e mer weifirs:

Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num. < PO 'Ro(< Call Num:
General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

¢ The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

1

Iy

P03015

‘_}

A LINUX BASED FIREWALL SYSTEM

BY -

VIKAS AGARWAL-031214
VIBHANSHU SINGH-031418
UTKARSH CHOUDHARY-031213

JAYPEE UNIVERSITY OF
INFORMATION TECHNOLOGY

MAY - 2007

'
|

Submitted in partial fulfillment of the Degree of Bachelor of
Technology

; DEPARTMENT OF COMPUTER SCIENCE
1 JAYPEE UNIVERSITY OF INFORMATION
TECHNOLOGY-WAKNAGHAT

._h;r

CERTIFICATE

. This is to certify that the work entitled, “ A LINUX BASED FIREWALL SYSTEM”
} submitted by UTKARSH CHOUDHARY(C.S.E.) , VIKAS AGARWAL(C.S.E.) and
VIBHANSHU SINGH(I.T.) in partial fulfillment for the award of degree of Bachelor of
Technology of Jaypee University of Information Technology has been carried out under
my supervision. This work has not been submitted partially or wholly to any other

University or Institute for the award of this or any other degree or diploma.

A 00507

Mr. Ajay Kumar Singh

Wi Project Supervisor

ACKNOWLEDGEMENT

Many people have contributed to this project in a variety of ways over the past few
months. We are sincerely thankful to Mr. Ajay Kumar Singh under whose supervision the
whole project was carried out for her regular reviews and suggestions. We also
acknowledge the many helpful comments received from other teachers of the different
departments and visualization courses and seminars. We are deeply indebted to all those
who provided reviews and suggestions for improving the materials and topics covered in

our package, and we extend our apologies to anyone we may have failed to mention.

Thank You
LHKMS‘/\
PUTKARSH cHoUbHARY (031213)

VIKAS AGARWAL (0 31214)

e

NIRHANSHU SINGH (ogxmﬁ’)

TABLE OF CONTENTS

[a—

| ABSTRACT
Chapter 1 : NETWORK SECURITY BASICS

e Introduction
e Types of Networks
e Connecting Networks Together

e Network Security Risks

e What is Network Security

th B W W N NN

e So, How does firewall factor come into this equation?

! Chapter 2: NETWORKING BASICS
e What is a Protocol?
e User Datagram Protocol
e Transmission Control Protocol
e]P Addresses
e Ipv4
e Ipv6

e Rules

Moo 00 sY 1~ Y O O

e What is a Port?

Chapter 3: FIREWALL BASICS 11
e What is a firewall? 11
e History of firewalls 11
e What a firewall can do? 12
e What firewall cannot do? 13
e Types of firewall techniques 14
e Network Layer Firewalls 15
Chapter 4: IMPLEMENTATION OF FIREWALL 17

e Using the inetd daemon 17

|
(

Introducing inetd

The /etc/inetd.conf configuration file

Configuring /etc/inetd.conf to invoke a new server
Datagram severs with inetd

Understanding wait and nowait

Understanding the TCP Wrapper concept

IP Spoofing

Chapter 5: STRUCTURES USED IN IMPLEMENTATION

®

The sockaddr_in structure
The struct hostent structure
The recvfrom() function

The getsockname() function
The getpeername() function
The gethostbyaddr() function

The inet_ntoa() function

SOURCE CODES

LOG FILES

CONCLUSION

. BIBLIOGRAPHY

17
17
20
21
21
22
24

26
26
27
28
29
30
30
31

32

46

51

)

—

P —

LIST OF FIGURES

Figure 1. Pictorial representation of a Firewall

Figure 2. Packet Filter Firewall

Figure 3. Packet Filtering OSI Layers

Figure 4. Representation of TCP Wrapper Concept

Figure 5. Snapshot: Modify inetd.conf file

Figure 6. Snapshot: Modified inetd.conf

Figure 7. Snapshot: Modified tcp.log file after rejecting a banned IP and the
detecting and IP spoofing instance.

Figure 8. Snapshot: Modified tcp.log file after denying request to a banned

IP and then receiving datagram from a trusted ip address.

11
15
16
22
47
48

50

' LAN
} waN
I TCP
UDP
P
VPN
HTTP
FTP

ABBREVIATIONS

Local Area Network

Wide Area Network

Transfer Control Protocol
User Datagram Protocol
Internet Protocol

Virtual Private Network
Hyper Text Transfer Protocol

File Transfer Protocol

é
i
i
i

ABSTRACT

This report focuses on the representation of a simple firewall to monitor and control

incoming networking requests on a LINUX system from any remote host.

The currently available techniques for the implementation of a firewall on LINUX
systems are iptables, ipchains etc. This one is a simple packet filter firewall which has
been implemented using the inetd daemon and tcp wrapper concepts. The advantage
of using the inetd daemon is that it runs in the background just like other daemons on
a LINUX based system without consuming much memory thus hiding the complex

internal details from the user.

The inetd daemon simultaneously monitors as many number of ports as defined by
user and invokes separate processes for TCP or UDP protocol whenever there is a

request on any of the monitored ports.

As a result, we have been able to implement and demonstrate a basic level firewall

for LINUX systems , and report on the complexities involved in building and

deploying such a system.

. T T

CHAPTER 1

NETWORK SECURITY BASICS

Introduction

Networks are telecommunication highways over which information travels.
Networks and their associated information technology resources are exposed
to potential points of attack (eg. spoofing, traffic flow analysis, trap doors,
trojan horses, viruses, worms, etc).

Centralized network management authority does not exist so layered security
measures are needed to protect data as it traverses the network.

These layered security measures include:

Firewalls

Routers

Intrusion Detection systems

Other components (VPN, encryption, etc)

Types of Networks

i °

Local Area Networks(LAN)-

A discrete network that is designed to operate in a specific limited area like

a floor of building.
Wide Area Network(WAN)-

A network of sub networks that interconnects LANs over wide geographic areas;

usually within a single organization.
Intranet-

A TCP/IP based logical network within an organization’s internal network.

Extranet-

A TCP/IP based network that is accessed by users outside the organization but

that is not publicly accessible.

o Internet-
A global, public TCP/IP network.
o Virtual Private Network (VPN)-

i A network where packets that are internal to a private network pass across a

e T

public network; traffic is encrypted, integrity protected, and encapsulated into

new packets that are sent across the internet.

