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CHAPTER-I 

INTRODUCTION 

1.1 Problem Statement 

   Implementation of K-Means, Genetic Algorithm and Hybrid of both K-means and Genetic 

Algorithm for prediction of forest fires.    

1.2 Data Mining 

It is a process of extracting data from a data ware house where the data can be  non-trivial, 

implicit, unknown, potentially useful. As more data is gathered, with the amount of data 

doubling every three years, data mining is becoming an increasingly important tool to transform 

this data into information.  

Humans have been “manually” extracting information from data for centuries, but the increasing 

volume of data in modern times has called for more automatic approaches. As data sets and the 

information extracted from them has grown in size and complexity, direct hands-on data analysis 

has increasingly been supplemented and augmented with indirect, automatic data processing 

using more complex and sophisticated tools, methods and models. The proliferation, ubiquity 

and increasing power of computer technology has aided data collection, processing, management 

and storage. However, the captured data needs to be converted into information and knowledge 

to become useful. Data mining is the process of using computing power to apply methodologies, 

including new techniques for knowledge discovery to data. 

1.3 Data Clustering 

Clustering is the assignment of objects into groups (called clusters) so that objects from the same 

cluster are more similar to each other than objects from different clusters. Often similarity is 

assessed according to a distance measure. Clustering is a common technique for statistical data 

analysis, which is used in many fields, including machine learning, data mining, pattern 

recognition, image analysis and bioinformatics. 
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Common distance functions: 

• The Euclidean distance : A review of cluster analysis in health psychology research 

found that the most common distance measure in published studies in that research area is 

the Euclidean distance or the squared Euclidean distance.  

• The Manhattan distance   

• The maximum norm   

• The Mahalanobis distance corrects data for different scales and correlations in the 

variables  

• The angle between two vectors can be used as a distance measure when clustering high 

dimensional data 

• The Hamming distance measures the minimum number of substitutions required to 

change one member into another.  

   1.3.1 Clustering Techniques 

• Partitioning algorithms: Construct various partitions and then evaluate them by some 

criterion 

• Hierarchy algorithms: Create a hierarchical decomposition of the set of data (or objects) 

using some criterion 

• Density-based: based on connectivity and density functions 

• Grid-based: based on a multiple-level granularity structure  

• Model-based: A model is hypothesized for each of the clusters and the idea is to find the 

best fit of that model to each other  

1.3.2 Partitioning Algorithms: Basic Concept 

• Partitioning method: Construct a partition of a database D of n objects into a set of k 

clusters 

• Given a k, find a partition of k clusters that optimizes the chosen partitioning criterion 
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– Global optimal: exhaustively enumerate all partitions 

– Heuristic methods: k-means and k-medoids algorithms 

– k-means (MacQueen’67): Each cluster is represented by the center of the cluster 

– k-medoids or PAM (Partition around medoids) (Kaufman & Rousseeuw’87): Each 

cluster is represented by one of the objects in the cluster   

• Classical partitioning: 

  -  K-Means (Centroid-based technique) 

      -  K-Medoids (Representative point based technique) 

      -  K-Modes (Huang 1998) 

• Partitioning methods in large databases 

   -  CLARA (Clustering large Applications) 

       -  CLARANS (Clustering Large Applications based upon Randomized Search 

1.3.3 Hierarchical Algorithms:  

• It can be classified into either agglomerative or divisive 

• Agglomerative Approach (bottom-up): set each object as a individual cluster or group 

and merges the objects or groups close to one another, until all of the groups are merged 

into one(the topmost level of  the hierarchy) 

• Divisive Approach (top down): starts with all objects in the same cluster. In each 

successive iteration, a cluster is split up into smaller clusters, until a termination 

condition holds.  

• Integration of hierarchical with distance-based clustering 

• BIRCH (1996) : uses CF-tree and incrementally adjusts the quality of sub-clusters  
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• CURE (1998) : selects well-scattered points from the cluster and then shrinks 

them towards the center of the cluster by a specified fraction 

• CHAMELEON (1999) : hierarchical clustering using dynamic modeling 

1.3.4 Density-Based Clustering Methods 

– DBSCAN : Ester, et al. (KDD’96) 

– OPTICS : Ankerst, et al (SIGMOD’99). 

– DENCLUE : Hinneburg & D. Keim  (KDD’98) 

– CLIQUE : Agrawal, et al. (SIGMOD’98)  

1.3.5 Grid-Based Clustering Method 

• Several interesting methods 

– STING (a Statistical Information Grid approach) by Wang, Yang and Muntz 

(1997) 

– WaveCluster by Sheikholeslami, Chatterjee, and Zhang (VLDB’98) 

• A multi-resolution clustering approach using wavelet method 

– CLIQUE: Agrawal, et al. (SIGMOD’98) 

1.3.6 Model-Based Clustering Methods 

– COBWEB (Fisher’87)  

• A popular a simple method of incremental conceptual learning 

• Creates a hierarchical clustering in the form of a classification tree 

• Each node refers to a concept and contains a probabilistic description of 

that concepts 
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1.4 KDD Process 

Knowledge discovery in databases (KDD) is the non-trivial extraction of implicit, previously 

unknown, and potentially useful information from databases. 

Six common and essential elements qualify each as a knowledge discovery technique. The 

following are basic features that all KDD techniques share: 

• All approaches deal with large amounts of data  

• Efficiency is required due to volume of data  

• Accuracy is an essential element  

• All require the use of a high-level language  

• All approaches use some form of automated learning  

• All produce some interesting results  

Large amounts of data are required to provide sufficient information to derive additional 

knowledge. Since large amounts of data are required, processing efficiency is essential. 

Accuracy is required to assure that discovered knowledge is valid. The results should be 

presented in a manner that is understandable by humans. One of the major premises of KDD is 

that the knowledge is discovered using intelligent learning techniques that sift through the data in 

an automated process. For this technique to be considered useful in terms of knowledge 

discovery, the discovered knowledge must be interesting; that is, it must have potential value to 

the user. 

KDD provides the capability to discover new and meaningful information by using existing data. 

KDD quickly exceeds the human capacity to analyze large data sets. The amount of data that 

requires processing and analysis in a large database exceeds human capabilities, and the 

difficulty of accurately transforming raw data into knowledge surpasses the limits of traditional 

databases. Therefore, the full utilization of stored data depends on the use of knowledge 

discovery techniques. 

The usefulness of future applications of KDD is far-reaching. KDD may be used as a means of 

information retrieval, in the same manner that intelligent agents perform information retrieval on 



 

the web. New patterns or trends in data may be discovered using the

also be used as a basis for the intelligent interfaces of tomorrow, by adding a knowledge 

discovery component to a database engine or by integrating KDD with spreadsheets and 

visualizations.  

1.4.1 KDD Process Diagram 
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the web. New patterns or trends in data may be discovered using these techniques. KDD may 

also be used as a basis for the intelligent interfaces of tomorrow, by adding a knowledge 

discovery component to a database engine or by integrating KDD with spreadsheets and 

FIG. 1 
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1.5 K-Means Algorithm 

K-means (MacQueen, 1967) is one of the simplest unsupervised learning algorithms that solve 

the well known clustering problem. The procedure follows a simple and easy way to classify a 

given data set through a certain number of clusters (assume k clusters) fixed a priori. The main 

idea is to define k centroids, one for each cluster. These centroids should be placed in a cunning 

way because of different location causes different result. So, the better choice is to place them as 

much as possible far away from each other. The next step is to take each point belonging to a 

given data set and associate it to the nearest centroid. When no point is pending, the first step is 

completed and an early groupage is done. At this point we need to re-calculate k new centroids 

of the clusters resulting from the previous step. After we have these k new centroids, a new 

binding has to be done between the same data set points and the nearest new centroid. A loop has 

been generated. As a result of this loop we may notice that the k centroids change their location 

step by step until no more changes are done. In other words centroids do not move any more. 

1.6 Genetic Algorithm 

Genetic algorithms were formally introduced in the United States in the 1970s by John Holland 

at University of Michigan. A genetic algorithm (GA) is a search technique used in computing to 

find exact or approximate solutions to optimization and search problems. 

Genetic algorithms are a particular class of evolutionary algorithms that use techniques inspired 

by evolutionary biology such as inheritance, mutation, selection, and crossover (also called 

recombination) 

Genetic algorithms operate on set of possible solutions. Because of random nature of the genetic 

algorithm, solutions found by the algorithm can be good, poor or infeasible [defective, 

erroneous] so there should be a way to specify how good that solution is. This is done by 

assigning fitness value [or just fitness] to the solution. Chromosomes represent solutions within 

the genetic algorithm. Two basic component of chromosome are coded solution and its fitness 

value.  
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Chromosomes are grouped into population [set of solutions] on which the genetic algorithm 

operates. In each step [generation] genetic algorithm selects chromosomes form population 

[selection is usually based on fitness value of chromosome] and combines them to produce new 

chromosomes [offspring]. These offspring chromosomes form new population [or replace some 

of the chromosomes in the existing population] in hope that new population will be better then 

previous. Populations keep track of the worst and the best chromosomes and stores additional 

statistical information which can be used by genetic algorithm to determine stop criteria.  

Genetic algorithms produce new chromosomes [solutions] by combining existing chromosomes. 

This operation is called crossover. Crossover operation takes parts of solution encodings from 

two existing chromosomes [parents] and combines them into single solution [new chromosome]. 

This operation depends on chromosome representation and can be very complicated. Although 

general crossover operations are easy to implement, building specialized crossover operation for 

specific problem can greatly improve performance of the genetic algorithm 

1.7 Genetic K-Means Algorithm 

A Hybrid Genetic Algorithm (GA) that finds a globally optimal partition of a given data into a 

specified number of clusters. GA’s used earlier in clustering employ either an expensive 

crossover operator to generate valid child chromosomes from parent chromosomes or a costly 

fitness function or both. To circumvent these expensive operations, we hybridize GA with a 

classical gradient descent algorithm used in clustering, K-means algorithm. Hence, the name 

Genetic K-means Algorithm (GKA). We define K-means operator, one-step of K-means 

algorithm, and use it in GKA as a search operator instead of crossover. It is observed in the 

simulations that GKA converges to the best known optimum corresponding to the given data in 

concurrence with the convergence result. 
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CHAPTER – 2 

K-Means Algorithm 

In statistics and machine learning, k-means clustering is a method of cluster analysis which 

aims to partition n observations into k clusters in which each observation belongs to the cluster 

with the nearest mean. In a given database of N objects and where K is the number of clusters to 

form such that the objects within a cluster are similar on the basis of distance. It is a centroid 

based technique.  Clustering is done in such a manner that intra-cluster similarity is high and 

inter- cluster similarity is low 

2.1 Description 

Given a set of observations (x1,x2,…,xn), where each observation is a d-dimensional real vector, 

then k-means clustering aims to partition this set into k partitions (k<n) S={S1,S2,…,Sk} so as to 

minimize the within-cluster sum of squares (WCSS): 

 

Where µi is the mean of Si. 

