Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. NumSPo2.eN\ L Call Num:
General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

¢ The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

LLearning Resource Centre-JUIT

AN

SPO

WEATHER FORECASTING SYSTEM
(WFS)

PRITAM KUMAR CHOUDHARY- 021207
AMIT KUMAR DWIVEDI- 021217
GAURAYV PRAKASH- 021407

Submitted in partial fulfillment for requirement of the degree of
Bachelor of Technology

DEPARTMENT OF COMPUTER SCIENCE |
JAYPEE UNIVERSITY OF INFORMATION |
TECHNOLOGY-WAKNAGHAT

MAY-2006

CERTIFICATE

This is to certify that the work entitled, "Weather Forecasting System" submitted by
Pritam Kumar Choudhary, Amit Kumar Dwivedi and Gaurav Prakash in partial
fulfillment for the award of degree of Bachelor of Technology in Computer Science and
Engineering / Information Technology of Jaypee University of Information Technology
has been carried out under my supervision .This work has not been submitted partially or

wholly to any other University or Institute for the award of this or any other degree or

diploma.

Mr. Satish Chandra
(Senior Lecturer)
Department of Computer Science

Jaypee University of Information Technology

Waknaghat, Solan

.

Acknowledgement

Many people have contributed to this project in a variety of ways over the
past few months. We thank our project instructor Mr. Satish Chandra,
without his guidance, this project would have not been successful. We
specially thank Dr. Naveen Prakash for his valuable suggestions. We also
acknowledge the helpful comments received from various teachers of
different departments. We are indebted to all those who provided reviews
and suggestions for improving the software, and we extend our apologies to

anyone we may have failed to mention.

Thank You

TABLE OF CONTENTS
|
CONTENT PAGE. NO.
ABSTRACT SO 6
1. INTRODUCTION 9
1.1 HISTORY OF WEATHER FORECASTING «-vrerem e 9
1.2 WEATHER FORECASTING SYSTEM (WFS) -- S
2. DESIGN AND IMPLEMENTATION s 1
2.1 KNOWLEDGE BASE 15 |
2.2 INFERENCE ENGINE 15 |
2.2.1 TRAINING EXPERIENCE .. 16
2.2.2 TARGET FUNCTION - : 17
2.2.3 LEARNING ALGORITHM 17 |
2.3 USER INTERFACE 19 f
2.3.1 CODE FOR THE USER’S INTERFACE - 21 a
2.4 CONNECTING THE KNOWLEDGE BASE, 1;
INFERENCE ENGINE AND THE USER
INTERFACE 2
3. TOOLS USED 25
3.1 SWI-PROLOG 25
3.3 XPCE ~eremmmee 26
3.2.1 XPCE GRAPHICAL CAPABILITIES-- 27
3.3 DIFFERENCE BETWEEN XPCE AND PROLOG 28
3.3.1 XPCE IS NOT PROLOG 29
3.3.2 DEALING WITH PROLOG DATA--- 30
3.3.3 LIFE-TIME OF PROLOG TERMS IN XPCE —-crcoereeeeeo. 31
4. WORKING OF THE SOFTWARE -- T3
CONCLUSION 35
BIBLIOGRAPHY 36
3

LIST OF ABBREVIATIONS

-

WES Weather Forecasting System ‘

SWI Social Science Informatics
SWIP Swi-Prolog ‘
Al Artificial Intelligence f

HTML Hyper Text Markup Language
XML Extended Markup Language

HTTP Hyper Text Transfer Protocol

Ul User Interface [
GUI Graphical User Interface J
|

API Application Protocol Interface

LIST OF FIGURES
i
PAGE NO.
1. Figure 1 Flow diagram of rule based system--- 7
2. Figure 2 The structure of WFS--- 11
3. Figure 3 Steps involved in the design of Inference Engine-------v--veemv—- 15
4. Figure 4 Snapshot of user’s interface 20
5. Figure5 Data and control flow in XPCE 23
6. Figure 6 The behavioral model--------- ----24
7. Figure 7 Snapshot of first screen 34
8. Figure 8 Snapshot of second screen 35

ABSTRACT

WEATHER FORECASTING SYSTEM (WF S) forecasts the weather of a particular
place on the basis of historical data about its climatic conditions viz. maximum
temperature, minimum temperature, sunrise time, sunset time, maximum humidity,
minimum humidity, rainfall and snowfall. The cities selected are Shimla, Chandigarh,
New Delhi, Kolkata.

Forecasting services can be used in agricultural research, economy performance, risk

management and sporting event,

This forecasting system is based on the following field of study:-

I. ARTIFICIAL INTELLIGENCE:

Artificial Intelligence is concerned with the study and creation of systems that exhibit

some form of intelligence system that learn new concepts and tasks, systems that can
reason and draw useful conclusions about the world around us, systems that can
understand a natural language or perceive and comprehend a visual scene, and systems

that perform other types of feats that require human types of intelligence.

