Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. NumS £2 4034 Call Num:

General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

¢ The loss of LRC book(s) must be immediately

brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

- W

iy

P04034

ENCRYPTION AND DECRYPION OF FILES

Submitted in partial fulfillment of the Degree of Bachelor of
Technology

By

Kanishk Kumar-041097
Pankaj Triapthi-041010

MAY-2008

DEPARTMENT OF ELECTRONICS AND
COMMUNICATION ENGINEERING

JAYPEE UNIVERSITY OF INFORMATION
TECHNOLOGY-WAKNAGHAT

CERTIFICATE

This is to certify that the work entitled, “ENCRYPTION AND DECRYPTION OF
FILES” submitted by Kanishk Kumar (041097) and Pankaj Triapthi (041010) in
partial fulfillment for the award of degree of Bachelor of Technology in Electronics
and Communication Engineering of Jaypee University of Information Technology
has been carried out under my supervision. This work has not been submitted
partially or wholly to any other University or Instifute for the award of this or any

other degree or diploma.

D\Hﬁl\m/

[Mr. Amol Vasudeva]
(Project Coordinator)

Associate Lecturer,

Department of Computer Science

and Information Technology,

Jaypee University of Information Technology,

Waknaghat, Solan (H.P.)

il

ACKNOWLEDGEMENT

We wish to thanks and acknowledge our project guide and our mentor for his great
contribution in our project. He always guided us time to time and was always there to
help us out any time we needed him for the project. Being a great mentor himself, he
showed us the path for successful completion of project. Besides helping and guiding us
in our project he also gave directions and helped us a lot for publishing research papers
which had been a great source of motivation. We are greatly indebted to him for the

support he has given to us and for his words of encouragement and motivation.

We also acknowledge many helpful comments and suggestions received from our
teachers of the concerned department for improving and fulfillment of this project.
Finally we acknowledge each and everyone who helped us directly or indirectly and

extend our apologies to anyone we have failed to mention.

Roll No S : foee

Nzaue

Kzanzsh K Kumqos 04109+ fpudt
PamdeTﬂeiM\f oLl olo Pa«w}aﬂw

Table of Contents

CHAPTER-I: Introduction...cieicssivinssississersstsssvassarsivsssissonsssnsssasssoiniions 1
1.1 Project MOtVation.c.ouuiiiiiiiii e |
D Rree B b e e s e e s S s e s st s st o bpodadgimnsass 1
1-3:System DevelobmENt LiTe CVB16. ¢ v sivrivmun sibapmmsnnnns ssspmsas s snns snamenssseaves 2

153715 PEOT et PLANTMIOE it sina vt evsvisann von vow somimmvavisn v s s vov ixe as 3

1.3:2 Reguirement ANALYSIR. vo\ svvvmo svrrvsvywvsunn s savsim v esssn poye sous 4

133 DRI et el ey v oy e e v e S R b 6

1.3.4 DevelOPIIBnte: it virivnr rivsvivss svvesvieevsstins oo i esn g soimesy 7

1:3:5 Intepration &/ Destngs i i cpessvisianpsmosbsvmsmmesos i 8

1.3.6 Installation & ACCePIaNCe: . (. s i siiivn s vanios vonvirns s s samiss 9

1.4 Generio SIABES, o ciiv ol o cvisantunisi ci s ns s rinn os srissssvissreen s i wesv e s i 10
1l Lo B Ao kofT Processs: i stin i i mmsspruissosssoams s sswssmsavmnnalid

1.4.2 Information Iteration Process........c.covvuvniiiiiiiiiiniinieininnnen 11
L 3y eIl HEral O PROCEER & i 1n it b v vvicnsstrans e s s b e mhomeries 12

1.4.4 In-stage Assessment Process.........ocoovevvuiiiiiiiiiininninnnnnnn. 13

145 Stace BRI PIOCCES - ol vt il o devnmanbis s st e sl ke diiend 14
CHAPTER-II: Cryptography...c.ciccccccesssnscsscacsiccsccsscsssasssccssssssscserssansene 15
221 I VAL 15 GO PO SEADEY i sy oo i ion . b 568 5 A R B S RS kR 15
2.2, PUIP0SE of CEyPLOTIADIY. .o s o s siins bsin i iz 555, Shnin s i somii otk sen vin s (e
i 7 S e (6 o a T e T g R A R R e e 16
23,1 Seetet Koy Croplagraphiny v s v i s et 16

2. 30 Public eV CryptoBraphin: o cosinss e an v s s 18

2,33 Hash PUNDHONE, . ..oiivustons. i vy is e mion ohsssmems . s 18

2.4+ Cryptographic-Algorithmssidamtivinvamasisavnemosewortorsivesver 19
24 s Serre I e AT EOT IR . 5500 hs0s0nks s aisi ons s vA S AR A0 SR A5 AR ARk 19
214.265P0bHE KKEVEATEOTIIMIE 100kt b srn i shdas S bbb A bbb ok bbbk s 29
A S C AR RONCHONEIEN sttt et Attt i by 24

2.5 “Advance Eneryption Standard. ...ccc e oivmniaaminsincin sogeiisibin s 26
2.5.1 Algorithm Specification.............oooeiiiiiiiiiiiiiiiiienenen. 26
B B Ol T s e S e e N N A U o O it 27
2:5.3 2 SUbBYIEE() TTAREIOATION i5i v:omnivminnn weos inmumesnsaimeneas pemannammes 28
2.5.4 ShiftRows() Transformation............cocovvevniriiiieeineniieennans 30
2.5.5 MixColumns() Transformation.........c..coeevvviiiiiriiinnininennnen 31
2.5.6 AddRoundKey() Transformation...........cceveevrvrnviinerrneennnn 32
Dsar i KB B DANRTOT e bl el eon s b s SR A KRR s s e 33
IR R OO 1 e S S S TR e L A 35
2.5.9 InvShiftRows() Transformation..............cooviviiiiiiiiieeninnnnn 35
2. 310 LrvSUbByIes() THanSTOTTORIION i vhbvs i i dnime b ks s ia s 36
2311 InvMIRColumns() TransTonDation: qossc s sesssass oss iress mamins 37
2.5.12 Inverse of the AddRoundKey() Transformation.................... 38
253 CAUVERIRPES - Loe v s st it b me b e S 38
2o ds IISIVANIBTET . b nnre Dt o e e S R SR RS e 39
CHAPTER-III: Project Planning.....c.cceieeeineiiicnnronninrccircisreiscianicasinsnn 40

il | PrOteet PIA v vvuss sonies exomenssmss s or snsss mu s s osp s M A S s s s s e 41

39 - Milestones and Deliverables. . .o i sivommmsnm v sl 41

3 Project SehetING, .o & e snnsns o vhe s v B svyEyom sr b el s SV ey 43

3.4 BarCharts & Activity NetWorks o immsiomasasss i s s 55 5 ras 44

vi

E

CHAPTER-VIII: Installation & AccCeptance.......ccveiiiiinuiiniiiiiicneniesrccnnns 106

8.0 Onality Managemenh.. oo vuss oo s s s i s a5 s 5 106
B2 Quality Assifalics S standands. v s dsveey 107
8.3 Produnt & Process Btandada i covicrnmss rvsvavssmmvussn s ensvapiem 108
O SRR 0101 1T 1 e] AR R S ——— 109
CHAPTER-IX: Conclusion and Future WorkKisevisssvorcsconssnsssnsivsssnswssson 110
CHAPTER-X: INStAllation GUIGE: voissivisvssernersivsvssrinsineve soemssssvsessss 111
FOC1 o8/ W gt HIW TEQUITEIMENNS, i s v vwsywmvmes vvus wowsmwsisrsmmss s s sposms 111
102" ‘Installation ProCeduEE. . 1\ sisevin e s s sasiymsamss 112
10:3 - Compilation and EXCCHHIA i vuimmermumsmmn samms on s wbexmmwassss s 113
10.4 Test Layouts and Expected Output............cooevviiiviiiiiiiiiiiiiiiinnnna, 113
9023 108 [0 £ LT L 2 b or GO M AN e N U s N S O S 116

viii

List of Figures: Page

System Development Life CYELe.orsccrsmmmmanerenmnss cones sirnessunrssnssasmsronmsans i s

BIOIREHBIIRIIT ... o irmimrmrmmrs e ssmsn st s mimecs s s s s o s omes 3
| (e 28 e e e 124 Lot e S g i 5
DIRR RO . oy o s mams mrnsimusdimen by b SR O T DA e b et erarsihrsrass 6
[evelopment BIabe o s ir Lo o i e Ten R wbd ey s b P sl perensssabecevisascd
Iieeraiianahdelaslifio = e e e R v g s 8
IntE P Ao ACEPIAICE St e S b ey BB Rt s e sleel K smasans 10
(61 e e B e T T T r T T e v Tt it e WU 11
A O e T T ST i St e el e B NN 27
e B L B e e D e e 29

SHift Row TIAsfOHnAlIoON (1o v wsvemsni s Y S CHBRSE DACORIEIIE. . s v wrimn e 31

MiXiColtna - TIanSTOrMEONL - oot imainnnne it sin e b L T s e i ks ox kv snsns 32
Addiratindicey I ranstOHatON Ul b ot o itn. o & e kil s s o S bk 33

B SHFTR O L ORI T O I s e i e A e N B e il oot 36
Iy M G G A A T O A O L e v A e pncemn e 37
| R ey T v e Y e R R e W K b g W A LSRRI A A V) 1SN G S 43
D0 i 10 SRS L e e O D s el s o B Sy A L A I S Sl R DR 46
SlAlemMent OF PUTHOSE oo i s isa i i san sii s s s sasivesrutt S ant vishos it o 52
EaTte SIANHIBTATORY vt v i s i S i T A RSB S i Wi i s B TR v s 53

Datd Flow Diagram for File EXCTYPHON. -ousiveaitinisis siniss lossssisessasissss sonss snns 54
Data Elow, Diagrami for File DEctyprion: o.ccivess i sissisiisss siist sossavas dsiawssssss sspnias 55
Black Box Testing 1ot EACrVPLION PIOCEES o consumisavsiss son s saposs bt savisi st sissa i 101
BUloHE Test Cage. i cn i iiiier sbis s s Gast e b e o b e s Sy b LT o Siaas 102

BlackBox Testitip- fot DEcTYDHON PIOCOSE . vuiisateihiitssssiabesssni fukvssas bt sisn deiiin 103

O TS CHNE . i v i don i s 4055860 & ba it fu il e5h SN GRS 55 FH0 SRR e s s 104

List of Abbreviations:

1. AES: Advance Encryption Standard

2. CBG: Cipher Block Chaining

3- ~GFB: Cipher Feedback

4. DES: Data Encryption Standards

D DSA Y Digital Signature Algorithm

6. . ECB: Electronic Code Book

Taeiii BEG ¢ Electric Curve Cryptography

8. IDEA: International Data Encryption Algorithm

9. KISA: Korea Information Security Agency

10. KEA: Key Exchange Algorithm

1158 MEC: . Mitsubishi Electric Corporation

12 MDD Message Digest Algorithm

13 SNDTS Nippon Telegraph & Telephone

14. OFD: Output feedback

Lo “PKC - Public Key Cryptography

16. PKCS: Public Key Cryptography Standard

17. QA: Quality Assurance

18. QAR: Quality Assurance Reviewer

19. RTM: Requirement Traceability

20. SAER: Secure and Fast Encryption Routing

21. SDLC: System Development Life Cycle

22, - S0P Statement of Purpose

23, “BHA Secure Hash Algorithm

24, UMTS: Universal Mobile Telecommunication
System

1 X

i

i ,

j
—

ABSTRACT

During this time when the internet provides essential communication between tens of
millions of people and is being increasingly used as a tool for commerce, security
becomes a tremendously an important issue to deal with. The expansion of the
connecti'vity of computers makes ways of protecting data and messages from tampering
or unauthorized reading. It is thus up to the user to ensure that communications which are
expected to remain private actually do so. There are many aspects to security and many
applications, ranging from secure commerce and payments to private communications
and protecting passwords. One essential aspect of secure communication is that of

cryptography, which the focus of this project is.

This project aims at designing and developing a graphical user interface which can
encrypt and decrypt a file selected by the user. The file can be test, audio, video or picture

type. It thus allows security to user as well as his/her system from unauthorized users as

well as malicious sources.

CHAPTER-I
INTRODUCTION

1.1 Project Motivation

If the confidentiality or accuracy of your information is of any value at all, it should
be protected to an appropriate level and if the unauthorized disclosure or alteration of

the information could result in any negative impact, it should be secured.

Over the time cryptography has become an important concern for programmers and
users all around, during this time when the internet provides essential communication
between tens and millions of people and is being increasingly used as a tool for

commerce ,security become a tremendously important issue to deal with.

There are many aspects to security and many applications, ranging from secure
commerce and payments to private communications and protecting passwords. one

essential aspect for secure communications is that of cryptography, which is the focus

of this project.

The desire of a file security program that can password protect, lock, hide and encrypt

any no of files inspired us to design and develop this project.

1.2 Project objective

The primitive objectives of the project thought are the following:

e To propose a system which can encrypt and decrypt selected files on a system

using standard encryption and decryption algorithm to protect authorized users

against unauthorized users.

1.3 System Development Life Cycle

The system development life cycle followed by us in the project life cycle

encompasses the following phases:

e Project planning

e Requirements definition
e Design

e Development

e Integration and testing

e Installation and acceptance

1.3.1 Project Planning

The six stages of the SDLC are designed to build on one another, taking the outputs
from previous stage, adding additional efforts, and producing results that leverage the
previous effort and are directly traceable to the previous stages.ths top down approach
is intended to result in quality product that satisfies the original intentions of the

customer.

The planning stage stabilizes a bird’s eye view of the intended software product, and
uses this to establish the basic project structure, evaluate feasibility and risks
associated with the project, and describe appropriate management and technical

approaches.

Application / / Lifecycle Model
Goals / /

| y

{ Planning
Stage

y ; y

Project Plan &

Software Quality

The most critical session of the project plan is a listing of high level product
requirements, also referred to as goals. All of the software product requirements to be

developed during the requirements definition stage flow from one or more of these

3

goals. The minimum information for each goal consists of a title and textual

description, although additional information and references to external documents

may be included.

The outputs of the project planning stage are the configuration management plan, the
quality assurance Plan, and the project plan and schedule, with a detailed listing of
scheduled activities for the upcoming requirements stage, and high level estimates of

effort for the out stages.

1.3.2 Requirements Analysis

The requirements gathering process takes as its input the goals identified in the high
level requirements section of the project plan. Each goal will be refined into a set of

one or more requirements.

These requirements define the major functions of the intended application, define
operational data areas and reference data areas, and define the initial data entities.
Major functions include critical process to be manages, as well as mission critical
inputs, outputs and reports. A user class hierarchy is developed and associated with

these major functions, data areas, and data entities.

Each of these definitions is termed a requirement. Requirements are identified by

unique requirement identifiers and, at minimum, contain a requirement title and

textual description.

High-Level

Y

Requirements
Definition
Stage

These requirements are fully described in the primary deliverables for this stage:
requirements document and the requirements traceability matrix (RTM). The
requirement document contains complete description of each requirement, including I

diagrams and references to external documents as necessary. Note that detailed

listings of data base tables and fields are not included in the requirements document.

The title of each requirement is also placed into the first version of the RTM, along
with the title of each goal from the project plan. The purpose of the RTM is to show
that the product components developed during each stage of the software
development life cycle are formally connected to the components developed in the

prior stages.

In the requirements stage, the RTM consists of a list of high level requirements, or
goals, by title, with the listing of associated requirements for each goal, listed by
! requirement title. In this hierarchical listing the RTM shows that each requirement
| developed during this stage is formally linked to a specific product goal. In this
format, each requirement can be traced to a specific product goal, hence the term

requirements traceability.

o
i

The outputs of the requirements definition stage include the requirements document,

the RTM an updated project plan.

