foran we s

Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. NU""SPD?O L gCall Num:
General Guidelines:

4 Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

¢ The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

A

Il

MM

SP02068

|

e ——— b

OPERATING SYSTEM SCHEDULER
FOR A
DUAL CORE PROCESSOR

By'

Manu Bhardwaj 021014
Niramay 021038

MAY 2006

Submitted in partial fulfillment of the requirements of the degree of
Bachelor of Technology

DEPARTMENT OF ELECTRONICS
AND COMMUNICATION ENGINEERING
JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
WAKNAGHAT

CERTIFICATE

This is to certify that the work entitled, “Operating System Scheduler for a Dual Core
Processor” submitted by Manu Bhardwaj (021014) and Niramay (021038) in partial
fulfillment for the award of degree of Bachelor of Technology in Department of
Electronics and Communication Engineering of Jaypee University of Information
Technology has been carried out under my supervision. This work has not been submitted
partially or wholly to any other University or Institute for the award of this or any other

degree or diploma.

e D
\h”‘i

Mr. Vivek Sehgal,
Lecturer, Dept. of ECE

ACKNOWLEDGMENT

The authors wish to express their sincere appreciation for Mr. Vivek Sehgal, Lecturer,
Dept. of Electronics & Communication Engineering for his guidance and whose
familiarity with the needs and ideas of this topic was helpful during the programming
phase of this project. We are also grateful to Prof. S. V. Bhooshan, H.0.D, Dept. of ECE,
for giving us an opportunity to undertake this project. We are also indebted to this temple
of learing, from where we have completed our course, for providing us with a well
stocked library and a modem computer laboratory where we both have spent countless

hours ‘poring over books and screens trying to find out that elusive bug or deciding our

next step in the algorithm,

TABLE OF CONTENTS

1, CertifiCatE. .. cvouiviveiiiiiii ettt e 3
1. ACKNOWISAZEMENT.ttt et e et e e 4
T, ADSIFACE. .. .ottt et 10
1. Chapter One - Project Description............ccooeeveeveecerie e 11
L1, MOIVATION. ..ottt se sttt es e 11
1.2. Statement of Problem.cccocooviveieeeiiiiccce i 11

2. Chapter Two - O.S. Scheduler. ... 13
2.1, Scheduling. . ..o e 13
2.2. Types of operating system schedulers... ..., 14
2.3. Optimization Criteria for A Scheduler.............cccccoooiiiiii i 16
2.4. Process Control Block. 16

2.5, DIspatcher.ot L T
2.6, INTEITUPLS.ovveiie it e e e e eene e e e eesn e e e e enee e s ennassneaene L T
2.7 Typesof Scheduling.............cccooviriiic i e 18
2.8. Round Robin Scheduling Algorithm.............c.c..ociiiiinnnn 30
2.9. Types of Processes Handled by CPU..................viiiinnnn 32
2.10. Performance of Round Robin Scheduler for Single Execution Core..32
2.11. Properties of Round Robin...33

2.12. Rule of thumb In Case of Round Robin Implementation.................... 33
3. Chapter Three — Dual Core Processorso, 34
3.1 INrOAUCHION. .. ovoviiv et e 34

3.2. Multi Core SYSteM.......coooiitii it 3 D

3.3. Commercial Example............ccociiiiiie e e 39

3.4, Development MOtIVALION..........ccvocveiveiieinniiiee e e 36
3.5. Advantages of Dual Core Processor..............cocooiiiicciinnn 37
3.6. DiISadvVana@es.cooovicrercee et e s 38
3.7. Sofiware Development Considerations.ocooceiiin e 38

3.8. SOftWare IMPact..........coovvreeeeeeee et et 3D

4. Chapter Four — Single Core Scheduler Sofiware Development.................. 41
4.1. Steps in Development... ... A
4.2, Requirement Specification...................ccciiiiiicnenenn 42
4.3, HighLevel Design...................c.oooiriiiinicrseceri e 42
4.4, Detatled Design..........ccovvniiiinereeeeies e 43
4.6, SORWATE TESHNG.ccovvriirmnereree ittt e tete et e eta et sbs e ebe e 49
4.7. Software Pitfalls to Avoid...............ooiiii .54
4.8, Algorithm/Implementation..............c.. oo 37
4.9. Research Instruments/Tools.................ccovirmriceererecreeencesren 0. 58
4.10. Snapshots of the Software Interface.............covciiininnccnn . 59

5. Chapter Five — Dual Core Scheduler Software Development...61
5.1. Steps in Development.o 61
5.2. Requirement Specification..............c..occviniincese e 02
5.3. High Level Design..........ccocooceeviiiereicnccinccee e eecnene . 02
5.4, Detailed DeSign...........o.ccoovviieirseeie s v eeee e ee e 03
5.5, Coding......coooiiiiiii it e e e . OO
5.6. SOftware TeStNE.........ccoveiirreriiiie e et e 70
5.7. Software Pitfalls to Avoid...............cooiiiiccn e 75
5.8. Algorithm/Implementation..................ccocoriiiiiininin e 18
5.9. Research Instruments/ToOlS..............ociiniicnieicinc e 19
5.10. Snapshots of the Software Interface..............ccoceviniinin.. .80

6. Chapter Four — Graphical Utility Software Development..................... 82
6.1. Steps in Development...ccccoovvvcon oo 82
6.2. Requirement Specification... ... 83
6.3. High Level Design.cocv i siinennnen . 83
6.4. Detailed Desi@n.o e e OF
6.6, SOFtWAre TeStNE.ccooooieieiieieirie e rraraera e et se creetc s 86
6.7. Software Pitfalls to Avoid................coccoevecc i 89

6.8. Algonthm/Implementation....................cccoviiiiiiiiiiren .92
6.9. Research Instruments/Tools.ov e iiiiioeeece e v 92

. CONCIUSION.......cuiiiiiiti it et eee s et eeee e e e eeneseeeereeeeenassssete e e 94

O =Nk W~

LIST OF FIGURES

PrOCESS CONTOL BIOCK ..o oeeeee e 16
DHSPALCRET ...ttt 17
INEErmUIPT. .o e e 17
Block Diagram of Dual Cote.............covvriiviieiimiciicrnecnneeacnns 34
Snapshot of Main Application Window................ccccooverieeiniece e 59
Snapshot of output generated by the software..................ocooevvieveinn. 60
Snapshot of Main Application Window..............ccccceeiviicin e, 80

Snapshot of output generated by the software..................c..ccooevviiiienn, 81

1.
2.
3.
4.
5.
6.
1.
8.
9.

10, FIFO ot cvstrmsre s st ssa st e et ees s s er e First In, First Out

LIST OF ABBREVIATIONS

AMID bbb Advanced Micro Devices
CPU ettt nrsr e s aas Central Processing Unit
PO s s nn s Personal Computer
Ot e aar s Operating System
T/ ettt et Input/Output
FOES oot sre s se s First-Come, First-Served
ST . i SROTEESE JOD First
DRR vttt eeen Deficit Round Robin
EDF oot tsesssss s st st est st s ssnsnrsesnas Earliest Deadline First

ABSTRACT

Scheduling is a key concept in operating system design. It refers to the way processes
are assigned priorities in a priority queue. This assignment is carried out by software
known as a scheduler. In general-purpose operating systems, the goal of the scheduler
is to balance processor loads, and prevent any one process from either monopolizing
the processor or being starved for resources. In this project we have developed a new
operating system scheduler for a dual execution core general purpose processor and
then compared its performance with the more common single execution core processor
scheduler based on the round robin algorithm. This comparison is done by a graphical
utility developed by the authors which extracts the parameters of the schedulers and
generates graphs for various categories. We show, in particular, that the scheduler for

the dual core processor gives a better performance than the one for the single execution

core.

CHAPTER ONE
PROJECT DESCRIPTION

1.1 Motivation

The idea of developing our own operating system scheduler bore fruit when the
authors were studying the course Embedded Systems taught by the project guide himself
in the 7" semester of our B.Tech. course. The course contained a significant part of
operating system theory. During that same time both Intel and AMD launched their
respective dual core CPU’s in the market. This caught the attention of the authors and
acted as a catalyst to the authors thinking. We combined both and thus came up with the

proposal of developing an operating system scheduler for a dual core processor.

1.2 Statement of problem

The coupling of execution cores in a processor results in simultaneous management
of activities. In a traditional processor, in case of multi-tasking, the processor must switch
back and forth between two or more sets of data streams and programs. This way the
CPU resources are depleted and its performance suffers. In a dual core processor each
core handles incoming data strings simultaneously to improve efficiency. Now when one
is executing the other can be accessing the system bus or executing its own code. Thus
having multiple execution cores dramatically increases the PC's capabilities and
computing resources, which reflects a shift to better responsiveness, higher multithreaded
throughput and ultimately, parallel computing. In developing a scheduler for the dual
core processor the developer must worry about how to efficiently use the multiple cores
while still preserving application level quality of service. Ideally, the multiple execution
cores must have equal load sharing. We also investigate the performance of the operating
System scheduler for a dual core processor using quality of service parameters (such as
average waiting time for a task in ready queue, load comparison between the two cores,
percentage of busy time of the CPU, etc.). The parameters are then éompared with that of
an operating system scheduler for a single core processor and it is verified that the dual

core scheduler gives better performance in most conditions. The comparison is done by

11 -

developing another software utility with a graphical interface which can generate a graph
on screen by retrieving the parameters of both the schedulers.

-12-

Y

CHAPTER TWO

O SHEBULER

2.1 Scheduling

Scheduling is a key concept in computer multitasking and multiprocessing operating
system design, and in real-time operating system design. It refers to the Wway processes are
assigned priorities in a priority queue, This assignment is carried out by software known
as a scheduler. On most multitasking system, only one process can truly be active at a
time-the system must therefore share its time between the executions of many processes.
This sharing is called Scheduling. The CPU scheduler selects a process .fl:c;h' among the
ready processes to execute on the CPU. CPU schedu]ing ~1is, the basis for
multiprogrammed operating systems. CPU utilization increases by switching the CPU
among ready processes instead of waiting for each process to terminate before executing

the next. The idea of multiprogramming could be described as follows: A process is

| executed by the CPU until it completes or goes for an /O, in simple systems with no

multiprogramming the CPU is idle till the process completes the 1/0 and restarts
execution. With multiprogramming, many ready processes are maintained in memory. So
when CPU becomes idle as in the case-abdv'e, the Qpérating system switches to execute
another process each time a current process goes into a wait for I/O. A CPU scheduler
selects from among the processes in memory that are ready to execute,

and alldcates the CPU to one of them.

In general-purpose operating. s\ys.tems, the goal of the scheduler is to balance
processor loads, and prevent any one process from either monopolizing the processor or
being starved for resources. The built-in schedulers in Microsoft Windows have no
provision for preventing the monopolizing of a processor, or preventing resource
starvation by a process. If a process (by design or accident) should attempt to
aggressively grab all available processor resources, the system often reacts by slowing

down to the point of being perceived as "locked". In operating systems designed from the

-13.

¥

ground up for critical application use, such as Solaris, AIX or zOS, schedulers include
these "defensive" features. There are third-party applications for Windows that add these
features, for example AppSense Performance Manager, Citrix Presentation Server 4.0

and Aurema ARMTech.

In real-time environments, such as devices for automatic control in industry (for
example robotics), the scheduler also must ensure that processes can meet deadlines; this

is crucial for keeping the system stable.

2.2 Types of operating system schedulers

Operating Systems may feature up to 3 distinct types of schedulers:

¢ g long-term scheduler (also known as an admission scheduler),
¢ a mid-term or medium-term scheduler and

e ashort-term scheduler (also known as a dispatcher).

The long-term, or admission, scheduler decides which jobs or processes are to be
admitted to the "ready” queue; that is, when an attempt is made to execute a program, its
admission to the set of currently executing processes is either authorized or delayed by
the long-term scheduler. Thus, this scheduler dictates what processes are to run on a
system and the degree of concurrency to be supported at any one time - ie: whether a high
or low amount of processes are to be executed concurrently, and how the split between
10 intensive and CPU intensive processes is to be handled. Typically for a desktop
computer, there is no long-term scheduler as such, and processes are admitted to the
system automatically. However this type of scheduling is very important for a real time
system, as the systems ability to meet process deadlines may be compromised by the
slowdowns and contention resulting from the admission of more processes than the

system can safely handie.

-14-

The mid-term scheduler, present in all systems with virtual memory, temporarily
removes processes from main memory and places them on secondary memory (such as a
disk drive) or vice versa. This is commonly referred to as "swapping out" or "swapping
in" (also incorrectly as "paging out" or "paging in"). The mid-term scheduler may decide
to swap out a process which has not been active for some time, or a process which has a
low priority, or a process which is page faulting frequently, or a process which is taking
up a large amount of memory in order to free up main memory for other processes,
swapping the process back in later when more memory is available, or when the process

has been unblocked and is no longer waiting for a resource.

In many systems today (those that support mapping virtual address space to
secondary storage other than the swap file), the mid-term scheduler may actually perform
the role of the long-term scheduler, by treating binaries as "swapped out processes" upon
their execution. In this way, when a segment of the binary is required it can be swapped

in on demand, or "lazy loaded".

