SEARCHING POSITIVE SELECTION
USING GPU AND BENCHMARKING
GPU BASED SHORT READ
ALIGNERS

Enrollment Number: 121503
Name of Student: Siddharth Singh Tomar
Name of Supervisor: Dr. Tiratha Raj Singh

Submitted in partial fulfillment of the Degree of
Bachelor of Technology

DEPARTMENT OF BIOTECHNOLOGY AND BIOINFORMATICS
JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,
WAKNAGHAT

Contents

Certificate

Acknowledgements

Summary

List of Figures

List of Tables

List of Abbreviations

1

3

Introduction

1.1 Introduction e
1.1.1 Problem Statement
1.1.2 Objectives.« o vttt
1.1.3 ExistingTools,

1.2 Development Strategy e
1.2.1 Phasel e
1.22 Phasell
1.23 Phaselll e

1.3 Introto CUDA/OpenCL
1.3.1 CUDA e
1.32 OpenCL e

Technical Specifications

2.1 OVEIVIEW . . . v v o e e e e e e e e e e e e
2.1.1 HostandKernels

2.2 FastCodeMLtoGCodeML
2.2.1 Libraries e

23 Option2 e e e e e e

24 0Option 3 e e e e e e e e

Analysis

3.1 Drawbacksin FastCodeML
3.1.1 OpenMPI
312 Coding e e e

32 CUDAandOpenCL. it

3.2.1 CUDA framework and restrictions

iii

iv

vii

viii

ix

3.2.2 Hardwarerestrictions 0o
3.2.3 Caching and Optimization of probabilities
324 OpenCL e

3.3 OpenACC
3.4 Optimal Algorithm

4 Benchmarking-Short Read Aligners

4.1 Introduction

4.2 Method
4.2.1
4272

Read Generation .
Benchmark

S Benchmarking-Results

5.1 Numbers
Speed
Performance . . .
Discussion

5.1.1
5.1.2
5.13

6 Conclusion
6.0.1
6.0.2
6.0.3
6.0.4

Bibliography

Conclusion: I . . .
Conclusion: I . .

Limitations of thisstudy

Future possibilities

il

11

Certificate

This is to certify that the work titled “‘Searching Positive Selection using GPU and
Benchmarking GPU based Short Read Aligners’ submitted by Siddharth Singh Tomar
in partial fulfillment for the award of degree of Bachelor of Technology in Bioinformatics
of Jaypee University of Information Technology, Waknaghat has been carried out under
my supervision. This work has not been submitted partially or wholly to any other Uni-
versity or Institute for the award of this or any other degree or diploma.

Signature of Supervisor:

Name of Supervisor: Dr. Tiratha Raj Singh
Designation of Supervisor: Assistant Professor

Date:

v

Acknowledgements

First and foremost, I would like express my deepest gratitude to my supervisor, Dr. Tiratha
Raj Singh, who guided me and helped me in every possible way during the course of this
thesis. His continued support and guidance enabled me to pursue study in a relatively new
field.

I express my sincere thanks to Dr. Rajinder S. Chauhan (Head: Dept. of Biotechnol-
ogy and Bioinformatics) This study would not have been possible without his support and
mandate.

My sincere thanks also goes to Dr. Ivo Kwee, for offering me the summer internship
opportunity in his group at IOR and letting me explore new prospects in computational

biology.

I would also like to thank Nvidia Corporation for their hardware grant consisting of a
Tesla K40 for this study.

Last but not the least, I would like to thank my family: my parents and to my brother
for supporting me and my decisions in life.

Signature of Student:

Name of Student: Siddharth Singh Tomar

Date:

Summary

This study and thesis is divided into two parts. The first part of this thesis pertains to

development of an algorithm for searching positive selection(specifically by implement-
ing Branch Site Model) using GPU and ascertain the feasibility of such implementation.
This include changes in the underlying algorithm of preexisting tools to accommodate
GPU and HPC acceleration paradigms. Along with implementation, this study also iden-
tified potential drawbacks of such implementation, and alternative strategies for possible
program.
The second part of this thesis deals with performance profiling of short read aligners
(using Nvidia CUDA framework) for testing scalability in GPGPU environment. We
studied the impact of GPU based aligners on NGS analysis pipeline and included a com-
parison with CPU based counterparts. The main aim of this study was to identify the
possible gains by using GPU in NGS analysis within a similar price bracket and to study
the implementation of such aligners in GPU. The performance was measured by running
alignments on simulated Illumina reads on human genome.