II. MACHINE LEARNING:

Machine Learning is an area of Artificial Intelligence concerned with the development of

techniques which allow computers to learn. More specifically, Machine Learning is a
method for creating computer programs by the analysis of data sets. Machine learning
overlaps heavily with statistics, since both fields study the analysis of data, but unlike
statistics, Machine Learning is concerned with the algorithmic complexity of
computational implementations. There are various types of learning mechanism such as
decision trees, rule-based systems, neural networks, nearest-neighbor, Bayesian methods
etc.

The learning mechanism for WFS is rule-based (Figure 1). The rule-based system starts

with a rule-base, which contains all of the appropriate knowledge encoded into If-Then

Determine
possible rules to
be fired

Working
Memory

Select
Fire Rules < Rule to
fire
Exit if specified
by the rule

v

Conflict
Resolution
strategy

Figure 1 Flow diagram of rule based system

rules, and a working memory, which may or may not initially contain any data, assertions
or initially known information. The system examines all the rule conditions (1K) and

determines a subset, the conflict set, of the rules whose conditions are satisfied based on
the working memory. Of this conflict set, one of those rules is triggered (fired). Which
one is chosen is based on a conflict resolution strategy. When the rule is fired, any actions
specified in its THEN clause are carried out. These actions can modify the working
memory, the rule-base itself, or do just about anything else the system programmer
decides to include. This loop of firing rules and performing actions continues until one of
two conditions are met: there are no more rules whose conditions are satisfied or a rule is

fired whose action specifies the program should terminate.

I1I. EXPERT SYSTEMS:.

An Expert System is a set of programs that manipulate encoded knowledge to solve

problems in a specialized domain that normally requires human expertise. An Expert
System get their power from the expert knowledge that has been coded into facts, rules,
heuristics, and procedures the knowledge is stored in a knowledge base separate from the
control and interferencing components this makes it possible to add new knowledge or
refine existing knowledge without recompiling the control and interferencing programs
thereby simplifying the construction and maintenance of knowledge based systems.
Expert Systems are capable of explaining how a particular conclusion was reached. It
gives the user a chance to assess the system reasoning ability, thereby improving user’s
confidence in the system. Expert Systems reason with meta knowledge; that is, they
reason with knowledge about themselves and their own knowledge limits and

capabilities.

It
Il

i
|

1. INTRODUCTION

1.1 HISTORY OF WEATHER FORECASTING

During the early 20" century, meteorological science was not much understood. Basic
physical concepts were understood and the physics of fluid flow had been applied to the
atmosphere. The basic equations of atmospheric flow had already been formulated. It was
also clear that solutions of these equations were not going to be easy to come by.
Primarily linear equations were used. Hence, pre-20" century meteorology was a sort of
patchwork quilt of isolated theoretical problems that could be solved analytically and a
collection of vague empirical results that provided little insight and no systematic basis

for forecasting.

The development of telegraphy brought about a revolution, because weather observations
at more or less the same time could be collected and turned into weather. Weather
systems could be identified and tracked as they moved and evolved, so weather

forecasting was becoming a real possibility.

The next big advance was associated with Lewis Fry Richardson, who envisioned a way
to solve the equations numerically. His forecasting system was essentially what we now
call a “primitive equation” model, which even attempted to include the effect of decaying
vegetation! Richardson actually solved the system of finite difference equations by hand
for a real case, not realizing there were some serious problems with his approach.
Anyway, Richardson’s efforts represented a watershed in thinking about the problem of

weather forecasting.

The next big breakthrough came with the development of digital computers and the
entrance of John von Neumann into the field, along with a number of collaborators,
including Jule Charney, Ragnar Fjortoft, John Freeman, and others. This team chose to
work with a filtered system of equations rather than the primitive equations, and they also

were much more knowledgeable than Richardson when it came to numerical methods.

Hence, they were able to develop some reasonable forecasting results. The model they

i

developed was essentially a barotropic model and so was pretty simple in its concepts.
However, the ability to solve nonlinear forecast problems through the process of using
digital computers to solve the finite approximations to a continuum mathematical model
of an atmospheric flow was the key demonstration. If forms the backbone of all modern
numerical weather prediction models and inspired a whole new subfield of meteorology:
numerical simulations of atmospheric processes that would involve the “solution” of

mathematical models.

Since then, we have seen an explosion in the field. In fact, the very term “dynamic”
meteorology has come to be virtually synonymous with numerical solution of
mathematical atmospheric models of all sorts. As the operational NWP models have
improved, they have come to be the de facto standard by which operational forecasts are
judged. In combination with statistical post-processing, the output from numerical models
can be used to develop weather forecasts that can be used to create forecasts that are
indistinguishable in form (if not in content) from those produced by human weather

forecasters.