The short-term scheduler (also known as the dispatcher) decides which of the ready,
in memory processes are to be executed (allocated a CPU) next, following a clock
interrupt, an IO interrupt, an operating system cali or another form of signal. Thus the
short-term scheduler makes scheduling decisions much more frequently than the long-
term or mid-term schedulers - a scheduling decision will at a minimum have to be made
after every time slice and these are very short. This scheduler can be preemptive,
implying that it is capable of forcibly removing processes from a CPU when it decides to
allocate that CPU to another process, or non-preemptive, in which case the scheduler is

unable to "force" processes off the CPU.
CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state.

2. Switches from running to ready state.

3. Switches from waiting to ready.

-15-

r

4, Terminates.

Scheduling under 1 and 4 is non preemptive. All other scheduling is preemptive.
2.3 Optimization Criteria for A Scheduler
o Max CPU utilization : Keep the CPU as busy as possible.

e Max throughput : Maximum processing done at a time.

o Min turnaround time : Minimum amount of time to execute a particular

process.

e Min waiting time :A process should waif minimum amount of time in the
ready queue.

¢ Min response time It should take minimum amount of time from when a

request was submitted until the first response is produced.

2.4 Process Control Block

A Process Control Block(PCB, also called Task Control Block) data structure in the

operating system kernel representing the state of a given process.

It includes:
Process Control Block
* Process id « Contains state intermation such as:
s Process State (state diagram) . hrecess ae _ er'illvll“r“ e
* Registers (and program counter). e T
+ Memory info. I

X . . . ¢ Pesources Alhcated werertialy, thaes e
» List of open files, Inter process communication info. " Ragaler Sav A e v srsie s wton b gt wir
_ e Accounting info. T TOwer T
, . « Parent NI BTN T
* Pointers to other data structures in the OS. + Scheduling invclves saving volatile registers in

cne PCB and restering them from ancthoer

Figure No.1 Process Control Block

- 16 -

2.5 Dispatcher

Dispatcher module gives control of the CPU to the process selected by the short-term
scheduler; this involves:
This includes: The clispatcher manitars proases and decicks wwhen 1 saitch

o ALRCURDLA F1'0m) D118 PHesd i drnather i
¢ switching context |

[{3 PTLH Irterrat S garruge
e switching to user mode i } {
. A . . Proess A frovess B PIdess &
e jumping to the proper location in the user -
Miaslehar Criznatehar Dizps b nar g, ;
program to restart that program ,
Png :
Figure No.2 Dispatcher

2.6 Interrupts

Interrupts are asynchronous breaks in program flow that occur as a result of events
outside the running program. They are usually hardware related, stemming from events
such as a button press, timer expiration, or completion of a data transfer. We can see from
these examples that interrupt conditions are independent of particular instructions; they
can happen at any time. Interrupts trigger execution of instructions that perform work on

behalf of the system, but not necessarily the current program.

1 , Keyhoard Mouse Modem Printer

| Figure No.3 Interrunt

-17-

2.7 Types of Scheduling

2.7.1 First-Come, First-Served (FCFS) Scheduling

This is one of the very brute force algorithms. A process that requests for the CPU
first is allocated the CPU first. Hence the name first come first serve. The FCFS
algorithm is implemented by using a first-in-first-out (FIFO) queue structure for
the ready queue. This queue has a head and a tail. When a process joins the ready
queue its PCB is linked to the tail of the FIFO queue. When the CPU is idle, the
process at the head of the FIFO queue is allocated the CPU and deleted from the
queue. Even though the algorithm is simple, the average waiting is often quite
long and varies substantially if the CPU burst times vary greatly as seen in the
following example. Consider a set of three processes P1, P2 and P3 arriving at

time instant 0 and having CPU burst times as shown below:

Process Burst time (msecs)
P1 24
P2 3
P3 3

The Gantt chart below shows the resuit.

| P1 p2 |3

0 24 27 30

b

_ J Average waiting time and average turnaround time are calculated as follows:
E The waiting time for process PI = 0 msecs

] P2 = 24 msecs

; P3 =27 msecs

Average waiting time = (0 + 24+ 27)/3=151/3 = 17 msecs.

-18 -

Pt corhpletes at the end of 24 msecs, P2 at the end of 27 msecs and P3 at the end
of 30 msecs. Average turnaround time = (24 + 27 + 30) / 3 = 81 / 3 = 27 msecs.
If the processes arrive in the order P2, P3 and P3, then the result will be as

follows:

P2 |P3 | P1

Average waiting time =(0+3 +6)/3=9/3 =3 msecs.

Average turnaround time = (3 + 6 + 30}/ 3 =39/ 3 = 13 msecs.

Thus if processes with smaller CPU burst times arrive earlier, then average

waiting and average turnaround times are lesser.

The algorithm also suffers from what is known as a convoy effect.

Consider the following scenario:

1. Let there be a mix of one CPU bound process and many I/O bound processes
in the ready queue.

2. The CPU bound process gets the CPU and executes (long 1/0 burst).

3. Inthe meanwhile, I/O bound processes finish 1/0 and wait for CPU thus
leaving the 1/0 devices idle.

4. The CPU bound process releases the CPU as it goes for an 1/0.

5. 1/0 bound processes have short CPU bursts and they execute and go for I/0
quickly. The CPU is idle till the CPU bound process finishes the /O and gets
hold of the CPU.

6. The above cycle repeats. This is called the convoy effect, Here small
processes wait for one big process to release the CPU.

7. Since the algorithm is non preemptive in nature, it is not suited for time

sharing systems.

i 2.7.2 Shortest-Job-First
% Associate with each process the length of its next CPU burst. Use these lengths to
i schedule the process with the shortest time. Another approach to CPU scheduling

-19-

is the shortest job first algorithm, In this algorithm, the length of the CPU burst is
considered, When the CPU is available, it is assigned to the process that has the
smallest next CPU burst. Hence the name- shortest job first. In case there is a tie,
FCFS scheduling is used to break the tie. As an example, consider the following
set of processes P1, P2, P3, P4 and their CPU burst times:

Process Burst time (msecs)
Pl 6
P2 8
P3 7
P4 3

Using SJF algorithm, the processes would be scheduled as shown below.

P4 | P1 P3 P2
0 3 9 18 24

Average waiting time =(0+3 + 9+ 16) /4 = 28 / 4 = 7 msecs.

Average turnaround time = (3 + 9+ 16 +24) /4 =52/ 4 = 13 msecs.

If the above processes were scheduled using FCFS algorithm, then

Average waiting time=(0+ 6+ 14+ 21)/4=41/4 = 10.25 msecs.

Average turnaround time = (6 + 14 + 21 + 24) / 4 =65/ 4 = 16.25 msecs.

The SJF algorithm produces the most optimal scheduling scheme. For a given set
of processes, the algorithm gives the minimum average waiting and turnaround
times. This is because, shorter processes are scheduled earlier than longer ones
and hence waiting time for shorter processes decreases more than it increases the
waiting time of long processes.

The main disadvantage with the SJF algorithm lies in knowing the length of the

next CPU burst. In case of long-term or job scheduling in a batch system, the time

-20 -

required to complete a job as given by the user can be used to schedule. SJF
algorithm is therefore applicable in long-term scheduling.

The algorithm cannot be implemented for CPU scheduling as there is no way to
accurately know in advance the length of the next CPU burst. Only an
approximation of the length can be used to implement the algorithm.

But the SJF scheduling algorithm is provably optimal and thus serves as a
benchmark to compare other CPU scheduling algorithms.

SJF algorithm could be either preemptive or non preemptive. If a new process
joins the ready queue with a shorter next CPU burst then what is remaining of the
current executing process, then the CPU is allocated to the new process. In case of
non preemptive scheduling, the current executing process is not preempted and
the new process gets the next chance, it being the process with the shortest next

CPU burst.

Given below are the arrival and burst times of four processes P1, P2, P3 and P4.

Process Arrival time (msecs) Burst time (msecs)
P1 0 8
P2 1 4
P3 2 9
P4 3 5

If SJF preemptive scheduling is used, the following Gantt chart shows the result.

P(P2 |P4 P1 P3

0 1 5 10 17 26

Average waiting time = (10— 1)+ 0+ (17-2)+ (15-3)) /4=26/4=6.5

msecs.

If non preemptive SJF scheduling is used, the result is as follows:

P1 P2 P4 P3 |

0 8 12 17 26

Average waiting time =((0 + (8- 1)+ (12-3)+ (17-2))/4=31/4="1.75

msecs.,

2,7.3 Priority Scheduling

Each process can be associated with a priority. CPU is allocated to the process
having the highest priority. Hence the name- priority. Equal priority processes are
scheduled according to FCFS algorithm.

The SJF algorithm is a particular case of the general priority algorithm. In this
case priority is the inverse of the next CPU burst time. Larger the next CPU burst,
lower is the priority and vice versa. In the following example, we will assume

" lower numbers to represent higher priority.

Process Priority Burst time (msecs)
Pl 3 10
P2 1 1
P3 3 2
P4 4 1
P5 2 5

Using priority scheduling, the processes are scheduled as shown below:

P PS5 Pl P3 (P

0 1 6 16 18 19

Average waiting time=(6+0+ 16+ 18 + 1)/ 5=41/5 = 8.2 msecs.
Priorities can be defined either internally or externally. Internal definition of

priority is based on some measurable factors like memory requirements, number

99

of open files, and so on. External priorities are defined by criteria such as
importance of the user depending on the user’s department and other influencing
factors.

Priority based algorithms can be either preemptive or nonpreemptive. In case of
preemptive scheduling, if a new process joins the ready queue with a priority
higher than the process that is executing, then the current process is preempted
and CPU allocated to the new process. But in case of nonpreemptive algorithm,
the new process having highest priority from among the ready processes is
allocated the CPU only after the current process gives up the CPU.

Starvation or indefinite blocking is one of the major disadvantages of priority
scheduling. Every process is associated with a priority. In a heavily loaded
system, low priority processes in the ready queue are starved or never get a
chance to execute. This is because there is always a higher priority process ahead
of them in the ready queue.

A solution to starvation is aging. Aging is a concept where the priority of a
process waiting in the ready queue is increased gradually. Eventually even the
lowest priority process ages to attain the highest priority; at which time, it gets a

chance to execute on the CPU.

2.7.4 Deficit Round Robin (DRR) (also deficit weighted round robin)

It is a modified weighted round robin scheduling discipline. DRR was proposed
by M. Shreedhar and G. Varghese in 1995. It can handle packets of variable size
without knowing their mean size. A maximum packet size number is subtracted
from the packet length, and packets that exceed that number are held back until
the next visit of the scheduler. WRR serves every nonempty queue whereas DRR
serves packets at the head of every nonempty queue which deficit counter is
greater than the packet's size. If it is lower then deficit counter is increased by
some given value called quantum. Deficit counter is decreased by the size of

packets being served. The complexity of DRR is O(1).

-9% .

2.7.5 Earliest Deadline First Scheduling

Earliest deadline first (EDF) scheduling is a dynamic scheduling principle used in
real-time operating systems. It places processes in a priority queue. Whenever a
scheduling event occurs (task finishes, new task released, etc.) the queue will be
searched for the process closest to its deadline. This process will then be
scheduled for execution next. With scheduling periodic processes that have
deadlines equal to their periods, EDF has a utilization bound of 100%. That is,
EDF can guarantee that all deadlines are met provided that the total CPU
utilization is not more than 100%. So, compared to fixed priority scheduling
techniques like rate-monotonic scheduling, EDF can guarantee all the deadlines in
the system at higher loading. However, when the system is overloaded, the set of
processes that will miss deadlines is largely unpredictable (it will be a function of
the exact deadlines and time at which the overload occurs.) This is a considerable
disadvantage to a real time systems designer. The algorithm is also difficult to
implement in hardware and there is a tricky issue of representing deadlines in
different ranges (deadlines must be rounded to finite amounts, typically a few
bytes at most). Therefore EDF is not commonly found in industrial real-time ’
computer systems. There is a significant body of research dealing with EDF
scheduling in real-time computing; it is possible to calculate worst case response
times of processes in EDF, to deal with other types of processes than periodic

processes and to use servers to regulate overloads.

2.7.6 Fair-Share Scheduling

Fair-share scheduling is a scheduling strategy for computer operating systems in
which the CPU usage is equally distributed among system users or groups, as
opposed to equal distribution among processes. For example, if four users
(A,B,C,D) are concurrently executing one process each, the scheduler will
logically divide the available CPU cycles such that each user gets 25% of the
whole (100% / 4 = 25%). If user B starts a second process, each user will still
receive 25% of the total cycles, but both of user B's processes will now use

12.5%. On the other hand, if a new user starts a process on the system, the

-24 -

scheduler will reapportion the available CPU cycles such that each user gets 20%
of the whole (100% / 5 = 20%).

Another layer of abstraction allows us to partition users into groups, and apply the
fair share algorithm to the groups as well. In this case, the available CPU cycles
are divided first among the groups, then among the users within the groups, and
then among the processes for that user. For example, if there are three groups
(1,2,3) containing three, two, and four users respectively, the available CPU

cycles will be distributed as follows:

*100% / 3 groups = 33.3% per group

* Group 1:(33.3% / 3 users) = 11.1% per user
* Group 2: (33.3% / 2 users) = 16.7% per user
* Group 3: (33.3% / 4 users) = 8.3% per user ‘

One common method of logically implementing the fair-share scheduling strategy
is to recursively apply the round-robin scheduling strategy at each level of
abstraction (processes, users, groups, etc.) The time quantum required by round-
robin is arbitrary, as any equal division of time will produce the same results.