Also, the distance function used in our software is the Euclidian Distance given by the formula  

 

The function for the initial cluster centers to be arbitrarily chosen is 

 Initial Cluster Centers = Max value-min value/ ((cluster length +1) *n +min value)  

After, the initial cluster centers are obtained each data point is assigned to a cluster to which the 

data point is closest based on the Euclidian Distance and thus initial clusters are formed. Now, 

iteratively new cluster centers are formed based on the mean of all data points in a given cluster 
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and again classified into new clusters by the closest Euclidian Distance. This process continues 

till final clusters are formed 

2.2 Psuedo Code For K-Means Algorithm 

 

Fig 2 
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2.3 Flow Chart For K-means Algorithm 

 

Fig 3 

2.3.1 Flow Chart Explanation 

Step 1 Initialization 

     Choose K initial Cluster centers  

               M1(1), M2(1), ... , MK(1) 

Method 1 – First K samples 

Method 2 – K data samples selected randomly    

Method 3 – K random vectors 
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Set m = 1 and Go To Step 2 

Step 2 Determine New Clusters 

       Using Cluster centers Distribute pattern vectors using minimum distance. 

Method 1 – Use Euclidean distance 

Method 2 – Use other distance measures 

Assign sample xj to class Ck if  

 

Go to Step 3 

Step 3 Compute New Cluster Centers 

       Using the new Cluster assignment 

                Clk(m)  m = 1, 2, ... , K 

Compute new cluster centers  

   Mk(m+1)  m = 1, 2, ... , K 

 Using :- 

 

            where  Nk ,  k = 1, 2, ... , K is the number of pattern vectors in Clk(m)  

Go to Step 4 

Step 4 Checks for Convergence 

       Using Cluster centers from step 3 check for convergence 

       Convergence occurs if the means do not change 
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If Convergence occurs Clustering is complete and the results given. 

If No Convergence then Go to Step 5 

Step 5 Checks for Maximum Number of Iterations 

       Define MAXIT as the maximum number of iterations that is acceptable. 

If m = MAXIT Then display no convergence And Stop.  

If m < MAXIT Then m=m+1 (increment m) 

                                   And Return to Step 2  

2.4 Example 

Given the following set of pattern vectors 

 

                                                Plot of Data points in Given set of samples 

 

Fig 4 



 

 

(a) Using the first two samples X1 and X2, as initial cluster center for the K

algorithm find a separation of the pattern vector into two clusters.

(b) Using the first three samples, X1, X2, and X3 as in

algorithm find a separation of the pattern vectors into three clusters.

(a) Solution – 2-class case 

Initial Cluster Centers 

 

Distances from all Samples to cluster centers

First Cluster assignment 

Cl1 (1) = {X1 , X3} 
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Using the first two samples X1 and X2, as initial cluster center for the K

algorithm find a separation of the pattern vector into two clusters. 

Using the first three samples, X1, X2, and X3 as initial cluster centers for the K

algorithm find a separation of the pattern vectors into three clusters. 

 

Fig 5 

Distances from all Samples to cluster centers 

JUIT 

Using the first two samples X1 and X2, as initial cluster center for the K-Means 

itial cluster centers for the K-Means 

 



 

Cl2 (1) = {X2 , X4 , X5 , X6 , X7}

 

 

First Cluster Assignment 

 

 

Compute New Cluster centers 
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Cl2 (1) = {X2 , X4 , X5 , X6 , X7} 

 

Fig 6 
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Distances from all Samples to cluster centers

Second Cluster assignment 

 

23 | P a g e  

 

 

Fig 7 

Distances from all Samples to cluster centers 
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Compute New Cluster Centers 

   Distances from all Samples to cluster centers
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Fig 8 

 

 

Fig 9 

s from all Samples to cluster centers 
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Compute New Cluster centers 

 

 

 

(b) Solution: 3-Class case 

Select Initial Cluster Centers 

 

First Cluster assignment using distances from pattern vectors to initial cluster centers 

 

 

Compute New Cluster centers 

 

Second Cluster assignment using distances from pattern vectors to cluster centers 

 



 

 

At the next step we have convergence as the cluster centers do not change thus the Final Cluster 

Assignment becomes 

Final 3-Class Clusters 

 

2.5 Limitations 

1) K-Means algorithm has problems when clusters are of differing Sizes, Densities and Non

Globular Size. 

2) K-Means algorithm has problems when the data contains Outliers
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At the next step we have convergence as the cluster centers do not change thus the Final Cluster 

 

 

Fig 10 

has problems when clusters are of differing Sizes, Densities and Non

Means algorithm has problems when the data contains Outliers. 
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At the next step we have convergence as the cluster centers do not change thus the Final Cluster 

has problems when clusters are of differing Sizes, Densities and Non-
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CHAPTER – 3 

GENETIC ALGORITHM 

A genetic algorithm (GA) is a search technique used in computing to find exact or approximate 

solutions to optimization and search problems. Genetic algorithms are categorized as global 

search heuristics. Genetic algorithms are a particular class of evolutionary algorithms (also 

known as evolutionary computation) that use techniques inspired by evolutionary biology such 

as inheritance, mutation, selection, and crossover (also called recombination). 

Genetic algorithms are implemented in a computer simulation in which a population of abstract 

representations (called chromosomes or the genotype of the genome) of candidate solutions 

(called individuals, creatures, or phenotypes) to an optimization problem evolves toward better 

solutions. Traditionally, solutions are represented in binary as strings of 0s and 1s, but other 

encodings are also possible. The evolution usually starts from a population of randomly 

generated individuals and happens in generations. In each generation, the fitness of every 

individual in the population is evaluated, multiple individuals are stochastically selected from the 

current population (based on their fitness), and modified (recombined and possibly randomly 

mutated) to form a new population. The new population is then used in the next iteration of the 

algorithm. Commonly, the algorithm terminates when either a maximum number of generations 

has been produced, or a satisfactory fitness level has been reached for the population. If the 

algorithm has terminated due to a maximum number of generations, a satisfactory solution may 

or may not have been reached. 

Genetic algorithms find application in bioinformatics, phylogenetics, computational science, 

engineering, economics, chemistry, manufacturing, mathematics, physics and other fields. 

A typical genetic algorithm requires: 

1. a genetic representation of the solution domain, 

2. a fitness function to evaluate the solution domain. 
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A standard representation of the solution is as an array of bits. Arrays of other types and 

structures can be used in essentially the same way. The main property that makes these genetic 

representations convenient is that their parts are easily aligned due to their fixed size, which 

facilitates simple crossover operations. Variable length representations may also be used, but 

crossover implementation is more complex in this case. Tree-like representations are explored in 

genetic programming and graph-form representations are explored in evolutionary programming. 

The fitness function is defined over the genetic representation and measures the quality of the 

represented solution. The fitness function is always problem dependent. For instance, in the 

knapsack problem one wants to maximize the total value of objects that can be put in a knapsack 

of some fixed capacity. A representation of a solution might be an array of bits, where each bit 

represents a different object, and the value of the bit (0 or 1) represents whether or not the object 

is in the knapsack. Not every such representation is valid, as the size of objects may exceed the 

capacity of the knapsack. The fitness of the solution is the sum of values of all objects in the 

knapsack if the representation is valid, or 0 otherwise. In some problems, it is hard or even 

impossible to define the fitness expression; in these cases, interactive genetic algorithms are 

used. 

Once we have the genetic representation and the fitness function defined, GA proceeds to 

initialize a population of solutions randomly, then improve it through repetitive application of 

mutation, crossover, inversion and selection operators. 

3.1 Initialization 

Initially many individual solutions are randomly generated to form an initial population. The 

population size depends on the nature of the problem, but typically contains several hundreds or 

thousands of possible solutions. Traditionally, the population is generated randomly, covering 

the entire range of possible solutions (the search space). Occasionally, the solutions may be 

"seeded" in areas where optimal solutions are likely to be found. 
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3.2 Selection 

During each successive generation, a proportion of the existing population is selected to breed a 

new generation. Individual solutions are selected through a fitness-based process, where fitter 

solutions (as measured by a fitness function) are typically more likely to be selected. Certain 

selection methods rate the fitness of each solution and preferentially select the best solutions. 

Other methods rate only a random sample of the population, as this process may be very time-

consuming. 

Most functions are stochastic and designed so that a small proportion of less fit solutions are 

selected. This helps keep the diversity of the population large, preventing premature convergence 

on poor solutions. Popular and well-studied selection methods include roulette wheel selection 

and tournament selection. 

3.3 Reproduction 

The next step is to generate a second generation population of solutions from those selected 

through genetic operators: crossover (also called recombination), and/or mutation. 

For each new solution to be produced, a pair of "parent" solutions is selected for breeding from 

the pool selected previously. By producing a "child" solution using the above methods of 

crossover and mutation, a new solution is created which typically shares many of the 

characteristics of its "parents". New parents are selected for each child, and the process continues 

until a new population of solutions of appropriate size is generated. Although reproduction 

methods that are based on the use of two parents are more "biology inspired", recent researches 

(Islam Abou El Ata 2006) suggested more than two "parents" are better to be used to reproduce a 

good quality chromosome. 

These processes ultimately result in the next generation population of chromosomes that is 

different from the initial generation. Generally the average fitness will have increased by this 

procedure for the population, since only the best organisms from the first generation are selected 

for breeding, along with a small proportion of less fit solutions, for reasons already mentioned 

above. 
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3.4 Termination 

This generational process is repeated until a termination condition has been reached. Common 

terminating conditions are: 

• A solution is found that satisfies minimum criteria 

• Fixed number of generations reached 

• Allocated budget (computation time/money) reached 

• The highest ranking solution's fitness is reaching or has reached a plateau such that 

successive iterations no longer produce better results 

• Manual inspection 

• Combinations of the above 

3.5 Simple generational genetic algorithm pseudocode 

1. Choose initial population 

2. Evaluate the fitness of each individual in the population 

3. Repeat until termination: (time limit or sufficient fitness achieved)  

1. Select best-ranking individuals to reproduce 

2. Breed new generation through crossover and/or mutation (genetic operations) and 

give birth to offspring 

3. Evaluate the individual fitness of the offspring 

4. Replace worst ranked part of population with offspring 
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3.6 Flowchart 

 

 

 

 

 

 

 

 

 

 

Fig 11 

3.7 Observations 

There are several general observations about the generation of solutions via a genetic algorithm: 

• Repeated fitness function evaluation for complex problems is often the most prohibitive 

and limiting segment of artificial evolutionary algorithms. Finding optimal solution to 

complex high dimensional, multimodal problems often requires very expensive fitness 

function evaluations. In real world problems such as structural optimization problems, 

one single function evaluation may require several hours to several days of complete 

simulation. Typical optimization method can not deal with such a type of problem. In this 

case, it may be necessary to forgo an exact evaluation and use an approximated fitness 

that is computationally efficient. It is apparent that amalgamation of approximate models 
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may be one of the most promising approaches to convincingly use EA to solve complex 

real life problems. 

