Jaypee University of Infofmation Technology
- Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num. gﬂoa_ro 2¢Call Num:

General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

RPNV

SP03020

Y

JAVA CHAT SERVER

Submitted in partial fulfillment of the
requirements for the award of the degree of

BACHELOR OF TECHNOLOGY
in

COMPUTER SCIENCE ENGINEERING

By:

ARPIT ROCHWANI (031259)
AJOYDEEP SINGH (031266)
RAHUL SHARMA (031278)
AKSHUNN SINGHAL (031416)

o Ay T

DEPARTMENT OF COMPUTER SCIENCE
ENGINEERING AND INFORMATION TECHNOLOGY
JAYPEE UNIVERSITY OF INFORMATION
TECHNOLOGY-WAKNAGHAT

CERTIFICATE

This is to certify that the work entitled, “Java Chat Server” submitted by “Arpit
Rochwani (031259) , Ajoydeep Singh (031266), Rahul Sharma (031278), and
Akshunn Singhal (031416)” in partial fulfillment for the award of degree of

Bachelor Of Technology in Computer Science Engineering of Jaypee University of
Information Technology has been carried out under my supervision. This work has
not been submitted partially or wholly to any other University or Institute for the

award of this or any other degree or diploma.

Project Supervisor:

e
;

Mr. Satish Chandra

Senior Lecturer
Department of Computer Science Engineering and Information Technology,

Jaypee University of Information Technology,

Waknaghat, Solan — 173215, Himachal Pradesh,

INDIA.

ABSTRACT

We intend to build chatting software using JAVA (swings) in which we start a central
Server which can be accessed by any Client. Each user can run the client program and
connect to server to start chatting. Whenever a User logs in a Tray Icon is created for
each User. All clients and server will have list of online users. List is updated as soon as
the status of some client changes. There is one main chat room in which all messages can
be seen by all clients. Users can also choose to chat in private with any one on the list
using Conferencing option. Users are prohibited to use certain abusive words. The Users

using such words will be warned during the chat and they won’t be displayed. File

transfer between users is also enabled .

TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION

1.1 PROJECT SPECIFICATIONS
1.2 JAVA

1.3 JAVA SWING

1.4 FEATURES OF JAVA SWING
1.5 JAVA (LOOK AND FEEL)

1.6 WINDOWS (LOOK AND FEEL)

CHAPTER 2
NETWORKING BASICS

2.1 SOCKETS
2.2 DIFFERENT TYPES OF SOCKETS

2.3 SOCKET PROTOCOLS
2.4 SERVER

2.5 CLIENT
2.6 INTERACTION BETWEEN CLIENT AND SERVER

2.7 FEW SNAPSHOTS OF THE PROJECT

CHAPTER 3
MODELLING DESIGN AND FUNCTIONS USED

3.1 DATA FLOW DIAGRAM
3.2 JAVA NATIVE INTERFACE
3.3 SOME FUNCTIONS USED

10
13
14
16
18

20
22
25
26
29
31

35

41
43
47

CHAPTER 4
FUTURE SCOPES AND TESTING

4.1 ENCRYPTION IN NETWORK
4.2 ENCRYPTION AND DECRYPTION USING SYMMETRIC KEYS

4.3 PROJECT TESTING
4.4 TEST CASES

5 SAMPLE CODES

CONCLUSION

BIBLIOGRAPHY

61

65

65

————

i
LIST OF FIGURES AND TABLES
Big 1.1 LI button (Java 00K ANt Teel N i it iiiiiin s inesans nnnannsnsmms s s sirmns s s s s 16
Big 1.2 LI text held (Java loOk andifeel) .. o obeenns consprmon sinssmis ses b susss i 16
Bigil (3:Ullitent args ([avelooleand feal))il i s ooy i vhabees barh s 16
Higil d Lilnasaword Flald o v i o 0 i s pe G T e s e by 16
P R (e T o T e ey 2ot s Gt ot A A TR U D) 17
B U B oy e ks S sV O e B (B e R 17
i B T e T R CNNTE N i 17
Fap 118 L1 button: (Windows 10006 ad 10e1)vuvcmsms s i vimh 568 S5 Giasis i s s mmmsasm 18
Big 129 LIl text ficld (WIndows 100k anid Tl) i iimiim s s ssan s it assoss snsimns 18
Bigl 10 LI text area windows [00K BNt TR81Y 1. 1. vs soscrnennssin onismersssmmmnsmmes ex vonsass 55 18
|yt T BN TR sty R e LR So Tt T s Lo s DR ol e et L M oS Bt e o R 18
Figl.12 UI dialoguebox........; s P e s ey 19
RIO1E] 3 UL TEAMIB L oo eisir v suvs civaivis s sus vods voos s e iass bas 6 dh sia i S0 s i 19
B8 1M1 AU le BHOOSET. iiooeidt, v vosniidvn cnuiunns by 0 oia SR B th S ias 6 S sn i 19
{abie) L SOme otHe I YNEs Bf SOBRETR: (o e vl (e i e wa'h st A8 s s e b 24
B 21 Tiiteractinn et WeaT B l1emt At SO et i i i i o os i i s 5 ey i e 31
REIDID-2 L WO BEIVEIE [y iiios s oy entvs soissn hvisnd sa ivmsis b dimmiin b os Shat v o marssvsios o saemny 32
Higi2:3 Sacket procedure calls i iab siitivusie stavy i i vovin s edvs s sss seviaias durs soms 33
Eigel 4 Client and setver DrOMDES. .1 o il duvteva i s 1 st i st e i f e s vi b g srcains 34
BI6 250" [LORIN WINOOW v onniviniviseon snins viais s snicns s 008 mERens BEs {ARNARTE FEV S840 E SRS sk sk 35
B Dl SOE WD BW i ehids i i i i s e e T R G A R T b LA A iy i s ity 36
s G e RS Gl s e e I e s i 37
Bl ety el N A e e ST e L e bk b v 38
HIg O] epal RenteNEe ivm e svisy sus'sd B e I P IR e ee 39
FIod] (D SHEWS 5 WAPNTITE ol Ve thwiiis 2ioes 5iiis S St ek hla s Bon e, Dot A S tirhs s mashas 39
B | (SO T 111600 ORI it ol e e i At Al e e b it kb e 40
BRI Bty PON TICOEVPIOIE e iiohiis o ae ohibins i s S wandbin s S e 40

Kig 8.1 Lave 0D ata R O I BT AN o it ik oty s s iy nie e e s s 41
Fig:3.2 Login BURCHON Data KIOW DIAETAIN. ... vunevos ve v cemsisme e saves v s sk ol 42
Big3. 3 Lseivandotvedata I oW d g o ANl i v i ot o vt by 1 e b iaa | 42
Hig3.4-Conlerence Data HOW HIASIAM. i mivinn chissiminsis o ssmessil nmehes ot as v s 43
Fig 4.1 Cause ettect praphi(10SIN TIICHION), oxe sanssessic n casion s e smnsn s s vees chss 58
E1g4.2 Canse eficoCoap (IS fIanster) = L 0 et s s s st s s s o 59
abledilvliesl Gases LD gl FINRIaR Lo a o) T i by evin visibish St S i 58
iTableddaTest cases(fileitransfor il i sl dailased ol b ot Jiieafantig A coiy 60

CHAPTER 1
INTRODUCTION

The fundamental networking capabilities are defined by classes and interfaces of package
Java.net, through which Java offers socket-based communication that enable applications
to view networking as streams of data. The classes and interfaces of package java.net also
offer packet - based communications that enable individual packets of information to be

transmitted-this is commonly used to transmit audio and video over the Internet.

