frm mer Wi

Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. NumS' B0 2.®)\ Call Num:

General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

& Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

¢ The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

AN

SP02011

DESIGN OF ADAPTIVE FILTER AND IT’S
SIMULATION ON MATLAB

By

KANHAIYA KUMAR-021068
PRASHANT KUMAR-021057

MAY-2006

Submitted in partial fulfillment of the degree of bachelor of
Technology

DEPARTMENT OF ELECTRONICS
JAYPEE UNIVERSITY OF INFORMATION
TECHNOLOGY-WAKNAGHAT

@
4‘36

&7 Technology)

>
% Learning Resource Gentre X

—wersily of
\) O/;»
%

CERTIFICATE

This is to certify that the work entitled, “adaptive filter ” submitted by
Kanhaiya Kumar in partial fulflllment for the award of degree of bachelor
Of technology in electronics and communication of Jaypee University
Of Information Technology Has been carried out under my supervision.
this work has not been submitted Partially or wholly to any other
university or institute for the award of this or any other degree or diploma.

Gt

Prof.(Dr)S.V.Bhooshan.

Acknowledosement

Many people have contributed to this project in a variety of ways over the
past few months.. We also acknowledge the many helpful comments received from
other teachers of the different departments and visualization courses and seminars.
I are indebted to all those who provided reviews and suggestions for improving the
materials and topics covered in our package, and I extend our apologies to anyone

we may have failed to mention.

Thank You: Kanhaiya Kumar.
Prashant Kumar,

TABLE OF CONTENTS

1. Certificate

2. Acknowledgement
3. List of Contents

4. List of Figures

5. List of Abbreviations

6. Abstract

7. 'lntroduction
¢ Evolution
¢ Purpose

8. Design and Simulation
* General form of Algorithm for updating coeff

¢ System Identification
9. Noise Cancellation

10 Filter implementation
t1 Conclusion
12 Bibliography

LIST OF FIGURES

1. General form of adaptive filter

2. Adaptive filter for FIR filter identification
3. Plots Variation of B Coefficient vs Time

4, Block Diagram of Noise Cancelation

5. Primary: Noiset+Voice

6. Reference: Estimation of Noise
7. Output : Voice

8. Result With mu

9. Reference Noise = Actual Noise

10. Reference Noise 180 deg out of phase from actual
11. Filtered output

12. Filtered output —-no good when voice = noise

List of Abbreviations

SRR S

H = step size

f(X[n]) = function of input
f(e[n]) =function of error
X[n] = primary signal
S[n] = voice

Y[n] =noise

s o

ABSTRACT

Introduction —The Evolution of Convolution

In a general sense, adaptive filters are systems that vary through time because the
characteristics of its inputs may be varying. That is what separates it from classical
digital signal processing - the digital system itself changes through time. In a sense,
its convolution properties are evolving.

Therefore, adaptive filters must be non-linear because superposition does not hold.
But when their adjustments are held constant after adaptation, then some can
become linear, and belong under the well-named class linear adaptive filters. We
will be working with those in this project.

Whenever there is a requirement to process signals in an environment of unknown
statistics, adaptive filters will more often than not do the job better than a fixed
filter.

An adaptive filter can track that noise, follow its characteristics, and knock it out so
that you may have a good, clean conversation.

Other applications besides noise cancellation include system identification, signal
prediction, source separation, channel equalization, and more.

PURPOSE

This project is an introduction to adaptive filters. A summation of what we learned
and put together:

1. General theory
o What's the math involved

o What's the algorithm
o What's it for
2. Simulation in MATLAB with Least Mean Squared algorithm
o Noise cancellation
o FIR identification
3. Implementation of noise cancellation in real-time with TI DSP board

(Research Work)

DESIGN & SIMULATION

General Form of Adaptive Filters

x[n] PROGRAMMABLE |Y[n] y[n]

Input signal DIGITAL FILTER i: E:: :}mzrerence

ﬁ e[n]

ADAPTIVE ALGORITHM

:{> for <:

COEFFICIENT UPDATING

e ‘,ﬂscﬂmmmxhw

Pictured here is the general structure of an adaptive filter. The main points to be
noted here are

The system takes in two inputs
The top box has one input
The bottom box has that same input plus an error input

The top box is being changed by the bottom box
What's the output?