• The "better" is only in comparison to other solution. As a result, the stop criterion is not 

clear. 

• In many problems, GAs may have a tendency to converge towards local optima or even 

arbitrary points rather than the global optimum of the problem. This means that it does 

not "know how" to sacrifice short-term fitness to gain longer-term fitness. The likelihood 

of this occurring depends on the shape of the fitness landscape: certain problems may 

provide an easy ascent towards a global optimum, others may make it easier for the 

function to find the local optima. This problem may be alleviated by using a different 

fitness function, increasing the rate of mutation, or by using selection techniques that 

maintain a diverse population of solutions, although the No Free Lunch theorem proves 

that there is no general solution to this problem. A common technique to maintain 

diversity is to impose a "niche penalty", wherein, any group of individuals of sufficient 

similarity (niche radius) have a penalty added, which will reduce the representation of 

that group in subsequent generations, permitting other (less similar) individuals to be 

maintained in the population. This trick, however, may not be effective, depending on the 

landscape of the problem. Diversity is important in genetic algorithms (and genetic 

programming) because crossing over a homogeneous population does not yield new 

solutions. In evolution strategies and evolutionary programming, diversity is not essential 

because of a greater reliance on mutation. 

• Operating on dynamic data sets is difficult, as genomes begin to converge early on 

towards solutions which may no longer be valid for later data. Several methods have been 

proposed to remedy this by increasing genetic diversity somehow and preventing early 

convergence, either by increasing the probability of mutation when the solution quality 

drops (called triggered hypermutation), or by occasionally introducing entirely new, 

randomly generated elements into the gene pool (called random immigrants). Again, 

evolution strategies and evolutionary programming can be implemented with a so-called 

"comma strategy" in which parents are not maintained and new parents are selected only 

from offspring. This can be more effective on dynamic problems. 
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• GAs cannot effectively solve problems in which the only fitness measure is a single 

right/wrong measure, as there is no way to converge on the solution (no hill to climb). In 

these cases, a random search may find a solution as quickly as a GA. However, if the 

situation allows the success/failure trial to be repeated giving (possibly) different results, 

then the ratio of successes to failures provides a suitable fitness measure. 

• Selection is clearly an important genetic operator, but opinion is divided over the 

importance of crossover versus mutation. Some argue that crossover is the most 

important, while mutation is only necessary to ensure that potential solutions are not lost. 

Others argue that crossover in a largely uniform population only serves to propagate 

innovations originally found by mutation, and in a non-uniform population crossover is 

nearly always equivalent to a very large mutation (which is likely to be catastrophic). 

There are many references in Fogel (2006) that support the importance of mutation-based 

search, but across all problems the No Free Lunch theorem holds, so these opinions are 

without merit unless the discussion is restricted to a particular problem. 

• Often, GAs can rapidly locate good solutions, even for difficult search spaces. The same 

is of course also true for evolution strategies and evolutionary programming. 

• For specific optimization problems and problem instances, other optimization algorithms 

may find better solutions than genetic algorithms (given the same amount of computation 

time). Alternative and complementary algorithms include evolution strategies, 

evolutionary programming, simulated annealing, Gaussian adaptation, hill climbing, and 

swarm intelligence (e.g.: ant colony optimization, particle swarm optimization) and 

methods based on integer linear programming. The question of which, if any, problems 

are suited to genetic algorithms (in the sense that such algorithms are better than others) 

is open and controversial. 

• As with all current machine learning problems it is worth tuning the parameters such as 

mutation probability, recombination probability and population size to find reasonable 

settings for the problem class being worked on. A very small mutation rate may lead to 

genetic drift (which is non-ergodic in nature). A recombination rate that is too high may 

lead to premature convergence of the genetic algorithm. A mutation rate that is too high 

may lead to loss of good solutions unless there is elitist selection. There are theoretical 
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but not yet practical upper and lower bounds for these parameters that can help guide 

selection. 

• The implementation and evaluation of the fitness function is an important factor in the 

speed and efficiency of the algorithm. 

3.8 Variants 

The simplest algorithm represents each chromosome as a bit string. Typically, numeric 

parameters can be represented by integers, though it is possible to use floating point 

representations. The floating point representation is natural to evolution strategies and 

evolutionary programming. The notion of real-valued genetic algorithms has been offered but is 

really a misnomer because it does not really represent the building block theory that was 

proposed by Holland in the 1970s. This theory is not without support though, based on 

theoretical and experimental results (see below). The basic algorithm performs crossover and 

mutation at the bit level. Other variants treat the chromosome as a list of numbers which are 

indexes into an instruction table, nodes in a linked list, hashes, objects, or any other imaginable 

data structure. Crossover and mutation are performed so as to respect data element boundaries. 

For most data types, specific variation operators can be designed. Different chromosomal data 

types seem to work better or worse for different specific problem domains. 

When bit strings representations of integers are used, Gray coding is often employed. In this 

way, small changes in the integer can be readily effected through mutations or crossovers. This 

has been found to help prevent premature convergence at so called Hamming walls, in which too 

many simultaneous mutations (or crossover events) must occur in order to change the 

chromosome to a better solution. 

Other approaches involve using arrays of real-valued numbers instead of bit strings to represent 

chromosomes. Theoretically, the smaller the alphabet, the better the performance, but 

paradoxically, good results have been obtained from using real-valued chromosomes. 

A very successful (slight) variant of the general process of constructing a new population is to 

allow some of the better organisms from the current generation to carry over to the next, 

unaltered. This strategy is known as elitist selection. 
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Parallel implementations of genetic algorithms come in two flavours. Coarse grained parallel 

genetic algorithms assume a population on each of the computer nodes and migration of 

individuals among the nodes. Fine grained parallel genetic algorithms assume an individual on 

each processor node which acts with neighboring individuals for selection and reproduction. 

Other variants, like genetic algorithms for online optimization problems, introduce time-

dependence or noise in the fitness function. 

It can be quite effective to combine GA with other optimization methods. GA tends to be quite 

good at finding generally good global solutions, but quite inefficient at finding the last few 

mutations to find the absolute optimum. Other techniques (such as simple hill climbing) are quite 

efficient at finding absolute optimum in a limited region. Alternating GA and hill climbing can 

improve the efficiency of GA while overcoming the lack of robustness of hill climbing. 

This means that the rules of genetic variation may have a different meaning in the natural case. 

For instance - provided that steps are stored in consecutive order - crossing over may sum a 

number of steps from maternal DNA adding a number of steps from paternal DNA and so on. 

This is like adding vectors that more probably may follow a ridge in the phenotypic landscape. 

Thus, the efficiency of the process may be increased by many orders of magnitude. Moreover, 

the inversion operator has the opportunity to place steps in consecutive order or any other 

suitable order in favour of survival or efficiency. (See for instance or example in travelling 

salesman problem.) 

Population-based incremental learning is a variation where the population as a whole is evolved 

rather than its individual members. 
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CHAPTER – 4 

GENETIC K-MEANS ALGORITHM 

4.1 Why Genetic K-Means Algorithm? 

Genetic algorithm’s (GA) used earlier in clustering employ either an expensive crossover 

operator to generate valid child chromosomes from parent chromosomes or a costly fitness 

function or both. To circumvent these expensive operations, we hybridize GA with a classical 

gradient descent algorithm used in clustering viz., K-means algorithm. Hence, the name Genetic 

K-means algorithm (GKA). We define K-means operator, one-step of K-means algorithm, and 

use it in GKA as a search operator instead of mutation. We prove that the GKA converges to the 

global optimum. It is observed in the simulations that GKA converges to the best known 

optimum corresponding to the given data in concurrence with the convergence result. It is also 

observed that GKA searches faster than some of the other algorithms used for clustering. Since, 

K-means algorithm uses the entire dataset for clustering.GKA improved predictability of the 

system since the final population considered for clustering has the maximum probability.  

4.2 Introduction 

GA’s have been applied to many function optimization problems and are shown to be good in 

finding optimal and near optimal solutions. Their robustness of search in large search spaces and 

their domain independent nature motivated their applications in various fields like pattern 

recognition, machine learning, VLSI design, etc. 

The simplest and most popular among iterative clustering algorithms is the K-means algorithm 

(KMA). As mentioned above, this algorithm may converge to a suboptimal partition. Since 

stochastic optimization approaches are good at avoiding convergence to a locally optimal 

solution, these approaches could be used to find a globally optimal solution. One of the 

important problems in partitional clustering is to find a partition of the given data, with a 

specified number of clusters, that minimizes the total within cluster variation. To prove that it 

converges to the global optimum and compare its performance with original K-Means algorithm. 
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Genetic algorithms (GA’s) work on a coding of the parameter set over which the search has to be 

performed, rather than the parameters themselves. These encoded parameters are called solutions 

or chromosomes and the objective function value at a solution is the objective function value at 

the corresponding parameters. GA’s solve optimization problems using a population of a fixed 

number, called the population size, of solutions. A solution consists of a string of symbols, 

typically binary symbols. GA’s evolve over generations. During each generation, they produce a 

new population from the current population by applying genetic operators viz., natural selection, 

crossover, and mutation. Each solution in the population is associated with a figure of merit 

(fitness value) depending on the value of the function to be optimized. The selection operator 

selects a solution from the current population for the next population with probability 

proportional to its fitness value. Crossover operates on two solution strings and results in another 

two stings. Typical crossover operator exchange the segments of selected stings across a 

crossover point with a probability. Recently, it has been shown that the GA’s that maintain the 

best discovered solution either before or after the selection operator asymptotically converge to 

the global optimum. Thus, GKA combines the simplicity of the K-means algorithm and the 

robust nature of GA’s. 

 

4.3 Methodology 

GKA maintains a population of coded solutions. The population is initialized randomly and is 

evolved over generations. The population in the next generation is obtained by applying genetic 

Operators on the current population. The evolution takes place until a terminating condition is 

reached. The genetic operators that are used in GKA are the selection, fitness function, crossover 

and the K-means operator. 