Our discussion of networking focuses on both sides of a client — server relationship. The

client requests that some action be performed, and the server performs the action and

responds to the client. A common implementation of the request - response model is

between World Wide Web browsers and World Wide Web servers.

When a user selects a Web site to browse through a browser (the client application), {
request is sent to the appropriate Web server (the server application). The server normally I

responds to the client by sending an appropriate HI'ML Web page. ~

1.1.PROJECT SPECIFICATIONS

1.1.1. Hardware Specification:

Operating System-Microsoft Windows XP professional 2002, SP2
Primary Memory- 256 MB RAM

Processor—lntel@ Pentium® 4 CPU 2.28 GHz

Secondary Memory-80 HDD

1.1.2. Software Speciﬂcation‘

Front End- Java (jdk-6-windows-i586.exe).

L.1.3. Setup for working on Java Platform

r 10

Step 1: Run the jdk-6-windows-i586 setup file.

Step 2: Open the console Window.

Step 3: Reach the specified path where all the java files exist (C: /java/bin).
!i Step 4: Compile all java files using javac <filename>.java .

Step 5: run the files using java <filename>.

Step 6: Run the files using java <filename>.

Step 7: Result is obtained.

1.2. JAVA

Java has gained enormous popularity since it first appeared. Its rapid rise and wide
acceptance is due to its design and programming features, particularly because you can
write a program once, and run it anywhere. Java was chosen as the programming
language for network computers (NC). The popularity and usage of Java is well
explained by a statement in Java language white paper by Sun Microsystems that: "Java

is simple, object-oriented, iﬁterpreted, secure, portable, and dynamic."

(i) Simplicity
Java is a much simpler and easy to use programming language when compared to the

e

other object-oriented programming languages as it easy to make interfaces and does not !
: !

make use of pointers.
Java is Object-oriented programming and models the real world. Everything in the

world can be modeled as an object. Java is centered on creating objects, manipulating

objects, and making objects work together. ‘

(ii) Portability: (Platform Independence)

One of the most compelling reasons for Java’s popularity is its platform independence.
Java runs on most major hardware and software platforms, including Windows 95 and
NT,‘ the Macintosh, and several varieties of UNIX. All Java-compatible browsers support
Java applets. By moving existing software to Java, you are able to make it instantly

compatible with these software platforms. JAVA programs become more portable. Any

hardware and operating system dependencies are removed.

10

il !

(iii) Java is transcribed. (Uses bytecodes)
; This means that an interpreter is needed in order to run Java programs. The programs are
compiled into a Java Virtual Machine code called bytecode. The bytecode is machine
independent and is able to run on any machine that has a Java interpreter. Normally, a
compiler will translate a high-level language program to machine code and the code is
able to only run on the native machine. If the program is run on other machines, the
program has to be recompiled on the native machine. With Java, the program need only

be compiled once, and the bytecode generated by the Java compiler can run on any

platform.

(iv) The Virtual Machine: Java VM

This VM acts between the Java program and the machine it is running on, brings in the
concept of the “abstract computer” that executes the Java code and guarantees certain
behaviors regardless of the underlying hardware or software platform. Java compilérs]
turn Java programs into platform-neutral "byte code" that the machine-specific VM
interprets along with converting into assembly language for a particular machine.

V The Java VM also enforces security policies. It provides a sandbox which defines ?
the limits about what java programmes can do. A Java applet cannot, for example, peek

into arbitrary files on the machine it's running on. The most recent version of Java from

Sun, known as Java Development Kit (JDK) 1.6, though, provides no consistent method

for an applet to request restricted system resources.

(v) Multimedia: Images, Sounds and Animation
The “icing on the cake” for Java is MULTIMEDIA - Sounds, Images, Graphics and

Video. In this growing age of multimedia, every task demands good Multimedia
applications, sound or graphic technology capabilities. Multimedia demands incredible

r computing power and only recently, computers supporting it are becoming widespread. ‘

11 j

12

Among the image formats supported by Java is the Graphics Interchange Format
.GIF and Joint Photography Experts Group .JPEG. Among the audio formats are AIFF ;
AU and WAV. :
(vi) Security .
Java considers security as a part of its design. The Java language, compiler, interpreter,
and runtime environment were each developed with security in mind. The compiler,
interpreter, and Java-compatible browsers all contain several levels of security measures
that are designed to reduce the risk of security compromise, loss of data and program

integrity, and damage to system users.

(vii) Reliability

Security and reliability are inter related. Security measures cannot be implemented with
any degree of assurance without a reliable framework for program execution. Java
provides multiple levels of reliability measures, beginning with the Java language itself.
The Java compiler provides several levels of additional checks to identify any
mismatches and other inconsistencies. The Java runtime system duplicates many of the
checks performed by the compiler and performs additional checks to verify that the

executable bytecode form a valid Java program.

(viii) Java is Portable and dynamic

One advantage of Java is that its programs can run on any platform without having to be
recompiled. This is one positive aspect of portability. It goes on even further to ensure
that there are no platform-specific features on the Java language specification. Having a
fixed size for numbers makes Java programs portable. For example in Java, the size of
the integer is the same on every platform, as is the behavior of arithmg:tic.. The Java

environment itself is portable to new hardware and operating systems, and in fact, the

Java compiler itself is written in Java.

13

The Java programming language was designed to adapt to an evolving environment. New
methods and properties can be added freely in a class without affecting their clients. Also,
Java is able to load classes as needed at runtime. As an example, you have a class called
'Square'. This class has a property to indicate the color of the square, and a method to
calculate the area of the square. You can add a new property to the 'Square' class to
indicate the length and width of the square, and a new method to calculate the perimeter
of the square, and the original client program that uses the 'Square' class remains the

same.

1.3 JAVA SWING

We have tentatively chosen Swing for implementing our user interface components since
it meets many of our needs. First of all, it reportedly runs well on all of the platforms we
want to support, namely Windows, Linux. Second, Swing is very well-documented, well-
tested, and has the largest developer base among the UI toolkits we investigated. Third,

Swing is implemented in Java, a language that our team is comfortable using.

Swing is a GUI toolkit for Java. It is one part of the Java Foundation Classes (JFC).

Swing includes graphical user interface (GUI) widgets such as text boxes, buttons, split-

panes, and tables.

Swing widgets provide more sophisticated GUI components than the earlier Abstract
Window Toolkit. Since they are written in pure Java, they run the same on all platforms,
qnlike the AWT which is tied to the underlying platform's windowing system. Swing
supports pluggable look and feel — not by using the native platform's facilities, but by
roughly emulating them. This means you can get any supported look and feel on any
platform. The disadvantage of lightweight components is possibly slower execution. The

advantage is uniform behavior on all platforms.

Swing's most important advantage is the cross-platform support, which enables the

developers to build applications that run on Windows, Mac and Linux. In addition, Swing

provides a very rich set of components and features that can easily meet the requirements

14

of many types of applications, such as administration consoles, development tools and

business applications.

