
QUESTION ANSWER SYSTEM ON MEDICAL DOMAIN

Project report submitted in partial fulfillment of the requirement for

the degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

Naman Arora (121324)

Under the supervision of

Dr. Rajni Mohana

to

Department of Computer Science & Engineering and

Information Technology

Jaypee University of Information Technology Waknaghat,

Solan-173234, Himachal Pradesh

i

CANDIDATE’S DECLARATION

I hereby declare that the work presented in this report entitled “Question Answer System on

Medical Domain” in partial fulfillment of the requirements for the award of the degree of

Bachelor of Technology in Computer Science and Engineering/Information Technology

submitted in the department of Computer Science & Engineering and Information Technology,

Jaypee University of Information Technology, Waknaghat is an authentic record of my own

work carried out over a period from August 2015 to May 2016 under the supervision of

Dr. Rajni Mohana.

The matter embodied in the report has not been submitted for the award of any other degree or

diploma.

Naman Arora

121324

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Dr. Rajni Mohana

Assistant Professor (Senior Grade)

Department of Computer Science and Information Technology

ii

ACKNOWLEDGEMENT

I owe my profound gratitude to my project supervisor Dr. Rajni Mohana, who took keen

interest in my project work titled “Question Answer System on Medical Domain” and guided

me all along, till the completion of my project by providing all the necessary information for

developing such a good system. The project development helped me in research and I got to

know a lot of new things in my domain. I am really thankful to her.

Dated:

Naman Arora

121324

iii

Table of Content

Contents
List of figures ... v

List of abbreviations ... vi

Abstract ... vii

Introduction .. 1

Introduction .. 1

Problem statement ... 2

Objectives ... 2

Methodology ... 2

Part of speech tagging .. 3

Question focus .. 3

Website crawler .. 4

GUI design ... 5

File access.. 6

Text summarizer ... 6

Organization .. 7

Literature Survey ... 8

Question Answering System ... 8

Natural Language Processing .. 9

Natural Language Toolkit .. 10

Python ... 11

Text Summarization .. 12

Wamp server ... 12

PHP Admin .. 12

Apache .. 13

SQL Server and database .. 14

System Development .. 15

Software Requirements .. 15

Hardware Requirements ... 15

Software Model .. 15

Algorithm .. 18

file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037524
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037525
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037526
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037527
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037528
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037529
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037530
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037531
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037532
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037533
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037534
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037535
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037536
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037537
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037538
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037539
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037540
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037541
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037542
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037543
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037544
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037545
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037546
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037547
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037548
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037549
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037550
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037551
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037552
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037553

iv

Implementation .. 20

Website crawler .. 20

Tokenizing and tagging sentences .. 23

GUI design ... 24

Text Summarizer ... 25

Final module ... 26

Performance Analysis ... 28

Unit Testing ... 28

POS tagger unit testing ... 28

Text summarizer unit testing .. 29

Final module with GUI unit testing ... 31

Black box testing ... 33

Python code testing using cProfile .. 35

Conclusions ... 36

Conclusion ... 36

Future Scope ... 36

References .. 37

Appendices .. 38

file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037554
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037555
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037556
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037557
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037558
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037559
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037560
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037561
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037562
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037563
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037564
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037565
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037566
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037567
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037568
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037569
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037570
file:///C:/Users/arora/Desktop/table%20of%20contents.docx%23_Toc452037571

v

List of figures

Contents
Figure 1: Part of speech tagging ... 3

Figure 2: Text files generated using website crawler ... 4

Figure 3: GUI design .. 5

Figure 4: Text summarizer .. 6

Figure 5: Tokenizing and tagging of text using NTLK .. 10

Figure 6: Naming entities in NLTK ... 11

Figure 7: phpMyAdmin ... 13

Figure 8: Apache ... 13

Figure 9: MySQL .. 14

Figure 10: Flowchart of the project .. 19

Figure 11: MedIndia website for data retrieval .. 21

Figure 12: List of files for doctors in different medical domains .. 23

Figure 13: Interactive GUI design .. 31

Figure 14: Working of project ... 32

Figure 15: Black box testing approach .. 33

Figure 16: Interactive project design .. 34

vi

List of abbreviations

NLP: Natural Language Processing

NLTK: Natural Language Toolkit

GUI: Graphical User Interface

TS: Text Summarizer

QA: Question Answer

PoS: Part of Speech

IR: Information Retrieval

HDD: Hard Disk Drive

CPU: Central Processing Unit

URL: Uniform Resource Locator

vii

ABSTRACT

Searching any information on internet gives us a lot more than the intended. The user then has

to crawl through all the data and find the desired output which is a tedious process. This project

is all about developing a QA System on medical domain that will take in user question and

give only the desired out and nothing extra.