• Initialization: since it is a forest fires prediction system. So, the database is forest fires from 

machine learning repository with 13 attributes. Initially the entire database is considered  as 

an input to GKA and is connected to the algorithm through JDBC-ODBC. 

• Selection: The selection process selects chromosome from the previous population. Solutions 

in the current population are evaluated based on their merit to survive in the next population. 

     This requires that each solution in a population be associated with a figure of merit or fitness 

value. The fitness value in this case is determined on the basis of fitness function which is     

given as follows: 
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fitness function=(.732)*data[1]+(.044)*(data[2]+data[3])+(.18)*data[4] 

where   data[1] =temperature 

data[2]=RH 

data [3]=wind 

data [4]=Rain 

The sensitivity analysis of forest fires show the given percentage of these four attributes which 

contribute to forest fires 

Temp= 73.2% 

RH= 4.1% 

Wind=4.7% 

Rain=18.0% 

 

So, population is selected on basis of above fitness function. First, a mid value 15 is considered 

and all entries below 15 are discarded to get the selected population. 

 

• Crossover : The main property that makes these genetic representations convenient is that 

their parts are easily aligned due to their fixed size, which facilitates simple crossover 

operation. In this case crossover is carried out on every two rows to reproduce new rows. 

• K-means : After crossover, fitness function is applied again to get the final population on 

which K-means is applied to get the clusters of the location where the probability of 

forest fires is maximum.  
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4.5 Flowchart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 12 
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CHAPTER – 5 

CODE IMPLEMENTATION 

 

5.1 Centroid 

 

/** 

 * This class represents the Centroid for a Cluster. The initial centroid is calculated 

 * using a equation which divides the sample space for each dimension into equal parts 

 * depending upon the value of k. 

 */ 

 

class Centroid  

{ 

    private double mCx2,mCx3,mCx4,mCx5,mCx6,mCx7,mCx8,mCx9,mCx10,mCx11,mCx12; 

    private Cluster mCluster; 

    public Centroid(double cx2, double cx3, double cx4, double cx5, double cx6, double cx7, 

    double cx8, double cx9, double cx10, double cx11, double cx12) 

{ 

          this.mCx2 = cx2; 

        this.mCx3 = cx3; 

          this.mCx4 = cx4; 

          this.mCx5 = cx5; 

          this.mCx6 = cx6; 

          this.mCx7 = cx7; 

          this.mCx8 = cx8; 

          this.mCx9 = cx9; 

          this.mCx10 = cx10; 

          this.mCx11 = cx11; 

          this.mCx12 = cx12; 

} 
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     public void calcCentroid()  

{ 

 //only called by CAInstance 

          int numDP = mCluster.getNumDataPoints(); 

         double tempX2 = 0, tempX3 = 0, tempX4 = 0, tempX5 = 0, tempX6 = 0, 

 tempX7 = 0, tempX8 = 0, tempX9 = 0, tempX10 = 0, tempX11 = 0, 

 tempX12 = 0; 

          int i; 

         //caluclating the new Centroid 

          for (i = 0; i < numDP; i++) 

{ 

              tempX2 = tempX2 + mCluster.getDataPoint(i).getX2();  

      tempX3 = tempX3 + mCluster.getDataPoint(i).getX3();  

              tempX4 = tempX4 + mCluster.getDataPoint(i).getX4();  

              tempX5 = tempX5 + mCluster.getDataPoint(i).getX5();  

              tempX6 = tempX6 + mCluster.getDataPoint(i).getX6();  

              tempX7 = tempX7 + mCluster.getDataPoint(i).getX7();  

              tempX8 = tempX8 + mCluster.getDataPoint(i).getX8();  

              tempX9 = tempX9 + mCluster.getDataPoint(i).getX9();  

              tempX10 = tempX10 + mCluster.getDataPoint(i).getX10();  

              tempX11 = tempX11 + mCluster.getDataPoint(i).getX11();  

              tempX12 = tempX12 + mCluster.getDataPoint(i).getX12();  

          } 

           

this.mCx2 = tempX2 / numDP; 

          this.mCx3 = tempX3 / numDP; 

          this.mCx4 = tempX4 / numDP; 

          this.mCx5 = tempX5 / numDP; 

          this.mCx6 = tempX6 / numDP; 

          this.mCx7 = tempX7 / numDP; 

          this.mCx8 = tempX8 / numDP; 
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          this.mCx9 = tempX9 / numDP; 

          this.mCx10 = tempX10 / numDP; 

  this.mCx11 = tempX11 / numDP; 

          this.mCx12 = tempX12 / numDP; 

               

 //calculating the new Euclidean Distance for each Data Point 

          tempX2 = 0; 

  tempX3 = 0; 

          tempX4 = 0; 

          tempX5 = 0; 

          tempX6 = 0; 

          tempX7 = 0; 

          tempX8 = 0; 

          tempX9 = 0; 

         tempX10 = 0; 

          tempX11 = 0; 

          tempX12 = 0; 

   for (i = 0; i < numDP; i++) 

{ 

              mCluster.getDataPoint(i).calcEuclideanDistance(); 

          } 

           

//calculate the new Sum of Squares for the Cluster 

          mCluster.calcSumOfSquares(); 

} 

 

  public void setCluster(Cluster c) 

{ 

          this.mCluster = c; 

     } 

public double getCx2() 
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 { 

          return mCx2; 

     } 

 public double getCx3() 

{ 

          return mCx3; 

     } 

 public double getCx4() 

 { 

          return mCx4; 

     } 

 public double getCx5() 

 { 

          return mCx5; 

     } 

 public double getCx6() 

 { 

          return mCx6; 

     } 

 public double getCx7() 

 { 

          return mCx7; 

     } 

 public double getCx8() 

 { 

          return mCx8; 

     } 

 public double getCx9() 

 { 

          return mCx9; 

     }  
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 public double getCx10() 

 { 

          return mCx10; 

     } 

 public double getCx11() 

 { 

          return mCx11; 

     } 

 public double getCx12() 

 { 

          return mCx12; 

     } 

 public Cluster getCluster() 

 { 

          return mCluster; 

     } 

 

} 

 

5.2 Cluster 

 

import java.util.Vector; 

 

/** 

 * This class represents a Cluster in a Cluster Analysis Instance. A Cluster is associated 

 * with one and only one JCA Instance. A Cluster is related to more than one DataPoints and 

 * one centroid. 

 */ 

 

 

 



JUIT 
 

45 | P a g e  

 

class Cluster  

{ 

private String mName; 

     private Centroid mCentroid; 

    private double mSumSqr; 

     private Vector mDataPoints; 

 

    public Cluster(String name) 

{ 

          this.mName = name; 

          this.mCentroid = null; //will be set by calling setCentroid() 

          mDataPoints = new Vector(); 

     } 

 public void setCentroid(Centroid c) 

{ 

          mCentroid = c; 

     } 

 public Centroid getCentroid() 

{ 

          return mCentroid; 

     } 

 public void addDataPoint(DataPoint dp) 

{ 

 //called from CAInstance 

          dp.setCluster(this); //initiates a inner call to calcEuclideanDistance() in DP. 

          this.mDataPoints.addElement(dp); 

          calcSumOfSquares(); 

     } 

 public void removeDataPoint(DataPoint dp) 

{ 

          this.mDataPoints.removeElement(dp); 
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          calcSumOfSquares(); 

     } 

 public int getNumDataPoints() 

{ 

          return this.mDataPoints.size(); 

     } 

 public DataPoint getDataPoint(int pos) 

{ 

          return (DataPoint) this.mDataPoints.elementAt(pos); 

     } 

 public void calcSumOfSquares() 

{ 

 //called from Centroid 

          int size = this.mDataPoints.size(); 

          double temp = 0; 

          for (int i = 0; i < size; i++) 

{ 

             temp = temp + ((DataPoint)this.mDataPoints.elementAt(i)).getCurrentEuDt(); 

          } 

          this.mSumSqr = temp; 

     } 

 public double getSumSqr() 

{ 

          return this.mSumSqr; 

     } 

 public String getName() 

{ 

          return this.mName; 

     }  

 public Vector getDataPoints() 

{  



JUIT 
 

47 | P a g e  

 

          return this.mDataPoints; 

     } 

 

} 

 

5.3 Data Points 

 

/** 

    This class represents a candidate for Cluster analysis. A candidate must have 

    a name and two independent variables on the basis of which it is to be clustered. 

    A Data Point must have two variables and a name. A Vector of  Data Point object 

    is fed into the constructor of the JCA class. JCA and DataPoint are the only 

    classes which may be available from other packages. 

*/ 

 

public class DataPoint 

{ 

private double mX2,mX3,mX4,mX5,mX6,mX7,mX8,mX9,mX10,mX11,mX12; 

     private String mObjName; 

     private Cluster mCluster; 

     private double mEuDt; 

 

     public DataPoint(double x2, double x3, double x4,double x5, double x6, 

double x7,double x8, double x9, double x10,double x11, double x12, String name) 

{ 

          this.mX2 = x2; 

          this.mX3 = x3; 

          this.mX4 = x4; 

          this.mX5 = x5; 

          this.mX6 = x6; 

          this.mX7 = x7; 
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          this.mX8 = x8; 

          this.mX9 = x9; 

         this.mX10 = x10; 

          this.mX11 = x11; 

          this.mX12 = x12; 

          this.mObjName = name; 

          this.mCluster = null; 

     } 

public void setCluster(Cluster cluster) 

{ 

          this.mCluster = cluster; 

          calcEuclideanDistance(); 

     } 

 public void calcEuclideanDistance() 

{  

       //called when DP is added to a cluster or when a Centroid is recalculated. 

mEuDt = Math.sqrt(Math.pow((mX2 - mCluster.getCentroid().getCx2()),2) + 

Math.pow((mX3 - mCluster.getCentroid().getCx3()), 2) + Math.pow((mX4 - 

mCluster.getCentroid().getCx4()),2)+Math.pow((mX5 - 

mCluster.getCentroid().getCx5()),2) + Math.pow((mX6 - 

mCluster.getCentroid().getCx6()), 2) + Math.pow((mX7 - 

mCluster.getCentroid().getCx7()),2)+Math.pow((mX8 - 

mCluster.getCentroid().getCx8()),2) + Math.pow((mX9 - 

mCluster.getCentroid().getCx9()), 2) + Math.pow((mX10 - 

mCluster.getCentroid().getCx10()),2)+Math.pow((mX11 - 

mCluster.getCentroid().getCx11()),2) + Math.pow((mX12 - 

mCluster.getCentroid().getCx12()), 2)); 