Signature of Student Signature of Supervisor
Siddharth Singh Tomar Dr. Tiratha Raj Singh
Date: Date:

Vi

Vil

List of Figures

1.1

2.1
2.2
2.3
2.4

4.1

4.2
4.3

Phases e 7
OVEIVIEW o o e e e e 13
Caching e 14
Block management 15
Caching e e 16
Basic 10 diagram between CPU and GPU. Notice the lack of direct inter-

face between system memory and GPU. 24
Approach followed by GPU based aligners 25

A simplified representation of short read aligners 26

viii

List of Tables

5.1 Numerical performance across parameters 28
5.2 Averagetimeinseconds 30

1X

List of Abbreviations

GPU
GPP
CPU
CpPvV
API
ML

Graphic Processing Unit
General Purpose Processor
Central Processing Unit
Conditional Probability Vector
Application Program Interface
Maximum Likelihood

MCMC Markov Chain Monte Carlo

1 Introduction

This thesis sis divided into two major parts. Chapter 1, 2, 3 are related to a development
perspective, whereas chapter 4, 5 are related to evaluation of existing programs. Chapter
6 serves as conclusion of both parts.

1.1 Introduction

Detecting positive Darwinian selection at the DNA sequence level has been a subject of
considerable interest. However, positive selection is difficult to detect because it often op-
erates episodically on a few amino acid sites, and the signal may be masked by negative
selection. The detection of positive selection is widely used to study gene and genome
evolution, but its application remains limited by the high computational cost of exist-
ing implementations. The non-synonymous (amino acid altering) to synonymous (silent)
substitution rate ratio (dy/ds) provides a measure of natural selection at the protein level,
with w = 1,w < 1,w > 1 indicating neutral evolution, purifying selection, and positive
selection, respectively. In biology, phylogenetic trees are used to represent the evolution-
ary relationships among groups of organisms or among a family of related nucleic acid
or protein sequences based upon their similarities and differences. They are helpful in
inferring the history of organism lineages as they evolve over time. Since phylogenetic
relationships among species also can help determine which ones might have similar func-
tions, it is widely used in medical research for predicting potential hazards from species
with rapidly changing pathogens, for example to identify lethal variants of HIV and SARS
viruses. The operation of phylogenetic analysis aims to investigate the evolution and rela-
tionships among species. It is widely used in the fields of system biology and comparative
genomics.

Phylogenetic analysis aims to infer the evolutionary order of a set of species or genes.
It estimates the relationship by comparing homologous sites between species on different
branches so that evolutionary scores can be assigned to given phylogenetic trees. Since
biological sequences normally have some dissimilarities, sequences under investigation
need to be multiply-aligned so that homologous sites can be discovered to form columns
in the alignment. These alignments are then used to construct phylogenetic trees. A
phylogenetic tree is a diagram which depicts the relationships of species in a tree format.
Phylogenetic trees can be either rooted or unrooted. Phylogenetic trees are normally
branching diagrams, where, leaves in trees represent species, and species are joint together
to compose internal nodes. Internal nodes in trees represent the inferred most recent
common ancestors of their descendants. The Maximum Likelihood (ML) algorithm can
be used to infer a phylogenetic tree or evolutionary tree, as it searches for the tree with
the highest probability or the maximum likelihood from an existing tree. For this, pairs
of biological sequences need to be multiply-aligned in advance. There are many tools

Chapter 1. Introduction 2

for designed for performing multiple sequence alignment like PAUP, ClustalW, etc. This
multiple sequence alignment file is to be used as input for our GPU based implementation
of positive selection with codon models.

1.1.1 Problem Statement

The primary task for the project is to improve the computation of positive selection using
codon models and especially the Branch- Site model. While this model has advantages
of biological realism and of robustness, the main implementation is computationally in-
tensive . The scanning for positive selection in gene evolution is CPU limited. This is
because CPUs do not optimize for throughput, rather they optimize for latency thus re-
stricting the CPUs from handling computationally intensive data. We will be modifying
the same algorithm for GPUs and will try to analyze the performance gain which might
be possible from a GPU based implementation, and any shortcomings for the given ap-
proach.