QA System is an application that uses Natural Language Processing integrated with Python.

The website crawler that is used to fetch data from the website is made in PHP and fetches data

and saves it into the text files.

The main reason for developing this project is to make the user experience pleasing and simple

by providing easy and relevant information about the major diseases and doctors.

The project will be developed in NLTK integrated with Python which will provide us the above

functions.

1

CHAPTER-1 INTRODUCTION

1.1 Introduction

Question Answering (QA) is a computer science discipline within the fields of information

retrieval and natural language processing (NLP), which is concerned with building systems

that automatically answer questions posed by humans in a natural language. [1]

QA research attempts to deal with a wide range of question types including: fact, list,

definition, How, Why, hypothetical, semantically constrained, and cross-lingual questions.

These keywords are then used in the question focus to determine the answer type.

Since the questions posed by the humans are in the natural language, there has to be a tool to

convert such language into the machine understandable form. Natural language

processing (NLP) is a field of computer science, artificial intelligence, and computational

linguistics concerned with the interactions between computers and human (natural) languages.

As such, NLP is related to the area of human–computer interaction. Many challenges in NLP

involve natural language understanding, that is, enabling computers to derive meaning from

human or natural language input, and others involve natural language generation. There are

various toolkits that are available for this computer and human interaction one of which is

Natural Language Processing Toolkit (NLTK)

NLTK is a leading platform for building Python programs to work with human language data.

It provides easy-to-use interfaces to over 50 corpora and lexical resources such as WordNet,

along with a suite of text processing libraries for classification, tokenization, stemming,

tagging, parsing, and semantic reasoning, wrappers for industrial-strength NLP libraries, and

an active discussion forum.

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Computational_linguistics
https://en.wikipedia.org/wiki/Computational_linguistics
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Human%E2%80%93computer_interaction
https://en.wikipedia.org/wiki/Natural_language_understanding
https://en.wikipedia.org/wiki/Natural_language_generation
http://nltk.org/nltk_data/
http://groups.google.com/group/nltk-users

2

1.2 Problem Statement

Natural language processing has been a researchable topic in the recent past and hence there

are various domain specific tools coming up to cater the same. Medical domain is one such

area where QA systems can help the user in getting their queries answered.

Toolkits like NLTK have now come up that help the developer process the input query and tag

the relevant words for further processing. The major task is to use this toolkit in developing a

QA system for medical domain.

1.3 Objectives

Thoroughly understand the basics of Python and NLTK and thereafter develop a tool on

medical domain that takes in user input or query and processes it to give the relevant answer

from the database. The user query can be a question posed in correct grammatical form in

English language.

1.4 Methodology

The development of the project involved the development and integration of the following

independent modules:

 Part of speech tagging

 Question focus

 Website Crawler

 GUI design

 File Access

 Text Summarizer

3

1.4.1 Part of speech tagging

The first and the foremost module in the development of the QA system was the POS tagging

module. In this module, the input sentence is split into words (tokenized) and each word is then

tagged for its respected part of speech.

Let us say the user inputs, “What is cancer?”

Fig 1. Part of speech tagging

The screenshot above shows the tagging of the words “what” and “cancer” after removal of

“is” which was a stopword.

1.4.2 Question focus

We identify the following question types which give a fairly clear indication of the type of

answer: when, who, where, whom, why, describe, and define. For example, the answer to a

question is usually a person or a group of people. Other keywords or question words are less

clear about the expected answer type: what, which, how, and name. For example, consider the

following three what questions: What time is the train arriving? What city is the train stopping

at?, and What is the name of the driver of the train? This problem can be solved by defining

concept called question focus. The question focus is a phrase in the question that disambiguates

it and emphasizes the type of answer being expected. For example in the three questions above

4

the question foci are shown. In the first two cases, the question focus tells us directly that a

time and a city are being looked for. In the third case we know that driver is a type of person

and hence that a person’s name is being sought. For the purpose of this system the question

focus is defined as the first noun group that is not a word “name” if the question word is of an

ambiguous type.[2]

 1.4.3 Website crawler

Crawling a website to get the relevant data is the task of website crawler. The same is

implemented in the project using PHP for the purpose of database creation. The data of doctors

is extracted from the website and is stored in the text files with related areas of expertise. The

data of all the cardiologists in stored under the Cardiology text file.