1.2 WEATHER FORECASTING SYSTEM (WFS)

This system forecasts the weather of a particular place on the basis of previous data
about its climatic conditions viz. maximum temperature, minimum temperature, sunrise
time, sunset time, maximum humidity, minimum humidity, rainfall and snowfall. The

cities selected are Shimla, Chandigarh, New Delhi, Kolkata.

Our system forecasts the weather by deducting data and information on basis of training
the system with examples. This is done by using “learning by examples” with if-then

approach.

10

2. DESIGN AND IMPLEMENTATION

Development of WFS is divided into three main sub systems as illustrated in Figure 2:
1) Knowledge Base,
2) Inference Engine,

3) User Interface.

»| User Interface |¢—p User

Y
A 4
A

Base Engine

K Knowledge Inference

{l

Figure 2 The structure of WFS

2.1 KNOWLEDGE BASE

The knowledge base comprises the knowledge which consists of historical
meteorological data of four years, from April 2002 to April 2006. It also consists or rule
and constraint that describe phenomena and parameters, method, heuristic and ideas for

forecasting. There is separate knowledge base for different cities.

11

We have used if-then rules for expressing knowledge:
" If condition A
? Then conclusion B
| We have used if-then rules for expressing knowledge because it has the following
desirable feature:-
‘ ® Modularity: each rule defines a small, relatively independent piece of knowledge.
| e Incrementability: new rules can be added to the knowledge base relatively
independently of other rules.
| e Modifiability: old rules can be changed relatively independent of other rule
e Support system’s transparency: the system ability to explain its decisions and solutions.

If-then rules facilitate answering user’s questions.

We have used prolog to implement our if-then rules based knowledge base because of the

following reasons:

e Prolog is a declarative language. By stating the facts and rules which relate |
objects in the problem domain to each other, we can construct prolog program. Its "’
meaning is the set of logical consequences of these program statements, and this it
is computed by the inference engine at run-time.

e We do not have to be concerned with telling the machine how to solve the
problem, nor where to put data in memory. This allows us to concentrate on the
problem at hand rather than on software concerns.

e Scoping rules are simple and uniform in prolog and declaration of variable names
is not required. This reduces code size and opportunities for error.

* Prolog programs tend to be from five to ten times smaller than the equivalent
procedural programs. This reduces the opportunity for human error and reduces
maintenance cost.

e Prolog is widely used in Artificial Intelligence. It is a powerful general-purpose
programming language with efficient implementations available on most

| computing platforms today.

12

Sample representation of knowledge base for the city Chandigarh:-

f Format of facts

weather(date, month, year, max temp, min temp, max humid, min humid, rainfall,
snowfall, sunrise, sunset).
weather(1,1,2005,11,23,45,67,4,1,5,18).
weather(2,1,2005,25.8,13.0,87,30,0,0,6.40,6.21).
weather(3,1,2005,22.4,11.2,88,22,0,0,6.47,6.22).
weather(4,1,2005,28.2,11.0,88,34,0,0,6.45,6.22).
| weather(5,12005,28.6,12.0,82,26,0,0,6.44,6.23).
| weather(6,6,2005,43.6,26.4,42,12,0,0,5.19,7.23).
| weather(7,6,2005,34.4,23.1,40,10,0,0,5.19,7.23).
: weather(8,6,2005,35.2,24.6,44,16,0,0,5.19,7.24).
weather(9,6,2005,36.6,28.0,49,24,0,0,5.19,7.24).
| weather(10,6,2005,39.8,24.0,61,23,0,0,5.19,7.25). |
weather(11,6,2005,39.0,23.4,75,20,0,0,5.19,7.25). [
weather(12,6,2005,41.8,27.0,51,12,0,0,5.19,7.26). !ﬂ
weather(13,6,2005,39.2,28.4,45,12,0,0,5.19,7.26). l
i weather(14,6,2005,40.2,29.2,49,19,0,0,5.19,7.27).
E weather(15,6,2005,39.0,28.4,48,19,0,0,5.20,7.27).
weather(16,6,2005,40.2,27.0,57,20,0,0,5.20,7.27).
weather(17,6,2005,41.4,26.4,55,15,0,0,5.20,7.27).
weather(18,6,2005,42.4,26.8,53,15,0,0,5.20,7.27).
weather(19,6,2005,42.4,28.0,46,16,0,0,5.20,7.28).
weather(20,6,2005,42.6,27.2,58,19,0,0,5.20,7.28).

Similarly for all date, month, year and different cities.