Moab Cluster Suite is a cluster, grid and HPC scheduler that uses Fair-share

S AR R e

capabilities to distribute compute resources.

2.7.7 Gang Scheduling

In Computer science, Gang scheduling is a scheduling algorithm that schedules
related threads or processes to run simultaneously on different processors. Usually
these will be threads all belonging to the same process, but they may also be from
different processes, for example when the processes have a producer-consumer

relationship, or when they all come from the same MPI program.

Gang scheduling is used so that if two threads or processes communicate with

each other, they will all be ready to communicate at the same time. If they were

_95 .

not gang-scheduled, then one could wait to send or receive a message to another
while it 1s sleeping, and vice-versa. When processors are over-subscribed and
gang scheduling is not used within a group of processes or threads which

communicate with each other, it can lead to starvation.

2.7.8 Least Slack Time Scheduling

Least Slack Time (LST) scheduling is a scheduling algorithm. It assigns priority
based on the slack time of a process. It is also known as Least Laxity First. Its
most common use is in embedded systems, especially those with multiple
processors. It imposes the simple constraint that each process on each available
processor possesses the same run time, and that individual processes do not have
an affinity to a certain processor. This is what lends it suitability to embedded
systems. This scheduling algorithm first selects those processes that have the
smallest "slack time". Slack time is defined as the temporal difference between

the deadline, the ready time and the run time.
More formally, the slack time for a process is defined as: {
(d=t)=¢

Where d is the process deadline, t is the real time since the cycle start, and c' is the
remaining computation time. Thus, this algorithm tries to schedule each process

as late as possible.

LST scheduling is most useful in systems comprising mainly aperiodic tasks,
because no prior assumptions are made on the events' rate of occurrence. The
main weakness of LST is that it does not look ahead, and works only on the
current system state. Thus, during a brief overload of system resources, LST can
be sub-optimal. It will also be suboptimal when used with uninterruptible
processes. However, like earliest deadline first, and unlike rate monotonic

scheduling, this algorithm can be used for processor utilization up to 100%.

-9% -

2.7.9 List Scheduling
The basic idea of list scheduling is to make an ordered list of processes by
assigning them some priorities, and then repeatedly execute the following two

steps until a valid schedule is obtained:

* Select from the list, the process with the highest priority for scheduling.

* Select a resource to accommodate this process.

The priorities are determined statically before scheduling process begins. The first
step chooses the process with highest priority, the second step select the best

possible resource. Some known list scheduling strategies are :

* Highest Level First algorithm or HLF
* Longest Path algorithm or LP

* Longest Processing Time

* Critical Path

2.7.10 Lottery Scheduling

Lottery Scheduling is a probabilistic scheduling algorithm for processes in an
operating system, Processes are each assigned some number of lottery tickets, and
the scheduler draws a random ticket to select the next process. The distribution of
tickets need not be uniform; granting a process more tickets provides it a relative
higher chance of selection. This technique can be used to apprdximate other

scheduling algorithms, such as shortest job next and Fair-share scheduling.

Lottery scheduling solves the problem of starvation. Giving each process at least
one lottery ticket guarantees that it has non-zero probability of being selected at

each scheduling operation.

7

2.7.11 Multilevel Feedback Queue

In computer science, a multilevel feedback queue is a scheduling algorithm

~ designed by Leonard Kleinrock in 1970. It is intended to meet the following

design requirements for multimode systems:
1. Give preference to short jobs.
2. Give preference to 1/0 bound processes.

3. Quickly establish the nature of a process and schedule the process accordingly.

Multiple FIFO queues are used and the operation is as follows;

1. A new process is positioned at the end of the top-level FIFO queue.

2. At some stage the process reaches the head of the queue and is assigned the
CPU.

3. If the process is completed it leaves the system.

4, If the process voluntarily relinquishes contro! it leaves the queuing network,
and when the process becomes ready again it enters the system on the same 6‘
queue level.

5. If the process uses all the quantum time, it is pre-empted and positioned at the
end of the next lower level queue.
6. This will continue untit the process completes or it reaches the base level

queue.

At the base level queue the processes circulate in round robin fashion until they
complete and leave the system.In the multilevel feedback queue a process is given
just one chance to complete at a given queue level before it is forced down to a

lower level queue.

2.7.12 Proportional Share Scheduling
Proportional Share Scheduling is a type of scheduling which preallocates certain

amount of CPU time to each of the processes.

-28.

2.7.13 Two-Level Scheduling
Two-level scheduling is a computer science term to describe a method to more

efficiently perform process scheduling that involves swapped out processes.

Consider this problem: A system contains 50 running processes all with equal
priority. However, the system's memory can only hold 10 processes in memory
simultaneously. Therefore, there will always be 40 processes swapped out written
on virtual memory on the hard disk. The time taken to swap out and swap in a

process is 50 ms respectively.

With straightforward Round-robin scheduling, every time a context switch occurs,
there would be an 80% probability (40/50, if it chooses randomly among the
processes) that a process would need to be swapped in. If that occurs, then
obviously a process also needs to be swapped out. Swapping in and out of
memory is costly, and the scheduler would waste much of its time doing

unneeded swaps.

That is where two-level scheduling enters the picture. It uses two different
schedulers, one lower-level scheduler which can only select among those
processes in memory to run. That scheduler could be a Round-robin scheduler.
The other scheduler is the higher-level scheduler whose only concern is to swap
in and swap out processes from memory. It does its scheduling much less often

than the lower-level scheduler since swapping takes so much time.

Thus, the higher-level scheduler selects among those processes in memory that
have run for a long time and swaps them out. They are replaced with processes on
disk that have not run for a long time. Exactly how it selects processes is up to the
implementation of the higher-level scheduler. A compromise has to be made

involving the following variables:

=90 -

D —

* Response time: A process should not be swapped out for too long. Then some
other process (or the user) will have to wait needlessly long, If this variable is not
considered resource starvation may occur and a process may not complete at all.

* Size of the process: Larger processes must be subject to fewer swaps than
smaller ones because they take longer time to swap. Because they are larger,
fewer processes can share the memory with the process.

* Priority: The higher the priority of the process, the longer it should stay in

memory so that it completes faster.

2.8 Round Robin Scheduling Algorithm

The round-robin CPU scheduling algorithm is basically a preemptive scheduling

algorithm designed for time-sharing systems. One unit of time is called a time slice.

Duration of a time slice may range between 10 msecs. and about 100 msecs. The CPU

scheduler allocates to each process in the ready queue one time slice at a time in a round-

—_— =

robin fashion. Hence the name- round-robin.

The ready queue in this case is a FIFO queue with new processes joining the tail of
the queue. The CPU scheduler picks processes from the head of the queue for allocating |
the CPU. The first process at the head of the queue gets to execute on the CPU at the start |
of the current time slice and is deleted from the ready queue. The process allocated the |
CPU may have the current CPU burst either equal to the time slice or smaller than the
time slice or greater than the time slice. In the first two cases, the current process will
release the CPU on its own and there by the next process in the ready queue will be
allocated the CPU for the next time slice. In the third case, the current process is
preempted, stops executing, goes back and joins the ready queue at the tail there by
making way for the next process.

Consider the same example explained under FCFS algorithm.

Process Burst time (msecs)
Pl 24
P2 3
-30 -

P3 3
Let the duration of a time slice be 4 msecs, which is to say CPU switches between
processes every 4 msecs in a round-robin fashion. The Ganit chart below shows the

scheduling of processes.

PP P P P P PP
0 4 7 10 14 18 22 26 30

Average waiting time = (4 + 7 + (10— 4)) / 3 =17/ 3 = 5.66 msecs.

If there are 5 processes in the ready queue that is n = 5, and one time slice is defined
to be 20 msecs that is q = 20, then each process will get 20 msecs or one time slice every
100 msecs. Each process will never wait for more than (n — 1) x q time units,

The performance of the RR algorithm is very much dependent on the length of the
time slice. If the duration of the time slice is indefinitely large then the RR algorithm is
the same as FCFS algorithm. If the time slice is too small, then the performance of the
algorithm deteriorates because of the effect of frequent context switching. Below is
shown a comparison of time slices of varying duration and the context switches they

generate on only one process of 10 time units.

Time Context

Process time = 10 Slice Switch
0 10 12 0
0 6 10 6 1

_31-

]
§

The above example shows that the time slice should be large with respect to the
context switch time else if RR scheduling is used the CPU will spend more time in

context switching.

2.9 Types of Processes Handled by CPU

« IO Bound processes: processes that perform lots of IO operations. Each 10
operation is followed by a short CPU burst to process the I0, and then more 10

happens.
o CPU bound processes: processes that perform lots of computation and do little IO.

Tend to have a few long CPU bursts.

2.10 Performance of Round Robin Scheduler for Single Execution Core

Let q be the time quantum, then
s g4 Large = FIFO

e ¢ Small = g must be large with respect to context switch, otherwise overhead is

too high.

The most interesting issue with round robin scheme is the length of the quantum.
Setting the quantum too short causes too many context switches and lower the CPU
efficiency. On the other hand, setting the quantum too long may cause poor response fime

and approximates First Come First Served (FCES).

Let's assume that task switching takes 2 msecs.
If we have a quantum of 8 msecs, we ensure very good response time. For example,
imagine 20 users all logged in to a single CPU server, with every user making a request

at the same time, each task takes up 10 msecs (8 msecs quantum + 2 msecs ovethead),

_32.

and the 20th user gets a response in 200 msecs (10 msecs*20), which is pretty good (Sth

second).

On the other hand, efficiency is:
Useful time X total time = 8ms X 10ms = 80%

i.e. 20% of the CPU time is wasted on overhead.

With a 200 msecs quantum, efficiency is 200 msecs / 202 msecs = ~99%
But, response time if 20 users make a request at once is 202 * 20 = 4040 msecs or > 4

seconds, which is not good.
2.11 Properties of Round Robin
1. Advantages: simple, low overhead, works for interactive systems
2. Disadvantages: if quantum is too small, too much time wasted in context

switching; if too large (i.e. longer than mean CPU burst), approaches FCFS.
3. Typical value: 20 — 40 msecs

2.12 Rule of thumb In Case of Round Robin Implementation

Choose quantum so that large majority (80 — 90%) of jobs finish CPU burst in one

quantum,

-33-

;
£
.
%
i

CHAPTER THREE

T TR R

3.1 Introduction

Dual-core and multi-core processors are designed by including two or more full
execution cores within a single processor, enabling simultaneous management of
activities. Imagine that a dual-core processor is like a four-lane highway—it can handle
up to twice as many cars as its two-lane predecessor without making each car drive twice
as fast. Two identical processors are manufactured so they reside side-by-side on the
same die. Each of the physical processor cores has its own resources (architectural state,
registers, execution units, etc.). The multiple cores on-die may or may not share several
layers of the on-die cache. Typically, this means that two identical processors are
manufactured so they reside side-by-side on the same die. It is also possible to
(vertically) stack two separate processor die and place them in the same 1C package. Each
of the physical processor cores has its own resources (architectural state, registers,
execution units, etc.). The multiple cores on-die may or may not share several layers of
the on-die cache. A dual core processor design could provide for each physical processor
to: 1) have its own on-die cache, or 2) it could provide for the

on-die cache to be shared by the two processors, or 3} each

processor could have a portion of on-die cache that is exclusive Dual Core

to a single processor and then have a portion of on-die cache

that is shared between the two dual core processors. The two
cores in a dual core package could have an on-die
communication path between them so that putting snoops and
requests out on the FSB is not necessary. Both processors must
have a communication path to the computer system front-side
bus. Note that dual core processors could also contain HT

Technology which would enable a single processor IC package,

Figure No.l Block Diagram of Dual Core

-34 .

containing two physical processors, to appear as four logical processors capable of

running four programs or threads simultaneously.

3.2 Multi Core System

The multi core system is an extension to the dual core system except that it would
consist of more than 2 processors cores. The current trends in processor technology
indicate that the number of processor cores in one IC chip will continue to increase. If we
assume that the number of transistors per processor core remains relatively fixed, it is
reasonable to assume that the number of processor cores could follow Moore's Law,
which states that the number of transistors per a certain area on the chip will double
approximately every 18 months. Even if this trend does not follow Moore's Law, the
number of processor cores per chip appears destined to steadily increase - based on
statements from several processor manufacturers. The optimal number of processors is
yet to be determined, but will probably change over time as software adapts to effectively
use many processors, simultaneously. However, a software program that is only capable
of running on one processor (or very few processors) will be unable to take full
advantage of future processors that contain many processors cores. For example, an
application running on a 4-processor system with each socket containing quad-core
processors has 16 processor cores available to schedule 16 program threads

simultaneously.

3.3 Commercial examples

o International Business Machines (IBM)'s POWER4, first Dual-Core module
processor released in 2000

¢ IBM's POWERS dual-core chip is now in production, and the company has a
PowerPC 970MP dual-core processor in production and is in use in the Apple
PowerMac G5.