1.1.2 Objectives

These are the primary objectives:

1. To devise an algorithm for computing positive selection with codon models on
GPUs.

2. Improving computational performance for positive selection search.

3. To create a framework for a tool like PAML [1] by using OpenCL/CUDA for par-
allel programming.

4. To analyze shortcomings of FastCodeML.

1.1.3 Existing Tools

These are the tools which we will use as base for constructing our algorithm:

1. PAML (Phylogenetic Analysis By Maximum Likelihood) [1] : PAML is a package
of programs for phylogenetic analysis of DNA or protein sequences using maxi-
mum likelihood. It is maintained and distributed for academic use free of charge
by Ziheng Yang. ANSI C source codes are distributed for UNIX/Linux/Mac OSX,
and executables are provided for MS Windows. PAML is not good for tree making.
It may be used to estimate parameters and test hypotheses to study the evolutionary
process.

2. BEAGLE API (Broad-Platform Evolutionary Analysis General Likelihood Eval-
uator) [2] : An application programming interface (API) and high-performance
computing library for statistical phylogenetics. Emphasises on evaluating phylo-
genetic likelihoods of biomolecular sequence evolution and aims to provide high
performance evaluation ’services’ to a wide range of phylogenetic software, both

Chapter 1. Introduction 3

Bayesian samplers and maximum likelihood optimizers allowing phylogenetic soft-
ware using the library to make use of optimized hardware such as GPUs.

3. PhyML[3] : Is a tool for fast and accurate estimation of phylogenies by maximum
likelihood.

1.2 Development Strategy

We planned the execution of project in three primary phases (Figure 1.1 on page 7):
1. Phase I: Preparation
2. Phase II: Development

3. Phase III: Extension

1.2.1 Phasel

Completed During this phase, we collected all the relevant literature, linked them to
our problem and determined best course of action. Initial review clearly illustrated the
magnitude of problem, while the problem itself is solvable, it will take considerable ef-
forts. We decided to create a WBS (Work Breakdown Structure) to divide different parts
of problem to different members of group. Also, we extracted the relevant information
from literature and condensed them to form a overview to create a structure which we can
implement.

1.2.2 Phase Il

Completed During this phase, we started primary development and analyzed most of
the code for a proof of concept algorithm. During this phase, we also plan to modify the
algorithm to suit our requirements, introducing features as required. One of the observa-
tion is that most of the algorithm inherently is recursive in nature, which is unsuitable for
GPUs, therefore we plan an iterative and flat conversion of such routines. Other complex-
ities are discussed in technical section. As of now, we have successfully completed im-
plementation of optimized tree traversal on GPU, which we will use for creating multiple
MC-MC simulations. We are currently working on understanding code of FastCodeML,
and devising ways to replace function calls to BLAS with MAGMA functions. We have
already identified R subroutines which we can use in conjunction in MAGMA for matrix
manipulation in GPU.

1.2.3 Phase III

Completed We tried to analyze the best possible algorithm and implementation for the
problem. The results and technical peculiarities are discussed in later chapters.

Chapter 1. Introduction 4

1.3 Intro to CUDA/OpenCL

In this section, we try to explain the basic working behind CUDA and OpenCL based
programs and the difference between excution on GPP and GPU. GPU programming is
inherintly different from general programming used for x86/POWER based processors,
and ths requires some explaination before we move to techincal section of this project.

1.3.1 CUDA

The CUDA programming model is a heterogeneous(i.e. using both GPP and GPU) pro-
graming paradigm. Here host is GPP and the associated main system memory(i.e. RAM/cache)
and device is the GPU and the video buffer/memory it contains. GPP manages the device
and its memory, simultaneously also launching kernels which are functions executed on
the device. The kernels are actual programming "objects" which are used parallelized via
threading on GPU.

A typical sequence of operations for a CUDA C program is:

1. Declare and allocate host and device memory.

2. Initialize host data.

3. Transfer data from the host to the device.

4. Execute one or more kernels.

5. Transfer results from the device to the host.

A sample CUDA code representing Single Precision X*Y+A program:

#include <stdio.h>

__global__
void saxpy(int n, float a, float =*x, float =xy)
{
int i = blockIdx.xxblockDim.x + threadIdx.Xx;
if (1 < n) yl[i] = a»x[1] + yI[i];

int main (void)
{
int N = 1<<20;
float =*x, =y, xd_x, *xd_y;
X = (float*)malloc (Nxsizeof (float));
y = (floatx)malloc (Nxsizeof (float));

cudaMalloc (&d_x, Nxsizeof(float));
cudaMalloc (&d_y, Nxsizeof (float));