Rules:-

mint(X,Y,Z,M):-weather(X,Y,ZM, , , ., ..).

I maxh(X,Y,Z,P).-weather(X,Y,Z, , P, , , ., ,).

13

' minh(X,Y,Z,H):-weather(X,Y,Z, , , JH, , ,).
? rain(X,Y,ZN):-weather(X,Y,Z, . , . N, .).

2 . .

forecast weather(X,Y,7):-
maxt(X.Y,Z.T).
mint(X,Y,7,M),

. maxh(X)Y,7Z.P),

minh(X,Y,7,H),

| rain(X,Y,Z.N),

| snow(X,Y,Z,W),

rise(X,Y,Z.R),

set(X,Y,Z,5).

forecast:- ‘|
writeln('Enter date, month & year'), l“

getdata(, ,).

getdata(D,M,Y):- write('Enter Date:"),
read(D),

nl,

| write('Enter Month:"),
read(M),

| nl,
write('Enter Year:'),
read(Y),

nl,

Weather(D JMJYJ_J__‘)QZ;7757773) ‘

14

I

2.2 INFERENCE ENGINE

P An inference engine knows how to actively use the knowledge from the knowledge base.

The design of inference engine involves the following steps as shown in Figure 3:

Determine types of
training experience

Learning

A

Determine target
function

Values f|

v ﬂ

Determine learning
algorithm

Programming

y

Inference engine
complete

Figure 3 Steps involved in the design of inference engine

15

The inference engine addresses the following issues:-

f e Which algorithms can approximate functions well and when?
 Influence of number of training examples on accuracy.

e Influence of noisy data on accuracy.

e Theoretical limits of learnability.

e How can prior knowledge of learner help?

e How can systems alter their own representations?

2.2.1 TRAINING EXPERIENCES !

We have trained our inference engine with help of positive and negative examples.

Positive examples are the correct data that we feed to our machine.
Negative examples: Maximum temperature < Minimum temperature
Maximum humidity < Minimum humidity
Maximum humidity < 50% and it rains
The machine adds positive examples to the knowledge base and removes negative
examples. ”

The algorithm is as follows: il

G _maximally general hypotheses in H

S _ maximally specific hypotheses in H

For each training example d_do

If d is a positive example

_ Remove from G any hypothesis inconsistent with d

_ For each hypothesis s in S that is not consistent with d
Remove s from S

Add to S all minimal generalizations h of s such that
_his consistent with d _and

__some member of G is more general than h

Remove from S any hypothesis that is more general than another hypothesis in S
If d is a negative example

_ Remove from S any hypothesis inconsistent with d

_ For each hypothesis g in G that is not consistent with d

\ Remove g from G

2.2.2 TARGET FUNCTION

((4*x1) + (.6*x2) + (.8*x3) + (x4)) / (2.8)
x1 = data of first year

x2 = data of second year

x3 = data of third year

x4 = data of fourth year

2.2.3 LEARNING ALGORITHM

Learning of simple if-then rules HI‘

learn(Class) :- ‘ (!
bagof(example(ClassX, Obj), example(ClassX, Obj), Examples), "‘
learn(Examples, Class, Description), “
nl, write(Class), write(' <=="), nl,
writelist(Description),
assert(Class <== Description).

learn(Examples, Class, []) :-

not member(example(Class,), Examples).

learn(Examples, Class, [Conj [Conjs]) :-

learn_conj(Examples, Class, Conj),
remove(Examples, Conj, RestExamples), |
learn(RestExamples, Class, Conyjs).

learn_conj(Examples, Class, []) :-
not (member(example(ClassX,), Examples).

learn_conj(Examples, Class, [Cond | Conds]) :-
choose_cond(Examples, Class, Cond),

filter(Examples, [Cond], Examplesl),

17

learn_conj(Examplesl, Class, Conds).
\ choose cond(Examples, Class, AttVal) :-
findall(AV/Score, score(Examples, Class, AV, Score), AVs),
best(AVs, AttVal).
best([AttVal/], AttVal).
best([AV0/SO, AV1/S1 | AVSlist], AttVal) :-
ST > 80,1
best([AV1/S1 | AVSlist], AttVal);
best([AV0/SO0 | AVSlist], AttVal).
filter(Examples, Cond, Examplesl) :-
findall(example(Class, Obj),
(member(example(Class, Obj), Examples), satisfy(Obj, Cond)),Examplesl).
remove([], , []).
remove([example(Class, Obj) | Es], Conj, Esl) :-
satisfy(Obj, Conj), !,
remove(Es, Conj, Esl). ||
remove([E | Es], Conj, [E | Es1]) :- I
remove(Es, Conj, Esl). "
satisfy(Object, Conj) :-