-35-

PA-RISC (PA-8800)

Sun Microsystems UltraSPARC IV, UltraSPARC IV+, UltraSPARC T1

Intel's dual-core Xeon processors, code-named Paxville and Dempsey, are shipping at
3 GHz. The company is also currently developing dual-core versions of its Itanium
high-end server CPU architecture but there have been many delays.

AMD released its dual-core Opteron server/workstation processors on 22 April 2005,
and its dual-core desktop processors, the Athlon 64 X2 family, were released on 31
May 2005. AMD have also recently released the FX-60.

o Motorola/Freescale has dual-core ICs based on the PowerPC €600 and €700 cores in

development.

e Intel released the Core Duo processor in 2006. It is available in the Apple iMac, high
end Mac mini and MacBook Pro, as well as in various laptop PCs, from brands of the
likes of Sony, Toshiba, ASUS, and others.

e Microsoft's Xbox 360 game console.

3.4 Development Motivation

3.4.1 Technical pressures

While CMOS manufacturing technology continues to improve, reducing the size
of single gates, physical limits of semiconductor-based microelectronics become a
major design concem. Some effects of these physical limitations can cause significant
heat dissipation and data synchronization problems. The demand for more complex
and capable microprocessors causes CPU designers to utilize various methods of
increasing performance, Some ILP methods like superscalar pipelining are suitable
for many applications, but are inefficient for others that tend to contain difficult-to-
predict code. Many applications are better suited to TLP methods, and multiple
independent CPUs is one common method used to increase a system’s overall TLP. A
combination of increased available space due to refined manufacturing processes and

the demand for increased TLP led to the logical creation of multi-core CPUs.

_36 -

34.2 Commercial incentives

Several business motives drive the development of dual-core architectures. Since
SMP designs have been long implemented using discrete CPUs, the issues regarding
implementing the architecture and supporting it in software are well known.
Additionally, utilizing a proven processing core design (e.g. Freescale's €700 core)
without architectural changes reduces design risk significantly. Finally, the
connotations of the terminology "dual-core" (and other multiples) lends itself to

marketing efforts.

3.4.3 Frequency Bottlenecks
Additionally, for general-purpose processors, much of the motivation for multi-
core processors comes from the increasing difficulty of improving processor
performance by increasing the operating frequency (frequency-scaling). In order to
continue delivering regular performance improvements for general-purpose
processors, manufacturers such as Intel and AMD have turned to multi-core designs,
sacrificing lower manufacturing costs for higher performance in some applications
and systems. Multi-core architectures are being developed, but so are the alternatives. /
An especially strong contender for established markets is to integrate more peripheral a

functions into the chip.
3.5 Advantages of Dual Core Processor

e Proximity of multiple CPU cores on the same die have the advantage that the cache
coherency circuitry can operate at a much higher clock rate than is possible if the
signals have to travel off-chip, so combining equivalent CPUs on a single die
significantly improves the performance of cache snoop operations.

e Assuming that the die can fit into the package, physically, the multi-core CPU
designs require much less Printed Circuit Board (PCB) space than multi-chip SMP
designs.

o A dual-core processor uses slightly less power than two coupled single-core

processors, principally because of the increased power required to drive signals

T

external to the chip and because the smaller silicon process geometry allows the cores
to operate at lower voltages. As such latency is reduced which enables a faster
through-put. ‘
In terms of competing technologies for the available silicon die area, multi-core 1
design can make use of proven CPU core library designs and produce a product with
lower risk of design error than devising a new wider core design. Also, adding more

cache suffers from diminishing returns.

3.6 Disadvantages

i

¢ Multi-core processors require operating system support to make optimal use of the
second computing resource. Also, making optimal use of multiprocessing in a

desktop context requires application software support.

o The higher integration of the multi-core chip drives the production yields down and

are more difficult to manage thermally than lower density single-chip designs.
¢ From an architectural point of view, ultimately, single CPU designs may make better

use of the silicon surface area than multiprocessing cores, so a development

1 e R b R e, W 28 e

é commitment to this architecture may carry the risk of obsolescence.

! ¢ Scaling efficiency is largely dependent on the application or problem set. For
example, applications that require processing large amounts of data with low
computer-overhead algorithms may find this architecture has an /O bottleneck,

underutilizing the device, and overall migration to and from the threading can also be

effected by this.

3.7 Software Development Considerations

Assuming the operating system is appropriate for the hardware system, software that
runs on dual processors systems should run on HT Technology capable/enabled

processors and on dual core processor systems without modification. Even if the software

: -38 -

is not multi-threaded, it can still take advantage of multiple physical and/or logical
processors in a multi-tasking environment. For example, a software developer could
answer email or research a technical problem on the internet while a large software
application is being compiled in the background. Although all applications should run on
multi-processor systems, multi-threaded applications should benefit the most from the
multi-processor systems discussed above. In order to get the best performance, it may be
necessary to tune or optimize the application to take advantage of a specific architecture

or multi-processor implementation.

3.8 Software Impact

Most existing sofiware is not ready to directly utilize the power of multicore
processors since they are written in traditional sequential programming languages like C,
C++ and FORTRAN, all of which have the limited scope of only one processor in mind.
Parallel programming is a must option for a single software to exploit multiple
computation units(cores) simultaneously, often by multithread or multitask programming,
Some existing parallel programming models such as OpenMP and MPI can be directly
used on multi-core platforms. Other research efforts have been seen also, like Cray’s

Chapel, Sun’s Fortress, and IBM’s X10.

3.9 Licensing

Another issue is the question of software licensing for multi-core CPUs. Typically
enterprise server software is licensed "per processor”. In the past a CPU was a processor
and there was no ambiguity. Now there is the possibility of counting cores as processors
and charging a customer for two licenses when they use a dual-core CPU. However, the
trend seems to be counting dual-core chips as a single processor as Microsoft, Intel, and
AMD support this view. Oracle counts AMD and Intel dual-core CPUs as a single

processor but has other numbers for other types. IBM, HP and Microsoft count a multi-

.39 .

S 24t 1 LTI,

o L

K A bt 07 fonies mme - i S

chip-module as multiple processors. If multi-chip-modules counted as one processor then
CPU makers would have an incentive to make large expensive multi-chip-modules so
their customers saved on software licensing. So it seems like the industry is slowly
heading towards counting each die as a processor, no matter how many cores each die
has. Intel has released Paxville which is really a multi-chip-module but Intel is calling it a

dual-core. It is not clear yet how licensing will work for Paxville. This is an unresolved

and thomy issue for software companies and customers.

i o 2 AN A Yo €Ki AL i3m0

é
4
1
";f
E

SIMNGEE CORE SCHEDULLR 5057

CHAPTER FOUR

CWARE DBEAVELGEMENMT

4.1 Steps in Development

Number

Milestone
Name

Milestone
Description

Timeline

Remarks

Percentage
completion
(approximate)

Requirement
Specification

1. Collecting all
requirements

2. Reading the
required topics

Wk-01

2.5%

High Level
Design

1.Detailing the
design

2.List of inputs and
outputs

3 Restriction /
Limitations

wk -02

5%

Detailed Design

1. List of design
options(e.g data
structures), pros and
cons of each option,
which option is taken
and the rational
behind that.

2. Design details
broken functionality
wise.

3. List of class and
the interfaces of that
class.

4, File names. (Have
to follow standard
naming convention)

Wk -03

7.5%

Coding

Writing code
according to the laid
down protocols and
saving and compiling

Wk - 06

15%

41 -

-

at each stage.
5. Design Testing | Mapping of the test | Wk-9 2.5%
cases to the
requirement (already
mentioned in HLD),
and status of each
test case.

6. Review Review of Wk-10 2.5%
deliverables

» 4.2 Requirement Specification

The software should be able to schedule the tasks according to the round robin
algorithm while assuming that the processor has only one execution core. The demo

program built in to the scheduler software must be able to take the inputs and then

accurately show the working of the scheduler and also generate two diagnostic files; one ‘

of which contains the runtime information of the scheduler. This file is called single.txt.
The other must contain only the performance parameters of the scheduler. This file is
called singint.txt. The complete single core operating system scheduler software file is

called singlecore.exe.

4.3 High Level Design

1.3.1 Inputs

e The number of tasks to be processed.

e The probability of one task entering the system in one time quantum.
o The probability of clash, i.e. two tasks entering the system in one time
quantum. |
o The percentage of Input/Output bound tasks. ;
e The percentage of CPU bound tasks.

- e The probability of interrupt request in one time quantum.

_42

1.3.2 Outputs

¢ Total duration of runtime of the scheduler in seconds
e Total number of tasks which are Input/Output bound.
o Total number of tasks which are CPU bound. |
e The average time that a task spends in the wait queue.

e The average time that CPU bound tasks spend in the ready queue.

¢ The average time that Input/Output bound tasks spend in the ready queue.

o The average time that a task spends in the ready queue.

¢ The percentage of time the CPU is busy.

o The average number of tasks processed per hour by the system.

e The number of interrupt requests handled by the system.

1.3.3 Restrictions

o The distribution of CPU service times for jobs must be equal to 100.
e The job class distribution must be equal to 100.

» The probability of entering tasks’ can not exceed 1.

¢ There must be at least one task entering the system.

e The probability of interuppt request can not exceed 1

4,4 Detailed Design

1.4.1 Data Structure Design

a. Name: queue

C++ Data Type: class

Purpose: It is used to store the jobs in the order that they are to be i

executed.

_43 .

Funciion: It uses a C++ data structure “queue” to store the tasks due to
their execution time. Since the CPU can only execute one task at a time,
this queue sends tasks to the system due to their correct time slices.
Definition: The class is defined as follows:

class queuef

int front,rear;
task *tasks;

int max_length;
public:
queue(int max);
~queue();

int is_empty(); ‘i
intis_fall(); '

void enqueue(task new_task);

task dequeue(void);
int get front(void);
int get length();

|5

Conditions: There must be enough space to store max_length*sizeof(task).

e AP AL i T i

Processing: The values are stored in the memory using ¢ memory allocation

concepts.

b. Name: task
C++ Data Type: structure
Purpose: It 1s used to store the values of the fields of a task.

Function: It uses a structure to store the tasks’ properties.

5 Definition: The structure is defined as follows: s
" ' struct task{ !
int task_number, |
double task class; '
int CPU _time,; t

it Wi i 3T e

double time entered;
double time_waited,;
double time_processed;
5
Conditions: There must be enough space to create a task structure.
Processing: The values are stored in the memory using ¢ memory allocation

concepts.

c. Name: task profiles

C++ Data Type: structure

Purpose: It is used to store the input that the user enters.

Function: It uses a structure to store user’s inputs.

Definition: The structure is defined as follows:

struct task_profiles {
int number_of tasks;
double p_task one;
double p_task two; i
double 10; I
double CPU; W
double prob_of interrupt_req;

5

Conditions: There must be enough space to create a parameters structure.

Processing: The values are stored in the memory using ¢ memory allocation

concepts.

d. Name: job
C-++ Data Type: structure
Purpose: It is used to store the tasks in the arrays when they are sorted. (So
their properties are gotten correctly and random assignments are made.)
Function: It uses a structure to store tasks’ properties.

Definition: The structure is defined as follows:

“AR -

:

struct job{

double weight;

double type;
IR
~ Conditions: There must be enough space to create a element structure.
Processing; The values are stored in the memory using ¢ memory allocation

concepis.

1.4.2 File Name Standards
¢ The source file of the single core scheduler software is called
singlecore.cpp.
¢ The executable file of the single core scheduler software is called

singlecore.exe.

|
|
» The diagnostic file generated by the single core scheduler software is
|

called single. txt.
o The file containing the performance parameters of the single core !
scheduler generated by the sofiware is called singleint.txt. E

4.5 Coding

The code snippet of the main part of the software is given below:

if(lwait_queue.is_empty())

bt B et Gt 0 T R b R

"; waiting=wait_queue.dequeue(),
4 waiting_task_number=waiting.task_number;
% waiting.time_waited+=1.0;

ﬁ] wait_queue.enqueue(waiting); L
-3

i

while(!wait_queue.is_empty())

: {
: if{wait_queue.get front()l=waiting_task_number)
{
waiting=wait_queue.dequeue();
waiting.time_waited+=1.0;
wait_queue.enqueue(waiting);
} i
else break: |
}

for(double stime=0.0;stime<=1.0;stime+=0.1)

{ |
if(!{(Ready queue.is_empty()))

{ ‘

interrupt_req=(rand()%1000)/1000.0;

out<<"\n\n\n

interrupt_req="<<interrupt_req<<"--m--ec-memmmmmmnmmm-

prof.prob_of interrupt_req="<<prof.prob_of interrupt_req<<"-----

no_of _interrupt_reqs="<<no_of _interrupt_regs;

>

if{interrupt_req>prof.prob_of interrupt_req)

{
: dequeued=Ready_queue.dequeue();
— ' if{dequeued.task_class==0.2)
stime+=0.1;
: dequeued.time_processed+=dequeued task class; 1
: if(dequeued. CPU_time>dequeued.time_processed) ‘

_47 -

Ready queue.enqueue(dequeued),

else{
if{dequeued.task_class=—0.1)
execution_time_of IO _bound_tasks+=clock-
dequeued.time_waited-1+stime-

dequeued.time_entered,

else if(dequeued.task_class==0.2)
execution_time_of CPU bound tasks+=clock-
dequeued.time waited-1+stime-

dequeued.time entered;

execution_time_of tasks+=clock-
dequeued.time_waited-1+stime-

dequeued.time_entered;

}
}
else
{
Ready_queue.enquene(Ready_queue.dequeue());
no_of_interrupt_regs++;
}
}

else idle_time++;

_48 -

-

ettt R MR et

b

4.6 Software Testing

The software is tested for the following cases of inputs.