Swing can be used to create user interfaces that are very intuitive and easy-to-use,
implementing all the features that a user would expect in a modern desktop application,
such as multi-document interfaces, professional-looking menus, toolbars, contextual

popup menus, drag-and-drop, and so on.

It is easy to understand how Swing works internally. Knowing what happens under the
hood allows the developers to efficiently use the Swing framework and maximize the

application's performance.

Swing application is easy to maintain. The code, the developers produce is well
documented and it's easy to modify it when new user requirements must be implemented
or when existing business logic must be changed. The Swing developers use best

practices and perform extensive testing to guarantee a very good quality of the code.

1.4 FEATURES OF JAVA SWING

A Visual Guide to Swing Components (Java Look and Feel)

Swing is primarily known for its rich set of GUI components. A menu of Swing's

components, grouped by type, can be used to create the Java look and feel.

A Visual Guide to Swing Components (Windows Look and Feel)

A menu of Swing's components can also create the Windows look and feel.

Pluggable Look and Feel

This architecture allows a program to have control over its appearance.

14

15

Data Transfer

Most programs will want to use drag and drop or cut, copy and paste.

Internationalization and Localization

Internationalizing an application makes it easy to tailor it to the customs and languages of

end users around the world.

Accessibility
Making your program accessible means that it can be used, without modification, by
anyone with permanent or temporary disabilities who may require special devices. And,

in many countries, making programs accessible is the law.

Integrating with the Desktop

An application that is well integrated with the desktop will, where appropriate, allow the
user to launch the default mail application or internet browser, pre-populating text fields
as needed. It will also allow the user to launch another application to open, edit or print a

file associated with that application.

15

1.5 JAVA (LOOK AND FEEL)

Ul- Button

Middle button
SRR aifig 1.1

Ul- Text Field

City: “Saﬂta Fosa !ﬂgl.2

UlI- Text Area

This is an editable JTextArea. 4 a‘ =
text area is a "plain" texi
component, which means that
although it can display text in
any font, all of the text is in the

sarme font. *lfie1.3

Ul- Password Field

Enter the password: ‘---u--

figl.4

} Ul- Dialogue Box

An Inane Question |

& | Would you like green eggs and ham?

Liesl] o |

|
i
figl.5 {
J

Ul- Frame ‘

|
FrameDemo |;|]E| i:

Ul-File Chooser

& LocalDisk (C:) &3 DVD-RWDrive (D) I
& Shared Documents &3 Removable Disk (E:) i

l Files of Type: [image]"’

figl.7

17 |

1.6 WINDOWS (LOOK AND FEEL)

Ul-Button

o

Middle butkon

Ul- Text Field

City: |Santa Rosa

P —

Ul-Text Area

This is an editable JTextdrea, =
A text area is a "plain" texi

— r2

component, which means that |

although it can display textin |
any font, all of the text isin the

same font. i~

Ul-Password Field

Enter the password: I TTTTTT]

Ul-Dialogue Box

An Inane Question

Would you like green eggs and ham?

Yes J [Mo

Ul-Frame

FrameDemo

Ul-File Chooser

¥

< local Disk (C) e Removable Disk (E:)
() Shared Documents

My Recent L, DVD-RW Drive (D:)
Documents

": My Compukter

@ Flename: | |
Desktop Files of type: [|mage o iv?I

20

CHAPTER 2
NETWORKING BASICS

2.1 SOCKETS

Socket is like a plug in which various nodes of the network are plugged in. Socket has a

standard protocol, a node can communicate through the socket using that protocol.

URLs and URLConnections provide a relatively high-level mechanism for accessing
resources on the Internet. Sometimes your programs require lower-level network

communication, for example, when you want to write a client-server application.

In client-server applications, the server provides some service, such as processing
database queries or sending out current stock prices. The client uses the service provided
by the server, either displaying database query results to the user or making stock
purchase recommendations to an investor. The communication that occurs between the
client and the server must be reliable. That is, no data can be dropped and it must arrive

on the client side in the same order in which the server sent it.

TCP provides a reliable, point-to-point communication channel that client-server
application on the Internet use to communicate with each other. To communicate over
TCP, a client program and a server program establish a connection to one another. Each
program binds a socket to its end of the connection. To communicate, the client and the

server each réads from and writes to the socket bound to the connection.

20

21
2.1.1Definition of a Socket

Normally, a server runs on a specific computer and has a socket that is bound to a

specific port number. The server just waits, listening to the socket for a client to make a

connection request.

On the client-side: The client knows the hostname of the machine on which the server is
running and the port number on which the server is listening. To make a connection
request, the client tries to rendezvous with the server on the server's machine and port.
The client also needs to identify itself to the server so it binds to a local port number that

it will use during this connection. This is usually assigned by the system.

conhection

senver

=0 T

STt —

—_—
-,

request

3]
0
r
t

client

If everything goes well, the server accepts the connection. Upon acceptance, the server
gets a new socket bound to the same local port and also has its remote endpoint set to the
address and port of the client. It needs a new socket so that it can continue to listen to the

original socket for connection requests while tending to the needs of the connected client.

1]

connection

et !

P e
-, e

Server]
client

~+ = 0O
I/;‘ém.—iw—-’i\

~=0T

On the client side, if the connection is accepted, a socket is successfully created and the

client can use the socket to communicate with the server.

The client and server can now communicate by writing to or reading from their sockets.

Definition: A socket is one endpoint of a two-way communication link between two

programs running on the network. A socket is bound to a port number so that the TCP

identify the application that data is destined to be sent.

layer can

22

An endpoint is a combination of an IP address and a port number. Every TCP connection
can be uniquely identified by its two endpoints. That way you can have multiple

connections between your host and the server.

The java.net package in the Java platform provides a class, Socket, that implements one side
of a two-way connection between your Java program and another program on the
network. The Socket class sits on top of a pllatform—dependent implementation, hiding the
details of any particular system from your Java program. By using the java.net.Socket class
instead of relying on native code, your Java programs can communicate over the network

in a platform-independent fashion.

Additionally, javanet includes the ServerSocket class, which implements a socket that
servers can use to listen for and accept connections to clients. This lesson shows you how

to use the Socket and ServerSocket classes.

If you are trying to connect to the Web, the URL class and related classes (URLConnection,
-URLEncoder) are probably more appropriate than the socket classes. In fact, URLs are a
relatively high-level connection to the Web and use sockets as part of the underlying
implementation. See Working with URLs for information about connecting to the Web

via URLs.

2.2 DIFFERENT TYPES OF SOCKETS

Sockets are classified according to communication properties. Processes usually
communicate between - sockets of the same type. However, if the underlying
communication protocols support the communication, sockets of different types can

communicate.

23

2.2.1 Stream Sockets

Provides sequenced, two-way byte streams with a transmission mechanism for stream
data. This socket type transmits data on a reliable basis, in order, and with out-of-band
capabilities.

With stream sockets, a process establishes a connection to another process.
While the connection is in place, data flows between the processes in continuous sireams.
Stream sockets are said to provide a connection-oriented service. The protocol used for

transmission is the popular TCP (Transmission Control Protocol).

In the UNIX domain, the SOCK_STREAM socket type works like a pipe. In the Internet
domain, the SOCK_STREAM socket type is implemented on the Transmission Control
Protocol/Internet Protocol (TCP/IP) protocol. |

A stream socket provides for the bidirectional, reliable, sequenced, and unduplicated flow
of data without record boundaries. Aside from the bidirectionality of data flow, a pair of

connected stream sockets provides an interface nearly identical to pipes.