1.3.3 Design

The design stage takes as its initial input the requirements identified in the proved
requirements document. For each requirement, a set of one more design elements will

be produced a result of interviews, workshops, and /or prototype efforts.

Design elements describe the desired software features in detail, and generally include
functional hierarchy diagrams; screen lay out diagrams table of business rules,
business process diagrams, pseudo code, and a complete entity-relationship diagram
with a full data dictionary. These design elements are intended to describe the
software in sufficient details that skilled programmers may develop the software with

minimum additional input.

Requirements

Y

Design Stage

A 4 ; Y

Updated Project

Updated

When the design document is finalized and accepted, the RTM is updated to show
. that each design element is formally associated with a specific requirement. The

outputs of the design stage are the design document, an updated RTM, and an updated

project plan.

1.3.4 Development

The development stage takes as its primary input the design element described in the
approved design document. For each design document a set of one or more software
artifacts will be produced. Software artifacts include but are not limited to menus,
dialogues, data management form data reporting formats, and specialized procedures
> and functions. Appropriate test cases will be developed for each set of functionally

related software artifacts.

A
Developme
nt Stage .

y

Updated

A

Test Plan

A 4 1
I_m lementat

The outputs of the development stage include a fully functional set of software that
satisfies the requirements and design elements previously documented, an
implementation map that identifies the primary code entry points for major system
functions, a test plan that describes the test cases to be used to validate the correctness

and completeness of the software, an updated RTM, and an updated project plan.
7

—

1.3.5 Integration and Testing

During the integration and test stage, software artifacts, ad test data are migrated from

the development environments to a separate test environments. At this point all the

test cases are run to verify the correctness and completeness of the software.

Successful execution of the test suit confirms a robust and complete migration

capability,

Implementation
Map

Y

Integratio
n &Test
Stage

A 4

Test Plan

——'/-———

F §

A

Production

Acceptance

During this stage, reference data is finalized for production use and production users
are identified and linked to their appropriate roles. The final reference data (or links to

reference data source files) and production user list are completed into the production

initiation plan.

The outputs of the integration and test stage include integrated software, an
implementation map, a production initiation plan that describes a reference data and

production users, an acceptance plan which contains the final suit of test cases, and an

updated project plan.

1.3.6 Installation and Acceptance

During the installation and acceptance stage, the software artifacts, and initial
production data are loaded on to the production server. At this poirit, all test cases are
run to verify the correctness and completeness of the software. Successful execution

of the test suit is a prerequisite to acceptance of the software by the customer.

After customer personnel have verified that the initial production data load is correct
and the test suit had been executed with the satisfactory results, the customers

formally accept the delivery of the software.

The primary outputs of the installation and acceptance stage include a production
application, a completed acceptance test suit, and a memorandum of customer
acceptance of the software. Finally, the PDER enter the last of the labor data into the
product schedule and the locks the project as permanent project record. At this point

the PDR “locks” the project by archiving all software items, the implementation map,

the source code, and the documentation for future reference.

Acceptance

Production Integrated

Implementatio

A

] Installation

i &

Acceptanc
e Stage

<4 v

i
|
|
z 4 Completed ~ Customer

Production

A

Archived

Archived

1.4 Generic Stages

Each of the stages of the development lifecycle follows five internal processes. These
processes establish a patter of communication and documentation intender to
familiarize all participants with the current situation, and thus minimize risk to the
current project plan. This generic stage description is provided to avoid repetitive
descriptions of this internal process in each of the following software lifecycle stage
description. The five standards processes are Kickoff, Informal iteration, Formal

iteration, in stage assessment, and Stage exit.

10

SDLC Stage

1.4.1 Kickoff Process ‘
! Each stage is is initiated by a kickoff meeting, which can be conducted either in ‘
‘\ person, or by Web teleconferences. The purpose of the kickoff meeting is to review :
t the output of the previous stage, go over any additional inputs required by that i
particular stage, and examine the anticipated activities and required outputs of the
current stage. Review the current project schedule, and review any open issues. The
PDR is responsible for preparing the agenda and materials to be presented at this
meeting. All project participants are invited to attend the kickoff meeting for each

stage.

1.4.2 Information Iteration Process

Most of the creative work for a stage occurs here. Participants work together to gather
additional information and refine stage inputs into draft deliverables. Activities of this
stage may include interviews, meetings, the generation of prototypes, and electronic
correspondence. All of these communications are deemed informal, and or not

recorded as minutes, documents of record, controlled software, or official
11

memoranda. The intent here is to encourage, rather than inhibit the communication

Process.

This process concludes when the majority of participants agree that the work is

substantially complete and it is time to generate draft deliverables for formal review

and comment.

1.4.3 Formal Iteration Process

In this process, draft deliverables are generated for formal review and comment. Each
deliverables are introduced during the kick off process, and is intended to satisfy one
or more outputs for the current stage. Each draft deliverable is given a version number
and placed under configuration management control. As participants review the draft
deliverables, they are responsible for reporting errors found and concerns they may
have to the PDR via electronic mail. The PDR in turn consolidates these reports into a
series of issues associated with a specific version of a deliverable. The person in
charge of developing the deliverables works to resolve these issues, and then releases
another version of the deliverables for review. This process iterates until all issues are
resolved for each deliverable. There is no formal check off/signature forms for this

part of process. The intent here is to encourage review and feedback.

At the discretion of the PDR and PER, certain issues may be reserved for resolution in
later stages of the development lifecycle. These issues are disassociated from the
specific deliverable, and tagged as “open issues”. Open issues are reviewed during the
kickoff meeting for each subsequent stage. Once all issues against a deliverable have
been resolved or moved to open status, the final (release) draft of the deliverable is
prepared and submitted at the PDR. When final drafts of all required stage outputs
have been received, the PDR reviews the final suite of deliverables, reviews the
amount of labor expends against this stage of the project, and uses this information to

update the project plan.

The project plan update includes a detailed list of tasks, their schedule and estimated
level of effort for the next stage. The stage following the next stage (out stages) in the
project plan are updated to include a high level estimate of schedule the level of

effort, based on current project experience. Our stages are maintained at high level in

12

the project plan, and are included primarily for information purposes: direct
experience has shown that it is very difficult to accurately plan detailed tasks and
activities for our stages in a software development lifecycle. The updated project plan
and schedule is a standard deliverables for each stage of the project. The PDR the
circulates the updated project plan and schedule for review and comment, and iterates
these documents until all issues have been resolved or moved to open status. Once the
project plan and schedule has been finalized, all final deliverables for the current stage

are made available to all project participants, and the PDR initiates the next process.

1.4.4 In-stage Assessment Process

This is formal quality assurance review process for each stage. In a small software
development project, the deliverables for each stage are generally small enough that it
is not cost effective to review them for compliance with quality assurance standards
before the deliverables have been fully developed. As a result, only on in-stage

assessment is scheduled for each stage.

This process is initiated when the PDR schedules an in-stage assessment with the

(usually a Subject Matter Expert), and a selected Technical Reviewer. These
reviewers formally each deliverable to make judgments as to the quality and validity

|
independent Quality Assurance Reviewer (QAR), a selected En-user Reviewer l
l
|
of the work product, as well as its compliance with the standards defined for !

|

deliverables of that class. Deliverable class standards are defined in the software

quality assurance section of the project plan.

The end-user Reviewer is tasked with verifying the completeness and accuracy of the
deliverable in terms of desired software functionality. The technical Reviewer

determines whether the deliverable contains complete and accurate technical

information.

The QA Reviewer is tasked solely with verifying the completeness and compliance
of the deliverable against the associated deliverable class standard. The QAR may

make recommendations, but cannot raise formal issues that do not relate to the

deliverable standard.

13

Each reviewer follows a formal checklist during their review, indicating their level of
concurrence with each review item in the checklist. Refer to the software quality
assurance plan for this project for deliverable class standards and associated review
checklists. A deliverable is considered to be acceptable when of the deliverable and
review checklist items. Any issues raised by the reviewers against a specific
deliverable will be logged and relayed to the personnel responsible for generation of
the deliverable. The revised deliverable will then be released to project participants
for formal review iteration. Once all issues for the deliverable have been addressed,
the deliverable will be resubmitted to the reviewers for reassessment. Once all three
reviewers have indicated concurrence with the deliverable, the PDR will release a

final in-stage assessment report and initiate the next process.

1.4.5 Stage Exit Process

The stage exit is the vehicle for securing the concurrence of principal project
participants to continue with the project and move forward into the next stage of
development. The purpose of a stage exit is to allow all personnel involved with the
project to review the current project plan and stage deliverables, provide a forum to

raise and concerns, and to ensure an acceptable action plan exists for all open issues.

The process begins when the PDR notifies all project participants all deliverables for
the current stage have been finalized and approved via the In-stage Assessment report.
The PDR then schedules a stage exit review with the project executive sponsor and
the PER as a minimum. All interested participants are free to attend the review as

well. This meeting may be conducted in person or via Web teleconference.

The stage exit process ends with the receipt of concurrence from the designated

approvers to proceed to the next stage.

14

CHAPTER-II

| CRYPROGRAPHY

2.1 Whatis Cryptography?

Cryptography is the science of writing in secret code, more generally, cryptography
can be thought of as the art of mangling information into apparent unintelligibility in a
manner allowing a secret method of unmangling. The basic service provided by
cryptography is the ability to send information between participants in a way that
prevents others from reading it. In data and telecommunications, cryptography is

necessary network, particularly the Internet.

2.2 Purpose of Cryptography

Within the context of any application-to-application communication, there are some

specific security requirements, including:

e Authentication: The process of proving one’s identity. The primary forms of
host-to-host authentication on the Internet today are name-based or address-
l based, both of which are notoriously weak.
e Privacy/Confidentiality: Ensuring that no one can read the message except
the intender receiver.
e Integrity: Assuring the receiver that the received message has not been
altered in any way from the original.

e Non-repudiation: A mechanism to prove that the sender really send this

message.

A message in its original form is knows as plaintext or clear text. The mangled
information is known as cipher text. The process for producing cipher text from

plaintext is known as encryption and the reverse of encryption is decryption.

15

2.3 Cryptographic Functions

There are three kinds of cryptographic function: Hash functions, secret key functions

and public key function. Public key cryptography involves the use of two keys. Secret

key cryptography involves the use of one key. Hash functions involve the use of zero

keys.

2.3.1 Secret Key Cryptography

With secret key cryptography, a single key is used for both encryption and decryption.
The sender uses the key (or some set of rules) to encrypt the plaintext and sends the
cipher text to the receiver. The receiver applies the same key (or rule set) to decrypt
the message and recover the plaintext. Because a single key is used for both functions,

secret key cryptography is also called symmetric encryption.

With this form of cryptography, it is obvious that the key must be known to both the
sender and the receiver; that, in fact, is the secret. The biggest difficulty with this

approach, of course, is the distribution of the key.

Secret key cryptography schemes are generally categorized as being either stream
ciphers or block ciphers. Stream ciphers operate on a single bit (byte or computer
word) at a time and implement some form of feedback mechanism so that the key is
| constantly changing. A block cipher is so-called because the scheme encrypts one
i : block of data at a time using the same key on each block. In general, the same
plaintext block will always encrypt to the same cipher text when using the same key

in a block cipher whereas the same plaintext will encrypt to different cipher text in a

stream cipher.

Stream ciphers come in several flavors but two are worth mentioning here. Self-
synchronizing stream ciphers calculate each bit in the key stream as a function of the
previous n bits in the key stream. It is termed “self-synchronizing” because the
decryption process can stay synchronized with the encryption process merely by
knowing how far into the n-bit key stream it is. One problem is error propagation: a
garbled bit in transmission will result in »n garbled bits at the receiving side.
Synchronous stream ciphers generate the key stream but by using the same key

stream generation function at sender and receiver. While stream ciphers do not

16

- - |

l propagate transmission errors, they are, by their nature, periodic so that the key stream

i will eventually repeat.
i There four block ciphers commonly used are:

e Electronic Codebook(ECB) mode

e Cipher Block Chaining(CBC) mode
e Cipher Feedback(CFB) mode

e Output Feedback(OFB) mode

Block ciphers can operate in one of several modes; the following four are the most

important:

o Electronic Codebook (ECB) mode is the simplest, most obvious application:
the secret key is used to encrypt the plaintext block to form a cipher text block.
Two identical plaintext blocks, then, will always generate the same cipher text

block. Although this is the most common mode of block ciphers, it is

susceptible to a variety of a variety of brute-force attacks.
o Cipher Block Chaining (CBC) mode adds a feedback mechanism to the
encryption scheme. In CBC, the plaintext is exclusively-ORed (XORed) with
. the previous cipher text block prior to encryption. In this mode, two identical
| blocks of plaintext never encrypt to the same cipher text.
o Cipher Feedback (CFB) mode is a block cipher implementation as a self
synchronizing stream cipher. CFB mode allows data to be encrypted in units
smaller than the block size, which might be useful in some applications such
as encrypting interactive terminal input. If we were using 1-byte CFB mode,
for example, each incoming character is placed into a shift register the same
size as the block, encrypted, and the block transmitted. At the receiving side,
the cipher text is decrypted and the extra bits in the block(i.e., everything
above and beyond the one byte) are discarded.
o Output feedback (OFB) mode is a block cipher implementation conceptually
similar to a synchronous stream cipher. OFB prevents the same plaintext block |
from generating the same cipher text block by using an internal feedback |

mechanism that is independent of both the plaintext and cipher text bit

streams.
17

f I -

2.3.2 Public Key Cryptography

Public-key cryptography has been said to be the most significant new development in
| cryptography in the last 300-400 years. Modern PKC was first described publically by
Stanford university professor Martin Hellman and graduate student Whitfield Diffie in
1976. Their paper described a 2-key cryptosystem in which two parties could engage

in a secure communication over a non secure communication channel without having

to share a secret key.

Generic PKC employs two keys that are mathematically related although knowledge
of one key does not allow someone to easily determine the other key. One key is used
encrypt the plain text and the other key is used to decrypt the ciphef text. The
important point here is that it doest not matter which key us applied first, but that
both keys are required for the process to work because a pair of keys are required, this

approach is also called asymmetric cryptography.

In PKC, one of the keys are designated the public key and may be advertised as
widely as the owner wants. The other key is designated the private key and is never

revealed to another party. It is straightforward to send message under this scheme.

Suppose Alice wants to send Bob a message. Alice encrypts some information using
Bob’s public key; Bob decrypts the cipher text using his private key. This method
could be also used to prove who send a message; Alice, for example, could encrypt
some plain text with her private key; when Bob decrypts using Alice’s public key ,he

knows that Alice sent the message and Alice cannot deny having sent the message

(non repudiation) .

2.3.3 Hash Functions

Hash functions, also called message digests and one-way encryption, are algorithms
that, in some sense, used no key instead, a fixed-length Hash value is computed based
upon plain text that makes it impossible for either that contents or length of the plain
text to be recovered. Hash algorithm are typically used to provide a digital finger
print of a file’s contents often used to ensure that the file has not been altered by an

intruder or virus. Hash functions are also commonly employed by many operating

18

I S,

systems to encrypt passwords. Hash functions, then, provide a major of the integrity

of a file.