not (member(Att = Val, Conj),
member(Att = ValX, Object),

ValX \== Val).
score(Examples, Class, AttVal, Score) :-
candidate(Examples, Class, AttVal),

filter(Examples, [AttVal], Examplesl),
! length(Examplesl, N1),
count_pos(Examples1, Class, NPos1),
NPosl >0,
Score is 2 * NPosl1 - N1.
candidate(Examples, Class, Att = Val) :-
attribute(Att, Values),

member(Val, Values),

! suitable(Att = Val, Examples, Class).
suitable(AttVal, Examples, Class) :-
, member(example(ClassX, ObjX), Examples),
ClassX \==Class,
not satisfy(ObjX, [AttVal]), !
count_pos([], ,0).
count_pos([example(ClassX,_) | Examples], Class, N) :-
count_pos(Examples, Class, N1),
(ClassX =Class, !, Nis N1 + 1; N=NI).
writelist([]).
writelist([X | L]) :-
tab(2), write(X), nl,
writelist(L).

2.3 USER INTERFACE i

The user interface caters for smooth communication between the user and the system, "
also providing the user with an insight into the problem solving process, carried out by (
the inference engine.

We have used XPCE to design our user interface.

XPCE offers the following advantage:-

e Anobject oriented language for building GUI.

e It provides high level GUI specification primitives and dynamic modification of
the program .

¢ Provides a hybrid environment for Graphical User Interfaces.

e Available free under GNU GPL

Snapshot of user’s interface is shown in Figure. 4

19

User name: ,amit

Password: L

City: | Chandigarh _:|

Parameters: © Temperature © Humidty © Raifal " Snowfol © Sunise Sunget |

Cancel | | Enter

Figure 4 Snapshot of user’s interface ‘

20 If

2.3.1 CODE FOR THE USER’S INTERFACE

r forecast weather :-
new(D, dialog('Weather Forecasting System")),
send_list(D, append,
[label(identifier, image('na.jpg")),
new(NI, text_item(user name)),
new(N2, text_item(password)),
new(C, menu(city, cycle)),

new(P, new(P, menu(parameters))),

button(cancel, message(D, destroy)), _,_,»-f’;‘(;"?'@soa?

button(enter,and(message(@prolog, [/
. ¢ (se(@p] 1 _ (3'(ACC. NOuagerees)3}
predict_weather,N | ?selection,N2 ?selection,C?selection,P?selection), "='.}.%ip02074,_‘_‘

b,
N

message(D, destroy)))]), “-Xnaghat, S92
send_list(C, append, [chandigarh, delhi, kolkata, shimla]),
send_list(P, append, [temperature, humidity, rainfall| snowfall, sunrise, sunset]),

|
send(D, default_button, enter), send(D, open). 1

predict_weather(UserName, Password, City, Parameters) :-

user(UserName, Password),
format('Welcome ~w, You are authorised to view this page ~n',[UserName]),
format('Predicting ~w of city ~w ~n',[Parameters,City]),
new(B, browser("'Weather Forecasting of Your City")),
send_list(B, append,
[string('CHANDIGARH"),
string(" "), string('"Temperature is 39.5 ¢"))),
send(B,open);
new(B1, browser("Weather Forecasting of Your City")),
send_list(B1, append,
[string{"Your User Name/Password is incorrect !!"),
string("You are not authorised to view this page.)]),
send(B1, open). user(amit,star).

/ .- forecast_weather.

21

R ——

2.4 CONNECTING THE KNOWLEDGE BASE, INFERENCE ENGINE AND
) THE USER INTERFACE

The XPCE message passing system is guarded with a single mutex, which synchronizes
both access from Prolog and activation through the GUI.

Using XPCE in the foreground simplifies debugging of the Ul and generally provides the
most comfortable development environment. The GUI creates new threads using

thread create/3 and, after work in the thread is completed, the sub-thread signals the main
thread of the the completion using in pece thread/1.

in _pce _thread(:Goal)

Assuming XPCE is running in the foreground thread, this call gives background threads
the opportunity to make calls to the XPCE thread. A call to in pce thread/l succeeds
immediately, copying Goal to the XPCE thread. Goal is added to the XPCE event-queue
and executed synchronous to normal user events like typing and clicking.

The prolog/XPCE interface is shown in Figure 5

The behavioral model of various message passing is shown in Figure 7

22

\ |
/ |
hust%iend(])
i @prolog
hostBet()
r ' Control , Message(@prolog, .|
0 - flow 1
| p
| i A@prolog, ..
g | *
seng/[2-12] N |
b PCE]
et3-13] Virtual Machine |
i
!
|
Prolog/PCE
Interface

Figure 5 Data and control flow in XPCE

23

selection}, selection

_¢
P~
=]

iy o \
VP cane

SR s

cly parameters

ho

¢/Documents and Settings/TOSHEADesktopio Exveathe forecastng

) Figure 6 The behavioral model

24

3. TOOLS USED

1) Swi-Prolog
2) XPCE

3.1 SWI-PROLOG

SWI Prolog is a prolog compiler and interpreter suite developed by Jan Wielemaker of
the Department of Social Science Informatics of the University of Amsterdam in the
Netherlands. It is made available free of charge, in both source and binary distributions,
for non-commercial applications.