Case 1:
Inputs:

The number of tasks to be processed: 50

The probability of one task entering the system in one time quantum: 0.1
The probability of clash, i.e. two tasks entering the system in one time
guantum: 0.01

The percentage of Input/Qutput bound tasks: 50

The percentage of CPU bound tasks: 50

The probability of interrupt request in one time quantum 0.001

Outputs:

Total duration of runtime of the scheduler in seconds: 1138
Total number of tasks which are Input/Output bound: 27
Total number of tasks which are CPU bound: 23

The average time that a task spends in the wait queue: 13.96

The average time that CPU bound tasks spend in the ready queue: 210.469565

The average time that Input/Qutput bound tasks spend in the ready queue:
370.833333

The average time that a task spends in the ready queue; 297.066

The percentage of time the CPU is busy: 99.912127

The average number of tasks processed per hour by the system: 158.172232

The number of interrupt requests handled by the system: 23

Result for case 1: Pass

- 49 -

Case 2:
Inputs:

| ¢ The number of tasks to be processed: 100
» The probability of one task entering the system in one time quantum: 0.1

e The probability of clash, i.e. two tasks entering the system in one time |

7
4
3
%
&
3

quantum: 0.01
¢ The percentage of Input/Output bound tasks: 99
5 e The percentage of CPU bound tasks: 1
¢ The probability of interrupt request in one time quantum: 0.001

Outputs:

¢ Total duration of runtime of the scheduler in seconds: 2664
¢ Total number of tasks which are Input/Output bound: 99

¢ Total number of tasks which are CPU bound: 1

o The average time that a task spends in the wait queue: 23.29

¢ The average time that CPU bound tasks spend in the ready queue; 1741 .

o The average time that Input/Output bound tasks spend in the ready queue:
983.813131

o The average time that a task spends in the ready queue: 991.385

e The percentage of time the CPU is busy: 99.624625

» The average number of tasks processed per hour by the system: 135.135135

¢ The number of interrupt requests handled by the system: 60

Result for case 2: Pass

-50-

Case 3:
Inputs:

The number of tasks to be processed: 150

The probability of one task entering the system in one time quantum: 0.01
The probability of clash, i.e. two tasks entering the system in one time
quantum: 0,001

The percentage of Input/Qutput bound tasks: 60

The percentage of CPU bound tasks:40

The probability of interrupt request in one time quantum: 0.0001

Outputs:

Total duration of runtime of the scheduler in seconds: 9536

Total number of tasks which are Input/Output bound: 90

Total number of tasks which are CPU bound: 60

The average time that a task spends in the wait queue: 0

The average time that CPU bound tasks spend in the ready queue: 36.865
The average time that Input/Output bound tasks spend in the ready queue:
51.305556

The average time that a task spends in the ready queue: 45.529333

The percentage of time the CPU is busy: 42.512584

The average number of tasks processed per hour by the system: 56.627517
The number of interrupt requests handled by the system: 43

Result for case 3; Pass

-5 .

Case 4:

Inputs:

o The number of tasks to be processed: 200

o The probability of one task entering the system in one time quantum: 0.4

o The probability of clash, i.e. two tasks entering the system in one time
quantum: 0.6

¢ The percentage of Input/Output bound tasks: 50

e The percentage of CPU bound tasks: 50

¢ The probability of interrupt request in one time quantum: 0.01

Qutputs:

¢ Total duration of runtime of the scheduler in seconds: 5632
¢ Total number of tasks which are Input/Qutput bound: 104
e Total number of tasks which are CPU bound: 97

» The average time that a task spends in the wait queue: 26.725

¢ The average time that CPU bound tasks spend in the ready queue:
2594896907

¢ The average time that Input/Output bound tasks spend in the ready queue:
3198.966346

¢ The average time that a task spends in the ready queue: 2921.9875

o The percentage of time the CPU is busy: 100 ,
e The average number of tasks processed per hour by the system; 127.840909
o The number of interrupt requests handled by the system: 5125 i

Result for case 4: Pass

-52_

; ‘44-‘:\‘-‘-.

-1 5 -

Case 5:

Inputs:

The number of tasks to be processed: 250

The probability of one task entering the system in one time quantum: 0.02
The probability of clash, i.e. two tasks entering the system in one time
quantum: 0.001

The percentage of Input/Output bound tasks: 50

The percentage of CPU bound tasks: 50

The probability of interrupt request in one time quantum: 0.001

Outputs:

Total duration of runtime of the scheduler in seconds: 11322

Total number of tasks which are Input/Output bound: 133

Total number of tasks which are CPU bound: 117

The average time that a task spends in the wait queue: 0

The average time that CPU bound tasks spend in the ready queue: 48.553846
The average time that Input/Output bound tasks spend in the ready queue:
64.709023

The average time that a task spends in the ready queue: 57.1484

The percentage of time the CPU is busy: 56.20915

The average number of tasks processed per hour by the system: 79.491256
The number of interrupt requests handled by the system: 118

Result for case 5: Pass

53

4.7 Software Pitfalls to Avoid

4.7.1 Deadlock Avoidance
In the computing world deadlock refers to a specific condition when two or more
processes are each waiting for another to release a resource, or more than two
processes are waiting for resources in a circular chain. Deadlocks are a common
problem in multiprocessing where many processes share a specific type of
mutually exclusive resource known as a sofiware, or soff, lock.
Example:
Lock *11, *12;
void p() {
11->Acquire();
12->Acquire();//code manipulates data that 11 and 12 protect

12->Release(); ||
11->Release(); 'ﬂ
} it

void q() {

12->Acquire();
11->Acquire();//code manipulates data that 11 and 12 protect
11->Release();
12->Release();

}

If p and q execute concurrently, consider what may happen. First, p acquires 11
and q acquires 12. Then, p waits to acquire 12 and q waits to acquire 11. This

case is called deadlock

-54 -

4.7.2 Avoidance Of Creation of Dangling Pointers

Since the program requires in depth Data Structures concepts, so one should be
very careful as to how to avoid the creation of pointers that is no longer
allocated. Dangling pointers are nasty bugs because they seldom crash the
program until long after they have been created, which makes them hard to find.
Programs that create dangling pointers often appear to work on small inputs, but

are likely to fail on large or complex inputs.

delete [] sl; :
delete [} s2; i

return £ (sl, s2); // sl and s2 are dangling pointers

4.7.3 Avoidance Of Memory Leak i.
A memory leak is a particular kind of unnecessary memory consumption by a
computer program, where the program fails to release memory that is no longer
needed.

A memory leak can diminish the performance of the computer by reducing the
amount of available memory. Memory allocation is normally a component of
the operating system, so the result of a memory leak is usually an ever growing
amount of memory being used by the system as a whole, not merely by the

erroneous process or program. Eventually, in the worst case, too much of the

available memory may become allocated and all or part of the system or device

stops working correctly or the application fails. i

4.7.4 Unreachable Memory in C++ i

Consider the following example and notice that memory was available and d

pointed to by s, but not saved. After this function returns, the pointer is ‘[

destroyed and the allocated memory becomes unreachable to "fix" this code,

|

] Vi

you would add the statement "free(s)" to the else block before the "return 0"
statement.
int f(void)
{

char* s;

s = malloc(50); /* get memory */

if (s==NULL)

return 1; /* no memory available */
else
{ /* memory available */

return 0; /* memory leak - see note below */

int main(void)

{
/* this is an infinite loop calling the above function */
while (1)
f(); /* This function call will fail to malloc sooner or later */
return 0;
}

4.7.5 Keeping Track of Time Elapsed

Time is usually maintained in a counter. Size of counters should be decided
such that it can take the whole range of values after increments. Counters should
be adjusted in such a way that it is very accurate, neither a cycle nor a cycle

more. Nowhere in the program should the counters be over-ridden.

<BE L

1.8 Algorithm / Implementation

1 The probability of entering tasks is sorted.
The cpu time requirements are sorted.

The task classes are sorted.

Sl

While first process enters the wait queue
4.1 Random number is generated
The task number ++

Determine process category using random number

5
6
7. Determine total processing time using random number
8. Make time spent in wait queue =0

9

. Make time processed = 0.0

10. Enqueue in the wait queue. |
11. Generate total processes required for the demo i
12. While the Wait queue is not empty and ready queue is not full l
12.1 Dequeue first process from the wait queue and enqueue in the cpu queue o

while the wait queue is not empty and the cpu queue is not full.
12.2 Increment the positions of remaining processes in wait queue by 1.

123 If interuppt requested then jump to 12.5

12.4 Increment the time processed of first process in ready queue by 0.1. u
12.5 If (CPU processed time <total processing time required)
Enqueue the first process at the back of ready queue and update other i
processes.
Else !

Dequeue the first process of ready queue and enqueue the first process

of wait queue into the ready queue. g

13. Stop. l‘

i d

4.9 Research Instruments / Tools

The given algorithm 1s being implemented on a computer with the following
configuration:

CPU

Clock Speed of CP.U,

Operating System

C++ Compiler

AMD Athlon 64-bit Processor 2800+
2.0 GHz
Microsoft ® Windows Version 5.1

(Build 2600.xpsp_sp2_rtm.040803-2158 : Service Pack 2)

Copyrnight © 1981-2001 Microsoft Corporation
Turbo C++ Version 3.0

Copyright © 1991, 1995 Borland Intemational, Inc.

-58-

4.10 Snapshots of the Software Interface

Bl it ST
#—————0perating Systen
B———--—-—-—8chednlep————---r——" —4
BHRHERAEUNBERBERERE R ABEGHIN

Press any key o continue . . .

The numher of tasks to be processed is...

jian

The probahility of 1 task entering the system in one second is@.B83

Thgﬂ¥rubahility of 2 tasks entering the system at the same Lime in one second iz

a. .

The task class distevibutien is...

Percentage of [0 bound class is...35%

Percentage of CPU bound ¢lass is...6h

& CATCABGRIZFRO S -2 EXE

Enter the probability of interrupt reguest...¥8.084

Task_profiles are gathered successfully?
Press any key to continue . . .

Demo is finished...
Copn the wasults Feap the "0Seeledl fxe” File, .
rasp ECHRCAINLI AT DRI AN PN P PP R Y S

Figure 5. Snapshot of Main Application Window

_50 .

Fle €% Format View Help

DEMO ENDS after 6497 seconds.., -~

Paramneters---->

Number of tasks which are I/ Q bound..:127

Number of tasks which are CPU bound..:123

Number of tasks 1250

The average time that a task spends in the wait quene..:21.436

The average tire that CFUJ Bound tazks spend in the Ready queue ...567 899187
The avorage time that [0 Bound tasks spend in the Ready qusue ..:676.37 2441
The average time that atask spent in the Ready queue ..623.0036

CPU is busy for the 99599815 % of the eimulation times..

The average number of tasle proceseed poar hour by the systesm .1 1358.525473

The number of interrupt requesteby the system..:205

Figure 2. Snapshot of output generated by the software

_60 -

- ._‘__t ___'—_I_

CHAPTER FIVE |

DUAL CORE SCHEDULER SOFTWARE DEVELOPMENT

5.1 Steps in Development

Number

Milestone
Name

Milestone
Description

Timeline

Remarks

Percentage
completion
(approximate)

Requirement
Specification

1. Collecting all
requirements

2. Reading the
required topics

Wk-11

2.5%

High Level
Design

1.Detailing the
design

2 List of inputs and
outputs

3 Restriction /
Limitations

wk -12

5%

Detailed Design

1. List of design
options(e.g. data
structures), pros and
cons of each option,
which option is taken
and the rational
behind that.

2. Design details
broken functionality
wise,

3. List of class and
the interfaces of that
class.

4. File names. (Have
to follow standard
naming convention)

Wk -13

7.5%

Coding

Writing code
according to the laid
down protocols and
saving and compiling

Wk-15

15%

-61 -

ey

at each stage.
5. Design Testing | Mapping of the test | Wk-16 | 2.5%
cases to the
requirement (already
mentioned in HLD),
and status of each
test case. |
6. Review Review of Wk-17 | 2.5% |
|
|

deliverables

5.2 Requirement Specification

The software should be able to schedule the tasks according to the algorithm i

developed by the authors while assuming that the processor has two execution cores, The

demo program built in to the scheduler software must be able to take the inputs and then
accurately show the working of the scheduler and also generate two diagnostic files; one
of which contains the runtime information of the scheduler. This file is called dual.txt.
The other must contain only the performance parameters of the scheduler. This file is

called dualint.txt. The complete singie core operating system scheduler software file is

called dualcore.exe.

5.3 High Level Design |

1.3.1 Inputs
o The number of tasks to be processed.

e The probability of one task entering the system in one time quantum.

e The probability of clash, i.e. two tasks entering the system in one time
quantum.

o The percentage of Input/Output bound tasks.