Hash functions are sometimes misunderstood and some sources claim that no two
files can have the same hash value this is, in fact, not correct. Consider a hash

function that provides a 128-bit hash value. There are, obviously, 2*** possible hash
values. But there are lot more than 2*°® possible files. Therefore, there have to be
multiple files- in fact; there have to be infinite no of files. There can have the Same

128-bit hash value.
We will call the hash of a message m, h (m). It has the following properties:

e For any message m, it is relatively easy to compute h (m). This just means that
in order to be practical it can’t take a lot of processing time to compute the
hash.

e Given h(m), there is no way to find an m that hashes to h(m) in way that is
substantially easier than going through all possible values of m and computing
h(m) for each one.

e Even though it’s obvious that many different values of m will be transformed
to the same value h (m) (because there are many more possible values of m), it

is computationally infeasible to find two values that hash to the same thing.

An example of the sort of functions that might work is taking the message m, treating
it as a number, adding some large constants, squaring it and taking the middle n digits
as a hash. While this would not be difficult to compute, its not obvious how you could

find a message that would produces a particular hash, or how one might find two

messages with the same hash.

2.4 Cryptographic Algorithms

The following important algorithms which are normally used in cryptography:

2.4.1 Secret Key Algorithm

e Data Encryption Standard (DES)

19

Two important variants that strengthens DES are :

Triple —-DES (3 DES): A variant of DES that employs up to three 56 bit-keys and

makes three encryption/decryption passes over the block

DESX: A variant devised by Ron Rivest. By combining 64 additional key bits to the

|

! plain text prior to encryption, effectively increases the key length to 128 bits.
|

' Other algorithm includes:

e Advanced Encryption Standard (AES): In cryptography the advanced
encryption standard (AES), also known as Rijndael is a block cipher adopted
as an encryption standard by the U.S government. It is expected to be used
worldwide and analyses extensively, as was the case with its predecessors, the
Data Encryption Standard (DES). AES is one of the most popular algorithms
used in symmetric key cryptography. It has fixed block size of 128 bits and a
key of 128,192,256 bits.

e CAST-128/256: CAST-128 is a DES-like substitution-permutation crypto
algorithm, employing a 128-bit key operating on a 64-bit block. CAST-256 is |

[an extension of CAST-128, using a 128-bit block size and a variable length
5 (128,160,192,224 or 256 bit) key. CAST is named for its developers, Carlisle
Adams and Stafford Tavares and is available internationally. CAST-256 was
one of the Round 1 algorithms in the AES process.

e International Data Encryption Algorithm (IDEA): Secret-key cryptosystem
written by Xuejia Lai and James Massey, in 1992 and patented by Ascom; a
64-bit SKC block cipher using a 128-bit key.

e Blowfish: A symmetric 64-bit block cipher invented by Bruce Schneier;
optimized for 32-bit processors with large data caches, it is significantly faster
than DES on a Pentium/Power PC-class machine. Key lengths can vary from
32 to 448 bits in length. Blowfish, available freely and intended as a substitute
for DES or IDEA, is in use over 80 products.

20 '

@
—'

Two fish: A 128-bit block cipher using 128, 192 or 256 keys. Designed to be
highly secure and highly flexible, well-suited for large microprocessors, 8-bit
smart card microprocessors, and desiccated hardware. Designed by a team led

by Bruce Schneier and was one of the Round 2 Algorithms in the AES

process.

Camellia: A secret-key, block-cipher crypto algorithm developed jointly by
Nippon Telegraph and Telephone(NTT) Corp. and Mitsubishi Electric
Corporation(MEC) in 2000. Camellia has some characteristic in common with
AES: a 128-bit block size, support for 128, 192 and 256-bit key lengths, and
suitability for both software and hardware implementations on common 32-bit
processors as well as 8-bit processors (e.g. smart cards, cryptographic

hardware, and embedded systems).

Mistyi: Developed at Mitsubishi electric Crop, a block cipher using a 128-bit
key and 64-bit block and a variable number of rounds. Designed for hardware

and software implementations and is resistant to differential and linear

cryptanalysis.

Secure and Fast Encryption routine (SAFER): Secret-key crypto scheme

designed for implementation in software. Versions have been defined for 40,

64 and 128 bit keys.

KASUMI: A block cipher using a 128-bit key that is a part of the third
generation partnership project (3gpp), formally known as the Universal

Mobile communication systems.

SEED: A block cipher using a 128-bit blocks and 128-bit keys. Developed by
the Korea Information Security Agency(KISA) and adopted as a national

standard algorithm in South Korea.

Skipjack: SKC scheme proposed for Capstone. Although the details of the
algorithm were never made public, Skipjack was a block cipher using an 80-

bit key and 32 iteration cycles per 64-bit block.

2.4.2 Public Key Algovithms:

RSA: The first, and still most common, PKC implementation, named for the
three MIT mathematicians who developed it — Ronald Rivest, Adi Shamir, and
Leonard Adleman. RSA today is used in hundreds of software products and
can be used for key exchange, digital signatures, or encryption of small blocks
of data. RSA uses a variable size encryption block and a variable size key. The
key-pair is derived from a very large number, n, that is the product of two
prime numbers chosen according to special rules; these primes may be 100 or
more digits in length each, yielding an n with roughly twice as many digits as
the prime factors. The public key information includes n and a derivative of
one of the factors of n; an attacker cannot determine the prime factors of n
(and, therefore, the private key) from this information alone and that is what
makes the RSA algorithm so secure. (Some descriptions of PKC erroneously
state that RSA’s safety is due to the difficulty in factoring large prime
numbers. In fact, large prime numbers, like small prime numbers, only have
two factors!) The ability for computers to factor large numbers, and therefore
attack schemes such as RSA, is rapidly improving and systems today can find
the prime factors of numbers with more than 200 digits. Nevertheless, if a
large number is no known factorization algorithm that will solve the problem
in a reasonable amount of time: a 2005 test to factor a 200-digit number took
1.5 years and over 50 years of compute time regardless, one presumed
protection of RSA is that users can easily increase the key size to always stay

ahead of the computer processing curve.

Differ-Hellman: After the RSA algorithm was published, Diffie and Hellman
came up with their own algorithm. D-H is used for secret-key key exchange

only, and not for authentication or digital signatures.

22

——

e Digital Signature Algorithm (DSA): The algorithm specified in NIST’s
Digital Signature Standard (DSS), provides digital signature capability for the

authentication of message.

e EIGamal: Designed by Taher Elgamal, a PKC system similar to Diffie

Hellman and for key exchange.

e Elliptic Curve Cryptography (ECC): A PKC algorithm based upon elliptic
curves. ECC can offer levels of security with small keys comparable to RSA
and other PKC methods. It was designed for devices with limited compute

power and/or memory, such as smartcards and PDAs.

e Public-Key Cryptography Standards (PKCS): A set of interoperable
standards and guidelines for public-key cryptography, designed by RSA Data

Security Inc.

o PKCS#1: RSA Cryptography Standard.

e PKCS#2: Incorporated into PKCS#1.

e PKCS#3: Diffie-Hellman Key-Agreement Standard.

e PKCS#4: Incorporated into PKCS#1.

e PKCS#5: Password-Based Cryptography Standard.

e PKCS#6: Extended-Certificate Syntax Standard.

o PKCS#7: Cryptographic Message Syntax Standard.

e PKCS#8: Private-Key Information Syntax Standard

o PKCS#9: Selected Attribute Types.

e PKCS#10: Certification Request Syntax Standard.

e PKCS#11: Cryptographic Token Interface Standard

e PKCS#12: Personal Information Exchange Syntax Standard.
e PKCS#13: Elliptic Curve Cryptographic Standard.

e PKCS#14: Pseudorandom Number Generation Standard is no longer

available.

23

e PKCS#15: Cryptographic Token Information Format Standard.

e Cramer-Shoup: A public-key cryptosystem proposed by R.Cramer and V.
Shoup of IBM in 1998.

e Key Exchange Algorithm (KEA); A variation on Diffie-Hellman; proposed
as the key exchange method for Capstone.

e LUC: A public-key cryptosystem designed by P.J. smith and based on Lucas

sequences. Can be used for encryption and signatures, using integer factoring.

2.4.3 Hash Functions:

Hash algorithms that are in common use today include:

Message Digest (MD) Algorithms: A series of byte-oriented algorithms

that produce a 128-bit hash value from an arbitrary-length message.

MD2: Designed for system with limited memory, such as smart cards.

MD4: Developed by Rivest, similar to MD2 but designed specifically for

fast processing in software.

MDS5: Also developed by Rivest after potential weaknesses were reported
in MD4; this scheme is similar to MD4 but is slower because more
manipulation is made to the original data. MDS5 has been implemented in a
large number of products although several weaknesses in the algorithm

were demonstrated by German cryptographer Hans Dobbertin in 1996.

Secure Hash Algorithm (SHA): Algorithm for NIST’s Secure Hash
Standard (SHS). SHA-1 produces a 160-bit hash value and it describes five
algorithms in the SHS: SHA-1 plus SHA-224, SHA-256, SHA-384, and
SHA-512 which can produce hash values that are 224, 256, 384, or 512

bits in length respectively.

24

e RIPEMD: A series of message digests that initially came from the RIPE
(Race Integrity Primitive Evaluation) project. RIPEMD-160 was designed
by Hans Dobbertin, Antoon Bosselaers, and Bart Preneel, and optimized
for 32-bit processors to replace the current 128-bit hash functions. Other

versions include RIPEMD-256, RIPEMD-320, and RIPEMD-128.

e HAVEL: Designed by Y. Zheng, J. Pieprzyk and J. Seberry, a hash
algorithm with many levels of security. HAVAL can create hash values

that are 128, 160, 192, 224, or 256 bits in length.

e Whirlpool: A relatively new hash function, designed by V. Rijimen and
P.S.L.M. Barreto. Whirlpool operates on message less than 22¢ bits in
length, and produces a message digest of 512 bits. The design of this has
function is very different than that of MD5 and SHA-1, making it immune

to the same attacks as on those hashes.

o Tiger: Designed by Ross Anderson and Eli Biham, Tiger is designed to be /
secure, run efficiently on 64-bit processors, and easily replace MD4, MD5,
SHA and SHA-1 in other applications. Tiger/192 produces a 192-bit
output and is compatible with 64-bits, respectively, to provide

compatibility with the other hash functions mentioned above.

Certain extensions of hash functions are used for a variety of information security and

digital forensics applications, such as:

e Hash Libraries are sets of hash values corresponding to known files. A
hash library of known good files, for example, might be a set of files
known to be a part of an operating system, while a hash library of known

bad files might be of a set of known child pornographic images.

e Rolling Hashes refer to a set of hash values that are computed based upon

a fixed-length “sliding window” through the input. As an example, a hash

25

value might be computed on bytes 1-10 of a file, then on bytes 2-11, 3-12,
4-13, etc.

o Fuzzy Hashes arc an area of intense research and represent hash values
that represent two inputs that are similar. Fuzzy hashes are to detect
document, images or other files that are close to each other with respect to

the content.

2.5 Advance Encryption Standard:

The algorithm used in encryption & decryption process is Rijnadel, more specifically
the Advance Encryption Standard. It is a secret key algorithm which takes three
different key lengths for encryption & decryption, 128,192 & 256 bits.

2.5.1 Alporithm Specification

For the AES algorithm, the length of the input block, the output block and the

—_—

State is 128 Bits. This is represented by Nb = 4, which reflects the number of 32-bit

words (number of columns) in the State.

For the AES algorithm, the length of the Cipher Key, K, is 128, 192, or 256 bits.
The key length is represented by Nk = 4, 6, or 8, which reflects the number of 32-bit

words (number of columns) in the Cipher Key.

For the AES algorithm, the number of rounds to be performed during the execution of

the algorithm is dependent on the key size. The number of rounds is represented by

Nr, where Nr =
10 when Nk = 4, Nr = 12 when Nk = 6, and Nr = 14 when Nk = 8.

For both its Cipher and Inverse Cipher, the AES algorithm uses a round function that
is composed of four different byte-oriented transformations: 1) byte substitution using
a substitution table (S-box), 2) shifting rows of the State array by different offsets, 3)

mixing the data within each column of the State array, and 4) adding a Round Key to

the State,

26

Key Length Block Size Number of Rounds
(Nk words) (Nb words) (Nr)

AES-128 4 4 10

AES-192 6 4 12

AES-256 8 4 14

2.5.2 Cipher

At the start of the Cipher, the input is copied to the State array. After an initial Round
Key addition, the State array is transformed by implementing a round function 10, 12,
or 14 times (depending on the key length), with the final round differing slightly from
the first Nr 1 rounds. The final State is then copied to the output. The round function
is parameterized using a key schedule that consists of a one-dimensional array of

four-byte words derived using the Key Expansion routine.

The individual transformations:- SubBytes(), ShiftRows(), MixColumns(), and
AddRoundKey() — process the State and are described in the following subsections.

In the pseudo code the array w[] contains the key schedule and all Nr rounds are
identical with the exception of the final round, which does not include the

MixColumns() transformation.

27

The Cipher is described in the following pseudo code:

Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
begin
byte state[4,Nb]
state = in
AddRoundKey(state, w[0, Nb-1])
for round = 1 step 1 to Nr—1
SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
end for
SubBytes(state)
ShiftRows(state)
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
out = state

end

2.5.3 SubBytes() Transformation

The SubBytes () transformation is a non-linear byte substitution that operates
independently on each byte of the State using a substitution table (S-box).
This S-box, which is invertible, is constructed by composing two transformations:

1. Take the multiplicative inverse in the finite field GF (2®), the element {00} is

mapped to itself.
2. Apply the following affine transformation (over GF (2)):

3k :)
b 3 hes bi@b{;‘zhi}nwd g @ b{é+$}rnad 3 G)b{i-rfz} mod 8 ;e vimod & ®C:'

28

for 0 <i <8, where bi is the it2 bit of the byte, and ci is the i¥* bit of a byte

¢ with the value {63} or {01100011}. Here and elsewhere, a prime on a

variable (e.g., b’) indicates that the variable is to be updated with the value on

the right.

In matrix form, the affine transformation element of the S-box can be expressed as

B B £ TR B O L0 SR CRETRE TR i Sl KRG 1
B SRR LR, T s o RS S TR S : |
rhm an b e Bp B CRRl e g L 12§ (o)
Bl ilgl ot RS AN I o RPN U i w predl
b, Rhad R RS LBl BBl ol n BB E B L2 O
o e et BE TRt ERs B B 1
by ARV T S R R N 1
Bl a7 99 ay ety atl fa] [has b aga el

The following figure illustrates the effect of the SubBytes () transformation on the

State:

S-Box ~ »
So.0 | So.1 | %02 ‘S/oa..»—*' | S0.0 501 | So,2 | S03
51,0 ¢ P S1.3 51,0 v Rz | 513
r.c Sr,c
Sy | S21 | S22 %23 Syo | S | S22 | %23
S30 | $31 | 532 | %33 S30 | 31 | 532 | 533

SubBytes() applies the S-box to each byte of the State

29

Y

o B 3 (- e | Y) S -1 e - - | - T - - A S
63| 7e| 77| Tb | £2 | 6b| 6£| 5| 30| 01| 67| 2b| fe | d7| ab | 76
ca| 82| 9| 7d| £fa| 59| 47| £0| ad| dd | a2 | af | 9c¢ | ad | 72 | &0
7| £d| 93| 26| 36| 3f| £7| cc| 34| a5 | e5| £1| 71| a8 | 31| 15
04| 7| 23| c3 (18] 96| 05| 9a| 07| 12| 80| e2| eb| 27| b2 | 75
09| 83| 2c|la|lb| 6e| 5a| a0 | 52| 3b| d6| b3 | 29| e3| 2F | 84
53| dl | 00| ed| 20| fc| bl | 5b| 6a| ¢b | be | 39| 4a | 4c| 58 | of
d0 | ef | aa| fb| 43| 4d| 33| 85| 45| £9| 02| 7£| 50| 3c | 9£ | a8
51| a3 | 40| 8f| 92| 9d| 38| £5| be| b6 | da| 21| 10| £F£| £3 | 42
ed| Oc| 13| ec | SE| 97| 44| 17| c4| a7| Te| 3d| 64| 54| 19| 73
60 (Bl | 4f | de| 22| 2a| 90| 88| 46| ee | b8 | 14| de | S5e| Ob | db
e0 (32| 3a|0a| 49| 06| 24| 5¢| c2| d3 | ac| 62| 91| 95| ed | 79
el | e8| 37| 6d(8d| d5| 4e| a9 | 6c | 56| f4 | ea| 65| Ta| ae | 08
ba| 78| 25| 2e| 1c| ab| b4 | c6| e8| dd| 74| 1£| 4b | bd | 8b | 8a
70| 3e | b5 | 66 | 48| 03| £6 | Oe| 61| 35| 57| b9 | 86| c1| 1d | 9e
el | £8| 98| 11| 69| d9(Be| 94| 9b| le| 87| 9| ce | 55| 28 | df
8| al | 89| 0d| bf|eb6| 42| 68| 41| 99| 2d| Of | bO | 54 | bb | 16

o o|bwiolodeuve|lw <o

S-box: substitution values for the byte xy (in hexadecimal format).