2.2.1 Datagram Sockets

They provide datagrams, which are connectionless messages of a fixed maximum length.
This type of socket is generally used for short messages, such as a name server or time

server, since the order and reliability of message delivery is not guaranteed.

With datagram sockets, individual packets of information are transmitted. This is not the
right protocol for everyday users, because, unlike , the protocol used—UDP, the User
Datagram Protocol—is a connectionless service, and it does not guarantee that packets

arrive

23

24

In the UNIX domain, the SOCK_DGRAM socket type is similar to a message queue. In

the Internet domain, the SOCK_DGRAM socket type is implemented on the User

Datagram Protocol/Internet Protocol (UDP/IP) protocol.

A datagram socket supports the bidirectional flow of data, which is not sequenced,

reliable, or unduplicated. A process receiving messages on a datagram socket may find

messages duplicated or in an order different than the order sent. Record boundaries in

data, however, are preserved. Datagram sockets closely model the facilities found in

many contemporary packet-switched networks.

2.2.3Some other types of sockets

Table 2.1
SOCK_RAW

SOCK_SEQPACKET

Provides access to internal network protocols and interfaces.
Available only to individuals with root user authority, a raw
socket allows an application direct access to lower-level
communication protocols. Raw sockets are intended for
advanced users who wish to take advantage of some protocol
feature that is not direbtly accessible through a normal
interface, or who wishes to build new protocols atop existing

low-level protocols.

Raw sockets are normally datagram-oriented, though their

exact characteristics are dependent on the interface provided
by the protocol.
Provides sequenced, reliable, and unduplicated flow of

information.

SOCK_CONN_DGRAM Provides connection-oriented datagram service. This type of

socket supports the bidirectional flow of data, which is

sequenced and unduplicated, but is not reliable. Since this is a

24

P o

25

connection-oriented service, the socket must be connected
prior to data transfer. Currently, only the Asynchronous
Transfer Mode (ATM) protocol in the Network Device Driver
(NDD) domain supports this socket type.

2.3 SOCKET PROTOCOLS

A protocol is a standard set of rules for transferring data, such as UDP/IP and TCP/IP. An
application program can specify a protocol only if more than one protocol is supported

for this particular socket type in this domain.

Each socket can have a specific protocol associated with it. This protocol is used within
the domain to provide the semantics required by the socket type. Not all socket types are
supported by each domain; support depends on the existence and implementation of a

suitable protocol within the domain.

The /usr/include/sys/socket.h file contains a list of socket protocol families. These
protocols are defined to be the same as their corresponding address families in the socket
header file. Before specifying a protocol family, the programmer should check the socket
header file for currently supported protocol families. Each protocol family consists of a

set of protocols. Major protocols in the suite of Internet Network Protocols include:

e TCE
« UDP

2.3.1 UDP Protocol:

e UDP is a transport protocol --communication between processes
e UDP uses IP to deliver datagrams to the right host.

e UDP uses ports to provide communication services to individual processes.

25

1

|

|
f

v ‘ 2%

Features:

e Datagram Delivery
o Connectionless "
e Unreliable il

e Minimal

2.3.2 TCP (Transmission Control Protocol):

e TCP provides:

e Connection-oriented
e Reliable

e Full-duplex

e Byte-Stream

Connection oriented means that a virtual connection is established before any user

data is transferred. If the connection cannot be established - the user program is

notified. If the connection is ever interrupted - the user program(s) is notified.

2.4 SERVER fl

A computer or device on a network that manages network resources. For example, a file
server is a computer and storage device dedicated to storing files. Any user on the
network can store files on the server. A print server is a computer that manages one or
more printers, and a nefwork server is a computer that manages network traffic. A

database server is a computer system that processes database queries.

26

27

Servers are often dedicated, meaning that they perform no other tasks besides their server
tasks. On multiprocessing operating systems, however, a single computer can execute
several programs at once. A server in this case could refer to the program that is

managing resources rather than the entire computer.,

In general, server software has the Jollowing characteristics:

It is a special-purpose program dedicated to providing one service.

 Itis invoked automatically when a system boots, and continues to execute through
many sessions. :

e Itrunson a shared computer.

e It waits passively for contact from arbitrary remote clients (LISTEN primitive).

o Itaccepts contact from arbitrary clients, but offers a single service.

2.4.1 Establishing a Simple Server Using Stream Sockets
Establishing a simple server in Java requires five steps.

Step 1) To create a Server-Socket object. A call to the ServerSocket constructor is made
ServerSocket server = new ServerSocket(port, queueLength);

This registers an available port number and specifies a maximum number of clients that
can wait to connect to the-server (i.e., the queueLength). The port number is used by
clients to located the server application on the server computer. This often is called the
handshake point. If the queue is full, the server refuses client connections. The preceding
_statement establishes the port where the server waits for connections from clients (a
process known as binding the server to the port). Each client will ask to connect to the
server on this 'porr. Programs manage each client connection with a Socket object. After

binding the Server to a port with a ServerSocket.

27

N

28

Step 2) The server listens indefinitely (or blocks) for an attempt by a client to connect.
To listen for a client, the program calls Server-Socket method accept, as in

Socket connection = server.accept(); This statement returns a Socket object when a

connection with a client is established.

Step 3) is to get the OutputStream and InputStream objects that enable the

server to communicate with the client by sending and receiving bytes. The server sends
information to the client via an QutputStream object. The server receives information
from the client via an InputStream object. To obtain the streams, the server invokes
method getOutputStream on the Socket to get a reference to the OlltputSfream
associated with the Socket and invokes method getInputStream on the Socket to

get a reference to the InputStream associated with the Socket.

The OutputStream aﬁd InputStream objects can be used to send or receive individual
bytes or sets of bytes with the QutputStream method write and the Input-

Stream method read, respectively. Often it is useful to send or receive values of
primitive data types (such as int and double) or Serializable class data types (such as
String) rather than sénding bytes. In this case, we can use the techniques of Chapter 16 to
chain other stream types (such as ObjectOutputStream and ObjectInputStream)

to the OutputStream and InputStream associated with the Socket.

For example,
ObjectInputStream input =

new ObjectInputStream(connection.getInputStream());

ObjectOutputStream output =

new ObjectOutputStream(cohnection.gctOutputStream());

The beauty of establishing these relationships is that whatever the server writes to the
ObjectOutputStream is sent via the OutputStream and is available at the client’s

InputStream and whatever the client writes to its QutputStream (with a corresponding

ObjectOutputStream) is available via the server’s InputStream.

28

r 29

Step 4) is the processing phase, in which the server and the client communicate via the

InputStream and OutputStream objects. In Step 5, when the transmission is complete,

> the server closes the connection by invoking the close method on the Socket and

on the corresponding streams.

2.5 CLIENT

“The client part of a client-server architecture. Typically, a client is an application that

runs on a personal computer or workstation and relies on a server to perform some

operations. For example, an e-mail client is an application that enables you to send and

receive e-mail.
In general, client software has the following characteristics:

e It is an application program that becomes a client temporarily when remote acces

is needed, but performs other computation locally.
o Itis invoked by a user and executes for one session.

e It runs locally on the user's computer.

o It actively initiates contact with a server (CONNECT primitive).

o It can access multiple services as needed.