¢ The percentage of CPU bound tasks.

- o The probability of interrupt request in one time quantum. |

-62-

1.3.2 Outputs

Total duration of runtime of the scheduler in seconds

Total number of tasks which are Input/Qutput bound.

Total number of tasks which are CPU bound.

The average time that a task spends in the wait queue.

The average time that CPU bound tasks spend in the ready queue.

The average time that Input/Output bound tasks spend in the ready queue.

The average time that a task spends in the ready queue.

The percentage of time Core 0 is busy.

The percentage of time Core 1 is busy.

The average number of tasks processed per hour by the system.

The number of interrupt requests handled by the system.

1.3.3 Restrictions

The distribution of CPU service times for jobs must be equal to 100.
The job class distribution must be equal to 100.

The probability of entering tasks' can not exceed 1.

There must be at least one task entering the system.

The probability of interuppt request can not exceed 1.

5.4 Detailed Design

1.4.1 Data Structure Design

e. Name: queue

C++ Data Type: class

-63-

Purpose: It is used to store the jobs in the order that they are to be
executed.
Function: It uses a C++ data structure “queue” to store the tasks due to
their execution time. Since the CPU can only execute one task at a time,
this queue sends tasks to the system due to their correct time slices.
Definition: The class is defined as follows:
class queue{
int front,rear;
task *tasks;
int max_length;
public;
queue(int max);
~queue();
intis_empty();
int 1s_full();
void enqueue(task new_task);
task dequeue(void); "‘}
int get_front(void); |
int get length(); i
13
Conditions: There must be enough space to store max_length*sizeof(task).
Processing: The values are stored in the memory using ¢ memory allocation

concepts.

Name: task

C++ Data Type: structure

Purpose: It is used to store the values of the fields of a task.
Function: It uses a structure to store the tasks” properties.
Definition: The structure is defined as follows:

struct task{

int task number;,

- 64 -

double task class;
int CPU_time;
double time_entered,
double time_waited;
double time_processed;
IR
Conditions; There must be encugh space to create a task structure.
Processing: The values are stored in the memory using ¢ memory allocation

concepts.

. Name: task_profiles
C++ Data Type: structure
Purpose: It is used to store the input that the user enters.
Function: It uses a structure to store user’s inputs.
Definition: The structure is defined as follows:
struct task_profiles {
int number of tasks;
double p_task_one;
double p_task two,
double 10;
double CPU;
double prob_of interrupt_req;
IR
Conditions: There must be enough space to create a parameters structure.
Processing: The values are stored in the memory using ¢ memory allocation

concepts.

Name: job
C++ Data Type: structure

- 65 -

Purpose: It is used to store the tasks in the arrays when they are sorted. (So
their properties are gotten correctly and random assignments are made.)
Function; It uses a structure to store tasks’ properties.
Definition: The structure is defined as follows:
struct job{
double weight;
double type;
¥
Conditions: There must be enough space to create a element structure.
Processing: The values are stored in the memory using ¢ memory allocation

concepts.

1.4.2 File Name Standards

e The source file of the single core scheduler software is called
dualcore.cpp.

e The executable file of the single core scheduler software is called
dualcore.exe.

e The diagnostic file generated by the single core scheduler software is
called dual.txt.

e The file containing the performance parameters of the single core

scheduler generated by the software is called dualint.txt.

5.5 Coding

The code snippet of the main part of the software is given below:

for(double
short_time_0=0.0,short_time_1=0.0;(short_time_0<=1.0)&&(short_time_1<~1 0)
:short_time_0+=0.1,short_time_1+=0.1)

if((|(Ready_queue.is_empty()))&&(short_time 0!=1 0)
{
interrupt_req=(rand()%1000)/1000.0;
/lout<<"\n\n\n

interrupt_req="<<interrupt_req<<"-

prof.prob_of_interrupt_req="<<prof prob_of_interrupt_req<<"-----
------------------- no_of_interrupt_regs="<<no_of_interrupt reqs;
if(interrupt_req>prof.prob_of_interrupt_req)
{
dequeued=Ready_queue.dequeue();
ifldequeued task_class=0.2)
short_time 0+=0.1;
dequeued.time_processed+=dequeued.task_class;
if(dequeued. CPU_time>dequeued.time_processed)
Ready queue.enqueue(dequeued);
else{
ifldequeued.task_class—0.1)
execution_time_of 10_bound_tasks+=clock-
dequeued.time_waited-1+short_time_O-

dequeued.time_entered;

else if(dequeued.task_class==0.2)
execution_time_of CPU_bound_tasks+=clock-
dequeued.time_waited-1+short_time 0-

dequeued.time_entered;

execution_time_of_tasks+=clock-
dequeued.time_waited-1+short_time_O-

dequeued.time_entered;

-67 -

}
else :

{

Ready_queue.enqueue(Ready_queue.dequeue());

no_of interrupt_reqs+t;
} :
} |

else idle_time_O++;

if{({(Ready_queue.is_empty()))&&(short_time_1!=1.0))
{ .
interrupt_req=(rand()%1000)/1000.0, ‘ i
Hout<<"\n\n\n-- -

interrupt_req="<<interrupt_req<<" -

prof.prob_of_interrupt_req=“<<prof.prob_of_interrupt_req<<" ----- c
------------------- no_of interrupt_reqs="<<no_of_interrupt_reqs; i
if{interrupt_req>prof.prob_of_interrupt_req)

{

dequeued=Ready_queue.dequeue();
if{dequeued.task_class=0.2)

short_time_1+=0.1;
dequeued.time_processed+=dequeued.task_class;
ifldequeued.CPU_time>dequeued.time_processed)

Ready_queue.enqueue(dequeued);
elsef
if{dequeued.task_class=0.1)
execution_time_of I0_bound_tasks+=clock-
- dequeued.time_waited-1+short_time 1- N

dequeued.time_entered;

else if{dequeued.task_class==0.2) |

_68-

execution_time_of CPU bound_tasks+=clock-
dequeued.time waited-1+short_time 1-

dequeued.time_entered;

execution_time_of tasks+=clock-dequeued.time_waited-

1+short_time_1-dequeued.time_entered,

H

}

else

{
Ready_queue.enqueue(Ready_queue.dequeue());
no_of interrupt reqst++;

}

}

else idle_time_1++;

- 69 -

Y

5.6 Software Testing

The software is tested for the following cases of inputs.

Case 1:
Inputs:

The number of tasks to be processed: 50

The probability of one task entering the system in one time quantum: 0.1
The probability of clash, i.e. two tasks entering the system in one time
quantum: 0.01

The percentage of Input/Output bound tasks: 50

The percentage of CPU bound tasks: 50

The probability of interrupt request in one time quantum 0.001

Qutputs:

Total duration of runtime of the scheduler in seconds: 691

Total number of tasks which are Input/Output bound: 22

Total number of tasks which are CPU bound: 28

The average time that a task spends in the wait queue: 8.44

The average time'that CPU bound tasks spend in the ready queue: 165.396429
The average time that Input/Output bound tasks spend in the ready queue:
211.531818 7

The average time that a task spends in the ready queue: 185.696

The percentage of time the Core 0 is busy: 99.855282

The percentage of time the Core 1 is busy: 99.855282

The average number of tasks processed per hour by the system: 260.492041
The number of interrupt requests handled by the system: 19

Result for case 1: Pass

-70 -

Case 2:
{nputs:

The number of tasks to be processed: 100

The probability of one task entering the system in one time quantum: 0.1
The probability of clash, i.e. two tasks entering the system in one time
quantum: 0.01

The percentage of Input/Output bound tasks: 99

The percentage of CPU bound tasks: 1

The probability of interrupt request in one time quantum: 0.001

Outputs:

Total duration of runtime of the scheduler in seconds: 1105

Total number of tasks which are Input/Output bound: 100

Total number of tasks which are CPU bound: 0

The average time that a task spends in the wait queue: 6.58

The average time that CPU bound tasks spend in the ready queue: 0

The average time that Input/Output bound tasks spend in the ready queue:
147.603

The average time that a task spends in the ready queuve: 147.603

The percentage of time the Core 0 is busy: 97.013575

The percentage of time the Core 1 is busy: 97.013575

The average number of tasks processed per hour by the system: 325.791855

The number of interrupt requests handled by the system: 33

Result for case 2: Pass

_71-

Case 3:
Inputs:

The number of tasks to be processed: 150

The probability of one task entering the system in one time quantum: 0.01
The probability of clash, i.e. two tasks entering the system in one time
quantum: 0.001

The percentage of Input/Output bound tasks: 60

The percentage of CPU bound tasks:40

The probability of interrupt request in one time quantum: 0.0001

Qutputs:

Total duration of runtime of the scheduler in seconds: 12182

Total number of tasks which are Input/Quiput bound: 97

Total number of tasks which are CPU bound: 53

The average time that a task spends in the wait queue: 0

The average time that CPU bound tasks spend in the ready queue: 15.566038
The average time that Input/Qutput bound tasks spend in the ready queue:
1931134

The average time that a task spends in the ready queue: 17.988

The percentage of time the Core 0 is busy: 16.532589

The percentage of time the Core 1 is busy: 16.532589

The average number of tasks processed per hour by the system: 44327697
The number of interrupt requests handled by the system: 36

Result for case 3: Pass

72

Case 4:
Inputs:

e The number of tasks to be processed: 200
o The probability of one task entering the system in one time quantum: 0.4

¢ The probability of clash, i.e. two tasks entering the system in one time

quantum: 0.6

e The percentage of Input/QOutput bound tasks: 50
o The percentage of CPU bound tasks: 50

e The probability of interrupt request in one time quantum: 0.01

Qutputs:

e Total duration of runtime of the scheduler in seconds: 2712
¢ Total number of tagks which are Input/Output bound: 102

e Total number of tasks which are CPU bound: 98

» Theaverage time that a task spends in the wait queue: 12.94

e The average time that CPU bound tasks spend in the ready queue:

1198.902041

o The average time that Input/Output bound tasks spend in the ready queue:

1404.166667

e The average time that a task spends in the ready queue: 1303.587

e The percentage of time the Core G is busy: 100

o The percentage of time the Core 1 is busy: 100

o The average number of tasks processed per hour by the system: 265.486726
e The number of interrupt requests handled by the system: 480

Result for case 4: Pass

_73 -

Case 5:
Inputs:

The number of tasks to be processed: 250

The probability of one task entering the system in one time quantum: 0.02
The probability of clash, i.e. two tasks entering the system in one time
quantum: 0.00]

The percentage of Input/Output bound tasks: 50

The percentage of CPU bound tasks: 50

The probability of interrupt request in one time quantum: 0.001

Outpufs:

Total duration of runtime of the scheduler in seconds: 10402

Total number of tasks which are Input/Output bound: 128

Total number of tasks which are CPU bound: 122

The average time that a task spends in the wait queue: 0

The average time that CPU bound tasks spend in the ready queue: 16.578689
The average time that Input/Output bound tasks spend in the ready queue:
18.839062

The average time that a task spends in the ready queue: 17.736

The percentage of time the Core 0 is busy: 30.830609

The percentage of time the Core 1 is busy: 30.830609

The average number of tasks processed per hour by the system: 86.521823
The number of interrupt requests handled by the system: 111

Result for case 5: Pass

~74 -

5.7 Software Pitfalls to Avoid

3.7.1 Deadlock Avoidance
In the computing world deadlock refers to a specific condition when two or more
processes are each waiting for another to release a resource, or more than two
processes are waiting for resources in a circular chain. Deadlocks are a common
problem in multiprocessing where many processes share a specific type of

mutually exclusive resource known as a sofiware, or soft, lock.

Example:
Lock *11, *I2;
void p() {
11->Acquire();
12->Acquire();//code manipulates data that 11 and 12 protect

12->Release();
11->Release(),
}
void q() {
12->Acquire();
11->Acquire();//code manipulates data that 11 and 12 protect
11->Release();
12->Release();

}

If p and q execute concurrently, consider what may happen. First, p acquires 11
and q acquires 12. Then, p waits to acquire 12 and q waits to acquire 11. This

case is called deadlock

-75-

5.7.2 Avoidance Of Creation of Dangling Pointers ' B ‘ i
Since the program requires in depth Data Structures concepts, so one should be Mi
very careful as to how to avoid the creation of pointers that is no longer | ||
allocated. Dangling pointers are nasty bugs because they seldom crash the : H
program until long after they have been created, which makes them hard to find.
Programs that create dangling pointers often appear to work on small inputs, but

are likely to fail on large or complex inputs. ‘ ‘

delete [] s1; ' ‘ ‘
delete [] s2; ‘

return f (s1,s2); /sl and s2 are dangling pointers

5.7.3 Avoidance Of Memory Leak \
A memory leak is a particular kind of unnecessary memory consumption by a : |
computer program, where the program fails to release memory that is no longer \
needed. L)
A memory leak can diminish the performance of the computer by reducing the [

amount of available memory. Memory allocation is normally a component of |

the operating system, so the result of a memory leak is usually an ever growing i

amount of memory being used by the system as a whole, not merely by the \

SITONeous process or program. Eventually, in the worst case, 100 much of the

available memory may become allocated and all or part of the system or device I

stops working correctly or the application fails. \‘ |

5.7.4 Unreachable Memory in Ct+ M

Consider the following example and notice that memory was available and
pointed to by s, but not saved. After this function returns, the pointer is

destroyed and the allocated memory becomes unreachable to "fix" this code,

_T76 -

you would add the statement “free(s)" to the else block before the "return 0"
statement.
int f(void)
{

char* s;

s = malloc(50); /* get memory */

if (s==NULL)

return 1; /* no memory available */
else
{* /* memory available */

return 0; /* memory leak - see note below */

int main{void)

{
/* this is an infinite loop calling the above function */
while (1)
f(); /* This function call will fail to malloc sooner or later */
return O;
}

5.7.5 Keeping Track of Time Elapsed

Time is usually maintained in a counter. Size of counters should be decided
such that it can take the whole range of values after increments. Counters shouid
be adjusted in such a way that it is very accurate, neither a cycle nor a cycle

more. Nowhere in the program should the counters be over-ridden.