Chapter 1. Introduction 5

for (int 1 = 0; 1 < N; i++) {
x[1i] = 1.0f;
y[i] 2.0f;

cudaMemcpy (d_x, x, Nxsizeof (float), cudaMemcpyHostToDevice);
cudaMemcpy (d_y, vy, Nxsizeof (float), cudaMemcpyHostToDevice);

// Perform SAXPY on 1M elements
saxpy<<< (N+255) /256, 256>>> (N, 2.0f, d_x, d_vy);

cudaMemcpy (y, d_y, Nxsizeof (float), cudaMemcpyDeviceToHost);

float maxError = 0.0f;
for (int 1 = 0; i < N; i++)
maxkError = max (maxkError, abs(y[i]-4.0f));

printf ("Max error: %fn", maxError);

1.3.2 OpenCL

Similarly, OpenCL also follows a similar paradigm for program execution, but with a
main difference that it is a cross-platform C99 implementation specifically made for par-
allel computing. It can practically work with GPUs and CPUs from all major vendors
and is more or less a subset of C language, unlike CUDA which extensively modifies C
language for its own execution. The same Single Precision X*Y+A program in OpenCL
looks like:

#include <iostream>
#finclude <algorithm>

#include "include/CLUtility.h"
#include "include/CLEvent.h"

#include "include/CLContext.h"
#include "include/CLBuffer.h"
#include "include/CLProgram.h"

int main ()

{
// create a context for the second GPU
clp::Context context (CL_DEVICE_TYPE_GPU, 1, 1);

// create and build a program
clp::Program program(context);
program.setSource (

"kernel void saxpy (\n"

Chapter 1. Introduction 6

" global float *x, global float *y, float a\n"
") \n"

" { \l’l"

" const uint index = get_global_id(0);\n"

" x[index] += axy[index];\n"

" } \n"

)i

program.build();

// obtain a kernel object
clp::Kernel<void(float«, float*,float)> saxpy =
program.getKernel<void (floatx, float«, float)> ("saxpy");

// create device buffers
clp::Buffer<float> x(context, 1024);
clp::Buffer<float> y(context, 1024);

// map the buffers
clp::Event xevent = x.map();
clp::Event yevent y.map();

// fill them with data and unmap
xevent .wait () ;
std::fill(x.begin(), x.end(), 45);
x.unmap () ;

yevent.wait () ;
std::fill (y.begin(), y.end(), 3);
y.unmap () ;

// execute kernel
saxpy (clp::Worksize (1024,256), x, vy, 13);

return O;

It should be noted that this OpenCL code is specifically made for GPU only. An
optimal OpenCL implementation will be too large for even a simple problem, mainly
because of optimizations and accessory code required for each architecture. There is a
third option too, which will be discussed in next chapter.

Chapter 1. Introduction

sSv1gno
yoedur
VANDVIN
SYreN vano
OIgAN
al4Aely
Isniy L

yoteag Aeiqi

(€ 'y @9s ‘Ajlenied)
pale|dwo)

Il 9seyd

A

sisAleuy aAneredwo)

wyiob|y urepy

A

alempleH pue sjoo|

umopealg pJop

pale|dwo)
Il 8seyd

A

seseyd Juswdojanaq

MBIABI BInjela)]

pale|dwo)
| @seyd

FIGURE 1.1: Development phases

2 Technical Specifications

2.1 Overview

Driver-Kernel relationship Initially, we planned to use both, GPP(General Purpose
Processor, CPU) and GPU for calculation, whereby CPU will calculate the transition
probabilities locally, and transfer the result to GPU global memory, but ultimately decided
to use GPU only for all calculations, including input preprocessing [if required, although
nvbio library supports only pairwise alignment processing and thus is not suitable for such
tasks. Multiple Sequence Alignment is possible on GPU, but the tools [4], [5] are not as
accurate as latest version of ClustalW (Clustal Omega)]. Main issue with this approach
was added latency cost and further complications in cache management. We are designing
algorithm for a single node-single card setup, thus there is no scope of incorporating
techniques like multi-GPU and cluster based work sharing. One interesting prospect in
future can be to use IBM Power8 based servers and GPU based cluster to bifurcate single
dataset and compute the parts separately(for example, reducing state space on GPU based
cluster and performing final reduction on Power8), merging the results in the end.