2.5.4 ShiftRows() Transformation

In the Shi £tRows () transformation, the bytes in the last three rows of the State are
cyclically shifted over different numbers of bytes (offsets). The first row, » = 0, is not

shifted. Specifically, the Shi £ tRows () transformation proceeds as follows:

’ 2
Sre™ Sr.{c+shift{'r,;\?b3) mad Nb for 0 <r<4and 0<c<

Nb
where the shift value shifi(r,Nb) depends on the row number, 7, as follows (recall that

Nb = 4):

shifi(1,4) =1; shifi(2,4) =2 ; shift(3,4) =3 .

This has the effect of moving bytes to “lower” positions in the row (i.e., lower values

of ¢ in a given row), while the “lowest” bytes wrap around into the “top” of the row

(i.e., higher values of

30

¢ in a given row).

The following figure illustrates the Shi ftRows () transformation:

ShiftRows ()

Il N

1]] 1
SrolSra 152|503 SrolSra 52153
S S
S0.0 | S04 | %02 | 03 So,0 | So1 | %02 | So03

ShiftRows() cyclically shifts the last three rows in the State

2.5.5 MixColumns() Transformation

The MixColumns() transformation operates on the State column-by-column, treating
each column as a four-term polynomial. The columns are considered as polynomials

over GF (28) and multiplied modulo x* + 1 with a fixed polynomial a(x), given by:
a(x)={03}x3+ {01}x% + {01}x+ {02} .

This can be written as a matrix multiplication. Let

§'(x) = a(x)®s(x) :

31

500 | [02 03
5.l (01 02
5. | |01 01
s~ 03 01

01
03

01

01]] 5, |
01115
he for 0 < ¢ < Nb.
03] 5,
02_ S.l,c i

The following figure illustrates the MixColumns()transformation:

MixColumns ()

2.5.6 AddRoundKey() Transformation

schedule.

Nb.

In the AddRoundKey() transformation, a Round Key is added to the State by a
simple bitwise XOR operation. Each Round Key consists of Vb words from the key

The action of this transformation is illustrated in following figure, where [= round *

\ 3

o SO,{: ; :

: 1,c ; .
Sl,ﬁ Sl,Z “51,3

A AY i
Sao | "2 P22 | Sa3

—_

' S
S30 | V3. P32 | 533

32

| =round * Nb
SO,C ' 'S‘O,c
0.0 2 (%03 b Soo I+ b2 | 503
SI L “_r‘,_;_c -...,,‘M Ry
c 4’@ o gy 1e .
51,0 1513 :) 1 |13
W 2 [Wres :
Ry 3 ' Ay :
S0(] 72 |2 |53 Sy0(] "2€ o |23
5100185, |2 [%32 530 || S3.c f2 |33

AddRoundKey() XORs each column of the State with a word from the key

schedule.

2.5.7 Key Expansion

The AES algorithm takes the Cipher Key, K, and performs a Key Expansion routine
to generate a key schedule. The Key Expansion generates a total of Nb (Nr + 1)
words: the algorithm requires an initial set of Nb words, and each of the Nr rounds
requires Vb words of key data. The resulting key schedule consists of a linear array of

4-byte words, denoted [wi], with i in the range 0 <i < Nb(Nr + 1).

SubWord() is a function that takes a four-byte input word and applies the S-box to
each of the four bytes to produce an output word. The function RotWord() takes a
word [a0,al,a2,a3] as input, performs a cyclic permutation, and returns the word
[al,a2,a3,a0]. The round constant word array, Reonl[i], contains the values given by
[x*1,{00},{00},{00}], with x*~? being powers of x (x is denoted as {02}) in the field
GF(2%),(note that i starts at 1, not 0). It can be seen from the pseudo code that the
first Nk words of the expanded key are filled with the Cipher Key. Every following
word, w[i], is equal to the XOR of the previous word, w[i-1], and the word Nk
positions earlier, w[i-/Vk]. For words in positions that are a multiple of Nk, a
transformation is applied to w[i-1] prior to the XOR, followed by an XOR with a

round constant, Reon[i]. This transformation consists of a cyclic shift of the bytes in a

33

word (RotWord()), followed by the application of a table lookup to all four bytes of
the word (SubWord()).

It is important to note that the Key Expansion routine for 256-bit Cipher Keys (Vk =
8) is slightly different than for 128- and 192-bit Cipher Keys. If Vk = 8 and i-4 is a
multiple of Nk, then SubWord() is applied to w[i-1] prior to the XOR.

The pseudo code for key expansion is as follows:

KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)
begin
word temp
i=0
while (i <Nk)
w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])
i=itl
end while
i=Nk
while (i <Nb * (Nr+1)]
temp = w[i-1]
if (i mod Nk = 0)
temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]
else if (Nk > 6 and i mod Nk = 4)
temp = SubWord(temp)
end if
wl[i] = w[i-Nk] xor temp
i=i+1
end while

end

34

——

2.5.8 Inverse Cipher

The Cipher transformations can be inverted and then implemented in reverse order to
produce a straightforward Inverse Cipher for the AES algorithm. The individual
transformations used in the Inverse Cipher - InvShiftRows(),
InvSubBytes(),InvMixColumns(), and AddRoundKey() — process the State and are
described in the following subsections. The Inverse Cipher is described in the pseudo

code, where the array w[] contains the key schedule.

InvCipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])

begin
byte state[4,Nb]
state = in

AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])

for round = Nr-1 step -1 downto 1
InvShiftRows(state)
InvSubBytes(state)
AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
InvMixColumns(state)

end for

InvShiftRows(state)

InvSubBytes(state)

AddRoundKey(state, w[0, Nb-1])

out = state

end

2.5.9 InvShiftRows() Transformation

InvShiftRows() is the inverse of the ShiftRows() transformation. The bytes in the last
three rows of the State are cyclically shifted over different numbers of bytes (offsets).

The first row, » = 0, is not shifted. The bottom three rows are cyclically shifted by Nb
- shift(r, ND)

35

r

bytes, where the shift value shifi(¥,Nb) depends on the row number.

The following figure illustrates the InvShiftRows()transformation:

InvShiftRows ()

7t

$ r.0

‘Sr.,l

r,3

InvShiftRows()cyclically shifts the last three rows in the State

N
$10 S;-,1 S;z ‘5';-13
5
So0 | Sox | S0 | So3
Sis S0 | S | 12
$32 | %23 | 20 | S22
S31 | %32 [%33 | S30 ;

2.5.10 InvSubBytes() Transformation

InvSubBytes () is the inverse of the byte substitution transformation, in which
the inverse S-box is applied to each byte of the State. This is obtained by applying the
inverse of the affine transformation followed by taking the multiplicative inverse in

GR(29),

36

—_——

O- -1 [-2o|og=lad (=Rl as T8 [-8 | & |2k -6 [d| e | L
52 00| 6a|[d5|30|36|a5 |38 |bf|40|a3| 9% |81 |£3|4d7|fb
7o |e3 |39 |82 | 9p |26 | ££ |87 |34 |8e |43 |44 |cd|de|ed|ch
54| Tb | 9432 a6 |2 |23 |3d|ee |4c | 95| 0b |42 | fa |3 | de
08| 2e|al |66|28|d9 |24 |p2 |76 |5b|a2| 49|64 8b|dl |25
72 | 8| £6 | 64 | 86| 68| 98 | 16 | dd |[ad | Sc|ce | 5d| 65| b6 | 92
6a| 70 | 48 |50 | fd | ed [b9 [da [5e | 15| 46 | 57 | a7 | 8d | 9d | 84
90 [d8 | ab [00 [8c [be | d3 | 0a | £7 |e4 | 58 | 05| b8 [b3 | 45 | 06
d0 | 2¢ | 1e | 8F|ca |32 | 0|02 el |af |bd|03|01| 13| 8a| 6b
3a |01 |11 |41 |4 | 67 |de |ea |97 | £2 | cf |ce | £0 [b4 | &6 | 73
96 | ac | 74 [22| e7|ad | 35|85 |e2 |£9| 37| e8| lc| 75| df | 6e
47 | f1 [1a |71 | 1d| 29| 5| B9 [6£ |b7 | 62| O0e|aa |18 | be | lb
fo | 56 | 3e | 4b | c6 |[d2 [79]20|9%9a |db|c0 | fe |78 | cd| 5a | £4
1f |dd | a8 [33|88 |07 |7 |31 | b1 |12]|10|59| 27|80 |ec|5F
60517 a9 |19 b5 |4a |0d|[2d |e5|Ta | 9|93 | cd | 9¢c | ef
20 |e0 |3b | 4d [ae [2a | £5 | b0 [cB [eb | bb | 3c| 83| 53| 99| 61
171 2b |04 | 7e|ba [77 | d6 |26 | el | 69|14 | 63 |55|21 | 0c | 7d

o | o|oe|w oo e w e o

Inverse S-box: substitution values for the byte xy
(in hexadecimal format).

2.5.11 InvMixColumns() Transformation

InvMixColumns() is the inverse of the MixColumns() transformation.
InvMixColumns() operates on the State column-by-column, treating each column as

a four term polynomial. The columns are considered as polynomials over GF(2%) and

multiplied modulo x* + 1 with a fixed polynomial a”*(x), given by

a~i(x) = {Ob}x3+ {0d}x?+ {09}x + {Oe}.

This can be written as a matrix multiplication. Let

sSE)= a @)D

s O¢ 0b 0d 09]]s,
Sis 09 0e 0b 0d|| 5.

e e ’ for 0 < ¢ <NbD.
S5 0d 09 0e 0b||s,,

Sic | 0b 0d 09 Oe||s;,

37

2.5.12 Inverse of the AddRoundKey() Transformation

AddRoundKey (), is its own inverse, since it only involves an application of the
XOR operation.

2.5.13 Advantages

Implementation aspects:

e Rijndael can be implemented to run at speeds unusually fast for a block cipher
on a Pentium (Pro-). There is a trade-off between table size/performance.

e Rijndael can be implemented on a Smart Card in a small amount of code,

e Using a small amount of RAM and taking a small number of cycles. There is
some ROM/performance trade-off.

e The round transformation is parallel by design, an important advantage in
future processors and dedicated hardware.

e As the cipher does not make use of arithmetic operations, it has no bias |

towards bios little endian processor architectures. i
Simplicity of Design:
e The cipher is fully “self-supporting”. It does not use of another f

cryptographic component, S-boxes “lent” from well-reputed ciphers, bits
obtained from Rand tables, digits of p or other such jokes.

e The cipher does not base its security or part of it on obscure and not well
understood interactions between arithmetic operations.

e The tight cipher design does not leave enough room to hide a trapdoor.

Variable block length:

e The block lengths of 192 and 256 bits allow the construction of a collision
resistant iterant hash function using Rijndael as compression function. The
block length of 128 bits is not considered sufficient for this purpose

nowadays.

38

—"" | J

Extensions:

e The design allows the specification of variants with the block length and
key length both ranging from 128 to 256 bits in steps of 32 bits.
e Although the number of rounds of Rijndael is fixed in the specification, it

can be modified as a parameter in case of security problems.

2.5.14 Disadvantages

The limitations of the cipher have to do with its inverse:

e The inverse cipher is less suited to be implemented on a smart card than
the cipher itself: it takes more code and cycle. (Still, compared with other
ciphers, even the inverse is very fast).

e In software, the cipher and its inverse make use of different code and/or
tables.

e In hardware, the inverse cipher can only partially re-use the circuitry that i

implements the cipher.

39

CHAPTER-III

PROJECT PLANNING

Effective management of a software project depends on the thoroughly planning the
progress of the project. The project manager must anticipate problems which might
arise and prepare tentative solutions to those problems. A plan, drawn up at the start
of a project, should be used as the driver for the project. The initial plan should be the
best possible plan given the available information. It evolves as the project progresses

and better information becomes possible.

A structure for a software development plan is described below. As well as a project

plan, managers may also have to draw up other types of plan.

Plan Description

Quality Plan Describes the quality procedures and
standards that will be used in a project.

Describes the approach, resources and
schedule use for system validation.

Validation Plan

Describes the configuration
management procedures and structures
to be used.

Configuration Management Plan

Maintenance plan Predicts the maintenance requirements
of the system, maintenance costs and
effort required

Staff Development Plan
Describes how the skills and
experience of the project team
members will be developed

40

3.1 Project Plan

The project plan sets out the resources available to the project, the work break down
and a schedule for carrying out the work. In some organizations, the project plan is a
single document including all the different types of plan introduced above. In other
cases, the project plan is solely concerned with the development process. Below

described is one such plan we followed:

1. Introduction: this briefly describes the objectives of the project and sets out
the constraints (e.g. budget, time etc.) which affect the project management.

2. Project Organization: this describes the way in which the development team
is organized, the people involved and their roles in the team.

3. Hardware and Software Requirement: this describes the hardware and the
support software required to carry out development. if hardware has to be
brought, estimates of the prices and the delivery schedule should be included.

4. Work Breakdown: This describes the breakdown of the project into activities
and identifies the milestones and deliverables associated with each activity.

5. Project Schedule: This describes the dependencies between activities, the
estimated time required to each milestone and the allocation of people to
activities.

6. Monitoring and Reporting Mechanism: This describes the management reports 1
which should be produced, when these should be produced and the project

monitoring mechanisms used.

The project plan should be regularly revised during the project. Some parts, such as
the project schedule, will change frequently; other parts will be more stable. A

document organization which allows for straightforward replacement of sections

should be used.

3.2 Milestones and Deliverables

When planning a project, a series of milestones should be established where a
milestone is an end point of a software process activity. At each milestone, there
should be a formal output, such a s report, that can be presented to management.

Milestones reports need not be large documents. They may simply be a short report of

4]

: _ ;

achievements in a project documents. Milestones should represent the end of a

distinct, logical stage in the project.

A deliverable is a project result that is delivered to the customer. It is usually
delivered at the end of some major project phase such as specifications, design, etc.
deliverables are usually milestones but milestones may be internal project result that

are used by the project manager to check project progress but which are not delivered

to the customer.

Following is the model of the activities normally processed in requirements

specifications:

Feasibility Study ----- > Feasibility Report

l

Requirements Analysis ----- > User Requirements

l

Prototype Development ------ > Evaluation Report

l

Design Study ----> Architectural Design

l

Requirement Specification ----> System Requirements

42

3.3 Project Scheduling

Project scheduling is a particularly demanding task for software managers. Manager’s
estimate and resource required to complete activities and organize them in a coherent
sequence. Unless the project being scheduled is similar to a previous project, previous
estimates are an uncertain basis for new project scheduling. Schedule estimation is
further complicated by the fact that different projects may use different design

methods and implementation languages.