Fig 2 Text files generated using website crawler

5

1.4.4 GUI design

Designing the Graphical User Interface (GUI) was one of the module which involved the

attractive button, text field interface for the user. The GUI development was done using Python

PyQt4 which is the Python wrapper around the QT framework for creating graphical user

interfaces, or GUIs.

Glimpse of the GUI is shown below:

Fig 3 GUI design

6

1.4.5 File Access

File Access module is a test module that takes in the tagged user query, matches it with the

preexisting strings in python dictionary and then opens and fetches data from the text files.

This module is developed with the sole purpose to check the I/O operations in files and

checking the same with the tagged words.

1.4.6 Text Summarizer

Text summarizer module is separately developed to summarize the data in the documents. It

takes in a string of data and finds the most relevant data from this string based on score

computed for each sentence. The scores for each of the sentences are compared and the ones

with the highest scores are retained in the summarized documents. The extra unnecessary

data is hence trimmed off to give the best out of the string.

The working of Text Summarizer is shown below for the disease “acne”

Fig 4 Text summarizer

7

1.5 Organization

The project is organized in the form of modules that are integrated to form the final module,

or the complete project.

The different modules listed in the previous sections are organized in a way so that the overall

project uses each of the independent module to run the overall tool of Question Answering in

medical domain.

Firstly, website crawler was developed to generate the database. Once the database for the

doctors and diseases was prepared, the second development phase included part of speech

tagger. POS tagger as discussed tokenizes and tags the words in the sentence.

Text summarizer was developed next to facilitate the extraction of relevant text from the

documents. In spite of listing the whole document, extracting the most relevant data based on

score is done using this TS.

GUI was developed after TS where in the user can post and get his queries answered. In case

the file or the disease queried doesn’t exist in the database, a message is flashed to tell the user

about the same.

The integration of all the modules and its organization is done using the iterative model.

8

CHAPTER – 2 LITERATURE SURVEY

2.1 Question Answering System

Question answering can be viewed as a sophisticated information retrieval (IR) task where a

system automatically generates a search query from a natural language question and finds a

concise answer from a set of documents. In the open domain factoid question answering task

systems answer general questions like Who is the creator of The Daily Show?, or When was

Mozart born?[3]

The question answering task has two reference inputs: the corpora to be used to extract the

relevant answers and the question itself. Each of these inputs must be analyzed in a manner

that makes the question-answer matching semantically relevant, easy to understand and

potentially traceable. This matching process implies that we represent both questions and

candidate answers (or whole corpus) in a homogeneous semantic representation that can be

processed by information systems.

Since information retrieval is the first stage of question answering, its performance is an

upper bound on the overall question answering system’s performance. IR performance

depends on the quality of document indexing and query construction. Question answering

systems create a search query automatically from a user’s question, through various levels of

sophistication. The simplest way of creating a query is to treat the words in the question as

the terms in the query. Some question answering systems apply linguistic processing to the

question, identifying named entities and other query-relevant phrases. Others use ontologies

to expand query terms with synonyms and hypernyms.

IR system recall is very important for question answering. If no correct answers are present

in a document, no further processing will be able to find an answer. IR system precision and

ranking of candidate passages can also affect question answering performance. If a sentence

without a correct answer is ranked highly, answer extraction may extract incorrect answers

from these erroneous candidates. Research shows that there is a consistent relationship

between the quality of document retrieval and the overall performance of question answering

systems.

9

Information retrieval (IR) for question answering consists of 2 steps: document retrieval and

passage retrieval. Approaches to passage retrieval include simple word overlap, density

based passage retrieval, retrieval based on the inverse document frequency (IDF) of matched

and mismatched words, cosine similarity between a question and a passage,

passage/sentence ranking by weighting different features, stemming and morphological query

expansion, and voting between different retrieval methods. As in previous approaches, we

use words and phrases from a question for passage extraction and experiment with using

exactly matched phrases in addition to words. Similarly, we assign weights to sentences in

retrieved documents according to the number of matched constituents.

As the search query is entered, the named entities are extracted from it and processed using

various techniques mentioned. The technique used in this project is a simple word overlap

which involves the string matching for the tagged words with that defined in the code. Once

it is matched, the file related to that particular keyword is extracted and the data is fetched

and displayed.

2.2 Natural Language Processing

Natural Language processing is a branch of computer science, artificial intelligence and

linguistics concerned with the interactions between computers and human (natural) language.

Natural language is any language that humans learn from their environment and use to

communicate with each other. Whatever the form of the communication, natural languages are

used to express our knowledge and emotions and to convey our responses to other people and

to our surroundings.