S et S5l e

If the bottom box is the brain, then the top box is the body. The brain is using what

it knows and putting it through an algorithm in which to control the body. The
algorithm is always of the form

T S S

i
|
i‘
|
|
i
i
|
4

SR — i e ke T e e A i r-n‘
|

General Form of Algorithm for Updating Coefficients

New | _ | Old Function Function
Parameter | ~ [Parameter Slze of Input of Error
fixn]) f(e[n])

The functions are determined by you, the programmer. Examples commonly used
are LMS (Least Mean Squared), NLMS (Normed LMS), RMS (Root Mean
Squared). We will use LMS for this project.

The user will want an output. Depending on what the system is for, the output will
be either y(n), e(n), or the filter itself.

T —

TEEES I S Ry P R Ty 1

SYSTEM IDENTIFICATION

Adaptive Filter for FIR Filter Identification

39 ORDER FIR [y~ Evi |
UNDER ANALYSIS | ' CHANNEL /
;(yin] + noisa
x(n] ADAPTIVE §in) Y
npat zignal — F|LTEH _."{)
a{n)
(
ALGORITHM
FOR UPDATING |
COEFFICIENTS

The bottom two boxes are our adaptive system. It is figuring out what the top box is.
The top box is a Finite Impluse Response (FIR) filter programmed by MATLAB
with the magic command "filter(B,A,signal)." The filter is a ""Direct Form 11
Transposed" implementation of the standard difference equation:

a(l)*y(n) = [b(1l)*x(n) + b(2)*x(n-1) + ... + b(nb+1l)*x(n-
nb)] - [a(2)*y(n-1) + ... + a(na+l)*y(n-na)l

We simulated this filter with the command "filter(rand(3,1), 1, signal)'"" This sets
a(l) in the difference equations to one. The first three B coefficients are given

random numbers. That's what our adaptive filter is going to figure out. The rest of
the coefficients are set to zero.

[

e e e R e e et [T

R

e e

i
|
'
i
p
¥

o LMS identification of FIR filter

clear
close all

N = 50;
X = randn(N,1);
t = [1:N];

order = 10;
h = order*rand (order,1l);

y = filter(h,1,x)+.5*randn(size(x));

plot (y)

mui = .1;

L = order-1;

w(L,:) = zeros(l,order);

for i=order:N

z = x(i-L:1);
w(i,:) = w(i-1,:)-mu*(w(i-1,:)*z-y(i))*z';

end

BRLOE (how (i o) S red Lo b w el) tbluel bW 1), Ygraen L)
plot(t,w(:,10),t,w(:,9),t,w(:,8),t,w(:,7),t,w(:,6),t,w(:,5)
nerw(i,4),t,w(:,3),t,w(:,2),¢t,wi:,1))

legend('bl', 'b2', 'b3','b4"','b5','b6','b7','b8"', 'b9', 'b10"')
xlabel('time')

ylabel ('values of B coefficients!')

title('Adapting B coefficients vs. time')
h

Now to put our boxes into action. As seen by the block diagram, any random is
signal is fed into our system and the unknown filter. The signal is filtered through
the unknown, and our initial guess of the unknown. The difference of the outputs

5 (plus some noise) e(n) is taken and put through our magical coefficient updating
algorithm to get our programmable digital filter closer to the unknown. As more
signal is fed through, our digital filter will start to mimic the unknown. It's learning