Connecting Networks Together

e Bridges: Operate at the Link layer to forward data to all other connected networks
if the destination computer is not on the local network.
o Routers: Operate at the network layer and direct (or route) packets to the
| appropriate “next hop” based on their routing tables and the destination
| computer’s IP address.
o Switches: Operate at the Link layer (or network layer) to deliver data to the
specific port where the destination MAC address is located.
o Firewalls: Devices that sit between networks to contrl and restrict the network
traffic that is allowed to flow between those networks. Firewall enforce network
security policy.

o Modems or Dial-in-Line: A device program that allows a computer to transmit

E data over telephone lines. These connections can be just as dangerous as ifuhad a

T1 ora T3 line.

e

| Network Security Risks

| e Denial of service-attacks onthe availability of networks or computer systems

o Network packets that violates protocol compliance or that are malformed can
cause some systems to crash

e Some network attacks flood a network with more packets than the network
can handle.

o Other network attacks create half-open connections to utilize none are left.

o Information theft- Attacks on confidential information (eg. customer private

information, credit card information ,etc)

Network services can be abused by malicious users to logon to hosts and other
devices on the network.

Confidential information may be easily accessible through network services due
to misconfigurations, poor access controls, etc.

Information messages are intercepted while packets are being sent across
publicly accessible networks lines.

e Intrusion - Unauthorized access (usually with privileged access rights) to a

network or a computer system that could compromise the integrity and or

availability of critical systems and data.
e Some networks services allow access to the host without any password required.

e Some network services allow a user to sign-up across the network to access

the host.

e Some network services use trusted access based on host IP address that can

be spoofed

e Reputation - Confidence of customers, business partners etc. is lost . This

perhaps is the biggest risk that e business face.

What is network security?

o Network security consists of the technologies and processes that are deployed
to protect internal networks from external threats.

o The primary goal of network security is to provide controls at all points along the

network perimeter which allow access to the internal network and only let traffic

is authorized ,valid and of acceptable risk

o Network security controls cannot completely eliminate risk . The goal is to

: minimize the risk as much as possible and to avoid unnecessary risks.

" e Without network security the risks of connectivity would be very high.

So, how does firewall factor comes into this equation?

e Firewalls are one of the essential technologies that are used at perimeter of the
network to protect internal networks from external threats.

e There are other technologies also like intrusion detection system, VPNs, routers

and other uses of encryption .But firewall is most important all of them

CHAPTER 2

NETWORKING BASICS

What is a Protocol?

An agreed - upon format for transmitting data between two devices . The protocol
determines the following:

e The type of error checking to be used

e Data compression method, if any

o How the sending device will indicate that it has finished sending a message

e How the receiving device will indicate that it has received a message

There are a variety of standard protocols from which programmers can choose. Each
has particular advantages and disadvantages; for example, some are simpler than others,

some are more reliable, and some are faster.

From a user's point of view, the only interesting aspect about protocols is that your
computer or device must support the right ones if you want to communicate with other

computers . The protocol can be implemented either in hardware or in software.

User Datagram Protocol (UDP)

User Datagram Protocol (UDP) provides an unreliable, connectionless datagram
transport service for IP . Therefore, this protocol is usually used for transaction-oriented
utilities such as the IP standard Simple Network Management Protocol (SNMP) and
Trivial File Transfer Protocol (TFTP).

Like TCP, which is discussed in the next section, UDP works with IP to transport
messages to a destination and provides protocol ports to distinguish between software
applications executing on a single host . However,UDP avoids the overhead of reliable
data transfer mechanism by not protecting against datagram loss or duplication, unlike

TCP.

Transmission Control Protocol (TCP)

Transmission Control Protocol (TCP) provides a reliable, connection-oriented, transport
layer service for IP. Due to its high capability of providing interoperability to dissimilar
computer systems and networks, TCP/IP has rapidly extended its reach beyond the
academic and technical community into the commercial market. Using a handshaking
scheme , this protocol provides the mechanism for establishing , maintaining , and
terminating logical connections between hosts. Additionally, TCP provides protocol ports
to distinguish multiple programs executing on a single device by including the destination
and source port number with each message. TCP also provides reliable transmission of
byte streams, data flow definitions, data acknowledgments, data retransmission, and

multiplexing multiple connections through a single network connection.

IP Addresses

- All the IP-based networks (Internet and LANs and WANSs) use a consistent, global
addressing scheme. Each host, or server, must have a unique IP address. Some of

the main characteristics of this address scheme are:

* Addresses cannot be duplicated, so they won’t conflict with other networks on the
Internet,

e IP addressing allows an unlimite number of hosts or networks to connect to the
Internet and other networks,

° IP addresses allow networks using different hardware addressing schemes to

become part of dissimilar networks

IPv

——

Internet Protocol version 4 is the fourth iteration of the Internet Protocol (IP) and it is
the first version of the protocol to be widely deployed. IPv4 is the dominant network
layer protocol on the Internet and apart from IPv6 it is the only protocol used on the

Internet,

[Pv4 is a data-oriented protocol to be used on a packet switched internetwork (e.g.,
Ethernet). It is a best effort protocol in that it doesn't guarantee delivery. It doesn't make

any guarantees on the correctness of the data; it may result in duplicated packets and/or

: packets out-of-order.
[Pv4 uses 32-bit (4-byte) addresses, which limits the address space to 4,294,967,296

possible unique addresses. However, some are reserved for special purposes such as
private networks (~18 million addresses) or multicast addresses (~1 million addresses).
This reduces the number of addresses that can be allocated as public Internet addresses.
As the number of addresses available are consumed, an IPv4 address shortage appears to
be inevitable, however Network Address Translation (NAT) has significantly delayed

this inevitability.

IPv6

Internet Protocol version 6 (IPv6)is a network layer protocol for packet-switched
internetworks. It is designated as the successor of IPv4, the current version of the Internet

Protocol, for general use on the Internet.

The main improvement brought by IPv6 is the increase in the number of addresses
available for networked devices, allowing, for example, each mobile phone and mobile
electronic device to have its own address. IPv4 supports 2° (about 4.3 billion) addresses,
which is inadequate for giving even one address to every living person, let alone
supporting embedded and portable devices. IPv6, however, supports approximately
5x10%® addresses for each of the roughly 6.5 billion people alive today. With such a large
address space available, IPv6 nodes can have as many universally scoped addresses as

they need, and network address translation is not required.

Rules:

IP addresses are composed of four one-byte fields of binary values separated by a

decimal point. For example,
1.3.0.2, 192.89.5.2, 142.44.72.8

. ———— .

An IP address must conform to the following rules:
e The address consists of 32 bits divided into four fields of one byte (eight bits)
each.
e It has two parts: a network number and a host or machine number.
e All hosts on the same network must have the same network number.
e No two hosts on the same network can have the same host number.
e No two networks can have the same network number if they are connected in any

way.

What is a port?

A “port" is “virtual slot" in your TCP and UDP stack that is used to map a connection
between two hosts, and also between the TCP/UDP layer and the actual applications

running on the hosts.

They are numbered 0-65535, with the range 0-1023 being marked as “‘reserved" or
“privlileged", and the rest (1024-65535) as *‘dynamic" or “‘unprivileged".