Natural languages are usually learned in early childhood from those around us. Natural

language processing is the collection of techniques employed to try and accomplish that goal.

The field of natural language processing (NLP) is deep and diverse. Natural language

processing (NLP) is a collection of techniques used to extract grammatical structure and

meaning from input in order to perform a useful task as a result, natural language generation

builds output based on the rules of the target language and the task at hand.

10

2.3 Natural Language Toolkit

NLTK is a leading platform for building Python programs to work with human language data.

It provides easy-to-use interfaces to over 50 corpora and lexical resources such as WordNet,

along with a suite of text processing libraries for classification, tokenization, stemming,

tagging, parsing, and semantic reasoning, wrappers for industrial-strength NLP libraries, and

an active discussion forum. [4]

NLTK is a broad-coverage toolkit that provides a simple, extensible, uniform framework for

assignments, projects, and class demonstrations that needs processing of natural language. It

is well documented, easy to learn, and simple to use. NLTK is unique among computational

linguistics tools in its combination of three factors. First, it was deliberately designed as

courseware and gives pedagogical goals primary status. Second, its target audience consists of

both linguists and computer scientists, and it is accessible and challenging at many levels of

prior computational skill. Finally, it is based on an easy-to-learn and easy-to-read programming

language supporting rapid development and literate programming.

Simple things that can be done using NLTK include, tokenizing and tagging of sentences.

Let us say we have a sentence, “At eight o'clock on Thursday morning Arthur didn't feel very

good.” Tokenizing and parts of speech tagging through NLTK is shown below.

Fig 5. Tokenizing and tagging of text using NTLK.

http://nltk.org/nltk_data/
http://groups.google.com/group/nltk-users

11

Now let us identify the named entities in the following sentence.

Fig 6. Naming entities in NLTK

2.3 Python

Python is a widely used high-level, general-purpose, interpreted, dynamic programming

language. Its design philosophy emphasizes code readability, and its syntax allows

programmers to express concepts in fewer lines of code than would be possible in languages

such as C++ or Java.

The project on QA system used python because of the following reasons:

 Python offers a shallow learning curve; it was designed to be easily learnt. [5]

 Python code is exceptionally readable, with transparent syntax and semantics.

 As an interpreted language, Python is suitable for interactive exploration.

 Python’s light weight object oriented system makes it easy to encapsulate data and

methods in classes.

 Python's recently added generator syntax makes it easy to create interactive

implementations of algorithms. These interactive implementations can be used to step

through" the algorithm, examining how its state changes as the algorithm progresses.

 Python's extensive standard library provides a great deal of power, when needed.

https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/Interpreter_(computing)
https://en.wikipedia.org/wiki/Dynamic_programming_language
https://en.wikipedia.org/wiki/Dynamic_programming_language
https://en.wikipedia.org/wiki/Readability
https://en.wikipedia.org/wiki/Source_lines_of_code
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Java_(programming_language)

12

2.4 Text Summarization

Text summarization is the technique, where a computer summarizes a text. A text is entered

into the computer and a summarized text is returned, which is a non-redundant extract from

the original text. Automatic text summarization is based on statistical, linguistical and heuristic

methods where the summarization system calculates how often certain key words. The key

words belong to the so called open class words. The summarization system calculates the

frequency of the key words in the text, which sentences they are present in, and where these

sentences are in the text. It considers if the text is tagged with bold text tag, first paragraph tag

or numerical values. All this information is compiled and used to summarize the original text.

2.5 Wamp server

WAMP is a Windows OS based program that installs and configures Apache web server,

MySQL database server, PHP scripting language, phpMyAdmin (to manage MySQL

database’s), and SQLite Manager (to manage SQLite database’s). WAMP is designed to offer

an easy way to install Apache, PHP and MySQL package with an easy to use installation

program instead of having to install and configure everything yourself. WAMP is so easy

because once it is installed it is ready to go. You don’t have to do any additional configuring

or tweaking of any configuration files to get it running. [6]

2.5.1 PHP Admin

Allows you to change or add users and for making new databases phpMyAdmin is a free

software tool written in PHP, intended to handle the administration of MySQL over the World

Wide Web. PhpMyAdmin supports a wide range of operations with MySQL. The most

frequently used operations are supported by the user interface (managing databases, tables,

fields, relations, indexes, users, permissions, etc), while you still have the ability to directly

execute any SQL statement.[6]

13

Features:

 Intuitive web interface

 Import data from CSV and SQL

 Creating PDF graphics of your database layout

 Administering multiple servers

 Searching globally in a database or a subset of it

 Creating complex queries using Query-by-example (QBE)

Fig 7 phpMyAdmin

2.5.2 Apache

The Apache HTTP Server Project is an effort to develop and maintain an open-source HTTP

server for modern operating systems including UNIX and Windows. The goal of this project

is to provide a secure, efficient and extensible server that provides HTTP services in sync

with the current HTTP standards.