     } 
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public double testEuclideanDistance(Centroid c) 

{ 

return Math.sqrt(Math.pow((mX2 - mCluster.getCentroid().getCx2()),2) + 

Math.pow((mX3 - mCluster.getCentroid().getCx3()), 2) + Math.pow((mX4 - 

mCluster.getCentroid().getCx4()),2)+Math.pow((mX5 - 

mCluster.getCentroid().getCx5()),2) + Math.pow((mX6 - 

mCluster.getCentroid().getCx6()), 2) + Math.pow((mX7 - 

mCluster.getCentroid().getCx7()),2)+Math.pow((mX8 - 

mCluster.getCentroid().getCx8()),2) + Math.pow((mX9 - 

mCluster.getCentroid().getCx9()), 2) + Math.pow((mX10 - 

mCluster.getCentroid().getCx10()),2)+Math.pow((mX11 - 

mCluster.getCentroid().getCx11()),2) + Math.pow((mX12 - 

mCluster.getCentroid().getCx12()), 2)); 

     } 

 public double getX2() 

{ 

          return mX2; 

     } 

 public double getX3() 

{ 

      return mX3; 

     } 

 public double getX4() 

{ 

          return mX4; 

     } 

 public double getX5() 

{ 

          return mX5; 

     } 
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public double getX6() 

{ 

          return mX6; 

     } 

 public double getX7() 

{ 

          return mX7; 

     } 

 public double getX8() 

{ 

          return mX8; 

     } 

 public double getX9() 

{ 

          return mX9; 

     } 

 public double getX10() 

{ 

          return mX10; 

     } 

     public double getX11() 

{ 

          return mX11; 

     } 

 public double getX12() 

{ 

          return mX12; 

     } 

public Cluster getCluster() 

{ 

          return mCluster; 
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     } 

 public double getCurrentEuDt() 

{ 

          return mEuDt; 

     } 

 public String getObjName() 

{ 

          return mObjName; 

     } 

} 

  

5.4 GA Implementation 

import java.io.*; 

import java.sql.*; 

 

class Ga 

{ 

 public int fitness(String db,String tb,int value) 

{ 

  double temp=0; 

  int count=0,t=0; 

  double data[]=new double[5]; 

  try 

{ 

     Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

     Connection A; 

     A=DriverManager.getConnection("jdbc:odbc:"+db); 

     Statement stmt=A.createStatement(); 

    PreparedStatement sStmt=A.prepareStatement("Delete from f where id=?");  

   ResultSet rs=stmt.executeQuery("Select * from "+tb); 
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   while(rs.next()) 

{ 

    data[0]=Double.parseDouble(rs.getString(1)); 

    data[1]=Double.parseDouble(rs.getString(8)); 

    data[2]=Double.parseDouble(rs.getString(9)); 

    data[3]=Double.parseDouble(rs.getString(10)); 

    data[4]=Double.parseDouble(rs.getString(11)); 

    temp=(.732)*data[1]+(.044)*(data[2]+data[3])+(.18)*data[4]; 

    if(temp>value) 

{ 

     count++; 

     //System.out.println(data[0]+"--->"+"1"); 

    /*sStmt=A.prepareStatement("Insert into "+tb+"(id) values(?)  

where id=?"); 

     sStmt.setInt(1,count);  

     sStmt.setDouble(2,data[0]);  

     sStmt.executeUpdate();    

    } 

    Else 

{ 

     //System.out.println(data[0]+"--->"+"0"); 

    sStmt=A.prepareStatement("Delete from "+tb+" where id=?"); 

    sStmt.setDouble(1,data[0]);  

    sStmt.executeUpdate();    

     

    } 

   } 

   stmt.close(); 

   sStmt.close(); 

   A.close();   

  } 
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        catch(Exception e) 

{ 

      System.out.println(e); 

    } 

  //System.out.println(count); 

  return count; 

 } 

 public int crossover(String db,String tb) 

{ 

  Try 

{ 

     Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

     int co=518; 

     Connection A; 

   A=DriverManager.getConnection("jdbc:odbc:"+db); 

     Statement stmt=A.createStatement();  

   Statement stmt1=A.createStatement();  

  PreparedStatement sStmt=A.prepareStatement("Delete from "+tb+" where id=?");  

   ResultSet rs=stmt.executeQuery("Select * from "+tb+"  where id<517"); 

      ResultSet rs1=stmt1.executeQuery("Select * from "+tb+"  where id<517"); 

   rs1.next(); 

   while(rs.next()) 

{ 

    if(rs1.next()) 

{ 

  sStmt=A.prepareStatement("Insert into "+tb+" values(?,?,?,?,?,?,?,?,?,?,?,?,?,?)"); 

     sStmt.setInt(1,co++); 

     sStmt.setString(2,rs.getString(2)); 

     sStmt.setString(3,rs.getString(3)); 

     sStmt.setString(4,rs.getString(4)); 

     sStmt.setString(5,rs.getString(5)); 
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     sStmt.setString(6,rs.getString(6)); 

     sStmt.setString(7,rs.getString(7)); 

sStmt.setDouble(8,(Double.parseDouble(rs.getString(8))+Double.parseDouble(rs1.getString(8)))

/2);  

sStmt.setDouble(9,(Double.parseDouble(rs.getString(9))+Double.parseDouble(rs1.getString(9)))

/2);  

sStmt.setDouble(10,(Double.parseDouble(rs.getString(10))+Double.parseDouble(rs1.getString(1

0)))/2);  

sStmt.setDouble(11,(Double.parseDouble(rs.getString(11))+Double.parseDouble(rs1.getString(1

1)))/2);  

     sStmt.setString(12,rs.getString(12)); 

     sStmt.setString(13,rs.getString(13)); 

     sStmt.setString(14,rs.getString(14)); 

     sStmt.executeUpdate();    

    } 

    Else 

{ 

  sStmt=A.prepareStatement("Insert into "+tb+" values(?,?,?,?,?,?,?,?,?,?,?,?,?,?)"); 

     sStmt.setInt(1,co++); 

     sStmt.setString(2,rs.getString(2)); 

     sStmt.setString(3,rs.getString(3)); 

     sStmt.setString(4,rs.getString(4)); 

     sStmt.setString(5,rs.getString(5)); 

     sStmt.setString(6,rs.getString(6)); 

     sStmt.setString(7,rs.getString(7)); 

  sStmt.setDouble(8,(Double.parseDouble(rs.getString(8)))/2);  

  sStmt.setDouble(9,(Double.parseDouble(rs.getString(9)))/2);  

  sStmt.setDouble(10,(Double.parseDouble(rs.getString(10)))/2);  

  sStmt.setDouble(11,(Double.parseDouble(rs.getString(11)))/2);  

     sStmt.setString(12,rs.getString(12)); 

     sStmt.setString(13,rs.getString(13)); 
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     sStmt.setString(14,rs.getString(14)); 

     sStmt.executeUpdate();    

  

    }  

   } 

   stmt.close(); 

   sStmt.close(); 

   A.close();   

 

  } 

        catch(Exception e) 

{ 

      System.out.println(e); 

    } 

  return 0; 

 } 

 

} 

 

5.5 GA Main 

 

class GaMain 

{ 

 public static void main(String args[]) 

{ 

  Ga test=new Ga(); 

  test.fitness(15); 

  test.crossover(); 

  test.fitness(20); 

  System.out.println("-----------End---------------"); 

 } 
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} 

 

5.6 Interface 

 

/* 

 * InterFace.java 

 * 

 */ 

 

 

import java.sql.*; 

/** 

 * 

 */ 

public class InterFace extends javax.swing.Jframe 

 { 

 String db,tb; 

     /** Creates new form InterFace */ 

     public InterFace()  

 { 

          initComponents(); 

          setDefaultCloseOperation(EXIT_ON_CLOSE); 

      } 

         /** This method is called from within the constructor to 

      * initialize the form. 

// <editor-fold defaultstate="collapsed" desc=" Generated Code ">//GEN-BEGIN: 

initComponents 

      

private void initComponents() 

{ 

          jLabel1 = new javax.swing.JLabel(); 
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        jLabel2 = new javax.swing.JLabel(); 

        jTextField1 = new javax.swing.JTextField(); 

        jLabel3 = new javax.swing.JLabel(); 

        jTextField2 = new javax.swing.JTextField(); 

        jLabel4 = new javax.swing.JLabel(); 

        jScrollPane1 = new javax.swing.JScrollPane(); 

        jList1 = new javax.swing.JList(); 

        jButton1 = new javax.swing.JButton(); 

 

        setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE); 

        jLabel1.setBackground(new java.awt.Color(204, 255, 255)); 

        jLabel1.setFont(new java.awt.Font("Arial", 1, 24)); 

        jLabel1.setForeground(new java.awt.Color(0, 204, 204)); 

        jLabel1.setText("Forest Fire Prediction System"); 

 

        jLabel2.setText("DataBase Name :"); 

 

        jTextField1.addActionListener(new java.awt.event.ActionListener() { 

            public void actionPerformed(java.awt.event.ActionEvent evt) { 

                jTextField1ActionPerformed(evt); 

            } 

        }); 

 

        jLabel3.setText("Table Name :"); 

 

        jTextField2.addActionListener(new java.awt.event.ActionListener() { 

            public void actionPerformed(java.awt.event.ActionEvent evt) { 

                jTextField2ActionPerformed(evt); 

            } 

        }); 

 



JUIT 
 

58 | P a g e  

 

        jLabel4.setText("Algorithm :"); 

 

        jList1.setModel(new javax.swing.AbstractListModel() { 

            String[] strings = { "K-Means", "Genetic Algorithm", "Hybrid" }; 

            public int getSize() { return strings.length; } 

            public Object getElementAt(int i) { return strings[i]; } 

        }); 

        jScrollPane1.setViewportView(jList1); 

 

        jButton1.setText("EXECUTE"); 

        jButton1.addActionListener(new java.awt.event.ActionListener() { 

            public void actionPerformed(java.awt.event.ActionEvent evt) { 

                jButton1ActionPerformed(evt); 

            } 

        }); 

 

        javax.swing.GroupLayout layout = new javax.swing.GroupLayout(getContentPane()); 

        getContentPane().setLayout(layout); 

        layout.setHorizontalGroup( 

            layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 

            .addGroup(layout.createSequentialGroup() 

                .addGap(136, 136, 136) 

                

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 

                    .addComponent(jLabel1) 

                    .addGroup(layout.createSequentialGroup() 

                        

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 

                            .addComponent(jLabel2) 

                            .addComponent(jLabel3) 