2.1.1 Host and Kernels

The host program, which will primarily use CPU will act as a simple driver, which will
call the kernels and manage the threads and block. It will not contribute in actual calcu-
lations, and will be completely separate from problem. The kernels are divided into three
major categories, likelihood processors, transition probability/ state space processor and
matrix processor. Likelihood processors will work in a fashion similar to previous im-
plementations[6], [7]. We prefer the given implementation[6] because of the way threads
and blocks are managed. It should be noted that the GPU we are using allow a higher
number of concurrent threads and better management of resources at hardware level, thus
the algorithm requires extreme modification. Another implementation which piqued our
interest [7] uses a slightly different approach, which although is efficient but needs exten-
sive modification to support expanded feature set of Maxwell generation (Figure 2.1 on
page 13 explains basic overview of program).

Transition ratios(Transversion, Transition, Synonymous/Non Synonymous ratios etc) will
be managed independently, but concurrently. This is another area of discussion be-
tween group, they can be concurrently processed and stored(using x% of total processing
blocks), and cached for likelihood calculations in real time. Same kernel will also manage
state space, to reduce the number of calls between two operations.

Chapter 2. Technical Specifications 9

2.2 FastCodeML to GCodeML

Then comes the actual porting of FastCodeML on GPU, for which we studied the primary
implementation elucidated in the publication[8]. Most of the implementation makes no
sense on GPU, since there is substantial amount of modifications required. Load balanc-
ing paradigm needs to be rewritten from scratch. In actual sense, load balancing on GPU
works a little differently and in case of FastCodeML, it is just efficient caching of previous
results. The problem in GPU is that while threads in same block can utilize the common
values, threads between different blocks would need to access L2 cache or Global mem-
ory, which would incur significant cost in terms of data transfer and associated latency.
CPVs (Conditional Probability Vectors) are too large to be stored on L1 cache or 96KB
shared memory per block. Ranking and grouping, although is possible on GPU, is not
a logical solution since it would too require constant exchange of information between
global and local memory(each transition cost 2 to 3 milliseconds, a considerable amount
if summed up for 3000+ cores and many more threads).

One extreme solution would be to use minimum possible cores to calculate CPVs for a
subset, store them according to subtree topology and for next iteration, try a local search
using stored values if subtree topology matches with node values. Simultaneously, the
unused topologies(and associated node values) will be replaced by most frequent ones.
This method is completely naive and random, but is easily implementable on GPU, al-
lowing us to reduce to access time in average case (rather optimistic scenario, Figure 2.2
on page 14 and Figure 2.3 on page 15).

There is another area where GPU based implementation becomes complex, we are con-
strained by the amount of global memory(12GB at max, out of which roughly 10GB is
usable). We are currently thinking about ways to manage the global memory without
any compression or encoding involved(many short read aligners[9], [10] use encoding
schemes for efficient search and storage on GPU). If the need arises to use an encoding
scheme for data management, we would then also group subtrees according to similarity.
This runs contrary to our initial proposal to use a naive method; since we are already pro-
gramming a CPU dependent encoding scheme, it wouldn’t create much problem if we do
the sorting on GPP itself, violating the GPU only nature of program.

Chapter 2. Technical Specifications 10

2.2.1 Libraries

As for the linear algebra and associated libraries for matrix operations, the solution is
rather simple. Both BLAS and LAPACK can be replaced by MAGMA[11] and cuBLAS
(MAGMA can substitute cuBLAS too, unless we decide to reuse the code from Fast-
CodeML). If instructed and required, cuBLAS can be replaced by cuBLAS XT, allowing
us to use multiple GPUs for matrix operations. Initially we also considered CULA-Tools,
but the licensing was restrictive in nature and was available with reduced set of operations,
we decided to use MAGMA. ArrayFire is another alternative which we are considering
for future version. CUDA Maths will replace the general mathematics library for simple
functions, and Thrust is already implemented on GPU.

2.3 Option 2

We have also created another possible option, by using the OpenCL programming frame-
work and libraries. The resultant algorithm and program thus will be architecture inde-
pendent, and thus will be able to run on both, GPP and GPU. This strategy specifically
requires high amount of optimization, which we were not able to archive in given time
frame. Provided that an OpenCL based implementation is able to run on products sup-
plied by AMD, this is an interesting prospect given that the required level of optimization
is reached. AMD has high memory GPUs in market which have an advantage over Nvidia
based on the criteria of compute power. OpenCL implementation also enables a seamless
hybrid computation strategy, in which the resulting program can use both GPU and GPP
for calculating parameters better suited for each respective type of processors. Like the
CUDA based implementation, even this implementation has its own drawbacks, many of
which are shared between two.