Adapting B coefficients vs. time

1.8] T T T T T T T T
EESHL
R B) A e -
ﬁ 1 6 b3 -'Hrﬂ‘//_/
1.4F mu=0.1 - /Af/' : A
i e
i

e]

values of B coefficients

B S

,____._
w
o
——
(4]
ny
<
n
[4}
[
[
(93]
()]

45 50

Fig (a)
a) This is a plot of the coefficients of our adaptive filter vs. time. You can see the
values converge to the unknown values. So now we know b(1)=1.65, b(2)=0.72, -
b(3)=0.38. We have our system identified.

| (R S ——

Bt e e

‘I

Adapting B coefficients vs. time

T T T] i I T T
‘___k.___#_,,/_._“),-,_ﬁ/“‘\-’»“\ /""'"""'""""'J/ \\ ST W s —
=]
£ ﬁ
k3]
:

‘ % _\\ | et g i i*\v%/ \ﬁ\/"ﬁ S riang
i i 1
1 3

@
-
3 i {’ z u
{
i
; 1
!
: _02 |] 1 1 | | 1 1 |
0 5 10 15 20 25 30 35 40 45 50
time
il :
| Fig (b)
i
| b) The first example had mu, the step size of our error correction, equal to 0.1. If we

‘. make it a little larger, say 0.3, we get faster convergence as seen here. But it we have
| mu too large, say 0.5, the system diverges.

e poe——

Adapting B coefficients vs. time

1.8 I T |] I |
—y -
16 [b2 ' /fa/\ J .] .
psesaars b3 s . rjf _-\ \/ \»-/w_r,/‘*"’n
mu=0.1 \/ \-\ .M___/"/“J o
14 more noise
1.2 i

values of B coefficients
o)
o
T

06r
04}
{ 02}
: 0 [T]
i 02 ! ! | r | !

0 10 20 30 40 50 60 70
time

Fig (¢)
I

¢) If we have the noise turned up, the adaptive filter will oscillate more, but we can
still make out that it converges to an estimate of the B coefficients.

e —

Adapting B coefficients vs. time

(=]
T

values of B coefficients
ro EN
T T

90

Fig (d)

d) We can also figure out any n-order FIR filter. Here's a 10th order filter.

e e

e

;;f
f{“

+ e ——

e it i

Noise CANCELLATION

One of the most commmon practical applications of adaptive filters is noise
cancellation. We simulated the situation in which the adaptive filter needed to
remove a time varying noise from a desired speech signal. This could be a model for
a person speaking on a cell phone in a car where his voice is corrupted by noise
from the car's engine.

Block Diagram for Noise Cancellation

¥{n) = s[n] + y{n}

FOMEry SIgNad = Wiee s raise / l
yn) ADAPTIVE 70}

a[n]
FILTER _‘—"()—‘FJ_
(
ALGORITHM
FOR UPDATING |-agp———e |
COEFFICIENTS

snoise cancellation

clear
close all

order=2;
size=2; $time duration of inputs
f5=8192: . %digital sampling frequency

t=[0:1/fs:size]; ; :
N=fs*size; $size of inputs

£1=35/2; $frequency of voice
£2=99/2; %frequency of noise

volice=cos (2*pi*fl1*t);
subplot(4,1,1)
plot (t,voice) ;

title('voice (don''t have access to)!')

noise=cos (2*pi*f2*t."2); $increasy
frequency noise

%noise=.l*rand (1, length (voice)); swhite noise

primary=voice+noise;
subplot(4,1,2)
plot (t,primary)

title('primary = voice + noise (inputl) ")
ref=noise+.25*rand; tnoisy
noise

subplot (4,1, 3)
plot (t, ref)
title('reference (noisy noise) (input2) ') ;

w=zeros (order, 1) ;
mu=.006;
for i=1:N-order
buffer = ref(i:i+order-1):
scurrent 32 points of reference

desired (i) = primary(i)-buffer+*w: sdot product
reference and coeffs
w=w+(buffer.*mu*desired(i)/norm(buffer))';%update coeffs
end

subplot (4,1,4)
plot (t (order+1:N),desired)
title ('Adaptive output (hopefully it''s close to "voice")')

clear
close

order=2;

size=2; i o
£5=8192; digital sampling
t=[0:1/fs:size];
N=fs*size; 3 4.2 e
f1:35/4,' frequency
£2=99/4; % frequenc