                            .addComponent(jLabel4)) 
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                        .addGap(42, 42, 42) 

                        

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING, false) 

                            .addComponent(jScrollPane1) 

                            .addComponent(jTextField2) 

                            .addComponent(jTextField1, javax.swing.GroupLayout.DEFAULT_SIZE, 197, 

Short.MAX_VALUE) 

                            .addComponent(jButton1)))) 

                .addContainerGap(140, Short.MAX_VALUE)) 

        ); 

        layout.setVerticalGroup( 

            layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 

            .addGroup(layout.createSequentialGroup() 

                .addContainerGap() 

                .addComponent(jLabel1) 

                .addGap(46, 46, 46) 

                

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE) 

                    .addComponent(jLabel2) 

                    .addComponent(jTextField1, javax.swing.GroupLayout.PREFERRED_SIZE, 

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)) 

                .addGap(44, 44, 44) 

                

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE) 

                    .addComponent(jLabel3) 

                    .addComponent(jTextField2, javax.swing.GroupLayout.PREFERRED_SIZE, 

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)) 

                .addGap(47, 47, 47) 

                

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 

                    .addComponent(jLabel4) 
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                    .addComponent(jScrollPane1, javax.swing.GroupLayout.PREFERRED_SIZE, 22, 

javax.swing.GroupLayout.PREFERRED_SIZE)) 

                .addGap(65, 65, 65) 

                .addComponent(jButton1) 

                .addGap(68, 68, 68)) 

        ); 

        pack(); 

    }// </editor-fold>//GEN-END:initComponents 

 

    private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-

FIRST:event_jButton1ActionPerformed 

        //jTextField1.getText()+jTextField2.getText()+jList1.getSelectedIndex(); 

  new PrgMain().Hybrid(jTextField1.getText(),jTextField2.getText()); 

    }//GEN-LAST:event_jButton1ActionPerformed 

 

    private void jTextField2ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-

FIRST:event_jTextField2ActionPerformed 

    tb=evt.getActionCommand(); 

    }//GEN-LAST:event_jTextField2ActionPerformed 

 

    private void jTextField1ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-

FIRST:event_jTextField1ActionPerformed 

     db=evt.getActionCommand(); 

    }//GEN-LAST:event_jTextField1ActionPerformed 

     

    // Variables declaration - do not modify//GEN-BEGIN:variables 

    private javax.swing.JButton jButton1; 

    private javax.swing.JLabel jLabel1; 

    private javax.swing.JLabel jLabel2; 

    private javax.swing.JLabel jLabel3; 

    private javax.swing.JLabel jLabel4; 
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    private javax.swing.JList jList1; 

    private javax.swing.JScrollPane jScrollPane1; 

    private javax.swing.JTextField jTextField1; 

    private javax.swing.JTextField jTextField2; 

    // End of variables declaration//GEN-END:variables 

     

} 

5.7 JCA 

 

import java.util.Vector; 

 

/** 

 

This class is the entry point for constructing Cluster Analysis objects. 

Each instance of JCA object is associated with one or more clusters,  

and a Vector of DataPoint objects. The JCA and DataPoint classes are 

the only classes available from other packages. 

 

**/ 

 

public class JCA { 

    private Cluster[] clusters; 

    private int miter; 

    private Vector mDataPoints = new Vector(); 

    private double mSWCSS; 

 

    public JCA(int k, int iter, Vector dataPoints) { 

        clusters = new Cluster[k]; 

        for (int i = 0; i < k; i++) { 

            clusters[i] = new Cluster("Cluster" + i); 

        } 
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        this.miter = iter; 

        this.mDataPoints = dataPoints; 

    } 

 

    private void calcSWCSS() { 

        double temp = 0; 

        for (int i = 0; i < clusters.length; i++) { 

            temp = temp + clusters[i].getSumSqr(); 

        } 

        mSWCSS = temp; 

    } 

 

    public void startAnalysis() { 

        //set Starting centroid positions - Start of Step 1 

        setInitialCentroids(); 

        int n = 0; 

        //assign DataPoint to clusters 

        loop1: while (true) { 

            for (int l = 0; l < clusters.length; l++)  

            { 

                clusters[l].addDataPoint((DataPoint)mDataPoints.elementAt(n)); 

                n++; 

                if (n >= mDataPoints.size()) 

                    break loop1; 

            } 

        } 

         

        //calculate E for all the clusters 

        calcSWCSS(); 

         

        //recalculate Cluster centroids - Start of Step 2 
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        for (int i = 0; i < clusters.length; i++) { 

            clusters[i].getCentroid().calcCentroid(); 

        } 

         

        //recalculate E for all the clusters 

        calcSWCSS(); 

 

        for (int i = 0; i < miter; i++) { 

            //enter the loop for cluster 1 

            for (int j = 0; j < clusters.length; j++) { 

                for (int k = 0; k < clusters[j].getNumDataPoints(); k++) { 

                 

                    //pick the first element of the first cluster 

                    //get the current Euclidean distance 

                    double tempEuDt = clusters[j].getDataPoint(k).getCurrentEuDt(); 

                    Cluster tempCluster = null; 

                    boolean matchFoundFlag = false; 

                     

                    //call testEuclidean distance for all clusters 

                    for (int l = 0; l < clusters.length; l++) { 

                     

                    //if testEuclidean < currentEuclidean then 

                        if (tempEuDt > 

clusters[j].getDataPoint(k).testEuclideanDistance(clusters[l].getCentroid())) { 

                            tempEuDt = 

clusters[j].getDataPoint(k).testEuclideanDistance(clusters[l].getCentroid()); 

                            tempCluster = clusters[l]; 

                            matchFoundFlag = true; 

                        } 

                        //if statement - Check whether the Last EuDt is > Present EuDt  

                         



JUIT 
 

64 | P a g e  

 

                        } 

//for variable 'l' - Looping between different Clusters for matching a Data Point. 

//add DataPoint to the cluster and calcSWCSS 

 

       if (matchFoundFlag) { 

  tempCluster.addDataPoint(clusters[j].getDataPoint(k)); 

  clusters[j].removeDataPoint(clusters[j].getDataPoint(k)); 

                        for (int m = 0; m < clusters.length; m++) { 

                            clusters[m].getCentroid().calcCentroid(); 

                        } 

 

//for variable 'm' - Recalculating centroids for all Clusters 

 

                        calcSWCSS(); 

                    } 

                     

//if statement - A Data Point is eligible for transfer between Clusters. 

                } 

                //for variable 'k' - Looping through all Data Points of the current Cluster. 

            }//for variable 'j' - Looping through all the Clusters. 

        }//for variable 'i' - Number of iterations. 

    } 

 

    public Vector[] getClusterOutput() { 

        Vector v[] = new Vector[clusters.length]; 

        for (int i = 0; i < clusters.length; i++) { 

            v[i] = clusters[i].getDataPoints(); 

        } 

        return v; 

    } 
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    private void setInitialCentroids() { 

        //kn = (round((max-min)/k)*n)+min where n is from 0 to (k-1). 

        double cx2 = 0, cx3 = 0, cx4 = 0,cx5 = 0, cx6 = 0, cx7 = 0,cx8 = 0, cx9 = 0, cx10 = 0,cx11 

= 0, cx12 = 0; 

        for (int n = 1; n <= clusters.length; n++) { 

            cx2 = (((getMaxX2Value() - getMinX2Value()) / (clusters.length + 1)) * n) + 

getMinX2Value(); 

            cx3 = (((getMaxX3Value() - getMinX3Value()) / (clusters.length + 1)) * n) + 

getMinX3Value(); 

            cx4 = (((getMaxX4Value() - getMinX4Value()) / (clusters.length + 1)) * n) + 

getMinX4Value(); 

            cx5 = (((getMaxX5Value() - getMinX5Value()) / (clusters.length + 1)) * n) + 

getMinX5Value(); 

            cx6 = (((getMaxX6Value() - getMinX6Value()) / (clusters.length + 1)) * n) + 

getMinX6Value(); 

            cx7 = (((getMaxX7Value() - getMinX7Value()) / (clusters.length + 1)) * n) + 

getMinX7Value(); 

            cx8 = (((getMaxX8Value() - getMinX8Value()) / (clusters.length + 1)) * n) + 

getMinX8Value(); 

            cx9 = (((getMaxX9Value() - getMinX9Value()) / (clusters.length + 1)) * n) + 

getMinX9Value(); 

            cx10 = (((getMaxX10Value() - getMinX10Value()) / (clusters.length + 1)) * n) + 

getMinX10Value(); 

            cx11 = (((getMaxX11Value() - getMinX11Value()) / (clusters.length + 1)) * n) + 

getMinX11Value(); 

            cx12 = (((getMaxX12Value() - getMinX12Value()) / (clusters.length + 1)) * n) + 

getMinX12Value(); 

           Centroid c1 = new Centroid(cx2, cx3, cx4,cx5, cx6, cx7,cx8, cx9, cx10,cx11, cx12); 

            clusters[n - 1].setCentroid(c1); 

            c1.setCluster(clusters[n - 1]); 



JUIT 
 

66 | P a g e  

 

        } 

    } 

 

    private double getMaxX2Value() { 

        double temp; 

        temp = ((DataPoint) mDataPoints.elementAt(0)).getX2(); 

        for (int i = 0; i < mDataPoints.size(); i++) { 

            DataPoint dp = (DataPoint) mDataPoints.elementAt(i); 

            temp = (dp.getX2() > temp) ? dp.getX2() : temp; 

        } 

        return temp; 

    } 

 

    private double getMinX2Value() { 

        double temp = 0; 

        temp = ((DataPoint) mDataPoints.elementAt(0)).getX2(); 

        for (int i = 0; i < mDataPoints.size(); i++) { 

            DataPoint dp = (DataPoint) mDataPoints.elementAt(i); 

            temp = (dp.getX2() < temp) ? dp.getX2() : temp; 

        } 

        return temp; 

    } 

 

    private double getMaxX3Value() { 

        double temp; 

        temp = ((DataPoint) mDataPoints.elementAt(0)).getX3(); 

        for (int i = 0; i < mDataPoints.size(); i++) { 

            DataPoint dp = (DataPoint) mDataPoints.elementAt(i); 

            temp = (dp.getX3() > temp) ? dp.getX3() : temp; 

        } 

        return temp; 
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    } 

 

    private double getMinX3Value() { 

        double temp = 0; 

        temp = ((DataPoint) mDataPoints.elementAt(0)).getX3(); 

        for (int i = 0; i < mDataPoints.size(); i++) { 

            DataPoint dp = (DataPoint) mDataPoints.elementAt(i); 

            temp = (dp.getX3() < temp) ? dp.getX3() : temp; 