If a project is technically advanced, initial estimates will almost certainly be
optimistic even when the managers try to consider all eventualities. In this respect,

software scheduling is no different from scheduling any other type of large advanced
project.
Project scheduling involves separating the total network involved in a project into

separate activities and judging the time required to complete these activities. Usually,

some of the activities are carried out in parallel. A model of project scheduling is

shown below:

Identify Estimate oI
Activitv Resolirces For

ldentifv >

Y
Allocate People
to

Y
Create Project S

43

3.4 Bar Charts & Activity Networks

Bar charts and activity networks are graphical notations which a re used to illustrate
the project schedule. Bar charts show who is responsible for each activity and when
the activity is scheduled to begin and end. Activity networks show the dependencies

between the different activities making up a project.

Following is the activity network we passed by in designing and development of the

software product.

Task Duration (Days)

Initial Discussion 03

Project Planning 11

Requirements Analysis 03
Design 20
Implementation 25
Integration & Testing 10
Installation & Acceptance 08
Report Formation 30
Data/Information Collection 07

44

CHAPTER-IV

REQUIREMENT ANALYSIS

The problems that software engineers have to solve are often immensely complex.
Understanding the nature of the problems can be very difficult, especially if the
system is new. Consequently, it is difficult to establish exactly what the system should
do. The descriptions of the services and constraints are the requirements for the
system and the process of finding out, analyzing documenting and checking the

services and constraints is called requirements engineering.
The requirement engineering process is composed of the following 3 phases:

e User requirement analysis: User requirements are statements, in a natural
language plus diagrams, of what services is expected to provide and the

constraints under which it must operate.

o System Requirement Analysis: System Requirements set out the system

E

services and constraints in detail. The system requirements document, which is
sometimes called functional specifications, should be precise. It may serve as

a contract between the system buyer and software developer.

-

e Requirements Elicitation Analysis: Requirements elicitation phase involves the
technical software development team to find out about the application domain,
what services the system should provide, the required performance of the

system, hardware constraints and so on.

4.1 User Requirements

User requirements are the statements which provide the services the system is

expected to provide. Following are some of the user requirements:

o The software must provide the means of encrypting and decrypting files

selected by the user.

45

4.2 System Requirements

1. The user should be provided with the facilities to provide files of the following
types:
e Text files
e Document Files
e Audio Files
e Picture files

e Video Files

2. The user should be able to encrypt/decrypt files selected by him/her.

3. The user should be asked to provide the password required for encryption of

files and the same password should be used decrypt that encrypted file.

4. The user should be provided with three different encryption and decryption
key length, namely 128 bits, 192 bits and 256 bits.

4.3 Different Readers

Following are the readers of different types of specifications mentioned above:

Client Managers
System End-Users

User Requirements »| Client Engineers
Contractor Managers
System Architects

System End-Users
Client Engineers
System Architects
Software Developers

A 4

System Requirements

46

X

Y

4.4 Functional and Non-functional Requirements

Software system requirements are often classified as functional and non-functional

requirements:

o Functional Requirements: These are statements of services the system should
provide, how the system should react to particular inputs and how the system
should behave in particular situations. In some cases, the functional

requirements may also explicitly state what the system should not do.

o Non functional Requirements: these are constraints on the services or functions
offered by the system. They include timing constraints, constraints on the

development process, standards, etc.

The functional requirements for a system describe the functionality or services that
system is expected to provide. These depend on the type of the software and the type
of the system which is being developed. Functional system requirements describe the

system function in detail, its input and output, exceptions, etc.

Upon analysis of the problem definition, our team decided to propose the functional
requirement of a utility for encryption and decryption of files using standard

algorithm with standard key length.

Analysis of Encryption & Decryption Utility:

This is the functioning utility of the system. Here we have to define what we are
actually encrypting (or decrypting) with a key (that would be provided by the user)
and a standard key length (that can either be 18,192 or 256 bits long).

Input Parameters: For encryption/decryption process we require the following

parameters:

1. Encrypt File
2. Decrypt File
3. Key Size
The first two parameters are used to encrypt and decrypt files. The third parameter,

key size is chosen as desired by our need.

47

e S

3

Output Delivered: When encrypting and decrypting files, the user provide the system
with a password while encrypting a file, and as output he/she gets the encrypted file,
and while decrypting the file, he/she provides the same password which was given in

encryption process and as output the decrypted (original) file is achieved.

Function: The user can encrypt & decrypt any text, document, audio, video, picture

file with any of the three key lengths provided by the system.

Non-functional requirements, as the name suggests, are those requirement which are
not directly concerned with the specific functions delivered by the system. They may
relate to emergent system properties such as, reliability, response time and store
occupancy. Alternatively they may define constraints on the system such as

capabilities of I/O devices and the data representations used in system interfaces.

Many non-functional requirements relate to the system as a whole rather than to
individual system failures. This means that they are often more critical than individual
functional requirement. While failure to meet an individual function requirement may
degrade the system, failure to meet an individual functional requirement may take the
whole system unusable. For example, if an aircraft system does not meet its reliability
requirements, it will not be certified as safe for operation; if a real time control system

fails to meet its performance requirements, the control functions will not operate

correctly.
The there main types of functional requirements are:

1) Product Requirements: These are requirements that specify product
behavior. Examples include performance requirements on how fast the system
must execute ad much memory it requires, reliability requirements that set out
the acceptable failure rate, portability requirements and usability
requirements.

2) Organizational Requirements: These are derived from the policies and
procedures in the customer’s and developer’s organization. Example includes
process standards which must be used; implementation requirements such as

the programming language or design and method used; and delivery

48

requirements which specify when the product and its documentation are to be
delivered.

3) External Requirements: this broad heading covers all requirements which
are derived from factors external to the system and its development process.
These include legislative requirements which must be followed to ensure that
the system operates within the law and ethical requirements which are placed

on a system to ensure that it will be acceptable to its users and general public.

Product Requirements:

Performance Requirement:
e Minimum CPU Speed: 166 Mhz
e Minimum HDD: 96 MB
e Minimum RAM: 32 MB

Organizational Requirement:

e Encryption/Decryption Algorithm Used: Advance Encryption Standard
e Programming Language: Java 1.6.1_10

e Operating System: Windows XP

e Platform Used: Windows.

4.5 Requirement Elicitation Analysis

After initial feasibility studies, the next stage of the requirements engineering process
is requirements elicitation analysis. Requirements elicitation analysis may involve a
variety of different kinds of people in an organization. The term stakeholder is used to
refer anyone who should have some direct or indirect influence on the system
requirement. Stakeholders include end-users who will interact with the system and
everyone else in an organization who will be affected by it. A generic process model

of the elicitation analysis is shown below:

49

L% e e

1) Domain understanding: Analyst must develop their understanding of the
application domain.

2) Requirement Collection: this is the process of interacting with stakeholders in
the system to discover their requirements. Obviously, domain understanding
develops further during this activity.

3) Classification: This activity takes the unstructured collection of requirements
and organizes them into coherent structures.

4) Conflict resolution: Inevitably, where multiple stakeholders are involved,
requirements will conflict. This activity is concerned with finding and
resolving these conflicts.

5) Prioritization: In any set requirements some will be more important than
others. This stage involves interaction with stakeholders to discover the most
important requirements.

6) Requirements Checking: The requirements are checked to discover if they are

complete, consistent and in accordance with what stakeholders really want

from the system.

4.6 Problem Definition

Statement of Purpose:

Statement of purpose (SOP) is a concise, textual statement of what the system does, it
may extend to one paragraph. The statement of purpose for our system is defined

below.

To propose a system which can encrypt and decrypt selected files using standard
encryption and decryption algorithm to protect systems (or users) against

unauthorized users.

50

“

CHAPTER-V

DESIGN

Large systems are always decomposed into the sub-systems that provide some related
set of services. The initial design process of identifying these sub-systems and
establishing a framework for sub-systems control and communication is called design

process and the output of this design process is a description of the software

architecture.

In our analysis of software requirements our team decided to design them in the

following two phases:

1) Environmental Model: Environmental Model gives the system environment
boundary. It is composed of the following components:
a) Statement of Purpose: Concise, textual statement of what the system
does, it may extend to one paragraph.
b) Context Diagram: It sets the context of the system in the environment.
It is decomposed of terminators with the system communicates, data
stores shared by the system and terminators and data received from
and sent to the system.
¢) Event List: A list of stimuli coming from the environment to which the
system must respond. It is composed of normal events, temporal events

and control events

2) Behavioral Model: Behavioral Model tells the behavior displayed by the
internal of the system. It is composed of the following components:
a) Cartesian Hierarchy: Define a function for each even list having the
same response.
b) Data Flow Diagrams: The aim of data flow diagrams is to tell what
functions the system must perform with their interactions.
¢) Process Specifications: A description of what is happening a bottom-

level primitive function.

51

d) Data dictionary: Contains a listing and description of all data items and
meaning of flow/stores.

e) User-Interface Design: This lets the software programmers decide the
user interface design of the software product in accordance with client

requirements.

5.1 Environmental Model

The following components are described in the environmental model:

5.1.1 Statement of Purpose:

Statement of Purpose (SOP) is a concise, textual statement of what the system does. It

may extend to one paragraph. The system of purpose for our system is defined below

5.1.2 Context Diagram:

Encryption &
Decryption
System

User User User

The terminator ‘User’ refers to encryption & decryption of files, with the incoming
arrow in the system referring to input files provided by the user and the outgoing

arrow from the system referring to the encrypted files.

52

5.1.3 Event List:
Normal Events:

a) User encrypts a file.

b) User decrypts a file.
Remind Events:
a) Remind user to provide the correct key length.
b) Remind the user to provide the correct password.
¢) Remind the user to decrypt an encrypted file only.

The above remind events are also applicable for administrator using the system.

5.2 Behavioral Model

The following components are described in behavioral model:

5.2.1 Cartesian Hierarchy:

Encrvotion/Decrvntion svstem

Client Receive Input Operation
User File Encryption Decryption
Password Password

53

The above Cartesian Hierarchy shows the root node being Encryption & Decryption
System, the level contains Client who can be a normal user receive input which can any

file and the operation which can be either encryption or decryption.

5.2.2 Data Flow Diagrams:

Data flow diagrams are made from the Cartesian Hierarchy itself where we design main
modules of the software system. Upon analysis, we found it necessary to provide two data

flow diagrams, one for encryption of files and second for decryption of files.

Data flow Diagram for File Encryption:

Password

\ Validate

Status

Encrypted File

54

The above data flow diagram shows the main system, i.e. the encryption system
which takes a password for encryption process. It then validates the password and
the user selects the file for encryption. After this software encrypts the file in the

end we get the encrypted file.

Data Flow Diagram for File Decryption:

For file decryption, the data flow diagram is almost same as shown above with the
exception that instead of file encryption, the system would now decrypt the file. It
would also take a paa-phrase that is the password which should be the same
password as in the encryption process. Upon successful validation of password it

would decrypt the file provided by the user. The data flow diagram for this process

is shown below:

Password

Decryption

\ Validate Password

Status

Decrypted File

55

5.2.3 Process Specification:

Process specification tells us that what is happening inside a bottom-level primitive
function. There is no commitment to the choice of algorithm, so we can choose any
way to describe process specification from given standard ones. The algorithm that
our team chooses is pre/post Condition. Here we write conditions in which certain
important processes are carried out and compliment them by writing the processes
reflected by inverting those conditions. For the current software system, below

mentioned comes under the part of process specification:

Precondition 1: Valid password for Encryption.

Postcondition 1: Encrypt File.

Precondition 2: Invalid password for Encryption.

Postcondition 2: Generate error message.

Precondition 3: Valid password for Decryption.

Postcondition 3: Decrypt File.

Precondition 4: Invalid password for Decryption.

Postcondition 4: Generate error message.

Precondition 5: Invalid key length for encryption and decryption.

Postcondition 4: Generate error message.

56

CHAPTER-VI

DEVELOPMENT

The algorithm used in our system for encryption and decryption of files is Advance
Encryption Standard (AES). In this chapter we will discuss mainly the user interface

design and the modular design of our system.

6.1 User Interface Design

It was required that we should have a user friendly interface so that a user has least
problems in using the system for encryption and decryption, so after in depth
analysis and design primitives created the following user interface designs which are

evidently the snapshots of our system.

Authorization Login

User name: ADMIN
IPasEwWorE e
Submit Cancel

When we enter the correct user name and password which is with the administrator of
this system, the validation of the user name and password entered by an user is done.
After validating if the user name and password is entered is correct the user gets on

the access to the main window form where the actual work will start.

57

Toolbar

The following snap shots are the main window from where the actual work will start:

e —————————— "

File Utilities Exit

Here we are showing the encryption and decryption sub menu and exit button of the

file menu of the main window from where the actual work will start.

Utilities Exit

Encryption & Decryption
Exit

This is the utility menu where we have notepad and calculator to help the user for any

assistance with notepad and calculator.

58

r.

Exit

Ctrl-Z

Calculator Cti-x

Once the notepad button is pressed the following window pops up which is the

Microsoft notepad window:

(4] Untitled - Notepad SRR XT
File Edit Format View Help
b
¥
i
v

Here user can write any text which can be then saved and this text document can then

be encrypted easily without browsing our system.

As we press the calculator button in the sub menu of utility a scientific calculator will

pop up where user can calculate anything needed by him/her.

59

[# Calculator o e |
Edit View Help

) Hex @ Dec © 0Oct © Bin @ Dearees () Radians () Grads

[inw (] Hyp I l Bat l:spfae:a] { CE] [G

[Sta] F:E [] MG 7 8 9 Mod [ff‘-ml

1 dms || Exp In MR 4 5 6 Or L ol

1‘ || sin [| xAy || log 15 1 2 3 Lsh [EM

4 e L ey \mEEE) EEe .
& R s T S

i J‘ €os || xA3 n! I+ 0 +/- : = [Int

§ \SERECEN] | Sl £

1 Al L |

\ | tan || xM2 1o pi [[

Encryption and Decryption of File

(] AES Encrypter & Decrypter | 3

B L] —

[][]

Password: l— e

sy R ooy RV oy

The above screen shot is the main form or the main window from where the user gets

the interface for encryption and decryption of any file on the system.

60

Here we have different buttons and different components with the help of which

encryption and decryption of any file on the system tales place. We will look at each

of these components one by one and will explain the process.

Key Size

Key Size(Bits)

The above snapshot tells us that we have three different key lengths through which we

can encrypt/decrypt files.

Encryption and Decryption of file :

Read from: [_ ,_.___w___._,_,__m] Browse | Write to: [| Browse J
Password: | | Reset Help
Encrypt Decrypt Key Size(Bits) |128 | ¥

Look In: |3 My Documents : v Be

(=7 Google Talk Received Files =] updaters (]
My Data Sources [15-12-07_0954.3gp [
My Music [pefautt.rdp [
(=] My Pictures [petailed_Scheduled.pdf [l
My Videos [guna_syhil(2).doc [
(= New Folder [List_of_Accepted_papers.pdf [
4| Il | [»
File Name: | |

Files of Type: [Au Files

Open

Cancel_

The above screen shot tells us that as we click the browse button the system files

would be easily accessible to the user. These system files will be then encrypted or

decrypted.

61

Read from: | J Browse | Write to: [= |[Browse]
Paaswont | ool o Reset || Help |
[Encrypl 1 Decrypt Key Size(Bits) |1 28 J
[g] Open T M
Look In: [bhajans m / @EJ@ 86| o=

- |} laxmi mata.0...|

| FileName: [lamimataDAT

- Files of Type: (Al Files [v]

Open Cancel

The above screen shot shows a particular file is being selected by the user. In this

particular screen shot a .DAT file is being read and will be encrypted.