There are basically two uses for ports:

e 'Listening" on a port.
This is used by server applications waiting for users to connect, to get to some
“well known service", for instance HTTP (TCP port 80), Telnet (TCP port 23),
DNS (UDP and sometimes TCP port 53).

¢ Opening a *“dynamic" port.
Both sides of a TCP connection need to be identified by IP addresses and port
numbers. Hence, when you want to “*connect" to a server process, your end of the
communications channel also needs a “‘port". This is done by choosing a port
above 1024 on your machine that is not currently in use by another

communication s channel , and using it as the “‘sender" in the new connection.

Dynamic ports may also be used as 'listening" ports in some applications, most

notably FTP.

Ports in the range 0-1023 are almost always server ports. Ports in the range 1024-65535
are usually dynamic ports (i.e., opened dynamically when you connect to a server port).

However , any port may be used as a server port, and any port may be used as an

“*outgoing" port.
So, to sum it up, here's what happens in a basic connection:

« At some point intime, a server application on host 1.2.3.4 decides to “listen” at
port 80 (HTTP) for new connections.

e You (5.6.7.8) want to surfto 1.2.3.4, port 80, and your browser issues a connect
call to it.

o The connect call, realizing that it doesn't yet have local port number, goes hunting
for one. The local port number is necessary since when the replies come back
some time in the future, your TCP/IP stack will have to know to what application
to pass the reply. It does this by remembering what application uses which local
port number

o Your TCP stack finds an unused dynamic port, usually somewhere above 1024.
Let's assume that it finds .1029.

o Your first packet is then sent, from your local IP, 5.6.7.8, port 1029, to 1.2.3.4,
port 80.

o The server responds with a packet from 1.2.3.4, port 80 ,to you, 5.6.7.8, port
1029.

10

CHAPTER 3

FIREWALL BASICS

What is a firewall?

- A Firewall is a piece of hardware and/or software which functions in a networked
environment to prevent some communications forbidden by the security policy ,

analogous to the function of firewalls in building construction.

A firewall has the basic task of controlling traffic between different zones of trust .
Typical zones of trust include the Internet (a zone with no trust) and an internal network
(a zone with high trust). The ultimate goal is to provide controlled connectivity between

zones of differing trust levels through the enforcement of a security policy and

connectivity model based on the least privilege principle.

Untrusted
Network

Trusted
Network

Firewall

Figure 1.

History of firewalls

Firewall technology first began to emerge in the late 1980s when the Internet was still a
fairly new technology in terms of its global usage and connectivity. The original idea was
formed in response to a number of major internet security breaches, which occurred in
the late 1980s. The Morris Worm was the first large scale attack on Internet security,
which the online community neither expected, nor were prepared for. The internet

community made it a top priority to combat any future attacks from happening and began

11

to collaborate on new ideas, systems and software to make the internet safe again. The
first paper published on firewall technology was in 1988, when Jeff Mogul from Digital
Equipment Corp. developed filter systems known as packet filter firewalls. From 1980-
1990 two colleagues from AT&T Bell Laboratories, Dave Presetto and Howard Trickey,
developed the second generation of firewalls known as circuit level firewalls. In 1994 an
Israeli company called Check Point Software Technologies built this in to readily
available software known as FireWall-1. A second generation of proxy firewalls was

based on Kernel Proxy technology.

What a firewall can do?

Auditing and logging - Firewalls can provide auditing and logging capabilities . By
configuring a firewall to log and audit activity, information may be kept and analyzed at a
later date. Firewalls can generate statistics based on the information they collect. These

statistics can be useful in making policy decisions that relate to network access and

utilization.

Security - Some firewalls function in a way that can hide internal or trusted networks
from external or untrusted networks. This additional layer of security can help shield

services from unwanted scans.

Traffic bottlenecks - In some networks, firewalls create a traffic bottleneck. By forcing

all network traffic to pass through the firewall, there is a greater chance that the network

will become congested.

Single point of failure - Firewalls can create a single point of failure . In most
configurations where firewalls are the only link between networks, if they are not

configured correctly or are unavailable, no traffic will be allowed through.

Increased management responsibilities - A firewall often adds to network management
responsibilities and makes network troubleshooting more complex . If network

administrators don't take time to respond to each alarm and examine logs on a regular

12

basis , they will never know if the firewall is doing its job. All firewalls require ongoing

administrative support, general maintenance, software updates, security patches .

hat firewalls cannot do?

e—

A firewall cannot and does not guarantee that your network is 100% secure. To achieve
greater protection ,a firewall should be used in conjunction with other security measures.

Even then, there is no guarantee that the network will be 100% secure.

Firewalls cannot offer any protection against inside attacks. For a firewall to be effective,
all traffic must pass through it. Users on the internal or trusted network often have access
to the protected services without having to go through the firewall. A high percentage of

security incidents today come from inside the trusted network.

Firewalls cannot protect against unwanted or unauthorized access through back doors on
your network . Back doors are typically created when an internal user dials out from an
unauthorized modem and establishes a connection to an untrusted network. This behavior
can be innocent in that the user doesn't even realize they are opening a back door, but it is

just as threatening as shutting down the firewall.

Firewalls can't protect very well against things like viruses or malicious software
(malware). There are too many ways of encoding binary files for transfer over networks,
and too many different architectures and viruses to try to search for them all. In other
words, a firewall cannot replace security-consciousness on the part of your users. In
general, a firewall cannot protect against a data-driven attack--attacks in which something
is mailed or copied to an internal host where it is then executed. This form of attack
has occurred in the past against various versions of sendmail, ghostscript, scripting mail

user agents like Qutlook, and Web browsers like Internet Explorer.

Organizations that are deeply concerned about viruses should implement organization-
wide virus control measures. Rather than only trying to screen viruses out at the firewall,

make sure that every vulnerable desktop has virus scanning software that is run when the

13

ine is rebooted. Blanketing your network with virus scanning software will protect

viruses that come in via floppy disks, CDs, modems, and the Internet.

Types of firewall techniques:

o Packet filter:

Looks at each packet entering or leaving the network and accepts or rejects it
based on user-defined rules. Packet filtering is fairly effective and transparent to

users, but it is difficult to configure. In addition, it is susceptible to IP spoofing.

e Application gateway:

Applies security mechanisms to specific applications, such as FTP and Telnet

servers. This is very effective, but can impose a performance degradation.

e Circuit-level gateway:

Applies security mechanisms when a TCP or UDP connection is established.
Once the connection has been made, packets can flow between the hosts without

further checking.

e Proxy server:
Intercepts all messages entering and leaving the network . The proxy server

effectively hides the true network addresses.

14

' Network Layer Firewall

In computer networks , a network layer firewall works as a packet filter by deciding what
packets will pass the firewall according to rules defined by the administrator. Filtering
jules can act on the basis of source and destination address and on ports , in addition to
whatever higher level network protocols the packet contain. Network layer tend to

operate very fast and transparently to user.

i Untruste
J:,:;t::(Packet | | Packet Firewall Packet Netwsutrkd
Rule Set
Z
a

Packet is blocked
or discarded.