2.5.1 Establishing a Simple Client Using Stream Sockets

Establishing a simple client in Java requires four steps.

29

30

Step 1) we create a Socket to connect to the server. The Socket constructor establishes

the connection to the server. For example, the statement
Socket connection = new Socket(serverdddress, port);

uses the Socket constructor with two arguments—the server’s Internet address (server-
Address) and the port number. If the connection attempt is successful, this statement

returns a Socket. A connection attempt that fails throws an instance of a subclass of

IOException, so many programs simply catch IOException.

An UnknownHostException occurs when a server address indicated by a client cannot be

resolved. A ConnectException is thrown when an error occurs while attempting to

connect to a server.

Step 2) The client uses Socket methods getInputStream and getOutput-

Stream to obtain references to the Socket’s InputStream and OutputStream. As

we mentioned in the preceding section, often it is useful to send or receive values of
primitive data types (such as int and double) or class data types (such as String and
Employee) rather than sending bytes. If the server is sending information in the form of

actual data types, the client should receive the information in the same format.

Thus, if the server sends values with an ObjectOutputStream, the client should read

those values with an ObjectInputStream.

Step 3) is the processing phase in which the client and the server communicate via the

InputStream and OutputStream objects.

Step 4) the client closes the connection

when the transmission is complete by invoking the close method on the Socket and the
corresponding streams. When processing information sent by a server, the client must

determine when the server is finished sending information so the client can call close to

30

31

close the Socket connection. For example, the InputStream method read returns the
value —1 when it detects end-of-stream (also called EOF—end-of-file).

If an ObjectInputStream is used to read information from the server, an
EOFException occurs when the client attempts to read a value from a stream on which

end-of-stream is detected,

2.6 INTERACTION BETWEEN CLIENT AND SERVER:

Like most application programs, a client and a server use a transport protocol to

communicate. Figure 1 illustrates a client and a server using the TCP/IP protocol stack.

.’ hen T: fl_l-:i} rye f
transporl Er;ar&é;nui
~nfernet intorinet
net, ifaca, net, iface.
| :
bl _ internet
Fig 2.1

The client and server each interact with a protocol in the transport layer of the stack. A -
sufficiently powerful computer can run multiple servers and clients at the same time.
Such a computer must have the necessary hardware resources (e.g. a fast CPU and
sufficient memory) and have an operating system capable of running multiple

applications concurrently (e.g. UNIX or Windows). Figure 2 illustrates such a setup.

31

32

Fig 2.2 two servers

The computer in the middle might be running an FTP server and a WWW server. Modern

computers are often capable of running many servers at the same time.

2.6.1 Examples of a Client and a Server

Figure 2.3 on the next page illustrates the sequence of socket procedure calls required for

correct client-server programming.

32

(o)
L2

SERVER CLIENT

Fig 2.3: Socket procedure calls

Client and server applications can use either connection-oriented or connectionless

transport protocols to communicate.

Server Client
Listens to port 80. Connects to port 80.
Accepts the connection. Writes “GET/index.html N

HTTP/1.0\n\n”,

Reads up until the second

End-of-Line (\n)

Sees that GET is a known command

And HTTP/1.0 is a valid protocol version

Reads local file called index.html

Writes “HTTP/1.0 200 OK\n\n”

Copies content of the file to the socket.

Hangs UP.

Fig 2.4

“200” means “here comes the file”.

34

Reads content of the file and displays it..

Hangs Up.

Waiting for connection
Connection 1 received from; 1 27.0.0.1
Got IfO sireams

Witempting connecton
Connecled lo. 127.0.0.1
GotlfO sireams

SERVER=»= Connoction cuccessiul

=)

ay Scrver

WWalling for connection
Connection 1 received nom. 1 27.0.0.1
GotlfO slreams

CLIEMNT=== hello sarver personl

hallo server personl
Atempting connecton
Connected to: 127.0.0.1
GULYC slrearms

SERVER=== Cannaction successfiil
CLIENT==>hgllo servar porcon!

Hi back to yau cliert person! o

E23 clicnt
hzllo server person!

Walling for connacton =
Connection 1 rocoivod from: 127.0.01
GUL IO slredms

CLIENT==> hello serer person! :
SERVER=>=Hi baclto you client person! -

Connected 0" T77 001
Got lfC clroams

SERVER=>= Connection successful
CLIENT==>=hello servar parsanl
SERVER=>= Hi backto you cliont parson!

L]

E—_—_-_,}‘Jcrvcr ;
s . ;]
|{Hi back tavouclert person! |

Wailing for connecton

TERMINATE
Got 70 siraams

SERVER==> Conneclion successiul
CLIENT==>=hello servar person!
SERVER=== Hi backtn ynu client parsaon!
CLIENT == >TERMINATE

34

2.7 FEW SNAPSHOTS OF THE PROJECT

Login window

aﬁm.‘y«imf——rnmi

o+ C:\WINDOWS\system32\cmd.exe

{ s

=] 4 |
ﬂ"ﬂg Username |
JTes R TR
£1.¢ Password]—_ﬁ_l
JLal

labe Server LocalHost

£2.¢ B 7
lab
Tes | | |

Cancel |

JTBHTFIETﬁ“T#=HEW~UTEerchuk T2y
f4 setBounds({100,100,100,20);
JButton bl=new JButton("Login");

bl .setBounds(30,130,70,20);

bl .addActionListener(this):;

JButton b2=new JButton("Cancel") ;
b2.setBounds(110,130,80,20);
c.add(labell):;

c.add(£fl1);

.add(label2) :

cadd(£2) ;

.add{label3);

.add(£3);

.add(labeld;;

.add(f4);

.add(bl);

.add(b2);

this.setVisible(true):

this. setSize(220,190): \
b

o0o0oo0oo00o0n0

J
public void actionPerformed(ActionEvent ae)

String cnd = ae.getictionCommand()
if (({end. equals("Login" 1))

W‘-ﬂ“- i F : S : - ez
‘w Start & bin e, TextPad - [C:hidkl. 4. .. e CWINDOWS) syste, »:g

35

36

User window

Fig. 2.6

File Conference Style '

founds {100,100, 100,

b2=new JButton("C
Sounds(110,130,80,2
labell) ;
f); Status
label2) ;
f2);
label3) ;
B3);

)
Ethsible(true);
flSize (220,190 ;

Wid actionPerformed(ActionEvent ae)

(
td = ae.getAdctionCommand();
Bquals("Login")))

©, TextPad - [Cihidk 41, @ CHWINDOWS syste,

Client

Fig 2.7

“inport java.net. =
inport javax.swing.JOptionPane:

class C1ECRETRAE
{ RRAS Login Friends Style Help 7
publiH &7 Friends
9@ cdg
{
c |
d |
alHost() . toString():
¥
publ j g s)
b
{
79);
{=ocket .getInputStream()):
ni{=socket .getOutputStrean()):
"USER THREAD");
1
g
4
- smaye alog{frame, "Cannot find server !! Please
Status |I'm available [+ :
3
} Busy
i) Invisible
public void run(a, .y
while(connected && |done)
tzy
4

processServerMessage() ;
J

37

Server

Fig 2.7

jcrosoft Windows XP [Uersion 5.1, (5]
(c> Copyright 1985-2081 Microsoft Corp.