        } 

        return temp; 

    } 

    private double getMaxX4Value() { 

        double temp; 

        temp = ((DataPoint) mDataPoints.elementAt(0)).getX4(); 

        for (int i = 0; i < mDataPoints.size(); i++) { 

            DataPoint dp = (DataPoint) mDataPoints.elementAt(i); 

            temp = (dp.getX4() > temp) ? dp.getX4() : temp; 

        } 

        return temp; 

    } 

 

    private double getMinX4Value() { 

        double temp = 0; 

        temp = ((DataPoint) mDataPoints.elementAt(0)).getX4(); 

        for (int i = 0; i < mDataPoints.size(); i++) { 

            DataPoint dp = (DataPoint) mDataPoints.elementAt(i); 

            temp = (dp.getX4() < temp) ? dp.getX4() : temp; 

        } 

        return temp; 

    } 

    private double getMaxX5Value() { 
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        double temp; 

        temp = ((DataPoint) mDataPoints.elementAt(0)).getX5(); 

        for (int i = 0; i < mDataPoints.size(); i++) { 

            DataPoint dp = (DataPoint) mDataPoints.elementAt(i); 

            temp = (dp.getX5() > temp) ? dp.getX5() : temp; 

        } 

        return temp; 

    } 

 

    private double getMinX5Value() { 

        double temp = 0; 

        temp = ((DataPoint) mDataPoints.elementAt(0)).getX5(); 

        for (int i = 0; i < mDataPoints.size(); i++) { 

            DataPoint dp = (DataPoint) mDataPoints.elementAt(i); 

            temp = (dp.getX5() < temp) ? dp.getX5() : temp; 

        } 

        return temp; 

    } 

    private double getMaxX6Value() { 

        double temp; 

        temp = ((DataPoint) mDataPoints.elementAt(0)).getX6(); 

        for (int i = 0; i < mDataPoints.size(); i++) { 

            DataPoint dp = (DataPoint) mDataPoints.elementAt(i); 

            temp = (dp.getX6() > temp) ? dp.getX6() : temp; 

        } 

        return temp; 

    } 

 

    private double getMinX6Value() { 

        double temp = 0; 

        temp = ((DataPoint) mDataPoints.elementAt(0)).getX6(); 
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        for (int i = 0; i < mDataPoints.size(); i++) { 

            DataPoint dp = (DataPoint) mDataPoints.elementAt(i); 

            temp = (dp.getX6() < temp) ? dp.getX6() : temp; 

        } 

        return temp; 

    } 

    private double getMaxX7Value() { 

        double temp; 

        temp = ((DataPoint) mDataPoints.elementAt(0)).getX7(); 

        for (int i = 0; i < mDataPoints.size(); i++) { 

            DataPoint dp = (DataPoint) mDataPoints.elementAt(i); 

            temp = (dp.getX7() > temp) ? dp.getX7() : temp; 

        } 

        return temp; 

    } 

 

    private double getMinX7Value() { 

        double temp = 0; 

        temp = ((DataPoint) mDataPoints.elementAt(0)).getX7(); 

        for (int i = 0; i < mDataPoints.size(); i++) { 

            DataPoint dp = (DataPoint) mDataPoints.elementAt(i); 

            temp = (dp.getX7() < temp) ? dp.getX7() : temp; 

        } 

        return temp; 

    } 

    private double getMaxX8Value() { 

        double temp; 

        temp = ((DataPoint) mDataPoints.elementAt(0)).getX8(); 

        for (int i = 0; i < mDataPoints.size(); i++) { 

            DataPoint dp = (DataPoint) mDataPoints.elementAt(i); 

            temp = (dp.getX8() > temp) ? dp.getX8() : temp; 
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        } 

        return temp; 

    } 

 

    private double getMinX8Value() { 

        double temp = 0; 

        temp = ((DataPoint) mDataPoints.elementAt(0)).getX8(); 

        for (int i = 0; i < mDataPoints.size(); i++) { 

            DataPoint dp = (DataPoint) mDataPoints.elementAt(i); 

            temp = (dp.getX8() < temp) ? dp.getX8() : temp; 

        } 

        return temp; 

    } 

 

    private double getMaxX9Value() { 

        double temp; 

        temp = ((DataPoint) mDataPoints.elementAt(0)).getX9(); 

        for (int i = 0; i < mDataPoints.size(); i++) { 

            DataPoint dp = (DataPoint) mDataPoints.elementAt(i); 

            temp = (dp.getX9() > temp) ? dp.getX9() : temp; 

        } 

        return temp; 

    } 

 

    private double getMinX9Value() { 

        double temp = 0; 

        temp = ((DataPoint) mDataPoints.elementAt(0)).getX9(); 

        for (int i = 0; i < mDataPoints.size(); i++) { 

            DataPoint dp = (DataPoint) mDataPoints.elementAt(i); 

            temp = (dp.getX9() < temp) ? dp.getX9() : temp; 

        } 
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        return temp; 

    } 

    private double getMaxX10Value() { 

        double temp; 

        temp = ((DataPoint) mDataPoints.elementAt(0)).getX10(); 

        for (int i = 0; i < mDataPoints.size(); i++) { 

            DataPoint dp = (DataPoint) mDataPoints.elementAt(i); 

            temp = (dp.getX10() > temp) ? dp.getX10() : temp; 

        } 

        return temp; 

    } 

 

    private double getMinX10Value() { 

        double temp = 0; 

        temp = ((DataPoint) mDataPoints.elementAt(0)).getX10(); 

        for (int i = 0; i < mDataPoints.size(); i++) { 

            DataPoint dp = (DataPoint) mDataPoints.elementAt(i); 

            temp = (dp.getX10() < temp) ? dp.getX10() : temp; 

        } 

        return temp; 

    } 

 

    private double getMaxX11Value() { 

        double temp; 

        temp = ((DataPoint) mDataPoints.elementAt(0)).getX11(); 

        for (int i = 0; i < mDataPoints.size(); i++) { 

            DataPoint dp = (DataPoint) mDataPoints.elementAt(i); 

            temp = (dp.getX11() > temp) ? dp.getX11() : temp; 

        } 

        return temp; 

    } 
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    private double getMinX11Value() { 

        double temp = 0; 

        temp = ((DataPoint) mDataPoints.elementAt(0)).getX11(); 

        for (int i = 0; i < mDataPoints.size(); i++) { 

            DataPoint dp = (DataPoint) mDataPoints.elementAt(i); 

            temp = (dp.getX11() < temp) ? dp.getX11() : temp; 

        } 

        return temp; 

    } 

    private double getMaxX12Value() { 

        double temp; 

        temp = ((DataPoint) mDataPoints.elementAt(0)).getX12(); 

        for (int i = 0; i < mDataPoints.size(); i++) { 

            DataPoint dp = (DataPoint) mDataPoints.elementAt(i); 

            temp = (dp.getX12() > temp) ? dp.getX12() : temp; 

        } 

        return temp; 

    } 

 

    private double getMinX12Value() { 

        double temp = 0; 

        temp = ((DataPoint) mDataPoints.elementAt(0)).getX12(); 

        for (int i = 0; i < mDataPoints.size(); i++) { 

            DataPoint dp = (DataPoint) mDataPoints.elementAt(i); 

            temp = (dp.getX12() < temp) ? dp.getX12() : temp; 

        } 

        return temp; 

    } 

 

    public int getKValue() { 



JUIT 
 

73 | P a g e  

 

        return clusters.length; 

    } 

 

    public int getIterations() { 

        return miter; 

    } 

 

    public int getTotalDataPoints() { 

        return mDataPoints.size(); 

    } 

 

    public double getSWCSS() { 

        return mSWCSS; 

    } 

 

    public Cluster getCluster(int pos) { 

        return clusters[pos]; 

    } 

} 

 

5.8 Prg Main 

 

 

/*-----------------PrgMain.java---------------*/ 

import java.io.*; 

import java.sql.*; 

 

import java.util.Vector; 

import java.util.Iterator; 
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public class PrgMain { 

    public  void  Hybrid(String db,String tb){ 

 Ga test=new Ga(); 

 test.fitness(db,tb,15); 

 test.crossover(db,tb); 

 test.fitness(db,tb,20); 

        Vector dataPoints = new Vector(); 

  

 try{ 

    Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

    Connection A; 

  A=DriverManager.getConnection("jdbc:odbc:"+db); 

    Statement stmt=A.createStatement(); 

    ResultSet rs=stmt.executeQuery("Select * from "+tb); 

  while(rs.next()){ 

  dataPoints.add(new 

DataPoint(Double.parseDouble(rs.getString(2)),Double.parseDouble(rs.getString(3)),Double.par

seDouble(rs.getString(4)),Double.parseDouble(rs.getString(5)),Double.parseDouble(rs.getString

(6)),Double.parseDouble(rs.getString(7)),Double.parseDouble(rs.getString(8)),Double.parseDou

ble(rs.getString(9)),Double.parseDouble(rs.getString(10)),Double.parseDouble(rs.getString(11)),

Double.parseDouble(rs.getString(12)),rs.getString(1))); 

       

        } 

  stmt.close(); 

  A.close();   

     } 

       catch(Exception e){ 

     System.out.println(e); 

   } 

  

        JCA jca = new JCA(3,1000,dataPoints); 
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        jca.startAnalysis(); 

 

        Vector[] v = jca.getClusterOutput(); 

        for (int i=0; i<v.length; i++){ 

            Vector tempV = v[i]; 

            System.out.println("\n-----------Cluster"+i+"---------\n"); 

            Iterator iter = tempV.iterator(); 

            while(iter.hasNext()){ 

                DataPoint dpTemp = (DataPoint)iter.next(); 

  try{ 

     Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 

     Connection A; 

   A=DriverManager.getConnection("jdbc:odbc:"+db); 

   PreparedStatement sStmt=A.prepareStatement("Insert into Cluster 

values(?,?,?)"); 

   sStmt.setInt(1,i); 

   sStmt.setDouble(2,dpTemp.getX2()); 

   sStmt.setDouble(3,dpTemp.getX3()); 

       sStmt.executeUpdate(); 

  } 

  catch(Exception e){ 

     System.out.println(e); 

    }  

 

 System.out.println("["+dpTemp.getX4()+dpTemp.getX5()+","+dpTemp.getX6()+","+dp

Temp.getX7()+dpTemp.getX8()+","+dpTemp.getX9()+","+dpTemp.getX10()+dpTemp.getX11()

+","+dpTemp.getX12()+"]"+"\tCordinates (x="+dpTemp.getX2()+"  y="+dpTemp.getX3()+")"); 