1) AES Encrypter & Decrypter ' ; = % L‘ELL@J&
I
\

Read from: néIMAiml manz;_dl]wmeto [FAEncrypted.aes J{ Browse |

passwm-d. P (EEEERETENATANAARANTRE --j { Ram || Mp |

| Encypt | | Decypt | Key Size(Bit)

62

The .DAT file is then being read and is encrypted to .aes file named Encrypted which
is being saved in F drive of the system hard disk according to the path given by the
user. The above screen shot also shows that we have selected a 256 bit key for the
encryption and decryption of file. The password field is also being entered which is
also in encrypted form so that no one can see this password. The same password will

be used for decryption process.

(] AES Encrypter & Decrypter @%

Read from: th\Encwpied aes J{ Browse mee to; fF:\Deuypled DAT. __i{ Bmwsej

T [Reser”l};;] Tkl
{ Encrypt 1 Decrypt Key Size(Bits) 128 |v

128

192

The above screen shot shows us that a 256 bit key has been again selected by the user
for decryption process. The password field is also entered which has to be same as
entered in encryption process. The path of the encrypted file is. being entered which
has to be decrypted to get the original file. The decrypted path is named as Decrypted
with the original extension of the file i.e. .DAT and which is being saved in F drive of

the system hard disk according to the path entered by the user.

63

Finally, following are some screen shot which shows the assistance given to the user

for each of the functionalities in our encryption and decryption process:

| AES Encrypter & Decrypter

o |G 3|

64

veadtom: [| powse [wiets [| srowse |

Password: [W'ﬁ'iﬁij Reset Help]

Encrypt Decrypt Key Size(Bits) {128 VJ

|Click here to encrypt the selected file|

[é»] AES Encrypter & Decrypter @_‘.@_Iihj

Readfrom:[\ Browse Wn‘telo:| | Bmwsew
Paswwad | | Reset || Help

Encrypt Decrypt Key Size(Bits) |128 | ¥

|Click here fo decryptthe selecled il

Y

|| AES Encrypter & Decrypter

Read from: E '

[;a_] AES Encrypter & Decrypter

1 Browse. J Write to: |

Read from: |

|| Browse

Password: [

lol @ 53

" | Bowse |
Reset [Help
+{ Choice the Key size
Write to: | | Browse

[Encrypt

Decrypt

Key Size(Bits

65

| |Glicknhefe o browse o e fil that you want t encryp
‘ s s)

| 4

el || bowe Wiew | Bows

- ol [T —
Eneryt Decrwt! Key SizeBits) (128 "

6.2 Module Design

In this section we will be discussing about various modules that we developed during

the development of the project.

Following are the components forms developed:

a) Authentication Procedure: For acceptance of user name and password and

its validation.
b) Algorithm Procedure: For encryption & decryption process.

c) Main authorization login Procedure: For gaining access to main window.

66

T

d) Main screen Display Procedure: For encrypting/decrypting files, for

accessing utilities that are notepad and calculator.

According to the above components forms developed the following modules are
designed:
e Module 1: Authorization for access to the system to access various utilities
and encryption/decryption of files on the system.
e Module 2: For general interface programming.
e Module 3: For implementation of Rijnadel (AES) algorithm
e Module 4: Interface programming for encryption and decryption of any file

on the system.

6.2.1 Module 1: Authorization

This module authorizes the user for gaining access to the system. It prompts user
for the user name and password by which he/she can gain access to the system.

This module has just one class named LoginPanel, 1t calls a constructor which
constructs a panel with user name and password fields. This class extends to

Jpanel. This class consists of many components which are listed below:

o JTextField: JTextField is the simplest Swing text component. It is also
probably its most widely used text component. JField allows us to edit one line
of text. It is derived from JTextComponent, which provides the basic
functionality common to swing text component. Here in Our program
JTextField is used for enter the user name for the authentication to encypt any

file in the system.

o JPasswordField: JPasswordField is also swing component. JPasswordField
allows us to edit one line of Password. JPasswordField is used for enter the
password so that user/administrator authorized to use encryption and

decryption program for encrypt/decrypt any file in the system.

67

o JButton : JButton is also swing component. The JButton class provides the
functionality of push button. JBotton allows an icon, a string, or both to be
associated with the push button. Here we are using string to associate with the
push button. When the button is pressed, an ActionEvent is generated. Using
the ActionEvent object passed to the actionperformed() methed of the
registration ActionLisener, we can obtain the action commond string

associated with the button.

e JDialog : JDialog is a type of container used in swing. This container does not
inherit JComponent. This do, however, inherit the AWT classes Component
and Container. In our program JDialog box contains six components like

submit button, username field, password field, cancel button etc.

o ActionListener: This is a interface define the action perform () method that is 4\
invoked when an action event occurs. Listeners are creared by implementing ;]
one or more of the interfaces defined by the Java.awt.event package. 9-

W

ActionListener is defined one method to receive action events.

Here is the authorization module procedure:

public class LoginPanel extends J Panel {
private static Dimension dimension;
private JTextField username;
private JPasswordField password;
private JButton okButton;
private boolean ok;

private JDialog dialog;

public LoginPanel() {

setLayout(new BorderLayout());
68

// construct a panel with user name and password fields

JPanel panel = new JPanel();

panel.setLayout(new GridLayout(2, 2));
panel.setOpaque(false);

JLabel label = new JLabel("User name:");

label.setOpaque(false);

panel.add(label);

panel.add(username = new JTextField("Enter Username"));

panel.add(new JLabel("Password:"));

pancl.add(password = new JPasswordF ield("™));

/Ipassword.setEcho('*');

add(panel, BorderLayout. CENTER);

//panel.setBackground(Color.green);

// create Ok and Cancel buttons that terminate the dialog
okButton = new JButton(""'Submit");
okButton.addActionListener(new ActionListener() { ,
public void actionPerformed(ActionEvent event) { (
ok = true; ‘
dialog.setVisible(true);
}
s

JButton cancelButton = new JButton("Cancel");
cancelButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {

dialog.setVisible(true);

}
s

// add buttons to southern border
JPanel buttonPanel = new JPanel();
69

buttonPanel.add(okButton);
buttonPanel.add(cancelButton);
add(buttonPanel, BorderLayout.SOUTH);

public void setUser(String u) {

username.setText(u);

public String getUser() {

return "User";

public boolean showDialog(Component parent, String title) {

ok = false;

// locate the owner frame

Frame owner = null;

if (parent instanceof Frame) {
owner = (Frame) parent;
} else {

owner = (Frame) SwingUtilities.getAncestorOfClass(Frame.class, parent);

// if first time, or if owner has changed, make new dialog
if ((dialog == null) || (dialog.getOwner() != owner)) {

dialog = new JDialog(owner, true);

dialog.getRootPane().add(this);
dialog.getRootPane().setDefaultButton(ok Button);
dialog.pack();

/0

// set title and show dialog
dialog.setTitle(title);

Dimension d = Toolkit.getDefaultToolkit().getScreenSize();

Dimension frameSize = dialog.getSize();

dialog.setLocation((d.width - frameSize.width)/2 (d.height -
frameSize.height) /2); // center the mofo

dialog.setResizable(true);

dialog.setContentPane(this);

dialog.setVisible(true);

return ok;

public static void main(String[] args) throws IOException {

LoginPanel pane = new LoginPanel(); i

try {)r

BufferedImage image = ImagelO.read(new File("molz.jpg"));
pane.setBorder(new BackgroundlmageBorder(image));

} catch (IOException €) {
e.printStackTrace();

//pane.setBorder(BorderFactory.create TitledBorder("A border"));

pane.showDialog(null, "Enter Username and password");

71

6.2.2 Module 2: General Interfuce

This module create graphical user interface for the user for gaining access to the
system. It prompts user for the file, utilities, and exit by which he/she can gain
access to the system and system features.

This module has just one class named JMenubar, This class only defines the
default constructor. It calls a constructor which constructs a menu with file,

utilities and exit fields.

e JMenu: A top level window can have a menu bar associated with it. A

menu bar displays a list of top-level menu choices. Each choice is

associated with a drop-down menu.JMenu is also a container which is

using swing operation in our program.components used in JMenu is file !
H

utilities and exit in our program

e ActionListener: This is a interface define the action perform () method
that is invoked when an action event occurs. Listeners are creared by
implementing one or more of the interfaces defined by the Java.awt.event ‘5

package. ActionListener is defined one method to receive action events.

Here is the general interface module procedure:

public class GeneralUserInterface extends JMenuBar {

String[] fileItems = new String[] { "Encryption & Decryption", "Exit" };
String[] editltems = new String[] { "Notepad","Calculator" };
char(] fileShortcuts = { N','X" };
charf] editShortcuts = { 'Z','’X'};
private Image image;
public GeneralUserInterface()

{

72

super("");
try {
MediaTracker mt = new MediaTracker (this);
image = Toolkit.getDefaultToolkit(). getImage("untitled.jpg");
mt.addImage(image, 0);
mt.waitForID(0);
}
catch (Exception €) {
e.printStackTrace();

JMenu fileMenu = fileMenu = new JMenu("File");
JMenu editMenu = new JMenu("Utilities");
JMenu otherMenu = new JMenu("Exit");

ActionListener printListener = new ActionListener() {

public void actionPerformed(ActionEvent event) {
System.out.println("Menu item [" + event.getActionCommand() +

"] was pressed.");

}

b5

for (int i=0; i < fileltems.length; i++) {
JMenultem item = new JMenultem(fileltems[i], fileShortcuts[i]);
item.addActionListener(printListener);

fileMenu.add(item);

// Assemble the File menus with keyboard accelerators.
for (int i=0; i < editltems.length; i++) {
JMenultem item = new JMenultem(editItems[i]);
item.setAccelerator(KeyStroke. getKeyStroke(editShortcuts(i],
Toolkit.getDefaultToolkit().getMenuShortcutKeyMask(), false));

item.addActionListener(printListener);
73

editMenu.add(item);

// Insert a separator in the Edit menu in Position 1 after "Undo".

editMenu.insertSeparator(1);

// Assemble the submenus of the Other menu.
JMenultem item;

subMenu2.add(item = new JMenultem("Extra 2"));
item.addActionListener(printListener),
subMenu.add(item = new JMenultem("Extra 1"));
item.addActionListener(printListener);

subMenu.add(subMenu?2);

// Assemble the Other menu itself.

otherMenu.add(subMenu);

otherMenu.add(item = new JCheckBoxMenultem("Check Me"));
item.addActionListener(printListener);
otherMenu.addSeparator();

ButtonGroup buttonGroup = new ButtonGroup();
otherMenu.add(item = new JRadioButtonMenultem("Radio 1"));
item.addActionListener(printListener);

buttonGroup.add(item);
otherMenu.add(item = new JRadioButtonMenultem("Radio 2"));

item.addActionListener(printListener);
buttonGroup.add(item);

otherMenu.addSeparator();
otherMenu.add(item = new JMenultem("Potted Plant",

new Imagelcon("image.gif")));

item.addActionListener(printListener);

// Finally, add all the menus to the menu bar.

add(fileMenu);
74

add(editMenu);
add(otherMenu);

public static void main(String s[]) {
public Image image;
JFrame frame = new JFrame("Menu Window");
frame.setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);
frame.set)MenuBar(new GeneralUserInterface());
frame.pack();

frame.setVisible(true);

pane.setBorder(BorderFactory.createTitledBorder("A border"));
pane.showDialog(null, "LoginPanel | Unit Test");

6.2.3 Module 3: Rijnadel (AES) algorithm

Here is the implementation procedure of Rijnadel (AES) algorithm :

public class AESEncrypter
{

Cipher ecipher;

Cipher dcipher;

public AESEncrypter(SecretKey key)
{
// Create an 8-byte initialization vector
byte[] iv = new byte[]
{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

0x09,0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0xOf
75

AlgorithmParameterSpec paramSpec = new IvParameterSpec(iv);

try
{
ecipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
dcipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
// CBC requires an initialization vector
ecipher.init(Cipher. ENCRYPT_MODE, key, paramSpec);
dcipher.init(Cipher. DECRYPT_MODE, key, paramSpec); !
}
catch (Exception e)
{
e.printStackTrace();
}
\
})
(¢
|
// Buffer used to transport the bytes from one stream to another i/

byte[] buf = new byte[1024];

public void encrypt(InputStream in, OutputStream out)

{
try

// Bytes written to out will be encrypted

out = new CipherOutputStream(out, ecipher);

// Read in the cleartext bytes and write to out to encrypt
int numRead = 0;

while ((numRead = in.read(buf)) >= 0)
{

out.write(buf, 0, numRead);
76

//System.out.printin(numRead); |

t
out.close();
1
catch (java.io.JOException ¢)
{
t

public void decrypt(InputStream in, OutputStream out)

{
try
{
// Bytes read from in will be decrypted
in = new CipherInputStream(in, deipher);
// Read in the decrypted bytes and write the cleartext to out :l‘}*
int numRead = 0; “
while (numRead = in.read(buf)) >= 0) 'y
{
System.out.println(numRead);
out.write(buf, 0, numRead); 3
} |
out.close(); l
|
| |
catch (java.io.IOException ¢)
{
}
// System.out.printIn("end");
}
77

Y

public static void main(String args[])

\n\n”);

System.out.printf("\t\t\tFinal Year Project \n\n ");
System.out.printIn("\t\W\tProject Title: Encryption and ");
System.out.printIn("\t\t\t Decryption of Files. \n\n");
System.out.printin("\t\t\tSubmitted By:- 5

System.out.printIn("\t\t\tName: Kanishka Kumar Roll no: 041097 ");

System.out.printIn("\t\t\tName: Pankaj Tripathi Roll no: 041010

try
{

String temp,temp1,keyl;

BufferedReader br = new BufferedReader(new

InputStreamReader(System.in));

System.out.print("Enter the path of file to be encrypted ");
temp = br.readLine();

int t= temp.lastindexOf(".");

StringBuffer sb = new StringBuffer(temp);

String result = sb.substring(t);

System.out.print("Enter the path where you want to store the

Decrypted file ");

I

temp1 = br.readLine();
keyli= br.readLine();

String sbg=temp1+"Decrypted"+result;

//sb.replace(t,t+1,"new.");

//String sbg = new String(sb);
78

System.out.println("The output File name is "+sbg);
//String temp = "DESTest.dat";
// Generate a temporary key. In practice, you would save this

key.
J/ See also €464 Encrypting with DES Using a Pass Phrase.

KeyGenerator kgen =
KeyGenerator. getInstance("AES");
kgen.init(128);
SecretKey key = kgen.generateKey();

// Create encrypter/decrypter class

AESEncrypter encrypter = new AESEncrypter(key);

// Encrypt

encrypter.encrypt(new FileInputStream(temp),new

FileOutputStream("Encrypted.txt"));
/] Decrypt
encrypter.decrypt(new FileInputStream("Encrypted.txt"),new

FileOutputStream(temp1));

}
catch (Exception e)
{
e.printStackTrace();
}

79

6.2.4 Module 4: Encryption/Decryption_Interface

e Container: The container class is a subclass of Component. It has
additional methods that allow other Component objects nested within it.
Container objects can be stored inside a Container. A container is
responsible for laying out any components that it contains. It does this

through the use of various layout managers.

e JLabel: JLabel is the swing component that creates a label, which 1s a
component that displays information. The label is swing’s simplest
component because it is passive. That is, a label does not respond to user

input, it just display output.

e JPasswordField: JPasswordField is also swing component.