:NDocuments and Settings“Mdministratorda
\Documents and Settings\Administratordcd\

c:n>ed jdki.4\bhin

-8 X

Ea

T e

38

Handling offensive words
Fig 2.8

1) Anillegal sentence: a client writes an illegal sentence that contains some harsh words

which are not acceptable for example in this case idiot is taken as an offensive word

2) Shows a warning: the system warns the user against using such words.
Fig 2.9

|
|
l
i
_r
- :\

40

3) Omits the illegal words: offensive words are omitted and the rectified message given.

Encryption Decryption
Fig 2.12

40

41

CHAPTER 3
MODELLING DESIGN AND FUNCTIONS USED

3.1 DATA FLOW DIAGRAM
3.1.1 Level 0 Data flow diagram

Fig 3.1 level 0 dataflow diagram
Name base

Verify user name

Valid String

-1 =
Message for v alidation
Valid message

Pass word
i rinf i
Ninia Valid use ormation

Server/lp namey L ’
. Valid User Exit request
vl |

Notif ication

1) The wuser provides his Login Name, password, port number as inputs.

2) The information is verified and if found valid and authentic the user logs in to the

client window.

3) User can send and receive . messages while he is online.

4) On exiting a notification is taken from the user whether he really wants to exit.

41

42

3.1.2 Login function

Fig 3.2 level 1 data flow diagram (login function)

: Namé basﬁf"—“——_
Mrify nape Uy passuond \
,
M \'\.

VA rame: ™ e

Mame ; by X
—_— Walid passwnﬂ?\\ %
Pazzuord .
4 f,-—-ﬂ_\ yalid Serverdor = S \erified name \,\-.1-——“-\
Lﬁ"‘f fri_ly ”Seriﬁjﬁ A\‘feﬁf}l na.lj.{, — 'Eknf:f Efi_sf@rd
ServerlP address/ i
3.1.3 User window
Fig.3.3 User window dataflow diagram
m%;;;@m
I L K\"“‘x_
.-F-d""f ’ \
Vald user. e Pk . Edtrequest
.Q.ang 'q_}f?’ /
bt
..f"f
\é;nge 515‘{'5‘ ; (

42

43

3.1.4 Conference Data flow diagram Fig. 3.4

“ilid user f_,___\\ Invitation
{ Invita user
\.‘7 i

3.2 JAVA NATIVE INTERFACE

The Java Native Interface (JNI) is a programming framework that allows Java code
running in the Java virtual machine (VM) to call and be called by native applications

(programs specific to a hardware and operating system platform) and libraries written in

other languages, such as C, C++ and assembly.

The JNI is used to write native methods to handle situations when an application cannot
be written entirely in the Java programming language such as when the standard Java
class library does not support the platform-specific features or program library. It is also
used to modify an existing application, written in another programming language, to be
accessible to Java applications. Many of the standard library classes depend on the JNI to
provide functionality to the developer and the user, e.g. I/O file reading and sound
capabilities. Including performance- and platform-sensitive API implementations in the
-standard library allows all Java applications to access this functionality in a safe and
platform-independent manner. Before resofting to using the JNI developers should make

sure the functionality is not already provided in the standard libraries.

The JNI framework lets a native method utilize Java objects in the same way that Java

code uses these objects. A native method can create Java objects and then inspect and use -

43

44

these objects to perform its tasks. A native method can also inspect and use objects

created by Java application code.

JNI is sometimes referred to as the "escape valve" for Java developers because it allows
them to add functionality to their Java Application that the Java API can't provide. It can
be used to interface with code written in other languages, like C++. It is also used for
time-critical calculations or operations like solving complicated mathematical equations,

since native code can potentially be faster than JVM code.

The JNI is not trivial and requires a considerable effort to learn, and some people
recommend that only advanced programmers should use the JNI. However, the capability
for Java to communicate with C++ and assembly removes any limitations on what

function Java programs can perform. Programmers considering using the JNI should be

aware that

1. As mentioned before, the NI is not an easy API to learn;
2. Only applications and signed applets can invoke the JNI;

An application that relies on JNI loses the platform portability Java offers (a

(%]

workaround is to write a separate implementation of the JNI code for each

platform and have Java detect the Operating System and load the correct one at

runtime);
4. There is no garbage collection for the JNI side (JNI code must do explicit

deallocation);
5. Error checking is a MUST or it has the potential to crash the JNI side and the

JVM.

3.2.1 How the JNI works:

In JNI, native functions are implemented in a separate .c or .cpp file. (C++ provides a
slightly cleaner interface with JNL) When the JVM invokes the function, it passes a

INIEnv pointer, a jobject pointer, and any Java arguments declared by the Java method. A

JNI function may look like this:

44

45

JNIEXPORT void JINICALL Java_ClassName MethodName

(JNIEnv *env, jobject obj)

//Implement Native Method Here

The env pointer is a structure that contains the interface to the JVM. It includes all of the
functions necessary to interact with the JVM and to work with Java objects. Example JNI

functions are converting native arrays to/from Java arrays, converting native strings

to/from Java strings, instantiating objects, throwing exceptions, etc. Basically, anything

that Java code can do, can be done using INIEnv, albeit with considerably less ease.
For example, the following converts a Java string to a native string:

//C++ code

INIEXPORT void INICALL J. ava_ClassName MethodName

- (JNIEnv *env, jobject obj, jstring javaString)

//Get the native string from javaString

const char *nativeString = env->GetStringUTFChars(javaString, 0);

//Do something with the nativeString

45

T - 46

//DON'T FORGET THIS LINE!!!

env->ReleaseStringUTFChars(javaString, nativeString);

—_—

//C code

JNIEXPORT void INICALL Java ClassName MethodName

(JNIEnv *env, jobject obj, jstring javaString)

//Get the native string from javaString

const char *nativeString = (*env)->GetStringUTFChars(env, javaString, 0);

//Do something with the nativeString

//DON'T FORGET THIS LINE!!!
(*env)->ReleaseStringUTFChars(env, javaString, nativeString);

}

Note that C++ JNI code is cleaner than C JNI code because like Java, C++ uses object
method invocation semantics. That means that in C, the env parameter is dereferenced (
using (*env)-> and env has to be explicitly passed to INIEnv methods. In C++, the env

parameter is dereferenced using env-> and the env parameter is implicity passed as part of

the object method invocation semantics.

46

T :

Native data types can be mapped to/from Java data types. For compound types such as

objects, arrays and strings the native code must explicitly convert the data by calling

methods in the INIEnv.

3.3 SOME FUNCTIONS USED

1) InetAddress

InetAddress class encapsulates numerical IP addresses and domain name for an
address.The Inet address class does not have visible constructors, so to create an Inet

Address class object we use one of the available methods known as factory methods.

Three commonly used Inet Address factor y methods are:

e Static InetAddress getlocalhost()
/* returns InetAddress object that represents the host */
e Static InetAddress getByName(string hostName)

/* returns the InetAddress for the host name passed to it */

If the above methods are unable to resolve the host name they pass an unknownHost

Exception.

e Static InetAddress[] get AlIByName(string hostname)

/* returns an array of InetAddresses that .represent all of the addresses that a

particular host name resolves to */

InetAddress can handle both Ipv4 and Ipv6 addresses.