Figure 2 : Packet Filter Firewall

Network layer firewall generally fall into two sub-categories , stateful and non-stateful.
Stateful firewalls hold some information on the state of connections (for example :
established or not, initiation , handshaking ,data or breaking down connection) as a part

of their rules(e.g. only host inside the firewall can establish connection on a certain port).

Stateless firewall has packet filtering capabilities but cannot make more complex
decision on what stage communication between the hosts have reached . Stateless
firewalls therefore offer less security . Stateless firewalls therefore resembles a router in

their ability to filter packets.

15

A packet filtering firewall is often called a network layer firewall because the filtering is
_ primarily done at the network layer (layer three) or the transport layer (layer four) of the

0SI reference model.

Session

Transport

Network

Data Link

Kigure 3 : Packet Filtering OSI Layers

CHAPTER 4

IMPLEMENTATION OF FIREWALL

| Using the inetd daemon

Each server running under UNIX offering a service normally executes as a separate
process . When the number of services being offered becomes large , however, this
becomes a burden to the system.

This is because resources must be allocate to each server process running , even when
there are no current requests for the services being offered.

Additionally , it can be observed that most server programs use the same general
procedure to create, bind, listen, and accept new client connections. A similar observation
can be made for connectionless server operation.

The inetd daemon can perform these initial steps for any connection-oriented server,
saving the server writer from having to write and debug code for these steps. The inetd

daemon idea can be extended to handle connectionless servers as well.

Introducing inetd

When the inetd daemon is started for the first time, it must know what Internet services it
must listen for and what servers to pass the rcquest off to when a request arrives. This is

defined within the startup file /etc/inetd.conf.

The /etc/inetd.conf configuration file

The general file layout of the /etc/inetd.conf file is organized as a text file, with each
text line representing one record, which describes one Internet service. Lines starting with

are simply comment lines and are ignored.

17

o

The Jetc/inetd.conf Configuration Record

Field # Description Example i
1. Internet service name telnet (this might also be a port number)

9. Socket type stream or dgram

g% Protocol tcp or udp

4, Flags nowait or wait

5. Userid to use root or nobody

6. Pathname of executable {usr/sbin/in.telnetd

7 Server arguments in.telnetd

Internet Service Name Field

The Internet service name field within the /etc/inetd.conf record is simply an Internet
service name from the /etc/services file.

Alternatively, you can simply supply a port number.

The Socket Type Field ‘i.

Although the Linux inetd daemon can accept a number of socket types here, only the

types stream or dgram will be used in this firewall implementation. n
The stream type corresponds to the SOCK_STREAM socket type for the socket function .
call. The value dgram requests a SOCK_DGRAM socket type.

The Protocol Field i

As you might guess, this selects the protocol to be used for the socket. This value must be |'

a valid entry that appears in the /etc/protocols file. Two often used selections are

* tcp for the TCP protocol §

* udp for the UDP protocol

Other possibilities also exist, but these are the most commonly used.

18

The Flags Field

This field is intended for datagram sockets only. Non datagram sockets (such as stream

tep, for example) should specify the value nowait. Datagram-oriented servers come in

two types. They are
. Servers that keep reading UDP packets until they timeout and exit (specify wait for

these).

« Servers that read one packet and exit (specify nowait for these).

This information is needed by inetd because the handling of dgram traffic is more
complex than it is for stream-oriented protocols. This helps the daemon determine how it

should handle future dgram connects while the server for that service is running.

The UserID Field

The inetd daemon runs under the root account. This gives it the capability to change its

identity to another user account, if it chooses to do so .It is recommended to run Servers

with the least amount of privilege necessary to carry out their job, for security purposes.

Consequently , servers often run under a more limited userID such as nobody, for

example.
The Pathname Field

This field simply informs inetd what the full pathname of the executable file is. This is

the executable file that is executed by exec after the daemon calls fork.

The Server Arguments Field

All remaining fields on the /inetd.conf configuration line are provided as command-line
arguments to the server being invoked with exec. One common source of confusion is
that these arguments start with the argument argv([0]. This allows the command name to
differ from the pathname. This is useful when one executable exhibits different
personalities depending upon its name.

Using the simple elegance of UNIX, the started server is handed the client socket on the

following file units (file descriptors):

19

. File unit 0 has client socket for standard input

. File unit 1 has client socket for standard output

. File unit 2 has client socket for standard error

with this design in place, it is possible that some servers will not require a single socket
function call . All of the server 1/O can be performed on the normal standard inputs,

output, and error file units.

Configuring /etc/inetd.conf to invoke a new server

Establishing the Service

For this test, add one line to the /etc/inetd.conf file
9099 stream tcp nowait root /tmp/inetdserv inetdserv

Now, let's review what this last line means to inetd:

+ Because your new service does not have a name in the /etc/services file, the first
field simply contains the port number you want to use. Port 9099 was chosen here.

» The second field contains stream so that TCP stream sockets will be used.

* The third field contains tcp to indicate that we want a TCP stream, as opposed to some
other protocol stream.

* The fourth field is specified as nowait, which is what is required for TCP stream entries.
« The fifth field is given as root in this example. Your normal userID could be used here
(but be sure that appropriate permission to execute /tmp/inetdserv exists, however).

* The pathname /tmp/inetdserv is given as the sixth field. This is the pathname of the
executable that will be executed when a connect arrives on the socket.

* The seventh field is specified as inetdserv in this example. In this particular case, our

server program pays no attention to the value of argv[0], and just about any value would

do here.

patagram Servers with inetd

When datagram server ports are established by inetd, a special consideration is added.

Let's review the inetd steps used as they apply to UDP servers:

{. The inetd server listens on the UDP port that your UDP server will service requests on.

2. The select call used by inetd indicates that a datagram has arrived on the socket (note
that inetd does not read this datagram).

3, The inetd server calls fork and exec to start your UDP server.

4. Your UDP server uses file unit zero (stdin) to read one UDP packet.

5, Exit (terminate)

Understanding wait and nowait

A datagram server that simply processes one datagram and then exits should use the
nowait flag word. This tells inetd that it may launch additional server processes when
additional datagrams arrive. This is necessary because each process started is going to

process only one datagram.

For other datagram servers that attempt to read more datagrams, you should use the wait
flag word. This is necessary because the server process that inetd starts is going to
process subsequent datagrams until it terminates. The wait flag word tells inetd not to
launch any more servers for that port until the wait system call informs inetd (with the

help of signal SIGCHLD) that your datagram server has terminated.

."\’ w i gf‘
*~Zknaghat, 89"

21

Understanding the TCP Wrapper Concept

L

fork(2) & expe(2)

; |
intelneld i

Figure 4 |-

Let's review the process of a remote client connecting to your in.telnetd server: I'
|

1. The client uses his telnet client command to issue a connect request to your machine's

telnet daemon.