JPasswordField allows us to edit one line of Password. JPasswordField is

used for enter the password so that user/administrator authorized to use |‘[‘
encryption and decryption program for encrypt/decrypt any file in the ,t‘

f
system.

e JButton: JButton is also swing component. The JButton class provides the
functionality of push button. JBotton allows an icon, a string, or both to .

be associated with the push button. Here we are using string to associate

with the push button. When the button is pressed, an ActionEvent is
generated. Using the ActionEvent object passed to the actionperformed()
methed of the registration ActionLisener, we can obtain the action 5

commond string associated with the button.

e GridBag Layout: The general procedure for using a grid bag is to first
create a new GridBaglLayout object and make it the current layout

manager. GridBagLayout defines only one constructor.

80 ;

e GridBag Constraints: The location and size of each component in a
gridbag are determined by a set of constraints linked to it. The constraints
are contained in an object of type GridBagConstraints. Constraints

include the hight and width of a cell, and the placement, its alignment,

and its anchir point within the cell.

Here is the encryption/ decryption interface module procedure: j

public static Encryptor obj;

public Container container;

public JLabel passwordLabel, inputPathLabel, outputPathLabel,
statusLabel,bitLabel;

public JTextField inputPathField, outputPathField;

public JPasswordField passwordField,

public JButton openButton, saveButton, encryptButton, decryptButton,

helpButton, resetButton, vl

|

public GridBagLayout layout; rﬂ\
‘i

public GridBagConstraints constraints; ' ,4/

public JComboBox number;

public boolean encrypt;

public boolean busy;

public int code[];

public int codeLength;

public int currentCodelndex;

public DecimalFormat decimalFormat;
public byte byteData[];

public long filePointer, lengthOfFile;

public int dataSize;

public RandomAccessFile inputFilePointer; !

private RandomAccessFile outputFilePointer;
81

public Encryptor()

{
super("AES Encrypter & Decrypter");
obj = this;
container = getContentPane();
container.setBackground(Color.white);
layout = new GridBagLayout();
container.setLayout(layout);

constraints = new GridBagConstraints();

passwordLabel = new JLabel("Password: ");

inputPathLabel = new JLabel("Read from: ");

outputPathLabel = new JLabel("Write to: ");

statusLabel = new JLabel("Status: stopped");

passwordField = new JPasswordField(12);

paséwordField.setEchoChar(o b i \
inputPathField = new JTextField(12); Al
outputPathField = new JTextField(12); ;; |

openButton = new J Button("Browse");
saveButton = new JButton("Browse");
encryptButton = new JButton("Encrypt");
decryptButton = new JButton("Decrypt");
helpButton = new JButton("Help");
resetButton = new JButton("Reset");

decimalFormat = new DecimalFormat("00");

bitLabel = new JLabel("Key Size(Bits) 7
number = new JComboBox();
number.addItem("128 ");
number.addItem("192 ");
number.additem("256 ");

82

passwordLabel.setHorizontal Alignment(SwingConstants. LEFT);
inputPathLabel.setHorizontal Alignment(SwingConstants. LEFT);
outputPathLabel.setHorizontal Alignment(SwingConstants.LEFT); |
statusLabel.setHorizontal Alignment(SwingConstants. LEFT);
bitLabel.setHorizontal Alignment(SwingConstants. LEFT); ..
/>!<

openButton.setBackground(Color.lightGray);
saveButton.setBackground(Color.lightGray);

resetButton.setBackground(Color.lightGray);
helpButton.setBackground(Color.green);
encryptButton.setBackground(Color.red);
decryptButton.setBackground(Color.red);
passwordLabel.setBackground(Color.white);
inputPathLabel.setBackground(Color.white);
outputPathLabel.setBackground(Color.white);
passwordLabel.setForeground(Color.red);
inputPathLabel.setForeground(Color.blue);

outputPathLabel.setForeground(Color.blue); J.'

statusLabel.setBackground(Color.white); il

statusLabel.setForeground(Color.red); |
ey |

openButton.setTool TipText("Click here to browse to the file that you want to
encrypt");

saveButton.setTool TipText("Click here to select the path of the decrypted
file"');

resetButton.setTool TipText("Click here to erase file paths");

helpButton.setTool TipText("Click here to view help texts");

|

E
encryptButton.setTool TipText("Click here to encrypt the selected file"); i
decryptButton.setTool TipText("Click here to decrypt the selected file"); ";
|

|

inputPathField.setTool TipText("Type a file path here");

outputPathField.setTool TipText("Type a destination file path here");

vy

passwordField.setTool TipText("<html>Type any text as a code or password

for file altering.<p>Press ENTER to enter advanced integer ASCII code(for

advanced users).<p>Be sure to remember your code.</html>");

number.setTool TipText("Choice the Key size!")

addComponent(inputPathLabel, 1, 1, 4, 1 i)
addComponent(inputPathField, 1,4,4, 1);
addComponent(openButton , Lo B, 1)
addComponent(outputPathLabel,1, 10, 3, 1);
addComponent(outputPathField,1, 13, 4, 1);
addComponent(saveButton, 1, 17,1, 1);
addComponent(passwordLabel , 2, 1, 3, 1);
addComponent(passwordField, 2,4,4,1);
addComponent(resetButton, 2, 13,2, 1);
addComponent(helpButton, 2, 15,2, 1);
addComponent(encryptButton, -t g W I
addComponent(decryptButton, 3, 5,3, 1);

/faddComponent(statusLabel, st B
addComponent(bitLabel, 10803 1)
addComponent(number, 3,10, 4, 1)

openButton.addActionListener(this);
saveButton.add ActionListener(this);
encryptButton.addActionListener(this);
decryptButton.addActionListener(this);
helpButton.addActionListener(this);
resetButton.addActionListener(this);

passwordField.addActionListener(this);

setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

this.addWindowListener(
new WindowAdapter()

{

84

public void windowClosing(WindowEvent ¢)

{

int result = JOptionPane.showConﬁrmDialog(Encryptor.this, "Do you 1
really Want to exit?", "Confirmation", J OptionPane.YES_NO_OPTION);
if(result == JOptionPane.YES_OPTION)

{
System.exit(0);

}
);
pack();
setSize(700, 175); !+
setLocation(20, 150);
setResizable(true);
setVisible(true);
) \
\1-

public void addComponent(Component component, int row, int column, int slf

| width, int height) /
{

constraints.weightx = 0;

' constraints.weighty = 0; |
constraints.gridx = column;
constraints.gridy = row; |
constraints.gridwidth = width;
constraints.gridheight = height;
layout.setConstraints(component, constraints);

container.add(component);

]
: |
|

public void actionPerformed(ActionEvent event)
(
if(event.getSource() == openButton) !
j

{ |
86 i

JFileChooser fileChooser = new JFileChooser();
fileChooser.setFileSelectionMode(JFileChooser. FILES_ONLY);
int result = fileChooser.showOpenDialog(this);
if(result !=1J FileChooser. APPROVE_OPTION)

return;
File fileName = fileChooser.getSelectedFile();
if(fileName == null || fileName.getName().equals(""))
{

JOptionPane.showMessageDialog(this, "Invalid file name" , "Error",

JOptionPane. ERROR._MESSAGE);
}
else
| %'
inputPathField.setText(fileName.getPath());
if(outputPathField.getText().equals(""))

{
outputPathField.setText(fileName.getPath()); A
\
) |
} /
}
5 else if(event.getSource() == saveButton 3
| {

JFileChooser fileChooser = new JFileChooser();
fileChooser.setFileSelectionMode(JFileChooser.FILES_ONLY);

int result = fileChooser.showSaveDialog(this);
if(result != JFileChooser. APPROVE_OPTION)
return;
File fileName = fileChooser.getSelectedFile();
if(fileName == null || fileName.getName().equals(""))

{
JOptionPane.showMessageDialog(this, "Invalid file name" , "Error",
J OptionPane.ERROR_MESSAGE %
}
86

_

else
{
outputPathField.setText(fileName.getPath());
}
}
else if(event.getSource() == encryptButton || event.getSource() ==
decryptButton)
{
Worker worker = new Worker(event, container %
worker.start();
}
else if(event.getSource() == helpButton)
{

String tmp = "File Encryptor and Decryptor\n Designed by Kanishk
Kumar and Pankaj Tripathi \nE-mail: 'kanishka.kr@gmail.com and
pankaj.tripathi.juit@gmail.com\n\nThis program is used to make a file(encrypt a
file) such that \nNO ONE CAN READ IT . \nType file Paths and Type character
codes\nand click ENCRYPT or DECRYPT Button to perform file operation.\nIf
you encrypt a file with a code you can retrieve original file by\ndecrypting it with
only the previously applied code used for encryption.\n\n\n" +

"A simple example:\nClick RESET.\nClick the left blue 'Browse' marked
_button.\nSelect any file\n(do not select important file yet, as you are
practicing).\nThen type a password or code at the code text field.\nClick
ENCRYPT button.\nAt this step your file is encrypted.\nJust click the DECRYPT
button again to decrypt the file to\nretain to its original contents.\nThis is a simple
example but\nyou can change the path of 'Write to' text field to another file\nfor
keeping the source file unchanged(specially for safety, but requires much
space).\n\n\nWarning:\nDo not encrypt a file more than once.\nAlways make sure
that you DO NOT FORGET THE CODE." +

mn\n\nNote:\nEncrypt a file with your secret code to make it
unreadable\nand when you want to read that file decrypt it with the same code to

make it readable.\nYou can use this program to any kind of file such as text file,

execution file etc.\nThis program processes only one file at a time so\nif you want

87

to encrypt several files at a time convert them into a single file\n(for example
making all the files as a zip file etc.)and encrypt that single file.\nThis program
takes about 2 to 3 minutes to process a file of 500 MB length.\nNote that you
cannot change a file which is set to '"Read-Only' mode by the operating
system.\nUncheck the 'Read-only" attribute before proceeding." +

"n\n\nExtra Notes(for advanced users only):\nEncrypt operation with a
code is total inverse ofinDecrypt operation with the same code,\nso if you find any
problem such as 'you encrypted twice' etc.\ntry doing the inverse operation the
same number of time in inverse sequence.\n\n\nAdvanced code:\nYou can also
enter code as ASCII integer values by pressing ENTER\nwhen the focus is on the
code text field.\nEnter as many integers as you want but\nmake sure to write it
down sequentially or remember its sequence.";

JTextArea ta = new JTextArea(10, 40);

ta.setText(tmp);

ta.setEditable(false);

ta.select(0, 0);

JOptionPane.showMessageDialog(this, new JScrollPane(ta),
"Help/About", J OptionPane. INFORMATION_MESSAGE);

}

else if(event.getSource() == resetButton)
{
inputPathField.setText("");
outputPathField.setText("");
}
else if(event.getSource() == passwordField)
{
try
{
if(busy)
return;
busy = true;
int rslt;

int length=0;

88

™

String inputString;

int input;

byte byteTmp;

Vector byteCode = new Vector();
int count = 0;

while(true)

{

rslt = JOptionPane.showConfirmDialog(this, "Proceed with Integer
number " + (count+1) + "?", "Proceed?", JOptionPane.YES_NO_OPTION);
if(rslt !=JOptionPane.YES_OPTION)

{
break;

}
inputString = JOptionPane.showInputDialog(this, "Enter an

Integer\n(Range: 0 - 255)");
input = Integer.parselnt(inputString);
if(input <0 || input > 255)
{
break;

t
byteTmp = (byte)input;
byteCode.addElement(new Byte(byteTmp));
length++;
count++;

}

if(length>0)

{
String output ="";
for(count = 0; count < length; count++)

{
output += (char)(((Byte) byteCode.clementAt(count)

).byteValue());

}
89

I passwordField.setText(output);

1
| busy = false;
| }
catch(Exception exception)
|
|

JOptionPane.showMessageDialog(this, exception.toString(), "Exception",
JOptionPane. ERROR_MESSAGE).
busy = false;

}

public static void main(String args[])

{ |

Encryptor application = new Encryptor();

public class UpdateThread extends Thread
{

JLabel label;
int progress, total;
public UpdateThread(JLabel a, int b, int ¢)

| {

90

i
1

label = a;
progress = b;
‘ total = c;

t

public void run()

{

int a;
a = (progress * 100)/ total;

String b = "Progress: ";
b += decimalFormat.format(a);

b+=" %u;

label.setText(b);

public class Worker extends Thread
1
ActionEvent event;

Container container;

public Worker(ActionEvent a, Container b))
{

event = a;

container = b;

}

public void run()

Q1

try

KeyGenerator kgen =
KeyGenerator.getInstance("AES");
kgen.init(128);
SecretKey key = kgen.generateKey(); !
AESEncrypter encrypter = new AESEncrypter(key); ‘

// Create encrypter/decrypter class

busy = true;

container.setCursor(Cursor.getPredefinedCursor(

Cursor.WAIT CURSOR)); i

openButton.setEnabled(false iR

‘ saveButton.setEnabled(false); ‘
encryptButton.setEnabled(false);
decryptButton.setEnabled(false);
helpButton.setEnabled(false);
resetButton.setEnabled(false), |

if(event.getSource() == encryptButton)
encrypt = true;
else

encrypt = false;

| if(inputPathField.getText().trim().length() <1)
{

92

JOptionPane.showMessageDialog(Encryptor.this , "Enter an input file
name" , "Error", JOptionPane. ERROR_MESSAGE);

return;

if(outputPathField.getText().trim().length() <1) .

{
JOptionPane.showMessageDialog(Encryptor.this , "Enter a output file

name" , "Error", JOptionPane. ERROR_MESSAGE);
return;

}

String tmpString = new String(passwordField.getPassword());

codeLength = tmpString.length();
if(codeLength<1)
{
JOptionPane.showMessageDialog(Encryptor.this, "Please type a code.",
"Error", JOptionPane. ERROR_MESSAGE); !

return;

}

code = new int[codeLength];

for(int count = 0; count < codeLength; count-++)

{
code[count] = ((int)(tmpString.charAt(count)) % 256);

}

if(lencrypt)
{
try |

{
String temp,sbg;

openButton.setEnabled(false);
| 93

1 temp=inputPathField.getText();
sbg=outputPathField.getText();
encrypter.encrypt(new FileInputStream(temp),new
FileOutputStream("c:/New Folder/Encrypted.txt"));
encrypter.decrypt(new FileInputStream("c:/New

Folder/Encrypted.txt"),new F ileOutputStream(sbg));

}
catch (Exception e)
{
e.printStackTrace();
}
}
if(encrypt){ i
try |
{

String temp,temp1,keyl,sbg;

temp=inputPathField.getText(),
sbg=outputPathField.getText();

encrypter.encrypt(new FileInputStream(temp),new

FileOutputStream(sbg));
encrypter.decrypt(new FileInputStream(sbg),new

FileOutputStream("c:/New Folder/Decrypted.txt"));

}

catch (Exception e)

{
94

_

e.printStackTrace();

/* File filel = new File(inputPathField.getText());
File file2 = new File(outputPathField.getText());
if(!filel.exists() || !filel.isFile())
{
JOptionPane.showMessageDialog(Encryptor.this, "Invalid input file
name" , "Error", JOptionPane. ERROR_MESSAGE),

return;

}
else if(!filel.canRead())

{
System.err.printIn("Input File Not Readable");

return;

if(file2.exists() && !file2.canWrite())

{
JOptionPane.showMessageDialog(Encryptor.this, "The selected output

file is read-only!\nPlease select another output file.", "Operation halted",
JOptionPane. ERROR_MESSAGE);

return,

}

String strl = "File Size " + filel.length() + " bytes\nDo you want to

proceed with this operation?"; |

if(filel.getPath().equals(file2.getPath()))
{

95 '\

strl += "n\n(Warning : If a power failure occurs during this
process\nall file data to be corrapted and can't be retrieved anymore,\nbecause you

} are going to overwrite existing file rather \ncreating a new file)"

}
else
{
if(file2.exists())
{
strl +="\n\n(Warning : You are going to overwrite an existing file.)";
}
}
int result = JOptionPane.showConfirmDialog(Encryptor.this, strl,

"Confirmation", JOptionPane.YES_NO_OPTION);
if(result != JOptionPane.YES_OPTION)

{

return;
'

catch(Exception exception)

{
JOptionPane.showMessageDialog(Encryptor.this, exception.toString(),

"Exception", JOptionPane. ERROR_MESSAGE);

}
finally
{
try{
code = null;
busy = false;

openButton.setEnabled(true);
saveButton.setEnabled(true);
96

encryptButton.setEnabled(true);
decryptButton.setEnabled(true);
helpButton.setEnabled(true);
resetButton.setEnabled(true);

statusLabel.setText("Status: stopped");

try
{
if(inputFilePointer != null)
{
inputFilePointer.close();
inputFilePointer = null;
}
if(outputFilePointer != null)
{
outputFilePointer.close(),
outputFilePointer = null;
}
container.setCursor(Cursor.getPredefinedCursor(
Cursor.DEFAULT_CURSOR));
}

catch(Exception exception)

{
JOptionPane.showMessageDialog(Encryptor.this, exception.toString(),

"Exception", JOptionPane. ERROR_MESSAGE);
}

catch(Exception E){

}
}

97

e

CHAPTER-VII

INTEGRATION AND TESTING

In this phase the different components developed in the implementation phase were
integrated unto one single package and then tested for various parameters. Software
testing is a critical element of software quality assurance and represents the ultimate

review of specification, design, and code generation. Below mentioned are rules

which serve as good testing objectives:

a) Testing is a pragess of executing a program with the intent of finding an error.

b) A good test case is one that has high probability of finding an as-yet-

undiscovered error. {

¢) A successful test is one that uncovers an as-yet-undiscovered error.