In OpenCL based implementation, we decided to create a substructure which uses
the libraries which are compatible with both, GPP and GPU. Specifically LAPACK is
available as an library for OpenCL based implementations also, although it will help only
with matrix operation mostly. The problem of efficient caching still remains. Considering
that we still have to manage CPV values, we are considering a way to store them using
a tree like structure in GPU main memory, which is possible since the GPP can be used
fairly easily with OpenCL based implementation to manage the trees and transfer them
to GPU after a specific number of calculations have been reached, unlike CUDA which
requires a complete memory refresh to work with arrays.

Chapter 2. Technical Specifications 11

2.4 Option3

The last and most radical option is to use a new compiler based acceleration framework
known as OpenACC. OpenACC is meant to augment OpenMP and MPI based codes by
providing line to line replacement for OpenMP based complier directives meant for par-
allel acceleration on CPU. Ideally, OpenACC based code can run on both GPU and CPU
without any modification, although it can not utilize both optimally for a same subrou-
tine. OpenACC is based on compiler intelligence to parallelize code, which means that
the programming effort require to solve a program using parallelization is minimum. This
also means that the solution given by OpenACC compiler might not be optimal, or even
worse than a serial implementation. This option enables us to implement FastCodeML
without any substantial modification to measure the performance on GPU using their ex-
isting algorithm, although given that the algorithm itself is largely unsuitable for such
architecture, it might be possible to use OpenACC to create a proof of concept for testing
the caching strategy. The same Single Precision X*Y+A program in OpenACC looks
like:

#include <stdio.h>
#include <openacc.h>
#include <stdlib.h>

void saxpy_openacc (float *restrict vecy,
float xvecX, float alpha, int n)
{

int 1i;
fpragma acc kernels
for (i = 0; i < n; i++)
vecY[1] = alpha » vecX[i] + vecY[i];

void saxpy_cpu(float =xvecy,
float+xvecX, float alpha, int n)
{

int i;

for (i1 = 0; i < n; 1i++)
vecY[1] = alpha » vecX[i] + vecY[i];

int main(int argc, char xargv([])
{

float =*x_host, =*y_host;

float *x_dev, xy_dev;

float =xy_shadow;

int n = 32x1024;

Chapter 2. Technical Specifications 12

float alpha = 0.5f;
int nerror;

size_t memsize;
int i, blockSize, nBlocks;

memsize = n * sizeof (float);

X_host = (float *) malloc (memsize);
y_host = (float *)malloc (memsize);

y_shadow (float %) malloc(memsize);

for (1 0; 1 < n; i++)

{
Xx_host[1] = rand() / (float)RAND_MAX;
yv_host[i] = rand() / (float)RAND_MAX;
y_shadow[i]=y_host[i];

saxpy_openacc (y_shadow, x_host, alpha, n);

free(x_host);
free (y_host);
free (y_shadow) ;

return 0;

}

A flowchart illustrating OpenACC based approach for computing positive selection is
mentioned in Figure 2.4 on page 16. Next chapter will illustrate various drawbacks of
each strategy along with possible performance implications.

13

ayoe) (8007 =1

Chapter 2. Technical Specifications

» Aows| waisAs

Bulyoen —»{ uonoung poouyier

(uwinjod yoes Jo4

Y

Nndo

|

A 4

8811 pue uswubiy aousnbag aidniny

EIUEN]

OLVIVIVIVIVIVOOOOOVIVOOOOVIVIVOOVVYLIVOOLY

OLVIVIVIVIVIVOOOOOVIVOOOOVIVIVOOVVYLIVOOLY

OL1VIVIVIVIVIVOOODOOVIVOODOVIVIVOOVVYIVOOLY

lojewnse oney

O1IVIVIVIVIVIVOOOOOHVIVOOOOVIVIVOOVVYLIVOOLY
O1VIVIVIVIVIVOOOOOVIVOOOOVIVIVOOVVYLIVOOLY

O1VIVIVIVIVIVOOOOOVIVOOOOVIVIVOOVVLIVOOLY

O1VIVIVIVIVIVOOOOOVIVOOOOVIVIVOOVVYLIVOOLY

f

Buiyoen

S810) Aows|\ [eqojn
) 4 _ L 4 _é

> 7 N 8100

> 1

» 1

» X 810D

» 1

» 1

» 1

» 1

o NVHA

<

<

<

<

» 1

> g2 9lop

» 7 | 8l0)