"1/’ == - -
voice=cos (2*pi*fl*t) ;

noise=cos (2*pi*f2+t."2);

sgubplot (4,2,1)

T

3 primary=voice+noise;

1 subplot(4,2,1)

plot (t,primary)

title('ori)
xlabel ('t ime }

ylabel (' 2my)

i
ref = noise;
subplot (4,2, 2)

4 plot (t,primary - ref)
G0 SosE o 5]
kb
x]
vlabe

gnoige=.1*rand (1, lengthi{voiac}i; Fwhiito o noigs
ref=noise+0.25*rand;

subplot (4,2,3)

plot (t, ref)

caxis([0 2 -2 2]}

title('reference (uoisy aoioo] Ci T)
xlabel (' time{seconda) ')

ylabel {Amplitude ')

w=zeros (order, 1) ;
mu=1.3;
for i=l1:N-order
buffer = ref(i:i+order-1);
gcurrent 32 points of refercince
desired (i) = primary(i)-buffer+*w; ot product
refercnce and coeffsg
w=w+ (buffer.*mu*desired (i) /normi{buffer)) ';tupdars cociiy
end

subplot (4,2, 4}

plot (t (order+1:N) ,desired)
axis{[0 2 -2
title{* outpur
title{'output

Xlabel ('L ims:
yvlabel {*implin
legend ('wu = . 0040)

subplot{4,2,5)

plot (t {order+1:N) ,desired)
axis ([0 2 -2 21)
title(* .oboae i
" xlabel {
ylabel (
legend (:

noise =cos({2*pir£2+r, "2.ni .
primarys=volca+noise,

title('primary B T e e ET I A TN L S PP
naised ')

xlabel {"time {ueco
ylabel (' amplitude

w=zeros (order, 1) ;
mu=0.006;
for i=1:N-order
buffer = ref(i:i+order-1};
scurrent 32 poluls of rel-wence
desired(i) = primary{i)-buffer*w; R
reference and coefls
w=w+ (buffer.*mu*desired (i) /norm(buffer}) ';*update vo
end

subplot(4,2,7)

plot(t(order+1:N),desired)

gtitle (' output of Lilter with mu=0.005) '}

title ('adapti- Cilier emitnut e aoles 1H0 L af of phase with o aoiea)
xlabel {('timein

ylabel (' i

legend ('

i

knoise=. lrrand{1, lengthivaicel) ;
noisel=.l*rand (1, length(voice));
ref = voice+noisel;

w=zeros (order, 1} ;
mu=0.006;
for i=1:N-order
buffer = ref(i:i+order-1);
sCurrent 22 polnhs of s e
desired({i) = primary (i) -buffer*w;
reference and coeffs
w=w+ (buffer.*murdesired (i) /norm{buffer)}';
end

R L

subplot (4,2, 8)
plot (t {order+1:N),desired)
axis([o 2 -2 21)

xlabel !

viabel o : v

qert !

e

e amae Y

oI

- v

¢

e

e T

|
4
i

We begin with two signals, the primary signal and the reference signal. The primary
signal contains both our desired voice signal and the noise signal from the car
engine.