2) Socket I/O stream

Socket.getInputStream()

/* returns the input stream associated with the invoking socket */

47

Socket.getOutputStream ()

/* returns the output stream associated with the invoking socket */

3) Server Socket

ServerSocket class is used to create servers that listen for local or remote client

programmes to connect to them and on published ports. The constructors are:

e ServerSocket(int porr) -
/* Creates server socket on the specified port with a queue length of 50 */
e ServerSocket(int port, int maxqueue)
/* Creates a server socket on the specified port with a maximum queue length of
maxqueue */
e ServerSocket (int port, int maxqueue, InetAddress localAddress)'
/* Creates a server socket on the specified port with a maximum queue length of

‘maxqueue. On a multihomed host, localaddress specifies the IP address to which

this socket binds.*/
4) Get Source

Object.getSource()
/* Returns the source of the event mentioned , It is a method used by the Event Object */

5) Get Action Event:

Action event is generated when a button is pressed, a list item is double clicked ,or a

menu item is selected .

String getActionCommand ()
/* Returns the command name for invoking Action Event object */

48

49

For example when a button is pressed, an action event is generated that has a command

name equal to the label on that button.
6) Substrings
We can a extract a substring using substring () function. It has two forms:

e String substring (int startindex)
/* start index specifies the index at which the substring will begin, this form
returns a copy of the substring that begins at start index and runs to the end of

invoking string. */

o String substring (int startindex, int endIndex)
/* End index represents the stopping point. the string returned contains all

characters from beginning index up to but not including the ending index */

7) Add Element: !Qi
N6 |

Void addElement(Object element) / é

/* The object specified by the element is added to the vector */ v

8) Thread Creation

The easiest method to create a thread is to create a class that implements the Runnable
interface. Runnable abstracts a unit of executable code. We can create a thread on any
object that implements Runnable. To implement Runnable class needs only a single

method known as:

Public Void run ()

Thread defines several constructors the one most commonly used is

49

50

Thread (Runnable threadOb , String threadName) /* The threadOb is an instance of a
class that implements the Runnable interface, name of the new thread is specified by

threadName .

Thread.start()
/* The new thread created starts running only when this procedure is called it executes a

call torun () */

9) Set Layout

Void setLayout(LayoutManager layoutObyj)
/* LayoutManager interface is implemented by instance of a class called layout manager.

The layout manager is set by this method. Ifno call to this method is made then default

layout manager is used.*/

10) Set Bounds

setBounds()

/* Determines shape and position of each component manually. It is defined by

Component. */

11) Set Editable

We can control that whether contents of a text field may be modified by a user or not by

calling this function.

boolean isEditable()

/* Returns true if text may be changed and false if not*/

void setEditable(boolean canFdit)

/* If canEdit is true text may be changed otherwise if it is false text cannot be altered. */

50

T 5
12) Set Visible

void setVisible(boolean visibleFlag)

/* Frame window created will not be visible untilthis method is called and visible flag is

] true */
13) Length
int length(') /* Returns the number of characters a string contains i.e its length.
14) Add Type Listener:

Public void add7ypeListener(7ypelListener el)

/* Type is the name of the event and e/ is the reference to event listener , this method

notifies listeners about specific types of events*/

T

&l

CHAPTER 4

FUTURE SCOPES AND TESTING

4.1 FUTURE SCOPES
1) Encryption in a Network.
2) Voice Chat between two clients over the Network.

3) Logging on to any remote PC on the Network for accessing files

4.1. ENCRYPTION IN NETWORK

We intend to build a chat server in which secured chatting between two clients could take
place. That is personal information sent by a client to another should be in an encrypted
form and could be decrypted only by the client who has the key. The key can be sent to
the second client through a personal message. We basically use the same key to both

Encrypt and Decrypt data, this Technique is called Encryption and Decryption using

symmetric keys. '\
; Al
4.2 ENCRYPTION AND DECRYPTION USING SYMMETRIC KEYS a

Encryption and decryption can be done symmetrically -- here the same key is used to
encrypt and decrypt the data. Because both parties have the same key, the decryption
essentially is performed by reversing some part of the encryption process. The Blowfish
algorithm is an example of a symmetric key. It is supported by the Java Cryptography
Extension (JCE). You can find the appropriate APIs in the javax.crypto.* packages. In
addition to Blowfish, examples of cipher algorithms currently supported by the JCE are
the Digital Encryption Standard (DES), Triple DES Encryption (DESede), and Password-
based encryption algorithm (PBEWithMD5AndDES). 1

| . Symmetric key algorithms tend to be much faster than asymmetric key algorithms. In

addition, as you saw in the first tip, the size of the text that can be encrypted depends on

52

343

the size of the product of the two primes used to generate the public and private keys.
With symmetric key algorithms you do not have a limitation on the total size of what can
be encrypted. Although, depending on the symmetric cipher algorithms, the total input
size has to be a multiple of block sizes and might require padding. A problem with
symmetric keys is that keys must be shared among parties involved in encryption or

decryption. So there is the danger of interception or unauthorized sharing.

We create a symmetric key it is much as creating a key pair. A factory method from the
KeyGenerator class i1s used and passed in the algorithm as a String. When one calls the
generateKey () method, one gets back an object that implements the Key interface instead

of the KeyPair interface. The call looks something like this:

SecretKey key =
KeyGenerator.getInstance ("DES").generateKey ();

Next we need to create a Cipher. This is the workhorse for JCE. We again use a factory

method of the Cipher class so that we can take advantage of different providers without

changing the application. Cipher is created like this:

Cipher cipher = Cipher.getlnstance("DES");

A Cipher is used to encrypt and decrypt data that is passed in as byte arrays. The two

essential methods you must use are

1) init () /* to specify which operation will be called */

and
2) doFinal() /* to perform the operation*/

. For example, the following two lines use the cipher and key instances created to

encrypt a byte array called textBytes. The result is stored in a byte array called

encryptedBytes.

" cipher.init(Cipher. ENCRYPT MODE, key);

53

54

byte[] encryptedBytes =
cipher.doFinal(textBytes);
4.2.1 Sample programs:

The following is a sample programme that takes an input string and encrypts it...........

import javax.crypto.Cipher;

import javax.cryvpto.BadPaddingException:
import javax.crypto.lllegalBlockSizeException;
import javax.crypto.KeyGencrator;

import java.security.Key;

import java.security.InvalidKeyException:
public class LocalEncrypter {
private static String algorithm = "DESede";

private static Key key = null;

private static Cipher cipher = null; ’

private static void setUp() throws Exception { | I;‘
. A
key = KeyGenerator.getlnstance(algorithm).generateKey(); g‘!‘

cipher = Cipher.getInstance(algorithm);

public static void main(String[] args)
throws Exception {
setUp();
if (args.length !=1) {
System.out.println(
"USAGE: java LocalEncrypter " +
| Y[Btring]"):

System.exit(1),

54

" ™
55

1
J

| encryptionBytes = null;

byle
String input = args[0]:
System.out.printin("Entered: " + input);
eneryptionBytes = encrypt(input);
System.out.println(

"Recovered: " + decrypt(encryptionBytes));

private static byte[] encrypt(String. input)
throws InvalidKeyException,
BadPaddingExceptilon._
IllegalBlockSizeException {
cipher.init(Cipher. ENCRYPT_ MODE, key);
byte|] inputBytes = input.getBytes();

return cipher.doFinal(inputBytes);

1 %
J l,i |
private static String decrypt(byte[] encryptionBytes) ‘I}
, ; - 2 £l
throws InvalidKeyException, '
BadPaddingException,
lllegalBlockSizeException {
cipher.init(Cipher. DECRYPT_MODE, key);
byte[] recoveredBytes =
cipher.doFinal(encryptionBytes);
String recovered =
new String(recovered Bytes);
return recovered; (

I3
s

One can enter any text as one likes as a command line parameter. For example, il we
submit the following on the command line:

55

P

56

java LocalEncrypter "Whatever phrase we would like to

input at this point”"
We Will see something like this as output:

Entered: Whatever phrase we would like to input at this point

Recovered: Whatever phrase we would like to input at this point

In this example. both the encryption and the decryption were done with the same Key
object. Encryption and decryption ordinarily occur on different VMs at different times, so

vou need a method for securely transporting the key.