The Apache HTTP Server was launched in 1995 and it has been the most popular web server

on the Internet since April 1996. It has celebrated its 20th birthday as a project in February

2015.[6]

Fig 8 Apache

14

2.5.3 SQL Server and database

SQL Server is a relational database management system from Microsoft that's designed for

the enterprise environment. SQL Server runs on T-SQL (Transact -SQL), a set of

programming extensions from Sybase and Microsoft that add several features to standard SQL,

including transaction control, exception and error handling, row processing, and

declared variables.[6]

Fig 9 MySQL

http://searchwinit.techtarget.com/definition/Microsoft
http://searchwinit.techtarget.com/definition/enterprise
http://searchcio-midmarket.techtarget.com/definition/extension
http://searchenterpriselinux.techtarget.com/definition/Sybase

15

CHAPTER – 3 SYSTEM DEVELOPMENT

3.1 Software Requirements

 Python 3.4

 Wamp server

 Natural Language Toolkit

 Latest version of sublime text (text editor)

 Google Chrome or any browser

3.2 Hardware Requirements

 HDD: 200 MB free space

 Memory: 512 MB

 CPU: 2.2 GHz processor or more

3.3 Software Model

SDLC, Software Development Life Cycle is a process used by software industry to design,

develop and test high quality software. The SDLC aims to produce a high quality software

that meets or exceeds customer expectations, reaches completion within times and cost

estimates. [7]

 SDLC is the acronym of Software Development Life Cycle.

 It is also called as Software development process.

 The software development life cycle (SDLC) is a framework defining tasks performed

at each step in the software development process.

 ISO/IEC 12207 is an international standard for software life-cycle processes. It aims

to be the standard that defines all the tasks required for developing and maintaining

software.

16

A typical Software Development life cycle consists of the following stages:

 Stage 1: Planning and Requirement Analysis

 Stage 2: Defining Requirements

 Stage 3: Designing the product architecture

 Stage 4: Building or Developing the Product

 Stage 5: Testing the Product

 Requirement Gathering and analysis: All possible requirements of the system to be

developed are captured in this phase and documented in a requirement specification

doc.

 System Design: The requirement specifications from first phase are studied in this

phase and system design is prepared. System Design helps in specifying hardware and

system requirements and also helps in defining overall system architecture.

 Implementation: With inputs from system design, the system is first developed in

small programs called units, which are integrated in the next phase. Each unit is

developed and tested for its functionality which is referred to as Unit Testing.

 Integration and Testing: All the units developed in the implementation phase are

integrated into a system after testing of each unit. Post integration the entire system is

tested for any faults and failures.

 Deployment of system: Once the functional and non-functional testing is done, the

product is deployed in the customer environment or released into the market.

17

 Maintenance: There are some issues which come up in the client environment. To fix

those issues patches are released.[7]

The QA system development used prototype model due to enhancements in the prototype that

were made and change in the requirements every now and then. An early working prototype

was delivered to which certain modifications were made as and when required. Using

prototyping as the development strategy allowed to better understand the software

requirements.

In prototyping, evolutionary prototyping was used as it is based on building actual functional

prototypes with minimal functionality in the beginning. Using this technique only well

understood requirements are included in the prototype and the requirements are added as and

when they are understood.

What is Software Prototyping?

 Prototype is a working model of software with some limited functionality.

 The prototype does not always hold the exact logic used in the actual software

application and is an extra effort to be considered under effort estimation.

 Prototyping is used to allow the users evaluate developer proposals and try them out

before implementation.

 It also helps understand the requirements which are user specific and may not have

been considered by the developer during product design.

Following is the stepwise approach to design a software prototype:

 Basic Requirement Identification: This step involves understanding the very basics

product requirements especially in terms of user interface. The more intricate details

of the internal design and external aspects like performance and security can be

ignored at this stage.

 Developing the initial Prototype: The initial Prototype is developed in this stage, where

the very basic requirements are showcased and user interfaces are provided. These

18

features may not exactly work in the same manner internally in the actual software

developed and the workarounds are used to give the same look and feel to the customer

in the prototype developed.

 Review of the Prototype: The prototype developed is then presented to the customer

and the other important stakeholders in the project. The feedback is collected in an

organized manner and used for further enhancements in the product under

development.