SWI Prolog (SWIP) is a well-crafted product that supports embedding and programmatic
extensions. In other words, the SWI Prolog engine can be used as a component in a
larger framework of diverse language modules. In addition, SWIP is easily extended to
support additional capabilities available on Microsoft Windows platforms.

This extensibility is greatly enhanced by the fact that complete Windows-compatible

source code is available for SWIP.

We used Swi-Prolog because of the following features:-

¢ Built-in support for RDF, XML and HTML parsing.

o Network, HTTP client and server, database and file I/O connectivity.

e Multithread capable.

o Comprehensive library of Prolog functions.

e Support for constraint solving.

o ODBC database connectivity.

e XPCE graphical user interface builder (XPCE is somewhat confusing to pick up
at first, and results in GUIs that look and feel a little bit clumsy, but is actually a

really simple and powerful user interface API. XPCE allows you produce front-

25

-T_— T — m

ends to your Prolog applications in a really short time — the interface won't be a

) slick work of art but it will certainly be very functional and quick to develop).

3.2 XPCE

XPCE is an object-oriented system. This implies that the basic entity in XPCE’s world is
an object, an entity with state capable of performing actions. Such an action is activated
by sending the object a message.

So far, most object oriented systems agree. Starting from these notions however one

can find object oriented environments that take widely different approaches for
representing objects, actions on objects and sending messages.

Rather than specifying operations on each individual object most OO environments de-
fine some way of sharing the operation definitions (called methods). There are two ways
to share methods. One is to create objects as a copy of other objects and then modify
them (by attaching and deleting slots and methods) to fit the particular need. If a series

of similar objects is needed, one first creates an object that satisfies the common
functionality and then creates multiple copies of this object. This approach is followed by
SELF. The other —more traditional— approach is to define a class. A class is an entity in
the object oriented environment that defines the constituents of the persistent state and
the methods for each of its instantiations.

XPCE takes the latter approach, but adds some notions of the object-copying approach
because GUI’s often contain unique objects and because object modification is more

dynamic and therefore more suitable for rapid prototyping,.

Using XPCE offers the following advantages

e XPCE is a Graphical User Interface system (GUI). XPCE is not a
programming language itself. Instead it may be connected to a

programming language to form a hybrid development environment.

26

i

¢ XPCE may be connected to any programming language, but it fits best
with languages that are dynamically typed or have strong static typing and
allow for programmable type conversion . A dynamically typed language
is a language with untyped variables for which the type of the current
value of a variable can be deduced at runtime. Currently XPCE defines
interfaces to Prolog, Lisp and C++.

e XPCE is an object management system (storage and message-passing)
which can have its methods defined in various languages. It offers a large
number of built-in classes that concentrate on graphical user interfaces.

o XPCE method resolution is done at runtime. Classes and methods may be
inspected and modified at runtime. This makes XPCE especially useful in
combination with interpreted languages for GUI prototyping. Proper
method and graphical caching generally provides good performance for
interactive applications.

o XPCE graphical capabilities

3.2.1 XPCE GRAPHICAL CAPABILITIES

3.2.1 a) DIALOGUE DESIGN

XPCE contains all the standard controls: buttons, various styles of menus, sliders,
text entry fields, etc. Layout of controls in a window is normally specified in
terms of "above', "below’, "left' and "right'. Layout may be refined by changing the
alignment details. For emergencies, it is possible to specify the layout in
coordinates.

Finally, XPCE/Prolog provides a direct-manipulation interface for the definition

of dialogue windows.

3.2.1 b) INTERACTIVE DIAGRAM EDITORS

Tmplementation of graphical editors for diagramming languages is a very common

application area for XPCE. XPCE offers full object-oriented graphicals, opaque

27

|

f and transparent graphicals, composition of primitive graphicals into compound
] graphical objects (recursive), automatically maintained graphical relations and a
comprehensive and extensible library of "gestures' (objects that allow the user to

manipulate graphical objects with the mouse).

: 3.2.1 ¢) TEXT MANIPULATION

XPCE offers a programmable text-editor similar to GNU-Emacs. The editor
offers about 150 predefined methods. It can handle multiple fonts, embedded
graphics (prototype version), mouse-sensitive areas, etc.