2. Your Linux host is using inetd, which has been configured to listen on port 23 for

telnec requests. It accepts the connection request from step 1.

3. The /inetd.conf configuration file directs your inetd server to fork a new process. The ‘
parent process goes back to listening for more connects. l

4. The child process from step 3 now calls exec to execute the /usr/sbin/tcpd TCP

wrapper program.
5. The tcpd program determines whether the client should be given access or not. This is |

determined by the combination of the socket addresses involved and the configuration l

files ipban.log]"

6. If access is to be denied, tcpd simply terminates (this causes file units 0, 1, and 2 to be

closed, which are the socket file descriptors).

Determining the Service

The tcpd program cin determine the service it is protecting by calling upon the

getsockname function.

Determining the Client Identity

Because the tepd program was not the one that executed the accept function call (this was
done by inetd), it must determine who the client is. As you've probably guessed, this is
done with the getpeername function. This function retrieves the address and port number

of the remote client, in the same manner as getsockname.

Determining the Datagram Client Identity

Determining the identity of a datagram client is a bit trickier. This is because datagrams
do not use the accept function call. It is also not possible to use getpeername on datagram
sockets because each datagram can potentially come from different clients. The client's
address is returned by the recvfrom function call. The client's address and port number

can be determined by calling recvfrom using the flag option MSG_PEEK.

int z:

struct sockaddr in adr_clnt;/* AF_INET &7
int len iheti /% lengbh 'y

int =3 /* Socket */

char dgram([512]; /* Recv buffer xf

len inet = sizeof adr_clnt;

- = recvfrom(s, /* Socket */

23

dgram, /* Receiving buffer */

sizeof dgram, /* Max recv buf size */
MSG_PEEK, /* Flags: Peek at data */
(struct sockaddr *)s&adr clnt,/* Addr */

&len inet) ., /X iAddr deri, dn. & out-—*/

Notice the flag option MSG_PEEK. This option directs the kernel to carry out the
recvirom call as normal except that the datagram is not to be removed from the queue
as "read." This allows the tcpd program to "peek" at the datagram that the server will

subsequently read, if access is granted.

If the datagram is read through recvfrom using MSG_PEEK flag with a value equal to 0,
the datagram packet is simply discarded from the socket queue. This is done as follows :
z = recvfrom(s, /* Socket */

dgram, /* Receiving buffer */

sizeof dgram, /* Max recv buf size */

0, /* Flags: Peek at data */

(stzuct socKaddr *)&adr clnt,/* Addr */

&len-inet); /* Addt len, in & out */

IP Spoofing

A common method of attack, called IP spoofing involves imitating the IP address of a
"trusted" host or router in order to gain access to protected information resources. One
avenue for a spoofing attack is to exploit a feature in IPv4 known as source routing,
which allows the originator of a datagram to specify certain, or even all intermediate
routers that the datagram must pass through on its way to the destination address. The
Destination router must send reply datagrams back through the same intermediate routers.
By carefully constructing the source route, an attacker can imitate any combination of

hosts or routers in the network, thus defeating an address-based or domain-name-based

authentication scheme.

24

Therefore, you can say that you have been "spoofed" when someone, by-passing source

routing, trespasss it by creating packets with spoofed IP addresses. Yeah, but what is ‘

this "IP spoofing" anyway?

(Basically, spoofing is a technique actually used to reduce network overhead, especially in

wide area networks (WAN). By spoofing you can reduce the amount of bandwidth
necessary by having devices, such as bridges and routers, answer for the remote devices. 1
This technique fools (spoofs) the LAN device into thinking the remote LAN is still

connected, even though it is not. However, hackers use this same technique as a

form of attack on your site.

|
Another way for you to detect IP spoofing is by comparing the process accounting logs ‘

between systems on your internal network. If there has been an IP spoofing, you might be I

able to see a log entry showing a remote access on the target machine without any it

corresponding entry for initiating that remote access.
As mentioned before, the best way to prevent and protect your site from IP spoofing is by

installing a filtering router that restricts the input to your external interface by not |
I

allowing a packet through if it has a source address from your internal network.

Determining the hostname of the client

When the getsockname () function retrieves the ip address of the client that is
\ sending the request, to detect an incident of ip spoofing the hostname of the client needs

to be resolved and retrieved. This is done using the function gethostbyaddr() details of

which are provided later. This function retrieves all the major information that is needed

to determine and detect the spoofing. |

CHAPTER 5

STRUCTURES USED IN IMPLEMENTATION

The sockaddr in Structure

#include <netinet/in.h>

strict sockaddr i1 A

sa_family t sin_family; /* Address Family */
uintl6 t sin _port; /* Port number x/

struct in addr sin_addr; /* Internet address */
unsigned char sin_zero[8]; /* Pad bytes */

bi

struct in addr {

ulnt32 t s _ addr; /* Internet address */
bi

The above structure can be described as follows:

The sin_family member occupies the same storage area that sa_family does in the
generic socket definition. The value of sin_family is initialized to the value of
AF_INET.

The sin_port member defines the TCP/IP port number for the socket address. This
value must be in network byte order.

The sin_addr member is defined as the structure in_addr, which holds the IP
number in network byte order. If you examine the structure in_addr, you will see
that it consists of one 32- bit unsigned integer.

Finally , the remainder of the structure is padded to 16 bytes by the member

sin_zero[8] for 8 bytes. This member does not require any initialization and is not

used.

26

— —————— —

The struct hostent Structure

struect hostent {

char *h name; /* official name of host */
ohap #kh-aldasges; /> alias list-*/

int h addrtype; /* host address type */

int h_length; /* length of address %)

char **h addr list; /* list of addresses */
}i

/* for backward compatibility */

#define h addr h addr 1list([0]

The hostent h name Member :

The h_name entry within the hostent structure is the official name of the host that your
are looking up. It is also known as the canonical name of the host. If you provided an
alias, or a hostname without the domain name, then this entry will describe the proper
name for what you have queried. This entry is useful for displaying or logging your result

to a log file.

The hostent h aliases Member :

The hostent h_aliases member of the returned structure is an array of alias names for the

hostname that you have queried. The end of the list is marked by a NULL pointer.

The hostent h addrtype Member :

The value presently returned in the member h addrtype is AF_INET. However, as IPv6
becomes fully implemented, the name server will also be capable of returning IPv6
addresses. When this happens, h_addrtype will also return the value AF INET6 when it
is appropriate.

The purpose of the h_addrtype value is to indicate the format of the addresses in the list

h_addr_list, which will be described next.

27

T

—

The hostent h_length Member :
This value is related to the h_addrtype member. For the current version of the TCP/IP

protocol (IPv4), this member always contains the value of 4, indicating 4-byte IP

numbers. However, this value will be 16 when IPv6 is implemented, and [Pv6 addresses

are returned instead.