~77 -

5.8 Algorithm / Implementation

—

The probability of entering tasks is sorted.
The cpu time requirements are sorted.

The task classes are sorted.

2 W BN

While first process enters the wait queue
4.1 Random number is generated
5 The task number ++
6 Determine process category using random number
7 Determine total processing time using random number
8 Make time spent in wait queue =0
9 Make time processed = 0.0
10 Enqueue in the wait queue.
11 Generate total processes required for the demo
12 While the Wait queue is not empty and ready queue is not full

12.1 Dequeue first process from the wait queue and enqueue in the cpu queue

while the wait queue is not empty and the cpu queue is not full. 1
12.2 Increment the positions of remaining processes in wait queue by 1. |
12.3 If interuppt requested then jump to 12.5
12.4 Increment the time processed of first process in ready queue by 0.1.
12.5 If (CPU processed time <total processing time required)

Enqueue the first process at the back of ready queue and update other

processes.

Else

Dequeue the first process of ready queue and enqueue the first process

of wait queue into the ready queue.
12.6 Increment the time processed of first process in ready queue by 0.1.
12.7 1f (CPU processed time <total processing time required)

Enqueue the first process at the back of ready queue and update other

processes.
Else

opgy

Dequeue the first process of ready queue and enqueue the first process

of wait queue into the ready queue.

13. Stop.

5.9 Research Instruments / Tools :

The given algorithm is being implemented on a computer with the following

configuration:
e CPU : AMD Athlon 64-bit Processor 2800+
e Clock Speed of CP.U. : 2.0 GHz g
I
¢ Operating System : Microsoft ® Windows Version 3.1
{
(Build 2600.xpsp_sp2_rtm.040803-2158 : Service Pack 2))
Copyright © 1981-2001 Microsoft Corporation
o C++ Compiler : Turbo C++ Version 3.0

Copyright © 1991, 1995 Borland International, Inc.

-79 -

5.10 Snapshots of the Software Interface

& CAATC\BGRDUALCORE. EXE

TR AR AR RA AR HHH AR

#

f#-—— Operating System———————— #
- Schedulep————-—————H#
————— for -
#——— pUHl, CORE PROCESSOR—————- 4

HiHE SRR B RS R R R RS
Press any key to continue

The number of tasks to he processed is.-.198
The probahility of 1 task entering the system in one second is0.83

The prohability of 2 tasks entering the system at the same time in one second is

A.0801

The task class distribution is...
Percentage of 10 bound class iz...35
Percentage of CPU bound class is.. .65

Enter the prohahility of interrupt regquest...d.884

Task_profiles are gathered successfully?
Press any key to continue . .

Figure 7. Snapshot of Main Application Window

_80-

Fle Edit Format Yiew Help

DEMOQ ENDS after 3245 seconds,,,

Parameters----»

Number of tasks which are 1f O bound, .40

Number of tagks which are CFU bound.. .50

Number of tagks ..:100

The average time that a task spends in the wait queue..:0

The average time that CPU Bound tasks spend in the Ready queue ..:20 541667
The average time that I0 Bound tasks spend in the Ready queue .29 .08
The average time that a task spent in the Ready queue ..:24.017

Core 0 iz busy for the 39,6302 % of the zimulation time..

Core 1 is busy for the 39,6302 % of the cimulation time..

The average number of tasks processed per hour by the gyetem..:110 939008

The number of interrupt requestsby the system..:105

A

Figure 4. Snapshot of output generated by the software

_81 -

CHAPTER SIX

GRAPHICAL UTILITY SOFTWARE DEVELOPMENT

6.1 Steps in Development

Number

Milestone
Name

Milestone
Description

Timeline

Remarks

Percentage
completion
(approximate)

Requirement
Specification &
Background
Reading

1. Collecting all
requirements

2. Reading the
required topics

Wk-18

2.5%

High Level
Design

1.Detailing the
design

2 List of inputs and
outputs

3 Restriction /
Limitations

wk -18

5%

Detailed Design

1. List of design
options(e.g data
structures), pros and
cons of each option,
which option is taken
and the rational
behind that.

2. Design details
broken functionality
wise.

3. List of class and
the interfaces of that
class.

4. File names. (Have
to follow standard
naming convention)

Wk -18

7.5%

Coding

Writing code
according to the laid
down protocols and
saving and compiling

Wk -19

10%

.82 -

s

at each stage.

5. Design Testing

Mapping of the test
cases to the
requirement (already
mentioned in HLD),
and status of each
fest case.

Wk- 20

2.5%

6. Review

Review of
deliverables

Wk-20

2.5%

6.2 Requirement Specification

The software should be able to generate graphs to compare the performance of the
schedulers. It must be able to retrieve the inputs and then accurately show the bars of the

respective parameters of performance of each scheduler and print them on screen side by

side. The complete graphical utility sofiware file is called fileread.exe.

6.3 High Level Design

1.3.1 Inputs

The two files containing only the parameters of performance of the schedulers in

double c++ data type only.

1.3.2 Outputs

Graphs with the following titles:

¢ 1/0 bound tasks in Single Core Vs. Dual Core

¢ CPU bound tasks in Single Core Vs Dual Core

o Total tasks in Single Core Vs Dual Core

e Average time in wait queue in Single Core Vs Dual Core

e Average time in ready queue by CPU tasks in Single Vs Dual Core

_83-

——

e Average time in ready queue by I/O tasks in Single Vs Dual Core

e Average time in ready queue in Single Core Vs Dual Core
e Percentage of busy time of CPU in Single Core Vs Dual Core

e Average no of tasks processed/hour in Single Core Vs Dual Core

Total interrupts in Single Core Vs Dual Core

1.3.3 Restrictions
e The files should exist in the same working directory as the software
; e The BGI files of Turbo C++ compiler should exist in the same working

directory as the software.

6.4 Detailed Design

1.4.1 Functions Used

e void Initialize(void);

e void Bar(double x, double y, char *p);

e void heading(void);

e void Pause(void);

e void MainWindow(char *header);

} e void StatusLine(char *msg);

e void DrawBorder(void),

i e void changetextstyle(int font, int direction, int charsize),

“ e double maximum (double *p);

1.4.2 File Name Standards

e The file containing the performance parameters of the single core

scheduler generated by the software is called singleint.txt.

e The file containing the performance parameters of the dual core scheduler

generated by the software is called dualint txt.

6.5 Coding

The code snippet of the main part of the software is given below:

int main()
{
char a[10][100]={"/O bound tasks in Single Core Vs. Dual Core", "CPU
bound tasks in Single Core Vs Dual Core","Total tasks in Single Core Vs
Dual Core","Avg time in wait Q in Single Core Vs Dual Core","Avg time
in Ready Q by CPU tasks in Single Vs Dual Core","Avg time in Ready Q
by I/O tasks in Single Vs Dual Core"," Avg time in Ready Q in Single
Core Vs Dual Core","% of busy time of CPU in Single Core Vs Dual
Core","Avg no of tasks processed/hour in Single Core Vs Dual
Core","Total interrupts in Single Core Vs Dual Core"};
Initialize();
heading(),
double match_single[11], match_dual[12};
fstream list_single,list_dual;
list_single.open("singleint.txt",10s::in);
list_dual.open{"dualint.txt",ios::in);
int i=0,j=0;
while(!list_single.coR(}))
{

cout<<"\n\n...Single\t";

-85 -

list_single>>match_single[i];
cout<<match_single[i];
cout<<"\n\n,,.Dualit"; i
list_dual>>match_dual[il; !
cout<<match_dual[i]; :
i++; 5
for(i=0,j=0;j<11;j++,i++) |
(1
BarDemo({match_single[j],match_dual[i},a[j]);
if(i=")i++;
}
BarDemo(match_dual[7},match_dual[8], "Load Comparison of Core 0 Vs
Core 1");

closegraph();

return(0);

6.6 Software Testing

The software is tested for the following cases of inputs.

! Case 1:

Inputs:

PP T

¢ The number of tasks to be processed: 50

o The probability of one task entering the system in one time quantum: 0.1

- 86 -

g iz o

The probability of clash, i.e. two tasks entering the system in one time
quantum: 0.01

The percentage of Input/Output bound tasks: 50

The percentage of CPU bound tasks: 50

The probability of interrupt request in one time quantum 0.001

Outputs:

Graphs are properly generated.

Result for case §: Pass

Case 2:

Inputs:

The number of tasks to be processed: 100

The probability of one task entering the system in one time quantum: 0.1
The probability of clash, i.e. two tasks entering the system in one time
quantum: 0.01

The percentage of Input/Output bound tasks: 99

The percentage of CPU bound tasks: 1

The probability of interrupt request in one time quantum: 0.001

Outputs:

Graphs are properly generated.

Result for case 2: Pass

-87 -

Case 3:

Inputs:

The number of tasks to be processed: 150

The probability of one task entering the system in one time quantum: 0.01
The probability of clash, i.e. two tasks entering the system in one time
quantum: 0.001

The percentage of Input/Output bound tasks: 60

The percentage of CPU bound tasks:40

The probability of interrupt request in one time quantum: 0.0001

QOutputs:

Graphs are properly generated.

Result for case 3: Pass

Case 4:
Inputs:

The number of tasks to be processed: 200

The probability of one task entering the system in one time quantum: 0.4
The probability of clash, i.e. two tasks entering the system in one time
quantum: 0.6

The percentage of Input/Output bound tasks: 50

The percentage of CPU bound tasks: 50

The probability of interrupt request in one time quantum: 0.01

Qutputs:

Graphs are properly generated.

Result for case 4: Pass

_88 -

i
Case 5:
Inputs:
] o The number of tasks to be processed: 250

e The probability of one task entering the system in one time quantum: 0.02

o The probability of clash, i.e. two tasks entering the system in one time
quantum: 0.001

e The percentage of Input/Output bound tasks: 50

o The percentage of CPU bound tasks: 50

e The probability of interrupt request in one time quantum: 0.001

Outputs:

e Graphs are properly generated.

Result for case 5; Pass

6.7 Software Pitfalls to Avoid

6.7.1 Deadlock Avoidance
In the computing world deadlock refers to a specific condition when two or more
processes are each waiting for another to release a resource, or more than two
processes are waiting for resources in a circular chain. Deadlocks are a common
problem in multiprocessing where many processes share a specific type of
mutually exclusive resource known as a software, or soft, lock.
Example: ‘
Lock *11, ¥12; ‘
void p() {
11->Acquire();
i2->Acquire();//code manipulates data that 11 and 12 protect

12->Release();

-89 -

11->Release();
}
] void g{) {
12->Acquire();
11->Acquire();//code manipulates data that 11 and 12 protect
11->Release();
12->Release();
3

If p and q execute concurrently, consider what may happen. First, p acquires 11
and q acquires 12. Then, p waits to acquire 12 and q waits to acquire 11. This

case is called deadlock

6.7.2 Avoidance Of Creation of Dangling Pointers
Since the program requires in depth Data Structures concepts, so one should be
very careful as to how to avoid the creation of pointers that is no longer
allocated. Dangling pointers are nasty bugs because they seldom crash the
program until long after they have been created, which makes them hard to find.
Programs that create dangling pointers often appear to work on small inputs, but

are likely to fail on large or complex inputs.

delete [] s1;
delete [] s2;
return f (s1,s2); /sl and s2 are dangling pointers !

b i

6.7.3 Avoidance Of Memory Leak
A memory leak is a particular kind of unnecessary memory consumption by a

: computer program, where the program fails to release memory that is no longer
] needed.

- 90 - |

A memory leak can diminish the performance of the computer by reducing the
amount of available memory. Memory allocation is normally a component of
the operating system, so the result of a memory leak is usually an ever growing
amount of memory being used by the system as a whole, not merely by the
erroneous process or program. Eventually, in the worst case, too much of the
available memory may become allocated and all or part of the system or device

stops working correctly or the application fails.