 Revise and enhance the Prototype: The feedback and the review comments are

discussed during this stage and some negotiations happen with the customer based on

factors like, time and budget constraints and technical feasibility of actual

implementation. The changes accepted are again incorporated in the new Prototype

developed and the cycle repeats until customer expectations are met.

3.4 Algorithm

An algorithm is a procedure or formula for solving a problem. It involves the step by step

approach to solve a particular problem using unambiguous steps.

Step by step algorithm for building the QA system is listed below:

1. Input a query from user

2. Tokenize and tag the query into respective parts of speech.

3. Match these POS with predefined rules

4. If matched, use the tagged words to open the file

5. If found, fetch the data

6. Apply text summarization

7. Print Data

8. If not matched or found, terminate.

Apart from algorithm design, GUI building and testing also played a major role in the project

development.

The flow chart for the above mentioned steps is listed on the next page.

19

Flowchart:

 Fig 10 Flowchart of the project

20

3.5 Implementation

The implementation of the project involved various pieces of code.

3.5.1 Website crawler

The above code takes in the target url which is the URL of the website that is used to fetch the

data. The function file_get_contents is used to get the contents of the website as in the source

page.

The content in the form of HTML tags is hence stored in the variable named $raw_data.*

The above code creates text files with name of the diseases as extracted from the source code

and are stored in the variable named $file_created.

Each medical area eg. Cardiology, Neurology, etc. are created using this and names of the

doctors are written inside the files.

For complete code on website crawler, refer Appendix A

21

The URL used on the previous page is the target URL which is used to create text files for

different fields of medicine.

Fig 11 MedIndia website for data retrieval

The above image shows different fields that are then created as text files with names of doctors.

22

The data about the doctors is fetched from the link and stored in the files created. The variable

$temp_file_doctors_names contains the names of the doctors as fetched from the URL.

The same is then written to the file.

The code creates files iteratively for the total number of links that are stored in the variable

$total_links. Each disease file is hence created using the for loop.

23

On running the above piece of code, text files are created with names of the diseases and

contains the names of the doctors inside.

Fig 12 List of files for doctors in different medical domains

3.5.2 Tokenizing and tagging sentences

Input sentence by the user is tokenized and tagged into respective parts of speech using the

following piece of code.

24

Stopset is the set of all the words in the English language that when removed do not affect the

meaning of the sentence. Punctuations is a string of symbols that need to be removed from the

input text before processing. Tokens contains the list of words after removing the stop words.

Tagged_sent contains the list of tagged words with their respective parts of speech.

3.5.3 GUI design

GUI is developed to better interact with the user and provide him a pleasant experience.

25

The above code is made using the help of PyQt tool of python. The simple drag and drop

functionality makes it easy for the developer to design the interface.

The GUI looks like:

3.5.4 Text Summarizer

The text summarizer module takes in a string block and tokenizes it into the corresponding

sentences. The sentences are then further tokenized into words, these are then passed into a

defined function “compute_score”.

Each word is then checked for its importance using the function “is_important” and if not, is

discarded. Hence, the best sentence is returned as an output.

26

3.5.5 Final module

The final module of QA system is about the string matching and data fetching. Once the

relevant data is fetched, it is then displayed to the user. The user then rates the answer. Based

on the rating the database is updated to reflect the same.

27

The previous code is the python dictionary with predefined rules to match the tagged string. If

matched, the if statements following this code are executed and data from the files is fetched.

The if statements check for the index and if matched computes the path of the file. The path is checked

inside the try statement and if it doesn’t exists, the except statements are executed.

The code above checks for the definition of a particular disease in the database which is stored

in the NN_is[0] variable. If the disease is found the string data is fetched and stored in the

print_data variable after applying text summarization. This string data is then displayed in the

GUI.

28

CHAPTER 4 – PERFORMANCE ANALYSIS

4.1 Unit Testing

In computer programming, unit testing is a software testing method by which individual units

of source code, sets of one or more computer program modules together with associated

control data, usage procedures, and operating procedures, are tested to determine whether they

are fit for use. Intuitively, one can view a unit as the smallest testable part of an application.

In procedural programming, a unit could be an entire module, but it is more commonly an

individual function or procedure. [8]

The goal of unit testing is to isolate each part of the program and show that the individual parts

are correct.

Let us now analyze the unit testing for each of the modules available.

4.1.1 POS tagger unit testing:

POS tagger takes in a sentence as the input and tags it for the respective parts of speech.

 Test case 1:

Input: What is asthma?