The hostent _addr list Member

When performing a name-to-IP-number translation , this member becomes your most

important piece of information . When member h addrtype contains the value of
AF_INET, each pointer in this array of pointers points to a 4-byte IP address. The end of
the list is marked by a NULL pointer.

The recvfrom function

#include <sys/types.h>

#include <sys/socket.h>

2z = recvfrom(s, /* Socket */
dgram, /* Receiving buffer */
sizeof dgram,/* Max rcv buf size i
0, /% Flagsy no.options */
(struct sockaddr *)&adr, /* Addr */
Euli; /% Addpilen; dn & oub ¥/

It is used to receive a datagram packet or to eat a datagram packet.

The recvfrom arguments are
1. The socket s to receive the datagram from.
2. The buffer pointer dgram to start receiving the datagram into.

3. The maximum length (sizeof dgram)in bytes of the receiving buffer dgram.

4. Option flag bits f1ags.

28

- -

5. The pointer to the receiving socket address buffer, which will receive the sender's

address (pointer argument £rom).
6. The pointer to the maximum length (x) in bytes of the receiving socket address buffer

£ rom. Note that the integer that this pointer points to must be initialized to the maximum

size of the receiving address structure £ r-om, prior to calling the function.

The getsockname() function

If function that you wrote receives a socket as an input argument, then you will not know
what the socket address of that socket is. This is because your function did not create the
socket; and, unless the socket address is also passed to your function as input, you will
not know what the address is. The function getsockname permits your function to obtain
it

The function synopsis for get sockname is as follows:

#include <sys/socket.h>

int getsockname (int s, struct sockaddr *name, socklen t

*namelen)

This function takes the following three input arguments:
1. The socket s to query for the socket address.

2. The pointer to the receiving buffer (argument name).

3 Pointer to the maximum length variable. This variable provides the maximum length
in bytes that can be received in the buffer (argument namelen). This value is updated

with the actual number of bytes written to the receiving buffer.

29

The getpeername() function

This function is used when your code wants to determine the remote address that your

socket is connected to.
#include <sys/socket.h>

int getpeername (int s, struct sockaddr *name, socklen t

*namelen) ;

You can see that the function arguments are identical to the get sockname function.

For completeness, the arguments are described again as follows:

1. The socket s to query for the socket address.

2. The pointer to the receiving buffer (argument name).

3. Pointer to the maximum length variable. This variable provides the maximum length in
bytes that can be received in the buffer (argument namelen). This value is updated with
‘the actual number of bytes written to the receiving buffer. The function returns zero if the

N

)

operation succeeds. If an error occurs, the value -1 is returned and the value errno m
‘ a

will contain the reason for the error.

It is used to retrieve client data from a connected TCP socket. ,

The gethostbyaddr() Function I

There are times where you have an Internet address, but you need to report the hostname I

instead of the IP number. A server might want to log the hostname of the client that has

contacted it, instead of the IP number alone. The function synopsis for gethostbyaddr() is

as follows:

#include <sys/socket.h> /* for AF_INET */ ;
struct hostent *gethostbyaddr (

const char *addr; /* Input address */

30

int len, /* Address length */

int type); /* Address type */

The gethostbyaddr function accepts three input arguments. They are:

1. The input address (addr) to be converted into a hostname. For address type
AF_INET, this is the pointer to the sin_addr member of the address structure.
2. The length of the input address (1en). For type AF_INET, this will be the value 4 (4

bytes). For type AF_INET®, this value will be 16.

3. The type of the input address (type), which is the value AF_INET or AF_INET 6.

The inet_ntoa() Function

There are times when a socket address represents the address of a user that has connected
to your server, or represents the sender of a UDP packet. The job of converting a network
sequenced 32-bit value into dottedquad notation is inconvenient. Hence, the inet_ntoa()

function has been provided. The synopsis of the function is as follows:

#include <sys/socket.h>
#include <netinet/in.h>

#include <arpa/inet.h>
char *inet ntoa(struct in addr addr) ;

If a socket address addr exists in your program as a sockaddr_in structure, then
following code shows how to use inet_ntoa to perform the conversion. The IP

number is converted to a string and reported, using the print £ function:

struct sockaddr in addr; /* Socket Address */

printt {(HTRAADDERY %s\n",inetgntoa(addr.siniaddr));

31

SOURCE CODES

log.c

/* This code is used for logging purposes as and when

required by the system */

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>

#include <errno.h>

int log open(const char *pathname);

void log (const . char *format,...)i

void log close(void); o

void bail (const char *on what); ﬁ
N

static FILE *logf = NULL; /* Log File */ o

/-k

* Open log file for append:
* RETURNS:

* 0 Success

* =1 Failed,

L7

int log open(const char *pathname)
{ |
logf = fopen(pathname,"a");

: return logf 2 08t =l

}

const char *format;

/*

* Log information to a file:

Ak

void log{const char *format,...)

{

va listiap;

if (!logf)

return; /* No log file open */

/* retrieves the pid of the process that is serving the
particular request */

forintflogr [BERowld] Hl, (long)getpid()):

va_start (ap, format) ;
viprintf (logf, format,ap};
va_end (ap) ;

fflush(logf);

}

/*
* Close the log file:
L

void log close(void) {

Lf log iyl
fclose(logf);
logf = NULL;
(}

33

/*
* This function reports the error to

* the log file and calls exit(l).

i &

void bail (const char *on_what) {

LE logh)

{ /% 18 log open? */
1= errne =) SE=Error? %/
log("%s: ",strerror(errno));

log ("%s\ni",on what); /* Log msg */

log close(): .

Il

} i

exit (1), ‘4

) |

v

runinetd.c i"f

#include<stdio.h> i
¥ #include<unistd.h> A
it main(int arge,char *argv[],char **envp)
{ |

char

*argvl[]={"/usr/sbin/inetd", "/home/knoppix/projectl/inetd.c

|

onf",NULL}; H
execve ("/usr/sbin/inetd",argvl, envp); ‘

)

return 0;

inetd.c

#include<stdio.h>
#include "log.c"
int main ()
{

FILE *fpinet;

fpinet=fopen (" /home/knoppix/projectl/inetd.conf","a");
char port[i6];
char typesocket[10];
char proto(10]:; :

char waitl[10];

char pathexectcp[]="/home/knoppix/projectl/tcpsl";

—

char pathexecudp[]="/home/knoppix/projectl/dgramsl";

char serv_arg[2];

~ R

char serverPath[40];

printf ("\n Proceed to modify the configuration

file for inet daemon....... \n\n") ;

printf ("\nEnter the:port " 1)}

scanf ("%s",port);

printf ("\nEnter the type of socket : ");

scanf ("%$s", typesocket) ;

pringf(lanFnterigthe'potocol "+ ") ;

scanf ("%s", proto) ;