            } 

        } 
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    } 

} 

 

5.9 Results 

 

5.9.1 Snapshots With K-Means Selected 

 

 

Fig 13 
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Fig 14 

 

 

Fig 15 
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Fig 16 
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Fig 17 

5.9.2 Snapshots With Hybrid Selected 

 

Fig 18 
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Fig 19 

 

 

Fig 20 
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Fig 21 
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Fig 22 
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5.9.3 Snapshots Of The Dataset Used 

 

Forest Fires  

Temp  Rh  Name  Id  Month  FFMC  DMC  DC  ISI  X  Y  Wind  Rain  Area  

8.2  51  fri  1  mar  86.2  26.2  94.3  5.1  7  5  6.7  0  0  

18  33  tue  2  oct  90.6  35.4  669.1  6.7  7  4  0.9  0  0  

14.6  33  sat  3  oct  90.6  43.7  686.9  6.7  7  4  1.3  0  0  

8.3  97  fri  4  mar  91.7  33.3  77.5  9  8  6  4  0.2  0  

11.4  99  sun  5  mar  89.3  51.3  102.2  9.6  8  6  1.8  0  0  

22.2  29  sun  6  aug  92.3  85.3  488  14.7  8  6  5.4  0  0  

24.1  27  mon  7  aug  92.3  88.9  495.6  8.5  8  6  3.1  0  0  

8  86  mon  8  aug  91.5  145.4  608.2  10.7  8  6  2.2  0  0  

13.1  63  tue  9  sep  91  129.5  692.6  7  8  6  5.4  0  0  

Fig. 23 

1. X - x-axis spatial coordinate  

2. Y - y-axis spatial coordinate  

3. Month - month of the year: 'jan' to 'dec'  

4. Day - day of the week: 'mon' to 'sun'  

5. FFMC – Fine Fuel Moisture Code index from the Forest Fire Weather Index (FWI) System 

6. DMC – Duff Moisture Code index from the FWI system 

7. DC – Drought Code index from the FWI system 

8. ISI – Initial Spread Index from the FWI system 
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9.   Temp - temperature in Celsius degrees  

10. RH - relative humidity in & percent  

11. Wind - wind speed in km/h  

12. Rain - outside rain in mm/m2  

13. Area - the burned area of the forest (in ha) 
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CONCLUSION 

 

Successfully Developed Graphical User Interface for Forest Fire Predication System along with 

the implementation of K-Means and Genetic K-Means Algorithm where GKA helped improve 

the predictability of forest fires, since K-Means does clustering on entire database and the 

Genetic Algorithm selects only the fittest and most probable solution for occurrence of forest 

fires. Genetic K-Means algorithm provides the globally optimum result for the forest fire 

prediction system. 
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APPENDIX 

 

I. How To Install JDK? 

   

The Java Development Kit or JDK is the software that allows us to develop and run Java 

programs. Click the image if you need to see a full-sized version. 

The following steps will create a directory (folder) on your disk where all your Java-related 

software will be placed. In the following steps, we will assume a directory on your C: drive 

named java. If you choose a different place or name, you must be very careful to use your name 

wherever you see C:\java throughout the installation. 

1. 

Find the JDK installation files on the CD. They're 

inside a directory (folder) named JDK 5.0 Update 6. 

The file has the name jdk-1_5_0_06-windows-i586-

p.exe. 

 

Remember that you can click on each of the images 

on this page to see a full-size version. 
 

2. 

Double-click the file to begin installation. A splash 

screen will show for a while and then you'll be 

shown a licence agreement. If you want to learn 

Java, you must click I accept and the Next button. 
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3. 

This screen allows you to customize your 

installation.  

• The defaults shown in the upper part of the 

dialog box are all OK. 

• Change the installation directory so that all 

of your Java-related programs are together, 

as follows:  

o Click on the Change button. 

o In the resulting screen, type 

C:\java\jdk1.5\ in the space for the 

Folder name:. 

o Click OK.  

• You should now see the previous dialog box, 

shown above. Check the Install to: 

information to verify that it says 

C:\java\jdk1.5\. 

 

 

4. 

Click Next. A progress screen will show for quite a 

while. It may take several minutes to fully install the 

software. 
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5. 

You will be asked to install the Java Runtime 

Environment. Notice that the screen is almost 

identical to the one in step 3. As we did there, 

accept the default settings except for the installation 

directory. Click the Change... button and change the 

Folder name: field to C:\java\jre1.5\. Note that this 

name contains jre whereas the name entered in step 

3 contains jdk. 

 

Click OK to come back to this screen. Then click 

Next. 

 

6. 

This is your opportunity to register your Web 

browser with the new version of Java, enabling 

applets to run with the new software. Leave all of 

the browsers listed selected, then click Next. 

 

7. 
You will again be shown a progress screen while 

software is installed. 
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8. 
Eventually, you will be shown a completion screen. 

Click Finish. 

 

9. 

Installing the documentation for the JDK is, strictly 

speaking, optional. You'll be grateful for it in the 

later part of the book, so you may as well do it now. 

 

Go back to the CD and find the file jdk-1_5_0-

doc.exe inside the directory named JDK 5.0 Update 

6. Double-click on it to open it. 

 

10. 

It should already have C:\java\jdk1.5\ filled in the 

text field labeled Unzip to folder. If you chose a 

different place to store the JDK, type it in or use the 

Browse button to go find it. Then click the Unzip 

button. A progress bar will appear at the bottom. 

This may take several minutes. 

 

When the completion message is shown, click OK 

and then Close on the dialog shown above. 
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11. 

You're done installing the JDK! Just as a double-

check, take a look at the directory where you 

installed it, C:\java\jdk1.5\. It should look like the 

one shown here. 

 

 

 

II. How To Install JDBC 

 

Java Database Connectivity (JDBC) is a programming framework for Java developers writing 

programs that access information stored in databases, spreadsheets, and flat files. JDBC is 

commonly used to connect a user program to a "behind the scenes" database, regardless of what 

database management software is used to control the database. In this way, JDBC is cross-

platform. This article will provide an introduction and sample code that demonstrates database 

access from Java programs that use the classes of the JDBC API, which is available for free 

download from Sun's site.  

A database that another program links to is called a data source. Many data sources, including 

products produced by Microsoft and Oracle, already use a standard called Open Database 

Connectivity (ODBC). Many legacy C and Perl programs use ODBC to connect to data sources. 

ODBC consolidated much of the commonality between database management systems. JDBC 

builds on this feature, and increases the level of abstraction. JDBC-ODBC bridges have been 

created to allow Java programs to connect to ODBC-enabled database software.  

This article assumes that readers already have a data source established and are moderately 

familiar with the Structured Query Language (SQL), the command language for adding records, 

retrieving records, and other basic database manipulations. See Hoffman's tutorial on SQL if you 

are a beginner or need some refreshing.  
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Using a JDBC driver 

Regardless of data source location, platform, or driver (Oracle, Microsoft, etc.), JDBC makes 

connecting to a data source less difficult by providing a collection of classes that abstract details 

of the database interaction. Software engineering with JDBC is also conducive to module reuse. 

Programs can easily be ported to a different infrastructure for which you have data stored 

(whatever platform you choose to use in the future) with only a driver substitution.  

As long as you stick with the more popular database platforms (Oracle, Informix, Microsoft, 

MySQL, etc.), there is almost certainly a JDBC driver written to let your programs connect and 

manipulate data. You can download a specific JDBC driver from the manufacturer of your 

database management system (DBMS) or from a third party (in the case of less popular open 

source products) [5]. The JDBC driver for your database will come with specific instructions to 

make the class files of the driver available to the Java Virtual Machine, which your program is 

going to run. JDBC drivers use Java's built-in DriverManager to open and access a database from 

within your Java program.  

To begin connecting to a data source, you first need to instantiate an object of your JDBC driver. 

This essentially requires only one line of code, a command to the DriverManager, telling the 

Java Virtual Machine to load the bytecode of your driver into memory, where its methods will be 

available to your program. The String parameter below is the fully qualified class name of the 

driver you are using for your platform combination:  

Class.forName("org.gjt.mm.mysql.Driver").newInstance(); 

Connecting to your database 

To actually manipulate your database, you need to get an object of the Connection class from 

your driver. At the very least, your driver will need a URL for the database and parameters for 

access control, which usually involves standard password authentication for a database account.  

As you may already be aware, the Uniform Resource Locator (URL) standard is good for much 

more than telling your browser where to find a web page:  
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http://www.vusports.com/index.html 

The URL for our example driver and database looks like this:  

jdbc:mysql://db_server:3306/contacts/ 

Even though these two URLs look different, they are actually the same in form: the protocol for 

connection, machine host name and optional port number, and the relative path of the resource. 

Your JDBC driver will come with instructions detailing how to form the URL for your database. 

It will look similar to our example.  

You will want to control access to your data, unless security is not an issue. The standard least 

common denominator for authentication to a database is a pair of strings, an account and a 

password. The account name and password you give the driver should have meaning within your 

DBMS, where permissions should have been established to govern access privileges.  

Our example JDBC driver uses an object of the Properties class to pass information through the 

DriverManager, which yields a Connection object:  

Properties props = new Properties(); 

props.setProperty("user", "contacts"); 

props.setProperty("password", "blackbook"); 

Connection con = DriverManager.getConnection(  

   "jdbc:mysql://localhost:3306/contacts/", props); 

Now that we have a Connection object, we can easily pass commands through it to the database, 

taking advantage of the abstraction layers provided by JDBC.  

Structuring statements 

Databases are composed of tables, which in turn are composed of rows. Each database table has 

a set of rows that define what data types are in each record. Records are also stored as rows of 

the database table with one row per record. We use the data source connection created in the last 

section to execute a command to the database.  
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We write commands to be executed by the DBMS on a database using SQL. The syntax of a 

SQL statement, or query, usually consists of an action keyword, a target table name, and some 

parameters. For example:  

INSERT INTO songs VALUES (  

   "Jesus Jones", "Right Here, Right Now"); 

INSERT INTO songs VALUES (  

   "Def Leppard", "Hysteria"); 

These SQL queries each added a row of data to table "songs" in the database. Naturally, the order 

of the values being inserted into the table must match the order of the corresponding columns of 

the table, and the data types of the new values must match the data types of the corresponding 

columns. For more information about the supported data types in your DBMS, consult your 

reference material.  

To execute an SQL statement using a Connection object, you first need to create a Statement 

object, which will execute the query contained in a String.  

Statement stmt = con.createStatement();  

String query = ... // define query 

stmt.executeQuery(query); 

 


