {2500, 2000, 1000, 500}

VM_RAM {870, 1740, 1740, 613}

VM_BW 100000 // 100 Mbit/s

VM_SIZE 2500 // 2.5 GB

Host configuration:

HOST_MIPS { 1860, 2660 }

HOST_RAM { 4096, 4096 }

HOST_BW 1000000; // 1 Gbit/s

HOST_STORAGE 1000000; // 1 GB

Graph1. Different test cases for DVFS simulation using FCFS

In Test Case 2 creation of VM failed after 24.

Q

U

A

N

T

I

T

Y

TEST CASES

50

Graph 2. Different test cases for DVFS simulation using RR.

Graph 3. Different test cases for IQRrs simulation with RR.

Q

U

A

N

T

I

T

Y

Q

U

A

N

T

I

T

Y

TEST CASES

TEST CASES

51

Graph 4. Comparison of Energy of DVFS and UAA with different test cases

Graph 5. Comparison of IQRrs and UAA at different test cases

0

10

20

30

40

50

60

TC1 TC2 TC3 TC4

EN
ER

G
Y

 in
 (
k

W
h

)
DVFS vs UAA

DVFS

UAA

0

10

20

30

40

50

60

70

80

90

100

TC1 TC2 TC3 TC4

EN
ER

G
Y

 in
 (

kW
h

)

IQRrs vs UAA

IQRrs

UAA

TEST CASES

TEST CASES

52

Graph 6. Comparison of IQRmc and UAA at different test cases

4.4. Energy comparison of all simulated Algorithms

Graph7: Comparative graph of simulated algorithms

0

10

20

30

40

50

60

TC1 TC2 TC3 TC4

EN
ER

G
Y

 in
 (

kW
h

)

IQRmc vs UAA

IQRmc

UAA

0

10

20

30

40

50

60

70

80

90

100

TC1 TC2 TC3 TC4

EN
ER

G
Y

 in
 (

kW
h

)

COMPARATIVE

DVFS

IQRmc

IQRrs

UAA

TEST CASES

TEST CASES

53

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this report, a comparative study of the existing algorithms (DVFS and IQR) has been

done using FCFS and Round Robin technique of resource allocation.. The concluding

results show that there is a need for improving these existing algorithms to enhance their

scalability and power efficiency parameters. The proposed algorithm names utiisation

after allocation (UAA) is simulated which has resulted in enhanced energy efficiency.

5.2 Future work

In this report, proposed work presents existing techniques of handling load of servers

in cloud environment. In future other parameters can be modified to achieve greater

utilization and less power consumption.

54

REFRENCES

 [1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D.

Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the Clouds: A Berkeley

View of Cloud Computing”, EECS Department, University of California,Berkeley,

Technical Report No., UCB/EECS-2009-28, pages 1-23, February 2009.

[2] Anthony T.Velte, Toby J.Velte, Robert Elsenpeter, “Cloud Computing A Practical

Ap- proach”, TATA McGRAW-HILL Edition 2010.

[3] Nikhil S. Dharane, Abhijeet S. Kulkarni, Akshay U. Bhawthankar, A.A. Deshmukh

“Load Balancing Method for Infrastructure as a Service (IaaS) In Cloud

Computing: Survey”.

[4] Amandeep Kaur Sidhu, Supriya Kinger “Analysis of Load Balancing Techniques in

Cloud Computing.

[5] Kulkarni, Gurudatt, Rani Waghmare, RajnikantPalwe, VidyaWaykule,

HemantBankar, and KundlikKoli, "Cloud storage architecture," In 7th International

Conference on Telecommunication Systems, Services, and Applications (TSSA),

Bali, Oct 2012, pp 76-81.

[6] Kansal, Nidhi Jain, and Inderveer Chana, "Existing load balancing techniques in

cloud computing: a systematic review" Journal of Information Systems and

Communication, vol. 3, No.1, pp. 87-91, 2012..

[7] Randles, Martin, David Lamb, and A. Taleb-Bendiab, "A comparative study into

distributed load balancing algorithms for cloud computing," In IEEE 24th

International Conference on Advanced Information Networking and Applications

Workshops, Perth, WA, April 2010, pp.551-556.

[8] MayankaKatyal, Atul Mishra, “A Comparative Study of Load Balancing Algorithms

in Cloud Computing Environment”, International Journal of Distributed and Cloud

Computing Volume 1 Issue 2 December 2013

[9] Luis M. Vaquero, Luis Rodero-Merino, RajkumarBuyya “Dynamically Scaling

Applications in the Cloud”, The University of Melbourne, Australia.

55

[10] Nikhil S. Dharane,, Abhijeet S. Kulkarni,, Akshay U. Bhawthankar,, A.A.

Deshmukh “Load Balancing Method for Infrastructure as a Service (IaaS) In

Cloud Computing: Survey”.

[11] Yao, Jing, and Ju-hou He, "Load balancing strategy of cloud computing based on

artificial bee algorithm," In 8th International Conference on Computing

Technology and Information Management (ICCTIM), Seoul, April 2012, pp 185-

189..

[12] Maunika M. Ramani , Prof. Mohammed H. Bohara , “Energy Aware Load

Balancing In Cloud Computing Using Virtual Machines”

[13] Anton Beloglazov, Rajkumar Buyya, “Energy Efficient Resource Management in

Virtualized Cloud Data Centers”, 2010 10th IEEE/ACM International Conference

on Cluster, Cloud and Grid Computing

 [14] Nidhi Jain Kansal, Inderveer Chana, “Existing Load Balancing Techniques in

Cloud Computing: A systematic Review”, Journal of Information Systems and

Communication ISSN: 0976-8742, E-ISSN: 0976-8750, Volume 3, Issue 1, 2012,

pp- 87-91.

[15] Anton Beloglazov and Rajkumar Buyya , “Optimal Online Deterministic

Algorithm and Adaptive Heuristics for Energy and Performance Efficient Dynamic

Consolidation of Virtual Machines in Cloud Data Centers”, The University of

Melbourne.

[16] Li, Kun, GaochaoXu, Guangyu Zhao, Yushuang Dong, and Dan Wang, "Cloud

task scheduling based on load balancing ant colony optimization," In Sixth Annual

ChinaGrid Conference, Liaoning, Aug. 2011, pp. 3-9.

[17] Praveen Shukla, R.K. Pateriya, “IQR based Approach for Energy Efficient

Dynamic VM Consolidation for Green Cloud Data Centers”.

[18] Tom Guérout, Thierry Monteil, Georges Da Costa, Rajkumar Buyya, Mihai

Alexandru, “Energy-aware simulation with DVFS”, The University of Melbourne,

Australia.