These features make the editor well suited for the implementation of WYSIWYG
hypertext editor. The XPCE/Prolog library offers such an editor to implement
help for XPCE applications. These files are written using this editor and then
converted to HTML.,

. 3.2.1 d) INTERPROCESS COMMUNICATION

| To facilate graphical user interfaces for traditional stream-based Unix applications
as well as to realise client-server applications, XPCE offers interprocess and

| networking communication primitives.

3.3 DIFFERENCE BETWEEN XPCE AND PROLOG:

* XPCE and Prolog are very different systems based on a very different programming

| paradigm. XPCE objects have global state and use destructive assignment. XPCE
programming constructs use both procedures (code objects and send-methods) and
functions (function objects and get-methods). XPCE has no notion of non-determinism
: unlike prolog. The hybrid XPCE/Prolog environment allows the user to express
j functionality both in Prolog and in XPCE. This chapter discusses representation of data

and dealing with object-references in XPCE/Prolog.

28

T IIIIIE—————..

3.3.1 XPCE IS NOT PROLOG

§ Data managed by Prolog consists of logical variables, atoms, integers, floats and

compound terms (including lists). XPCE has natural counterparts for atoms (a name
object), integers (a XPCE int) and floating point numbers (a real object). Prolog logical
variables and compound terms however have no direct counterpart in the XPCE
environment. XPCE has variables (class var), but these obey totally different scoping and
binding rules. Where Prolog uses a compound term to represent data that belongs
together (e.g. person (Name, Age, Address)), XPCE uses objects for this purpose:
- pee_begin_class(person(name, age, address), object).
variable(name, name, both, "Name of the person").
variable(age, int, both, "Age in years").
variable(address, string, both, "Full address").
initialise(P, Name:name, Age:int, Address:string) :->
"Create from name, age and address"
send(P, name, Name),
send(P, age, Age),
send(P, address, Address).
- pee_end class.
1 7- new(P, person(fred, 30, *Long Street 45°)).
These two representations have very different properties:
* Equality
Prolog cannot distinguish between ‘person(’Fred’, 30, ’Long Street 45°)’
and a second instance of the same term. In XPCE two instances of the same class
having the same state are different entities.
* Attributes
Whereas an attribute (argument) of a Prolog term is either a logical variable or
instantiated to a Prolog data object, an attribute of an object may be assigned to. The
assignment is destructive.
* Types
XPCE is a dynamically typed language and XPCE object attributes may have types.
{ Prolog is untyped.

29

3.3.2 DEALING WITH PROLOG DATA
By nature, XPCE data is not Prolog data. This implies that anything passed to a XPCE

method must be converted from Prolog to something suitable for XPCE. A natural
mapping with fast and automatic translation is defined for atoms, and numbers (both
integers and floating point). As we have seen in section 2, compound terms are translated
into instancesusing the functor-name as class-name.

In XPCE 5.0 we added the possibility to embed arbitrary Prolog data in an object. There
are three cases where Prolog data is passed natively embedded in a instance of the class
prolog term.

* Explicit usage of prolog(Data)

By tagging a Prolog term using the functor prolog/1, Data is embedded in an in-stance

of prolog term. This term is passed unaltered unless it is passed to a method

that does not accept the type Any, in which case translation to an object is enforced.

* When passed to a method typed Prolog

Prolog defined methods and instance-variables (see section 7) can define their type as
Prolog. In this case the data is packed in a prolog term object.

* When passed to a method typed unchecked

A few methods in the system don’t do type-checking themselves.

We will explain the complications using examples. First we create a code object:

1 ?7- new(@m, and(message(@prolog, write, @arg1),

message(@prolog, nl))).

This code object will print the provided argument in the Prolog window followed by a

newline;
2 7- send(@m, forward, hello).
hello

From this example one might expect that XPCE is transparent to Prolog data. This is true
for integers, floats and atoms as these have a natural representation in both languages.
However:

3 7- send(@m, forward, chain(hello)).

@774516

4 ?- send((@m, forward, 3 + 4).

30

5 ?- send(@m, forward, [hello, world]).

@608322

In all these examples the argument is a Prolog compound term which —according to the
definition of send/3— is translated into a XPCE instance of the class of the principal
functor.

In 3) this is an instance of class chain. In 4) this is an instance of class +. Class + however
is a subclass of the XPCE class function and function objects are evaluated when given to
a method that does not accept a function-type argument. Example 5) illustrates that a list
is

converted to a XPCE chain.

We can fix these problems using the prolog/1 functor. Example 7) illustrates that also
non-ground terms may be passed.

6 ?7- send(@m, forward, prolog(chain(hello))).

chain(hello)

7 ?- send((@m, forward, prolog(X)).

G335

X= G335

Below is a another realistic example of this misconception.