These objectives imply a dramatic change in viewpoint. They move counter to the

commonly held view that a successful test is one in which no errors are found. Our
objective is to design tests that systematically uncover different classes of errors and

to do so with a minimum amount of time and effort.

7.1 Testing Principles ‘

Before applying methods to design effective test cases, a software engineer must

understand the basic principles that guide software testing. Following are some of

them:

a) All tests should be traceable to customer requirements: As we know, the
objective of software testing is to uncover errors. It follows that the most
severe defects (from the customer’s point of view) are those that cause the

program to fail to meet its requirements.

b) Tests should be planned long before testing begins: Test planning can begin
as soon as the requirements model is complete. Detai9led definition can begin
as soon as the design model has been solidified. Therefore, all tests can be

planned and designed before any code has been generated.

98

B e e T s

c)

d)

The Pareto principle applies to the software testing: Stated simply, the
Pareto principle implies that 80 percent of all errors uncovered during testing
will likely be traceable to 20 percent of all program components. The problem,

of course, is to isolate these suspect components and to thoroughly test them.

Testing should begin “in the small” and in progress towards testing “in
the large”: The first tests planned and executed generally focus on individual
components. As testing progresses, focus shifts in an attempt to find errors in

integrated clusters of components and ultimately in the entire systex.

Exhaustive testing is not possible: the number of path permutations for cven
a moderately sized program is exceptionally large. For this reason, it is
impossible to execute every combination of paths during testing. It is possible,
however, to adequately cover program logic and to ensure that all conditions

on the component-level design have been exercised.

To be most effective, testing should be conducted by an independent third
party: By most effective, we mean testing that has the highest probability of

finding errors (the primary objective of testing).

Testing software is generally carried out in two stages:

a) Black Box Testing: This form of testing is done on the system as a whole

where we are not concerned with the system inside functionality: we just take

an input and find out weather it maps to its correct output.

b) White Box Testing: This form of testing takes into account the system inside

functionally and it requires testing done at each particular level or module off

the system.

99

—

e =

7.2 Black Box testing

Black Box testing consists of the following four types:

a) Graph Based Testing
b) Equivalence Testing
¢) Boundary Value Analysis

d) Comparison Testing

The type of black box testing our team did was Graph based testing, namely Cause-
Effect Graphs:

In cause-effect graphs following points have to be kept in mind:

e We have to describe all causes (inputs) and effects (outputs).

e To number the causes and effects and make them node of a graph.
e [Establish logical connections between the nodes.

e Supply additional information necessary.

e Develop test cases.

Black Box testing for encryption Process:

Requirement: the system should successfully encrypt plaintext or a file.
Function: Encrypt (Password, file, key length)

Processing: Function validates the password and encrypts the file
Output:

e Encrypt=Success (correct password & key length)
e Encrypt=Failure (incorrect password or file)

e Invalid Syntax

100

s
S ——

- ————

Causes Effects

C1, The characters E,N,C,R,Y,P,T El, The message Encrypt=Success
C2, Calculate Encrypt=Success E2, The message Encrypt=Failure
C3, Calculate Encrypt=Failure E3, The message Invalid Syntax

C4, The two parameters

Not

Cause-Effect Graph

Building Test Case: For developing test cases the following assumptions are kept:

I: Input Present, S: Input Absent, X: Don’t Care, P: Output Present, A: Output Absent
101

TESTI TEST2 TEST3 TEST4

Cl I I 1 S

C2 i S X X

3 S I X X

C4 i I S I

El P A A A

E2 A p A A |
d

E3 A A P P il
i

Black Box Testing For Decryption Process: :
Requirement: The system should successfully decrypt plaintext or a file.

Function: Decrypt (password, file, key length)

Processing: Function validates the password and Decrypts the file.

Output:

e Decrypt= Success (correct password & key length)
e Decrypt =Failure (incorrect password or file)

e Invalid Syntax

102

Causes Effects
C1. The characters D,E,C,R,Y,P,T El. The message Decrypt=Success
C2. Calculate Decrypt = Success E2. The message Decrypt = Failure
C3. Calculate Decrypt = Failure E3. The message Invalid Syntax

C4. The two parameters

N
\ N

N
\\o

Cause-Effect Graph

Not

103

Building Test Case: Following test cases are developed:

TESTI TEST2 TEST3 TEST4

Cl I I I S
C2 I S X X
3 S I X X
C4 I I S I

El P A A A
E2 A P A A
E3 A A P B

7.3 White Box Testing

White box testing or each particular module was performed and the following results

were obtained:

Wrong Passwords or Keysize:

o If we enter wrong password while encrypting or decrypting files we get the

following error message:

o If we provide with two different key sizes in encryption and decryption
process then we receive the following error message:
e Password is case dependent i.e. both the keys in encryption and decryption

should be wither be in lower case or upper case otherwise the following error

message is received:

104

RSN —

s e s

The following formats of data the software system can encrypt/decrypt successfully

Text Files:

Notepad File: *.txt

Word File: *.doc

WordPad File: *.ppt

Access File: *.mdb

Excel File: *:xls

PowerPoint Template: *.pot dl
MHTML Document: *.mht
Document Template: *.dot
Firefox Document: *.htm
Picture Files: \
Windows Meta File: *.wmf

Exte.nded Windows Meta File: *.emf

Image Files: *.gif, *.png, *.tif, *.bmp, * jpeg

Audio Files

MPEG-1 Audio Layer 3 File: *.mp3

Windows Media Audio File: *.wma

Ogg Vorbit Audio File: *.ogg

Waveform Audio Format: *.wav, *. vox

105

| |

CHAPTER-VIII

INSTALLATION AND ACCEPTANCE

After the testing phase is over the software systems is installed on the system where

its application is required. The acceptance of the software produces the following

quality management protocols to be examined:

8.1 Quality Management

Achieving is a high level or product or service quality is the objective of most
organizations. It is no longer acceptable to deliver poor quality products and then
repair problems and deficiencies after they have been delivered to the customer. In
this respect, software is the same as any manufactured product such as cars, television

or computers.
Software quality management can be structured into three principal activities:

a) Quality Assurance: The establishment of a framework of organizational
procedures and standards which lead to high-quality software.

b) Quality Planning: The selection of appropriate procedures and standards from
this framework and the adaptation of these for a specific software product.

c) Quality control: The definition and enactment of processes which ensure that
the project quality procedures and standards are followed by the software

development team.

Quality management provides an independent check on the software development
process. The deliverables from the software process are input to the quality
management process and are checked to ensure that they are consistent with
organizational standards and goals. As the quality assurance and control team should
be independent, they can take an objective view of the process and can report

problems and difficulties to senior management in the organization.

106

*‘ e
Y

h

Areas covered to model quality assurance:

Management Responsibility Quality Team
Control of non conforming products Design Control rl
Handling, Storage, Packaging & Delivery . Purchasing
Purchaser-supplied products [dentification & Traceability
Process Control Inspection & test Status
Inspection & Test Equipment Inspection & Test Status
Contract Review Corrective Action
Document Control Quality Records
Internal Quality Audits Training
Servicing Statistical Technique

8.2 Quality Assurance & standards

Quality assurance (QA) activities define a framework for achieving software quality.
The QA process involves defining or selecting standards that should be applied to the
software development process or software product. These standards may be

embedded in procedures or processes which are applied during development.

107

There are two types of standards that may be established as part of quality assurance

Process:

a) Product standards: These are standards that apply to the software product
being developed. They include standards such as the structure of the
requirements document which should be produced, documentation standard ‘
such as standard comment header for an object class definition & coding I
standards which define how a programming language should be used.

b) Process standards: These are standards that define the processed which should
be followed during software development. They may include definitions of
specifications, design & validation processes and a description of the

documents which must be generated in the course of these processes.

8.3 Product & Process Standards

Following are some of the product & process standards

Product Standards Process Standards
Design review form Design review conduct
Requirements document structure Submission of documents
Procedure header format Version release process
Project plan format Change control process
Change request form Test recording process

108

8.4 Quality Planning

Quality Planning should begin at an early stage in the software process. A quality plan

should set out the desired product qualities. These include the following:

a)

b)

Product Introduction: A description of the product, its intended market and
the quality expectations for the product.
Product Plans: The critical release dates and responsibilities for the product

along with plans for distribution and product servicing.

Product Descriptions: The development and service processes which should
be used for development & management.

Quality Goals: The quality goals and plans for the product, including an
identification &justification of critical product quality attributes.

Risks & Risk Management: The key is which might affect product quality and

the actions to address these risks.

109

——_———y

CHAPTER- IX

CONCLUSION AND FUTURE SCOPE

Our Project, encryption & decryption of Files, finished successfully with the main
objective getting accomplished. Our system is successfully able to encrypt & decrypt
text, audio, video and picture files of known extension efficiently and quickly. The

system is user friendly giving least amount of any trouble to its users.

With the completion of the project and with the design of graphical user interface for ;
encryption and decryption of files, we learned not only the technical knowledge for
designing and developing such system, but also the managerial ‘know how’, how to

follow a project life cycle to reach the end starting from the scratch.

We have designed a system which encrypts and decrypts any file present on a single
system/node where we execute our program; however for some purposes we may i_
need our encryption/decryption system to work on multiple system/nodes as we |
transfer files from one node to another. Therefore our system can be improved by

implementing it on multiple systems and by protecting the files to be accessed by |

unauthorized users.

110

CHAPTER -X

INSTALLATION GUIDE

Contents of the CD and its directory structure

The contents of the CD are as follows: l
e Source Codes
e S/W and H/W Requirements
e Compiling and Execution Method
e Test Layout with Expected ouput

These are discussed as follows.

10.1 S/W and H/W requirements

These are the requirements that are to be fulfilled by the system on which the |
‘encryption and decryption of files would take place. |

10.1.1 S/W Requirements: |

e Java Development Kit 1.6.1 10 and JRE 1.5.0_03 should already be I
installed on the system where we would run our program. |

e Programming Language: Java 1.6.1_10

e Software Used : Any editor for java such as JCreator 3.10 LE or JEdit can
be used for efficient execution of the program.

e Operating System: Windows XP

e Platform Used: Windows.

111

10.1.2 Hardware Requirements: |

Performance Requirement:
e Minimum CPU Speed: 166 Mhz |
e Minimum HDD: 96 MB

e Minimum RAM: 32 MB

10.2 Installation Procedure

The installation procedure is very simple. We just need to compile all the source
codes and run. The user interface which then pops up should be dealt according to the
help statements present for each component. The following screenshot will help for
installation procedure.

CAWINDOWS\system32\cmd.exe - java Encryptol iﬂ_lil

Microsoft Windous 4P [Uersion 5.1.26681
(C) Copyright 1985-2881 Microsoft Corp.

C:\Documents and Settings\kanishkadcd..
C:\Docunents and Settingsicd..

C:\>javac AESEncrypter.java

C:\>javac Encryptor.java
Note: Encryptor.java uses unchecked or unsafe operations.
Note: Reconpile with -Klint:unchecked for details.

C:\>java Encryptor

Here we are just showing the compilation and execution of our main module which is
the encryption and decryption of files and its user interface.

112

10.3 Compiling and execution method

There are many methods for Compiling and Execution; one is just by using
command prompt and using javac statement for compilation and java statement
for execution, another method is to execute the file on some standard editor such

as JCreator 3.10 LE or JEdit.

10.4 Test Layout with Expected output.

Readfrom: (0 Flestobe encnypled | Browse | Witeto: fecrptedEncypledaes, Browse
. Passwort; [Rese17 Help

Encrypt Decrypt |~ Key SizefBit) 123 v
28
10

The above screen shot shows the test layout carried out for encryption process

with the key size selected as 256.

113

it R e L

rfrbfﬂ*"%»‘{@""“'? T R

S Encrypter @ Decrypter

Read from: (ralkto remember1.mp3§| Browse | Writeto: \ecwpledlDecnfpted.mm] Browse

Password: [’"**'““ \ Reset. Help g

i Em_:lypt Decrypt Key Size(Bits) |128 vl

The above screen shot shows the test layout carried out for decryption
process with the same key size as selected in encryption i.e. 256 bits.

114

e B Ve Faorls Tok b

M) sl onpidu g

C Al T NewTt Do v h Moot O W - sty vkl sy
. FleandflerTss Tod Doy Q é e | gl
AR E Wit Ofe Word Dounent N suie 3 GF g
WL . s 3

| Qitsite || oopdas e

W | e . mﬂ el

IS ik e 100

| et

2 Nakaile

The above screen shot shows the expected output. As the path entered by the user for
encrypted file and decrypted file to be saved, the encrypted and decrypted path are
saved. The encrypted file has the extension as .aes while decrypted file has the

extension as .mp3.

1:18

BIBILOGRAPHY

Text References:

1. William Stallings. Cryptography and Network Security. Pearson education.
Fourth Edition

9. Herbert Schildt. The Complete Reference-Java2. McGraw Hill Co. 7" Edition

3. Cay S. Horstmann, Gray Cornll. Core Java-2. McGraw Hill Co. New York 5t
Edition

4. Charlic Kuafmaa, Radia Perlman & Mike Speciner. Network Security.
MecGraw Hill Co. New York 1996

Internet References:

1. www.wikipedia.com — The Internet Encyclopedia.

www.gravkessler.net — An Overview of Cryptography by Gray C. Kessler.

www.nist.gov — AES, Question & Answers.

e e

www.aeslounge.com — Contains a Comprehensive Bibliography of documents

and papers on AES, with access to electronic copies.

Research Papers:

1. Daemen, J., and Rijmen, V.”Rijndael: The Advanced Encryption Standard.”
Dr,Dobb’s Journal, March 2001.

2. Daemen, J., and Rijmen, V.The Design of Rijndcel: The Wide Trail Strategy
Explained. New York, Springer-Verlag, 2002.

3. Landau,S.”Polynomials in the Nation’s Service: Using Algebra to Design the
Advanced Encryption Standard”. American Mathematical Monthly, February
2004.

116