Primary: Noise + Voice

primary = voice + noise (inputl)

2 1 " T T T T T

Amplitude
: ! o —
B i o i = n
I T T I T
q—_‘—"'"—.
ey
——
—— s —
—————————— ———]
e ——
S ——— A AT
E———
[e e tsenintmattmsetytll
RS ES
e— e
e R —————
e — —————
S ——
-y
R A L S et ———

I

1 1 | |
0.4 (= 0.s 1 1.2

tirme(seconds)

=

[

ra
b
e
fag]
0
(0

The reference signal is a tapped version of the noise in the primary signal, i.e. it

must be correlated to the noise that we are trying to eliminate. In the case that we

are trying to model, the primary signal may come from a microphone at the

speaker's mouth which picks up both the speech signal and a noise signal from the

car engine. The reference signal may come from another microphone that is placed '
away from the speaker and closer to the car engine, so the reference noise will be
similar to the noise in primary but perhaps with a different phase and with some
additional white noise added to it.

o T TR R T e

Reference: Estimation of Noise

noise

2 T T T T T T 1 T T

L

| | 1 | | 1
o) useal e et e s sl e) =
s)

time(seconds

Amplitude

The LMS algotrithm updates the filter coefficients to minimize the error between
the primary signal and the filtered noise. In the process of pouring through some
Books DSP by Prokis & Manolokis ,adaptive filter theory by S.Haykin we came to
the Ultimate program using matlab. the voice component of the primary signal is
orthogonal to the reference noise.

Thus the minimum this error can be is just our desired voice signal.

Output: Voice

Ll

adaptive filter output

L]

INERRNNR Y 1
? ifDU /}\ | ! J /! ’ (ril fll | }} M h /\’ l[) ﬂ /_
R
‘" 1alan
| | W]]11 w l V K

1
—
I
—

=
=
[

DASCE) Bt (] 8 1 jRadacssih . et B o W < 2
tima(seconds)

We then experimented with varying different parameters. It turns out that the !
output we get is very, very sensitive to mu. Apparently there is a very precise
method for finding the most optimal mu, something to do with the eigenfuction of |
the correlation matrix between the primary and reference signals, but we used an |
educated trial and error technique. Basically we found that mu affects how fast a

5 response we were able to get; a larger mu gives a faster response, but with a mu that

| is too large, the result will blow up.

1 i
g |
i |
fl

*

Armplitude

x 10

Result with Big mu

adaptive filter output(ref noise 180 out of ph

b e

with noize

T

T T T T

T T

—mu=1.5

1 1.
.k 0.8 1 152

time{seconds

o

We also experimented with several different filter lengths.

1.6 1.8

One question that is arises is why we cannot simply subtract the reference noise

from the primary signal to obtain our desired voice signal. This method would work

well if the reference noise was exactly the same as the actual noise in primary.

|
i

Reference Noise = Actual Noise

anmary - refarence noiseref noise = actual noise)
F) ! .

A [l"l| (e B
| 13.5\1(\(”!% Hﬁil\/}](|

Amplitude
]

1
c
M
T
—_—
» e
o —
—
B W
—_—

o

1 1] L 1 I | 1
B S o = e 1 et el
time(secands)

—
=
R
.:l:I

! However, if the reference noise is exactly 180 degrees out of phase the with noise in
! primary, the noise will be doubled in the output. As can be seen in the figures below,
: the output from the adaptive filter is still able to sucessfully cancel out the noise.

|
: |
i |

Reference Noise 180 deg Out-of-Phase from Actual

Amplitude

Noise

primary - reference noise(ref noise 180 out of phase with noise)

g

T T T T T T T T

D I \/\

Si g

2R I;

-3k

-4 1 L I i 1 1 1 1 I
] i, 0.4 0.5 n.a 1 12 1.4 45 1.8

time(seconds)

Filtered Output - It still works!

adaptive filter output(ref noise 180 out of phase with noise)
& T I T T T T T I T

e =00, 005

M
]

it 1 1
i | |
n/’ || r‘ i (j '|'|'| |
S | J‘ “M

i1
T
i

0 1 1 L I L 1 L L]
0.8 1 il 1.4 16 1.8 2

time(seconds)

=
1
[
=
I
|
Iyl

The one important condition on the use of adative filters for noise cancellation is
that the noise can't be similar to the desired voice signal. If this is the case, the error
that the filter is trying to minimize has the potential to go to zero, i.e. the filter also
wipes out the voice signal. The figure below shows the outpu”tjofthe adaptive filter
When the reference noise used was a sinusoid of the same frequency as that of the
voice signal plus some white noisc.