I 2- new(D, dialog(’Bug”)),

2 send(D, append, button(verbose,

3 message(@prolog, assert,

4 verbose(on)))),

5 send(D, open).

6 [PCE warning: new: Unknown class: verbose

7 in: new(verbose(on)) |

One correct solution for this task is below. An alternative is to call a predicate

set verbose/0 that realises the assertion.

| make verbose dialog :-2

new(D, dialog(’Correct’)),

3 send(D, append,

4 button(verbose,

- il

5 message(@prolog, assert,
) 6 prolog(verbose(on))))),
7 send(D, open).

3.3.3 LIFE-TIME OF PROLOG TERMS IN XPCE

XPCE is connected to Prolog through the foreign language interface. Its interface
predicates are passed Prolog terms by reference. Such a reference however is only valid
during the execution of the foreign procedure. So, why does the example above work? As
soon as the send/3 in make verbose dialog/0 returns the term-reference holding the term
verbose(on) is no longer valid!

To solve this problem, prolog term has two alternative representations. It is created

from a term-reference. After the interface call (send/3 in this case) returns, it checks
whether it has created Prolog term objects. If it finds such an object that is not referenced,
it destroys the object. If it finds an object that is referenced it records Prolog terms into
the database and stores a reference to the recorded database record.

Summarizing, Prolog terms are copied as soon as the method to which they are passed
returns. Normally this is the case if a Prolog terms is used to fill an instance-variable in

XPCE.

XPCE is an object-oriented system. This implies that the basic entity in XPCE’s world is
an object, an entity with state capable of performing actions. Such an action is activated
by sending the object a message.

So far, most object oriented systems agree. Starting from these notions however one

can find object oriented environments that take widely different approaches for
representing objects, actions on objects and sending messages.

Rather than specifying operations on each individual object most OO environments de-
fine some way of sharing the operation definitions (called methods). There are two ways
to share methods. One is to create objects as a copy of other objects and then modify

{ them (by attaching and deleting slots and methods) to fit the particular need. If a series

32

of similar objects is needed, one first creates an object that satisfies the common
functionality and then creates multiple copies of this object. This approach is followed by
SELF. The other —more traditional— approach is to define a class. A class is an entity in
the object oriented environment that defines the constituents of the persistent state and
the methods for each of its instantiations.

XPCE takes the latter approach, but adds some notions of the object-copying approach
because GUI’s often contain unique objects and because object modification is more

dynamic and therefore more suitable for rapid prototyping.

33

4. WORKING OF THE SOFTWARE

As we start WFS, we get the following view :

* Weather Forecasting System

User name: Iamil‘

Password: |

aity: [pehi

Parameters: © Temperatwe C Humidty — © Rainfal © Snowfal © Synise © Supset

Cancel ‘ Enter l

i ‘} start * Local e, pdeefmo dusen. opdwbe. OMan, Bopes. D) prok,

Figure 7 Snapshot of first screen

Enter user name and password and choice of city

! And click enter,

34

And we get the following response ,

=% NEWDELHI - Windows Picture and Fax Viewer

(WA 15 APR

0CI'C CIAC WCIAC Weiwe |

(3% T

Figure 8 snap shot of second

e

35

CONCLUSION

We have introduced the weather forecasting system, a prototype application
to predict various climatic conditions. While building such a system many
questions crop up like knowledge representation and the selection of an
inference technology. We’ve tried to justify our selection decisions. For the
representation of the knowledge base we selected the if-then rules also
called production rule, mostly for its modular nature, incrementability,
modifiability and support system’s transparency. For the inference engine
we selected a rule-based system, namely Prolog (a direct choice resulting
from knowledge base selection). Rule based systems are most simple in
nature and therefore ideal for prototyping. However, we believe alternative
technologies might be more suitable to this problem. As an application, the
WES implementation we believe is still lacking, although mostly in content.
Work can be expanded to include more cities and parameters. The software
is meant to be used for demonstrative purpose.

What’s beyond our software grasp is the ability to predict large-scale

(synoptic) weather patterns and changes i.e. natural calamities such as floods.

This is because modeling the atmosphere on a large scale requires vast
amounts of observatory and satellite data and a super computer. And finally

this system does not promise to predict the absolute truth.

36

BIBLIOGRAPHY

Books
1) PROLOG — Programming for artificial intelligence
Author: - Ivan Bratko
Publisher: - Pearson Education

2) Introduction to artificial intelligence and expert systems

Author: - Dan W. Patterson
Publisher: - Prentice-Hall India

Websites :

http://www.swi-prolog.org
http://www.swi.psy.uva.nl/products/XPCE/.
http://gollem.science.uva.nl/twiki/pl/bin/view/ Development/MultiThreadsXPCE

37