39

printf ("\nEnter wait :")/

scanf ("%s",waitl);

printf ("\nEnter the server argument
scanf ("%s8",serv_arg);
fprintf(fpinet,"%s",port);

forint E(fpinat, ety —114

fprintf (fpinet, "%s", typesocket) ;
fprintf (fpinet,y"sat N Ry

fprintf(fpinet,"%s", proto);
fprintE [fpinet, Mact, t L)j

fprintf (fpinet,"%s" ,waitl);

fprintf(fpinet, "ecl, " ")}

tprintf(fplinet, Yag", "ooeth)

fprintri(tpineat, "soy ol

if { lsbrempproto, “tep”) 1==0)

fprintf (fpinet, "%s",pathexectcp);

else
fprintf(fpinet,"%s",pathexecudp);
fpranGiilfpinet ety 1 aily

fprintf (fpinet,"%s",serv_arg);

tprdntalCopinet ;"ea” ;" \n');

return 0;

\n") :

— g

tep serv blkl.c

#include <stdio.h>
#include <sys/socket.h>
#include <resolv.h>
#include <arpa/inet.h>
ffinclude <errno.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <sys/types.h> |
‘ #incliude "log.c”
#include <netinet/in.h>

#include <netdb.h>

#define PATHNAME "/home/knoppix/projectl/tcp.log" *
!
#define PATHNAME2 “/home/knoppix/projectl/alias.log"

#define PATHNAME1l "/home/knoppix/projectl/tcpbanip.log"

void checkifbannedhostname (struct hostent *hp , struct
goekaddr in *elient addp) f
{
FILE *fpl; |
fpl=fopen (PATHNAMEZ, "r") ;
char a[20]:
log_open(PATHNAME);

int alen=sizeof *client addr;

char kstraadani

while (! feof (fpl))
{

37 il

fscanf(fpl,"%S",a);

int i=0;

While(hp—>h%aliases[i]!= NULL)
{

log("Aliaasss %s",hp—>hﬁaliases[i])

. |
’

il (strcmp(hp—>hﬁaliases[i},a)==0) |

{

log("an 1P spoofin detcted(change of IP
detacted) dropping request by %s",hp—>h_name);

fclose(fpl);

log_close();

}

1+t

}
}

) \
int main () gﬂ
{ /
Struct hostent *hipy

char *str addr;

7 |
char a[20); i
FILE xR

fp=fopen(PATHNAME1,"r”);
log_open(PATHNAME);
int sd , connfd raddrlen , gz;
char buffer[1024];

Struct sockaddr_in client_addr , addr;

.
r

iGN sin_size=sizeof (struct Sockaddr in)

<?

z=getsockname (0, (struct sockaddr*)&client addr, &sin_size);

printf ("%d", z) ;

hp=gethostbyaddr ((char *)&client_addr.sin_addr,sizeof

client_addr.sinﬁaddr,client_addr.sinﬁfamily);

str addr = inet ntoa(client_addr.sin_addr);
//printf ("connection attempted from

%$s\n",inet ntoa(client_ addr.sin_addr));

while (!feof (fp))
{
fscanf (fp, "%s",a);
int i=0;
while(inet ntoa(*(struct in_addr *Yhp=>h -addr list[di]})
{
if(stremp (inet ritoa(*(struct it addyi®) hp=
>h addr list[i]),a)==0)
{

log ("connection closed as this ip %s is
1 banned", inet ntoa(client_addr.sin_addr));

log("client addresses %s",inet ntoa(* (struct
inaddr *Yhp=>h addr 12st[0]}));

log ("Hostname of client is %s",hp->h_name);

fclose (fp);

log close();
//close (connfd) ;
//break;

3 return 0;

_l

39

i++;
if(hp~>hmaddr_list[i]:=NULL)

break;

S

log ("Hostname of client is %s",hp->h_name);

checkifbannedhostname (hp, &client_addr);

return 0;

L D

40

S

dgram_serv.c

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

ffinclude <errno.h>

#include <string.h>

#include <time.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include "log.c"

#define PATHNAME "/home/knoppix/projectl/udp.log"
#define PATHNAME1 "/home/knoppix/projectl/tcpbanip.log"

int main(int argc,char **argv,char **envp) {
int z:

char a[20];

char *srvr addr = NULL;

struct sockaddr in adr_inet;/* AF_INET */
struct sockaddr in adr_clnt;/* AF_INET */
int ‘len inet; /* length */

int .8: /* Socket */

char dgram([512]; /* Recv buffer */f

log open (PATHNAME) ;
FILE *fp;
fp=fopen (PATHNAMEL, "r") ;

/*

* Create a UDP socket to use:

41

len _inet = sizeof adr inet:
/*
* Now wait for requests:
g
/-lr

* Block until 'the program receives a

* datagram at our address and port:

wef
leniinepi= siz@cf ade clnt?
z = recvirom(0, /* Socket */

dgram, /* Receiving buffer */

sizeof dgram, /* Max recv buf size */
MSG PEEK, /*gs: no options */
(structisovekaddr '#)&adr clnt,/* Addr */
&len inet); /* Addr len, in & out */

wka Ei] Gl A)

printf ("not received"):

else(
- while(!feof (fp))
(I

- ?I'
fscanf (fp,"%s",a):
int i=0;
ifstromp(inet. htoa (ade elft ein gddr);al==0)
{
log ("Connection attempted and denied as ip %s 1is
banned”,inetﬁntoa(adr_clnt.sin_addr));

|

¥ - log("Dropping Packebt:w.ioss iR

42
Ll

/*

* We must read this packet now without
* the MSG PEEK option to discard dgram:
w

2 = vecvfrom(0, /* Socket */

4

o

dgram, /* Receiving buffer */
sizeof dgram, /* Max rcv size */
0, AX N tlagsll 2/

(struct sockaddr *)&adr clnt,

&len inet);

PRzt da ()5

bail ("recvfrom(2), eating dgram");
exit (1) ;

fclose (fp)

log close() ;

else J
{ ' il
execve (" /home/knoppix/projectl/dgram pri",argv,envp);

}

od
——t

}

return 0;

}

=

43

dgram pri.c

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <time.h>
ftinclude <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>
#include <arpa/inet.h>

include "log.c"
#define PATHNAME "/home/knoppix/projectl/udp.log"

int main(int argc,char **argv) {
il y el \
char al[20]; bty
c¢ha® #srvr addr = NULLY

struct sockaddr in adr inet;/* AF INET */
struct soc¢kaddr in adr ¢lnt;f* AE INET #/

T ine” led ‘tnety /% Tengch #/
int sy /Y Sogket A/

char: dgram[blg) s /* Reev buffer */

log open (PATHNAME) ;

len inet = sizeof adr 1nets

/*

* Now wait for requests:

==

44

-

* Block until the program receives a
* datagram at our address and port:
ot

len inet = sizeof adr_clnt;

z = recvfrom(0, /* Socket */

dgram, /* Receiving buffer */

sizeof dgram, /* Max recv buf size */
MSG_PEEK, /*gs: no options */

(struct sockaddr *)&adr_clnt,/* Addr */
&len inet); /* Addr len, in & out */
PR 00S)

printt (ot received");

else

log ("Message received was : $%s", dgram);

return 0;

45

Log Files :

The log files used in this project include basically 4 log files :-

1. ftcpbanip.log
This log file consists of a list of ip addresses that lie amongst the not trusted ip

addresses according to the rules laid down by the firewall administrator. All the ip
addresses are checked against the rules in the codes for tcp and udp requests

separately.