Armplitude

=]

Sy}
T

1

Filtered Output - No Good When Voice = Noise

adaptive filter outputiref noise correlated to noise
2 T T T T I T I T T
ru =0.006

=
(B]
!

'

) 1 I | I L 1 L 1
I . ' RS 0a 1] i flid 1h i%
SEC

tirme(seconds)

(]
t

o |
i
P2
{
=

FILTER IMPLEMENTATION

For further advance research the matlab code will be converted in c or object
oriented programming and can be implement to DSP board.

Another key factor in the math is number representation. Since the board uses a
two's complement number to represent the signal sample, some of the constants
needed to be changed.

=

som [T

[PETE——

/xcode

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

to implement on dsp board

<stdlib.h>
<stdio.h>
<string.h>
<common. h>
<mcbspdrv.h>
<intr.h>
<board.h>
<codec.h>
<mcbsp.h>
<mathf.hs>

#define PRINT DBG 1
#define FILTERLENGTH 100

short buffer [FILTERLENGTH] ;
short w[FILTERLENGTH] ;

/* FILE LOCAL (STATIC) PROTOTYPES

X/

void hookint (void) ;
interrupt void serialPortRcvISR (void) ;

main ()

{

Mcbsp dev dev;
Mcbsp_config mcbspConfig;
int 1i;

printf ("Got to main!");

/* Initialize EVM

for(i = 0; i < FILTERLENGTH; i++)

/* Initialize coefficients to 1's */
Wil = 1

/* Initialize buffer of previous inputs to 0's */
buffer[i] = 0;

nrintf g . 2 RPN, 015 I O

e et

{

/* configure McBSP

mcbhspConfig.

mcbspConfig.
mcbspConfig.
mcbspConfig.
mcbspConfig.

mchspConfig.
mcbspConfig.

mcbspConfig.
mcbspConfig.

/* configure CODEC

codec_init ()

/* Open MCBSP for subsequent Examples

mcbsp_drv_init () ;
dev = mcbsp open(0);

if (dev == NULL)

loopback

59,
tx.
tx.
Ex.

rx

rx

MCBSP_ ENABLE (0,

’

/* mute (L/R)LINE input

update

clock mode
frame lengthl
word_lengthil

.update
¥,
.frame_ lengthl
rx.

clock mode

word lengthl

mcbhsp config(dev, &mcbspConfig) ;

MCBSP_BOTH) ;

1l

/* link codec channels to audio inputs */
codec_adc_control (RIGHT, 0.0, FALSE, LINE SEL) ;
codeciadc“contro[QLEFT,O.O,TRUE,MTCMSEL\;

printf ("Error opening MCBSP 0 o)
return (ERROR) ;

memset (&mcbspConfig, 0, sizeof (mcbspConfig)) ;

FALSE;

TRUE;

CLK _MODE_EXT;
0;
WORD_LENGTH 32;

TRUE; _
CLK_MODE_EXT; [
0;

WORD_LENGTH_32;

/*

sampleRate = 11025;
actualrate = codec change sample rate (sampleRate, TRUE) ;
i

codec interrupt enable();

hookint () ;

/* Main Loop, wait for Interrupt

i while (1)
{
}

/* mute DAC outputs (unused, as best we can tell)*/

codec_dac_control (LEFT, 0.0, TRUE);
! codec_dac_control (RIGHT, 0.0, TRUE);

/* End Single Block Capture and Playback Example

mcbsp close (dev) ;

return (0OK) ;

/* FUNCTIONS

void hookint ()