4.3 PROJECT TESTING (black box testing)

Black Box testing refers to the technique of testing a system with no knowledge of the
internals of the system. Black Box testers do not have access to the source code and are
oblivious of the system architecture. A Black Box tester typically interacts with a system
through a user interface by providing inputs and examining outputs without knowing
where and how the inputs were operated upon. In Black Box testing, target software is

exercised over a range of inputs and the outputs are observed for correctness.

Advantages

* Efficient Testing — Well suited and efficient for large code segments or units.

* Unbiased Testing — clearly separates user's perspective from developer's perspective
through separation of QA and Development responsibilities.

* Non intrusive — code access not required.

* Fasy to execute — can be scaled to large number of moderately skilled testers with

no knowledge of implementation, programming language, operating systems or networks.

56

o AL

F

o

rfr——

Disadvantages

* Localized Testing — Limited code path coverage since only a limited number of {est
inputs are actually tested.

* Inefficient Test authoring — without implementation information. exhaustive input
coverage would take forever and would require tremendous resources.

* Blind Coverage — cannot control targeting code segments or paths which may be

more error prone than others.

Black Box testing is best suited for rapid test scenario testing and quick Web Service
prototyping. This testing technique for Web Services provides quick feedback on the
functional readiness of operations through

The symbols followed in the design of the test cases are as under.

[: input present

S: input absent : W

ST o SFS

X: don’t care - i:
l

T

55

P: output present

A: output absent

4.4 TEST CASES:

4.4.1 LOGIN FUNCTION
Inputs (causes):

C1: Server IP Supplied . |

C2: User Name Supplied

C3: Password Entered
Outputs (effects):

57

I
¥
{

El: Client Connected To Server, User Window Launched

E2: Client Not Connected To Server, Error Message

Cause effect graph Fig 4.1
C1 4
ot
C2
O
C3
Test 1 Test 2 Test 3 Test 4 Test 5

£1 I I S S I
22 I S I S I
c3 I I I I S
C4 & A A A A
€3 A P p P P

58

Table 4.1
Test Cases

4.4.2 FILE TRANSFER

Inputs (causes):

Cl1: File size=LOW
C2: File size = SAFE
C3: File size = HIGH

Outputs (effects):
E1: File transferred

E2: Buffer Overflow

Cause effect graph Fig 4.2

59

60

Test cases

Table 4.2

Test | lTest 2 Test 3 Test 4
Cl | [S S
C2 [S | S
€3 S S S |
C4 B P P A
38 A A A P

60

6l

5 SAMPLE CODES

Codel: For file selection

public class FileChooserDemo?2 extends JPanel
implements ActionListener {
static private String newline = "\n";
private JTextArea log;
private JFileChooser fc;
Socket socketl;
File file;
Msg m1 = new Msg();
JFrame f =new JFrame();
public FileChooserDemo?2() {

super(new BorderLayout());

//Create the log first, because the action listener
/Imeeds to refer to it.

log = new JTextArea(5,20);

log.setMargin(new Insets(5,5,5,5));
log.setEditable(false);

JScrollPane logScrollPane = new JScrollPane(log);

JButton sendButton = new JButton("Attach..."); \', .
sendButton.addActionListener(this);

add(sendButton, BorderLayout.PAGE START);
add(logScrollPane, BorderLayout. CENTER);
if (fc ==null) { :
fc = new JFileChooser();

//Show it.
int returnVal = fc.showDialog(FileChooserDemo?2.this,
"Attach");

//Process the results.
if (returnVal == JFileChooser. APPROVE_OPTION) {
file = fc.getSelectedFile();
System.out.println("Attaching file: " + file.getName()

61

+"." + newline);
log.append("Attaching file: " + file.getName()
+ M1+ newline);

}

log.setCaretPosition(log.getDocument().getLength());

//Reset the file chooser for the next time it's shown.

fc.setSelectedFile(null);

Container ¢ = f.getContentPane();
c.add(this);

f.setVisible(true);
f.setSize(300,300);

1
S

public void actionPerformed(ActionEvent e)

{ .
//code for file transfer to be added
}

}

Code 2: Handles oﬁensive words

class Matchl

{

protected JTextField j;

static JFrame frame = new JFrame();
public Matchl()

{

}

public static String returnUnSlangged(String msg)
{

String org=msg;

62

62

63

frame.setVisible(false);
String search[]={"words which are to be banned”}
String sub="*";

nm,

String result="";

int i;
int p=0;
/[System.out.println(search.length);
do
{
do
{

/* code for searching illegal words from the message sent by
one client to another.*/

- }while(p<search.length);
System.out.println(org);

return org;

Code 3: Handles each client individually

class Service
implements Runnable

{
public Service(Socket socketl, String s, User userl)
{
done = false;
try
{

socket = socketl;
hostname = s;
user = userl;

63

64

dis = new DatalnputStream(socket.getInputStream());
thread = new Thread(this, "SERVICE");
thread.start();

}

catch(Exception exception)

{

} |
\

System.out.printIn("service constructor" + exception);

public void run() |
{ .
while(!done)
try
{
byte abyte0[] = new byte[2048];
dis.read(abyte0);
Message message = (Message)ChatUtils.bytesToObject(abyte0);
Server.processClientMessage(message);

}

catch(Exception exception)
{aviia
done = true;
Server.removeUser(user);
Message messagel =new Message(2);
user.isOnline = 2; i- :
messagel. user = user;, 1 ’
Server.writeToClients(messagel);
try
{
socket.close();
} :
catch(Exception exceptionl)

{
System.out.println("ERROR CLOSING SOCKET " + exceptionl);
h

}

——

64

65

CONCLUSION

“One should aim for the stars, so that you can fall on the clouds at least”.
The basic application of chatting software is to enable reliable and correct transferring of

messages between two clients, Our Chat Server implements that basic application along
with some interesting features like:
Omission of some offensive words from the message,

File transfer between clients which includes all file types.
In future we can also add encryption and decryption of a message to insure that secure

message transferring can take place between two clients over the network.

Black Box Testing has been efficiently used to test the software developed as the
software is concerned to educate the user about the good and faulty system behavior.
Actually, Black Box testing deals with just the input and output which is what the user is

interested in.

BIBLIOGRAPHY

Websites referred
e Google.com
e Java.sun.com
e Wikipedia.org
e Forums

Books referred
e The Complete Reference by Herbert Schildt.

e Java /O by O’Reilly

65