Expected output: “What as WP” and “asthma as NN”

Actual output:

29

 Test case 2:

Input: What are the causes of insomnia?

Expected output: “What as WP”, “causes as VBZ” and “insomnia as NN”

Actual output:

4.1.2 Text summarizer unit testing:

It takes in a string of characters as input and gives out the best sentence as output.

 Test case 1:

Input: Asthma is a chronic disease involving the airways in the lungs. These airways,

or bronchial tubes, allow air to come in and out of the lungs. If you frequently

experience shortness of breath or you hear a whistling or wheezy sound in your chest

when you breathe, you may have asthma — a chronic condition that causes

inflammation and narrowing of the bronchial tubes, the passageways that allow air to

enter and leave the lungs. If people with asthma are exposed to a substance to which

they are sensitive or a situation that changes their regular breathing patterns, the

symptoms can become more severe.

Expected output: If you frequently experience shortness of breath or you hear a

whistling or wheezy sound in your chest when you breathe, you may have asthma — a

chronic condition that causes inflammation and narrowing of the bronchial tubes, the

passageways that allow air to enter and leave the lungs.

30

Actual output:

 Test case 2:

Input: Airborne allergens, such as pollen, animal dander, mold, cockroaches and dust

mites.

Respiratory infections, such as the common cold.

Physical activity (exercise-induced asthma)

Cold air.

Air pollutants and irritants, such as smoke.

Strong emotions and stress

Sulfites and preservatives added to some types of foods and beverages, including

shrimp, dried fruit, processed potatoes, beer and wine

Expected output: Airborne allergens, such as pollen, animal dander, mold, cockroaches

and dust mites.

31

Actual output:

4.1.3 Final module with GUI unit testing:

This module is the final project module that contains the GUI, takes in string query input and

processes it to output the relevant answer to the query.

 Test case 1:

Input: What do you mean by acne?

Expected output: These glands secrete an oily substance (sebum) to lubricate your hair and

skin.

Actual output:

Fig 13 Interactive GUI design

32

 Test case 2:

Input: symptoms of asthma

Expected output:

Coughing, especially at night, during exercise or when laughing

Shortness of breath

Wheezing (a whistling or squeaky sound in your chest when breathing, especially

when exhaling)

Actual output:

Fig 14. Working of project

33

4.2 Black-box testing:

Black-box testing is a method of software testing that examines the functionality of an

application without peering into its internal structures or workings. [9]

Specific knowledge of the application's code/internal structure and programming knowledge

in general is not required. The tester is aware of what the software is supposed to do but is not

aware of how it does it. For instance, the tester is aware that a particular input returns a certain,

invariable output but is not aware of how the software produces the output in the first place.

Fig 15. Black box testing approach

34

Test cases:

 Test case 1:

Input: what are the symptoms of asthma.

Expected output:

Coughing, especially at night, during exercise or when laughing

Shortness of breath

Wheezing (a whistling or squeaky sound in your chest when breathing, especially

when exhaling)

Actual output:

Fig 16. Interactive project design

35

4.3 Python code testing using cProfile:

Profiling a Python program is doing a dynamic analysis that measures the execution time of

the program and everything that compose it. That means measuring the time spent in each of

its functions. This will give you data about where your program is spending time, and what

area might be worth optimizing. [10]

Since Python 2.5, Python provides a C module called cProfile which has a reasonable overhead

and offers a good enough feature set.

cProfile testing output:

The output above shows that the overall time spent in executing the function is 0.000 seconds

which tells us that the file indexing and searching time is NULL.

https://docs.python.org/2/library/profile.html

36

CHAPTER - 5 CONCLUSIONS

5.1 Conclusions

The primary goal of this project is to develop a text based question answer system on medical

domain for learning purpose. The aim is achieved meeting the project requirements. The tool

developed answers the user queries regarding the definition, causes, symptoms, and list of

doctors for a particular disease.

The tool developed passed all the relevant test cases and generates the information that best

fits the query.

5.2 Future Scope

The project on text based question answering on medical domain can be further enhanced to

find the list of best doctors in a particular area, locality or city. Since the project only provide

answer to a limited number of diseases, it can be enhanced further to cover a larger spectrum

of diseases. The feedback mechanism of the GUI can be better used to update the database.

37

REFERENCES

[1] Wikipedia contributors, (2016, May 22) “Question Answering”, [Online]. Available:

http://en.wikipedia.org/wiki/Question_answering.

 [2] Richard J Cooper and Stefan M Ruger, “A Simple Question Answering System”, TREC

CDs and TIPSTER.