6.7.4 Unreachable Memory in C++

Consider the following example and notice that memory was available and

pointed to by s, but not saved. After this function retumns, the pointer is .
destroyed and the allocated memory becomes unreachable to "fix" this code, |
you would add the statement "free(s)" to the else block before the "return 0"

statement.

int f(void)

{

char* s; |
s = malloc(50); /* get memory */ |
if (s==NULL)

return 1; /* no memory available */
else
{ /* memory available */

return 0; /* memory leak - see note below */

int main(void)

{
|
/* this is an infinite loop calling the above function */ |

while (1)

91 -

et TET RN

£); /* This function call will fail to malloc sooner or later */

retumn 0;

6.8 Algorithm / Implementation

1 i=0)=0
2 While single core’sfile is not empty

2 1 Read the file and capture parameters into single_matchl[i].
i 221+

3 While dual core’sfile is not empty
! 3 1 Read the file and capture parameters into dual_match[i]

3.2+
4 k=0
5 invoke bar function bar(single_match[k], dual_match (k1)

6 Stop

6.9 Research Instruments / Tools

The given algorithm is being implemented on a computer with the following

configuration:

e« CPU : AMD Athlon 64-bit Processor 2800+
| o Clock Speed of CP.U. : 2.0 GHz

o Operating System : Microsoft ® Windows Version 5.1

_92-

C-++ Compiler

{Build 2600.xpsp_sp2_rtm.040803-2158 : Service Pack 2)

Copyright © 1981-2001 Microsoft Corporation
!

Turbo C++ Version 3.0

Copyright © 1991, 1995 Borland International, Inc.

~93 .

CONCLUSION

Review

The softwares are generating correct results and the performance parameters are ok. They
are also behaving properly and are not hanging the computer. The load distribution
between the two cores of the dual core scheduler software is equal. The comparison of
dual core scheduler with the single core scheduler software was a bit tedious because of
simultaneous opening of two files and manual reading of data entries, but that has been
taken care of by the graphical utility. All requirements that we had set out to satisfy have

been met and we successfully developed a dual core operating system scheduler.

Future Work

This work can be extended by enlarging its scope and encompassing all known
scheduling algorithms for the single core scheduler. Single core processors are in wide
spread use around the world and the theory of their schedulers should continue to attract
the attention of researchers and commercial establishments alike. In the dual core
schedulers’ domain a new algorithm, better than the one presented in this project, can be

devised and its comparison can be done with the existing algorithms at that point in time.

_94 -

P B R SO U

DIRBLIOGRAPHY
Galvin, Gagne, et al. Operating Systems Concepts Windows XP Update. John Wiley &
Sons New York 2003
Dietel & Dietel. C++ How to Program Third Edition. Pearson Education Singapore 2001
www.microsoft.com
www.amd.com
www.intel.com
i
|
|
|
1
-95 - }
l
|

g
Ll

ALGORITHM.

Any well-defined sequence of steps (procedure or routine) that takes some value as

input and guarantees a value as output in some finite number of steps.

ALLOCATE

To reserve a resource, such as sufficient memory, for use by a program.

ARCHITECTURE

1. The physical construction or design of a computer system and its components. See
also cache, CISC, closed architecture, network architecture, open architecture,
pipelining, RISC. 2. The data-handling capacity of a microprocessor. 3. The design of
application software incorporating protocols and the means for expansion and

interfacing with other programs.

BAR CHART

C+t

A type of graphic in which data items are shown as rectangular bars. The bars may be
displayed cither vertically or horizontally and may be distinguished from one another

by color or by some type of shading or pattern. Positive and negative values may be
shown in relation to a zero baseline. Two types of bar charts are common: a standard
bar chart, in which each value is represented by a separate bar, and a stacked bar
chart, in which several data points are "stacked" to produce a single bar. Also called

bar graph.

An object-oriented version of the C programming language, developed by Bjarne
Stroustrup in the early 1980s at Bell Laboratories and adopted by a number of

vendors, including Apple Computer and Sun Microsystems.

- 906 -

CENTRAL PROCESSING UNIT
The computational and control unit of a computer. The central processing unit is the
device that interprets and executes instructions. Mainframes and early minicomputers
contained circuit boards full of integrated circuits that implemented the central
processing unit. Single-chip central processing units, called microprocessors, made
possible personal computers and workstations. Examples of single-chip central
processing units are the Motorola 68000, 68020, and 68030 chips and the Intel 8080,
8086, 80286, 80386, and 1486 chips. The central processing unit--or miCroprocessor,
in the case of a microcomputer--has the ability to fetch, decode, and execute
instructions and to transfer information to and from other resources over the
computer's main data-transfer path, the bus. By definition, the central processing unit
is the chip that functions as the "brain" of a computer. In some instances, however,
the term encompasses both the processor and the computer's memory or, even more
broadly, the main computer console (as opposed to peripheral equipment). See also

microprocessor. Acronym: CPU.

CLASS
In object-oriented programming, a generalized category that describes a group of
more specific items, called objects, that can exist within it. A class is a descriptive
tool used in a program to define a set of attributes or a set of services (actions
available to other parts of the program) that characterize any member (object) of the
class. Program classes are comparable in concept to the categories that people use to
organize information about their world, such as animal, vegetable, and mineral, that
define the types of entities they include and the ways those entities behave. The
definition of classes in object-oriented programming is comparable to the definition

of types in languages such as C and Pascal. See also object-oriented programming.

CLOCK RATE
The rate at which the clock in an electronic device, such as a computer, oscillates.
The clock rate is normally given in hertz (Hz, one cycle per second), kilohertz (kHz, \

one thousand cycles per second), or megahertz (MHz, one million cycles per second).

_97-

Clock rates in personal computers increased from about 5 MHz to about 50 MHz
between 1981 and 1995. Also called clock speed, hertz time.

CODE
1. Program instructions. Source code consists of human-readable statements written
by a programmer in a programming language. Machine code consists of numerical
instructions that the computer can recognize and execute and that were converted
from source code. See also data, program. 2. A system of symbols used to convert
information from one form to another. A code for converting information in order to
| conceal it is often called a cipher. 3. One of a set of symbols used to represent

information.

COMPILER
A programming tool that translates a program written in a familiar high-level
language like Basic, C++, or Java, into, typically, the machine language of a

computer, which is composed only of zeroes and ones.

COMPUTER GRAPHICS
The display of "pictures," as opposed to only alphabetic and numeric characters, on a
‘ - computer screen. Computer graphics encompasses different methods of generating,
< displaying, and storing information. Thus, computer graphics can refer to the creation
of business charts and diagrams; the display of drawings, italic characters, and mouse

pointers on the screen; or the way images are generated and displayed on the screen.

COMPUTER SCIENCE ‘
The science concerned with the study of computational processes and with the design \
and implementation of hardware and of sofiware to solve problems, characteristically |

by means of algorithms (or effective procedures) implemented in the form of

programs.

CONCURRENT EXECUTION
The apparently simultaneous execution of two or more routines or programs.
Concurrent execution can be accomplished on a single process or by using time-
sharing techniques, such as dividing programs into different tasks or threads of
execution, or by using multiple processors. Also called parallel execution. See also
parallel algorithm, processor, sequential execution, task, thread (definition 1), time-

sharing.

CONTEXT SWITCHING
A type of multitasking; the act of turning the central processor's "attention" from one

ask to another, rather than allocating increments of time to each task in turn, See also

multitasking, time slice.

DATA STRUCTURE
A way to store and organize data in order to facilitate access and modifications.

DEBUGGING
The process of eliminating errors (or “bugs”) from a computer program.

DEMO
1. Short for demonstration. A partial or limited version of a software package

' distributed free of charge for advertising purposes. Demos often consist of animated
presentations that describe or demonstrate the program's features. See also crippled
version. 2. A computer in a store that is available for customers to test, to see if they

wish to buy it.

EXECUTABLE

A program file that can be run, such as fileO.bat, filel.exe, or file2.com.

-99 .

[T

FILE

A physical unit of storage on a computer disk or tape.

GRAPHICAL USER INTERFACE

A type of environment that represents programs, files, and options by means of icons,
menus, and dialog boxes on the screen. The user can select and activate these options
by pointing and clicking with a mouse or, often, with the keyboard. A particular item
(such as a scroll bar) works the same way to the user in all applications, because the
graphical user interface provides standard software routines to handle these elements
and report the user's actions (such as a mouse click on a particular icon or at a
particular location in text, or a key press);, applications call these routines with
specific parameters rather than attempting to reproduce them from scratch. Acronym:

GUL

INITIALEZATION

The process of assigning initial values to variables and data structures in a program.

INPUT

nformation entered into a computer or program for processing, as from a keyboard or

from a file stored on a disk drive.

INTERUPPT

A request for attention from the processor. When the processor receives an interrupt,
it suspends its current operations, saves the status of its work, and transfers control to
a special routine known as an interrupt handler, which contains the instructions for
dealing with the particular situation that caused the interrupt. Interrupts can be
generated by various hardware devices to request service or report problems, or by
the processor itself in response to program errors or requests for operating-system
services. Interrupts are the processor’s way of communicating with the other elements
that make up a computer system. A hierarchy of interrupt priorities determines which

interrupt request will be handled first if more than one request is made. A program

-100 -

can temporarily disable some interrupts if it needs the full attention of the processor

to complete a particular task. See also exception, external interrupt, hardware

interrupt, internal interrupt, software interrupt.

L1 CACHE
A memory cache built into 1486 and higher-level processors. The L1 cache, typically
containing 8 KB, can be read in a single clock cycle, so it is tried first. The 1486
contains one L1 cache; the Pentium contains two, one for code and one for data. Also
called level 1 cache, on-chip cache. See also cache, i486DX, Pentium. Compare L2

cache.

L2 CACHE
A memory cache consisting of static RAM on a motherboard that uses an 1486 or
higher-level processor. The L2 cache, which typically contains 128 KB to 1 MB, is
faster than the system DRAM but slower than the L1 cache built into the CPU chip.
Also called level 2 cache. See also cache, dynamic RAM, i486DX, static RAM.

Compare L1 cache.

LOGIC
The study of arguments, which are usually separated into the categories of deductive
and inductive. The first system of logic was that of classical term logic, formalized by
Aristotle, which studied the validity of arguments that can be formulated by means of
a restricted class of sentences having specific kinds of logical form. Classical term
logic characterizes the conclusions that follow from one premise (called immediate
inference) and the conclusions that follow from two premises (called syllogistic
inference), when premises and conclusions are restricted to so-calied categorical
sentences. Until around the mid-nineteenth century, Aristotelian logic was widely
viewed as exhaustive of the subject. But the introduction of the sentential function by
Gottlob Frege revolutionized the subject, and today Aristotelian logic is recognized to
be only a special and relatively modest fragment of modem logic, which includes

sentential logic (or the study of arguments when whole sentences are the basic units

-101 -

of analysis) and predicate logic (or the study of arguments when sentences are
analyzed on the basis of their intemal structure). Although elementary logic is
exclusively extensional (or “truth functional”), advanced logic pursues the
formalization of intensional relations that are not merely truth-functional, including
the nature of subjunctive, causal, and probabilistic conditionals, but also set theory,

recursive function theory, and the theory of models.

OBJECT-ORIENTED PROGRAMMING
A currently popular programming paradigm, based on the principles of data
abstraction, that de-emphasizes traditional algorithmic forms of program control in

favor of the Notions of classes, objects, and methods.

OPERATING SYSTEM.
The special software required to make a computer work. It is provides the link
between the user and the hardware. Popular operating systems include: DOS,
MacOS, VMS, VM, MVS, UNIX, and 0S/2. (Note that "Windows 3.x" is not an

operating system as such, since in must have DOS to work.)

PARALEL COMPUTING
. The use of multiple computers or processors to solve a problem or perform a
function. See also array processor, massively parallel processing, pipeline processing,
SMP, |

PARAMETER
A variable, belonging to a subroutine, which receives a value when the subroutine 1s

executed.

PROGRAM
A set of instructions that controls the operation of a computer. The concept of a
program is highly ambiguous, since the term “program” may be used to refer to (1)

algorithms, (ii) encodings of algorithms, (iii) encodings of algorithms that can be

-102 -

compiled, or (iv) encodings of algorithms that can be complied and executed by a
machine. As an effective decision procedure, an algorithm is more abstract than a
program, since the same algorithm might be implemented in various specific
programs suitable for execution by various specific machines by using various
programming languages. From this perspective, the senses of “program” defined by

(ii), (iii), and (iv) provide conceptual benefits that definition (i) does not.

REAL TIME OPERATING SYSTEM
An operaung system adesigned Of OpUMIZed IOT Ine neeas O & Process-Coiiuwn

environment,

SCHEDULER
An operating-system process that starts and ends tasks (programs), manages

oncurrently running processes, and allocates system resources. Also called dispatcher.

UNIX
A multiuser, multitasking operating system originally developed by Ken Thompson
nd Dennis Ritchie at AT&T Bell Laboratories in 1969 for use on minicomputers.
UNIX is considered a powerful operating system that, because it is written in the C
language, is more portable--that is, less machine-specific--than other operating
systems. UNIX is available in several related forms, including AIX (a version of
UNIX adapted by IBM to run on RISC-based workstations), A/UX (a graphical
version for the Apple Macintosh), and Mach (a rewritten but essentially UNIX-
compatible operating system for the NeXT computer). See also BSD UNIX, GNU,

Linux.

UTILITY PROGRAM
A program designed to perform maintenance work on the system or on system
components (e.g., a storage backup program, disk and file recovery program, or

resource editor).

-103 -

VARIABLE
An entity in a computer program whose role is to hold arbitrary data.

104 -