2. alias.log
This log file contains the list of aliases or hostnames for a particular ip address

that is being tracked with reference to the banned ip list from the tcpbanip.log file.

3. fep.log
This log file is used to log all the tcp request attempts made on the monitored

ports by any client. Any attempt to get through the port by a client is logged in

=

\

this file as the network ip address making the request and as to what particular H'
/

I

action was taken regarding that request.

4. udp.log
¥ This file is used to log all the udp requests made on the monitored ports by any

client. Any attempt to get through the port by a client is logged in this file as the
network ip address making the request and as to what particular action was taken

regarding that request.

e

46

Snapshots :
Flg 3 Modlfy conf guration file inetd. canf

x@1[knoppix]$ cd projectl
5 ct1]$ gec'inetd.c -o inetd
le included from inetd.c:2:

0: warning: conflicting types 1Dr bu:lt in function °

lixEi[pro JLctl]I Jinetd -

29d to modify the conPiguratiun file for inet daemon

the port : S433
| the type of socket : stream
| the potocol : tcp

| whether to wait or not :nowait

| the security 19v91 tu be passed as an aﬁgument"

}ix@i[projecti]ls W :

i} Shell 3] i
e’ A £

[
£y)

TERTY

-

ﬁw@ 9: ‘G

0411607

e

47

Fig 6. Modified inetd.conf file : ;

‘View Bookmarks Tools Seftings Help

_J @'%%ﬁ @ | B e) &i‘l' _1 l & RQ _

3300 stream tcp nowait root /home/knoppix/projectt/tcpsi —1
3300 dgram udp nowait root /home/knoppix/projectt/dgrams1 —1
4000 tccp stream nowait root /home/knoppix/projecti/tcpst —1
4001 dgram udp nowait root /home/knoppix/project1/dgramst —1
5432 stream tcp nowait root /home/knoppix/project1/tcpst —1
5433 stream tcp nowait root /home/knoppix/projectt1/tcpst —1

- ——

p

{4 knoppix - Kongueror: @S inetd.
| Shell - Konsole ;.‘Q{ inetd

¥

48

Fig 7. Modified tcp.log file after rejecting a banned ip and then detecting an ip
spoof instance :

Eiie" Edit View' Bookmarks Iobls"ﬁeﬂln@s ﬂafp

L E QIR Y R S

[PID 4809] Ccmnectinn attempted and denied ip 127.0.0,1 is banned [PID 4309] Hostnama of cHent 1s Knnpp1x[PID 49?31 cUnnect{on attempted and
denied ip 127.0,0.1 is banned[PID 4979] Hostname of client is Knopp
[PID 5044) Aliaasss localhost[PID 50441 An IP spoofin detcted(changa of IP detected)......ki{Fddi7] request by Knoppix

[E project1 - Konqueror 435 Kwiite (8] s
iohelNo.2-Konsole

A

-

49

Fig 8. Modified udp.log file after denying request to a banned ip and then receiving
datagram from a trusted ip address :

Fle Edf View Booknais Tools Sefings Help
R ah - 1 BER IR ol EYRISA K& :
[PID 54461 Connection attempted and denied as 1p 127.0.0.1 is banned [PID 5446] Dropping Packet.......
[PID 7439] Message received was : hell how r u[PID 7440]) Message received was : hell how r ulPID 7441] Message received was : hell how r
442 : hell h ulPID 7443 : hell how r u[PID t h

J[PID 7442] Message received was oW r Message received was : oW | 7444 Messaye received was ! ell how r
u[PID 7445] Message received was ! hell how r u[PID 7446) Message received was 1 hell how r u[PID 7447] Message received was ! hell how r
u[PID 7448) Message received was : hell how r u[PID 7449] Message received was : hell how r ulPID 7450] Message received was : hell how r
u[PID 7451] Message received was : hell how r u[PID 7452] Message received was : hell how r u[PID 7453) Message recejved was : hell how r
u[PID 7454] Message received was @ hell how r u[PID 7455] Message received was ¢ hell how r u[PID 7456] Message received was : hell how r
u[PID 7457) Message received was : hell how r u[PID 7458) Message received was : hell how r u[PID 7459] Message received was : hell how r
u[PID 7460) Message received was : hell how r ulPID 7461] Message received was : hell how r u(PID 7462] Message received was : hell how r
u[PID 7463] Message received was : hell how r u[PID 7464] Message received was : hell how r ulPID 7465)] Message received was : hell how r
u[PID 7466] Message received was @ hell how r u[PID 7467] Message received was : hell how r u[PID 7468) Message received was : hell how r
u[PID 7468] Message received was @ hell how r ulPID 7470] Message received was : hell how r u[PID 7471] Message received was : hell how r
u[PID 7472) Message received was ! hell how r u[PID 7473] Message received was : hell how r u[PID 7474] Message received was : hell how r
u[PID 7475] Message received was ! hell how'r u[PID 7437] Message received was : hell how r ulPID 7438] Message received was : hell how r u

@ﬂrojecl'l -

-

misg | 83

041607

oF -

50

CONCLUSION

The Software is currently just a basic implementation of a packet filter firewall for
LINUX systems, and thus covers only simple safety basics in this regard. The scope of

this concept may be extended in the future, and some key areas of which may include:

1. Design of amuch user friendly graphical interface to ease user’s interaction with
the tool. This needs to be done in compliance with LINUX systems in particular,

which still has a few available techniques for doing so.

2. Monitoring can be more protocol specific which may include protocols like
ICMP , TELNET , SMTP and many more. This would just add more flexibility

in handling a particular protocol.

3. User authentication may be added as an additional feature to enhance security

features, with proper log facilites.

51

BIBLIOGRAPHY

Web Pages

1. http://retran.com/beei/index.html

9 Linux Firewall-Linux Security-Linux Forums

3, htlp://www.unet.univie.ac.at/aix/cmds/aixc1nd53/inetd.htm

4. www.wikipedia.com

Books

1. QUE - Linux Socket Programming By Example BY Warren W Gay
2. Unix Network Programming By W. Richard Stevens

3. Firewalls Complete
Research Papers

1. Firewall Basics By Manu Arian

2. Beej’s Guide to Network Programming Using Internet Sockets By Brian “Beej” Hall

52