[3] Svetlana Stoyanchev, and Young Chol Song, and William Lahti, “Exact Phrases in

Information Retrieval for Question Answering”, pp 9-16, August 2008

 [4] Steven Bird, Ewan Klein, and Edward Loper, Natural Language Processing with Python,

O’Reilly Media, 2009.

[5] Edward Loper. 2004. NLTK: Building a pedagogical toolkit in Python. In PyCon DC 2004.

Python Software Foundation.

[6] Talha Asif, (2016, February 5) “Wamp server tutorials”, [Online]. Available:

http://www.wamptutorials.blogspot.in/.

 [7] Tutorialspoint Team, (2016, February 16) “Tutorials point”, [Online]. Available:

http://www.tutorialspoint.com/sdlc/sdlc_quick_guide.htm

[8] Wikipedia contributors, (2016, March 30), “Unit Testing”. [Online]. Available:

http://en.wikipedia.org/wiki/Unit_testing.

[9] Wikipedia contributors, (2016, April 19) “Black box testing”. [Online]. Available:

http://en.wikipedia.org/wiki/Black-box_testing.

[10] Doug Hellmann, (2016, May 15), “PyMOTW”. [Online]. Available:

http://pymotw.com/2/profile/.

38

APPENDICES

Appendix – A: Website Crawler code

<?php

error_reporting(0);

$target_url = 'http://www.medindia.net/healthcare-directory/healthcare-directory.asp';

$raw_data = file_get_contents(preg_replace('/\s|\n|\t/','',$target_url));

$raw_data_file = 'doctors_raw_data.txt';

$check = file_put_contents($raw_data_file, $raw_data);

if($check)

 echo "Doctors Raw Database prepared!
";

$first_explode = explode('<option value="', $raw_data);

$total_links = count($first_explode);

for($i=1;$i<$total_links;$i++)

{

 $second_explode = explode('</option>', $first_explode[$i]);

 $disease_link = $second_explode[0];

 $third_explode = explode('">', $first_explode[$i]);

 $fourth_explode = explode("</button>", $third_explode[1]);

 $file_name = $fourth_explode[0];

 $file_name = str_replace("/", "_", $file_name);

 $file_name = str_replace(" ", "_", $file_name);

39

 $file_created = "doctors/".$file_name.".txt";

 $f = fopen($file_created,'w');

 $path_doctor_name = 'http://www.drdata.in'.'/'.$disease_link;

 echo $path_doctor_name."
";

 $temp_file_doctors_names = file_get_contents($path_doctor_name);

 fwrite($f, $temp_file_doctors_names);

 fclose($f);

 $fifth_explode= explode('<td data-title="Name" valign=', $temp_file_doctors_names);

 $total_doctors = count($fifth_explode);

 echo $total_doctors."
";

}

?>

40

Appendix – B: Text Summarizer

from __future__ import print_function

import codecs

import nltk

from nltk.corpus import stopwords

import re

import string

import sys

_IS_PYTHON_3 = sys.version_info.major == 3

stop_words = stopwords.words('english')

LOWER_BOUND = .20

UPPER_BOUND = .90

def u(s):

 if _IS_PYTHON_3 or type(s) == unicode:

 return s

 else:

 # not well documented but seems to work

 return codecs.unicode_escape_decode(s)[0]

41

def is_unimportant(word):

 return word in ['.', '!', ',',] or '\'' in word or word in stop_words

def only_important(sent):

 return filter(lambda w: not is_unimportant(w), sent)

def compare_sents(sent1, sent2):

 if not len(sent1) or not len(sent2):

 return 0

 return len(set(only_important(sent1)) & set(only_important(sent2))) / ((len(sent1) +

len(sent2)) / 2.0)

def compare_sents_bounded(sent1, sent2):

 cmpd = compare_sents(sent1, sent2)

 if cmpd <= LOWER_BOUND or cmpd >= UPPER_BOUND:

 return 0

 return cmpd

def compute_score(sent, sents):

 """Computes the average score of sent vs the other sentences (the result of

 sent vs itself isn't counted because it's 1, and that's above

 UPPER_BOUND)"""

 if not len(sent):

 return 0

 return sum(compare_sents_bounded(sent, sent1) for sent1 in sents) / float(len(sents))

42

def summarize_block(block):

 if not block:

 return None

 sents = nltk.sent_tokenize(block)

 word_sents = list(map(nltk.word_tokenize, sents))

 d = dict((compute_score(word_sent, word_sents), sent)

 for sent, word_sent in zip(sents, word_sents))

 return d[max(d.keys())]