{

intr init();

b 0 LSN RINTO) ;

/* our Function - Where all the real work gets done */

interrupt void serialPortRcvISR (void)

{

177) (3 %)
int accum = 0;
int sample data;

short chanl;
short chan2;
short primary;
short ref;

short next output;
short accumShort;

/* read in left and right channels */
sample_data = MCBSP_READ(0) ;

/* Separate samples from left and right channels =*/
chanl = sample data & Oxffff;
chan2 = (sample_data & Ox£fff0000) >> 16;

primary = chan2;
ref = chanl;

/* shift old buffered inputs right one position in array */
for (i = FILTERLENGTH; i > 0; i--) {

buffer[i] = buffer (i - 1];

/*printf ("b%d: %d",i,buffer[i]); */

/* Append new input value to front of buffer */
buffer[0] = sample data & Oxffff;

/* Take dot product of buffered inputs and filter coefficients
3
for(i=0; i<FILTERLENGTH; i-++)

4

accum += (buffer[i] * w[i]);

/* Update coefficients using newest "error" aalmalation #i
for(i = 0; 1 < FILTERLENGTH; 1++)

{
}

/* Print to stdout if output sample gets too big */

if (next output > 32000)
printf ("\nAck! Out: %d",next output);

wli] += (2 * buffer[i] * next output)>>16;

/* write out result to d/a converter*/
/* multiply output by 2 to make it louder */
MCBSP_WRITE(O, 2 * next_output);

return;

TP p—

n T

e

e e AR

e T Ty = A

1
]

CONCLUSIONS & FURTHER STUDY

Our implementation sucessfully achieved system idetification and noise cancellation.
Specifically, time varying noise was reduced. The effects of varying different
paramters in the algorithm were also observed. It was found that the stepsize mu
affects the rate of convergence, a larger mu leads to faster convergence, but too
large a mu can produce divergence. The order of the filter used afffects the
distortion of the desired signal. Because of the adaptive filter updates its coefficients
to minimize the error between the primary and reference siganls, we get poor
performance if the desired signal is similar to the reference signal. This method of
noise cancellation is most useful when the reference noise that we have access to is

- large or delayed relative to the noise that is actually in the primary signal.

The next area to explore would be to implement different algorithms for updating
filter coefficients, for example the Normed Least Mean Squares algorithm was
briefly experimented with. The system gave an acceptable output for white noise
reduction, but its performance could be greatly improved. This noise was much
more difficult to eliminate since there exists little correlation between the reference
nosie and the noise in primary, given that they are both completely random. Finally,
we can customize our system for various real world applications.

BIBLIOGRAPHY

Bellanger, M. Adaptive Digital Filters and Signal Analysis. Marcel Dekker,

Inc. 1987.

Treichler, J., Johnson, C., Larimore, M. Theory and Design of Adaptive Filters.
John Wiley & Sons. 1987.

Oppenheim, Schafer and Buck, Discrete-Time Signal Processing

Dgital Signal Processing , Proakis & Manolakis

B. Widrow and S.D. Stearns. (1985). Adaptive Signal Processing. [Good on
applications, LMS]. Prentice-Hall.

C.F.N. Cowan and P.M. Grant. (1985). Adaptive Filters. [Good overview of lots of
topics]. Prentice-Hall.

J.R. Treichler, C.R. Johnson and M.G. Larimore. (1987). Theory and Design of
Adaptive Filters. [Good introduction to adaptive filtering, CMA; nice coverage of

hardware]. Wiley-Interscience.

M.L. Honig and D.G. Messerschmidt. (1984). Adaptive Filters: Structures,
Algorithms, and Applications. [Good coverage of lattice algorithms]. Kluwer.

S. Haykin. (1986). Adaptive Filters Theory. [Nice coverage of adaptive filter theory;
Good reference]. Prentice-Hall.,

 WEBPAGE

P Wiley.com/colleue/havkin