FIGURE 2.1: Program Overview

Chapter 2. Technical Specifications

14

C-40% C-40% C-20% C-20% C-10%

~ L

X

[
\4 v
Y Z

v
R

Update stored codon
values in cache as
frequency increases.
Store commonly
occurring topologies

FIGURE 2.2: Naive approach for caching

Chapter 2.

Technical Specifications

15

Core 1
Registers
Per Core block
(Per 32 Cores)
Core 2
L1 Shared 96 KB Cache
Core n
Registers
Per Core block
(Per 32 Cores)
Core 128

Common values of CPVs and associated
topologies
Store in cache for columns using naive
approach

Parallelize likelihood calculation on all
available cores per block,

SMM blocks x 16

A

each SMM rocessing a complete subset of
columns

Terminate calculation
for a tree for
conditions yielding

less likelihood

A\ 4

Different set of columns

A

olumns distributed between each SMM, linearly

A

FIGURE 2.3: Implementation per SMM

Chapter 2. Technical Specifications

16

OpenACC
augmented code

l

Compiler options

GPU

>)

<
<

CPU

Memory and cache
managment

Matrix calculations

»

Vector processing
and tree
management

Result per column

FIGURE 2.4: OpenACC based approach

17

3 Analysis

3.1 Drawbacks in FastCodeML

3.1.1 OpenMPI

FastCodeML uses OpenMPI as the main driver behind the parallelization done for itera-
tive codes and calculations related to matrices. While OpenMPI is good for a single node,
the target system for FastCodeML is based on a clustered with distributed, not shared
memory. Thus an OpenMPI based program will not work with same efficiency as a MPI
based program, even though it is a modified extension of MPI API itself. This is the main
reason why FastCodeML exhibited a strange behavior while being executed on a large
cluster, specifically due to inefficient use of threads and issues in memory management.

3.1.2 Coding

The program itself derives its acceleration and edge over PAML by using the highly opti-
mized BLAS and LAPACK libraries and to some certain extent, the caching of previous
results in a similar fashion to generic dynamic programming paradigms. While the tree
pruning itself generate large amount of "results", managing the results alone would not
result in considerable speedup. While the actual time on a system might look small com-
pared to PAML, other factors influence the actual time visible to user, which gives impres-
sion of highly unstable behavior of FastCodeML, unlike PAML, which is uniform across
all parameters(CPU and user time). Moreover, FastCodeML suffers from deficiencies in
optimization of code itself. It is highly depended on the compiler with too many options
for the end user related to optimization which might create unstable output, meaning the
program can behave unpredictably with different type of compiler optimizations. More-
over, a direct comparison between existing GPU based API (MrBayes) and FastCodeML
is not possible, mainly because FastCodeML is based on ML, whereas MrBayes is based
on MCMC exploratory search.

Chapter 3. Analysis 18

3.2 CUDA and OpenCL

3.2.1 CUDA framework and restrictions

One inherent disadvantage of CUDA is that it works only on Nvidia based GPUs, and is
not platform independent. Moreover, the rapid rate at which CUDA is evolving makes
it difficult to create a code which is compatible with the latest hardware and runtime.
Since the start of this project, there has been two major revisions in CUDA, meaning the
compiler specification, depreciation of components and addition of newer components
have made it difficult to analyze and work with MrBayes. MrBayes was initially designed
for Kepler generation GPUs, and the succeeding Maxwell architecture is considerably
different from Kepler, with a different framework for managing threads. This requires
a complete optimisation of CUDA code to work with newer hardware, which is again
supplemented by Pascal architecture, differing considerably from Maxwell. This makes
the thread management component of algorithm and program incompatible with newer
architecture, thus requiring reanalysis and changes in code.

3.2.2 Hardware restrictions

CUDA based programming is not completely heterogeneous in nature. Instead, it depends
on host to manage it the local memory stored in the device, and the device itself cannot
access the main memory directly, thus preventing any direct sharing of resources and
variables between GPU and GPP. This introduces additional latency required for memory
transfer. Moreover, exceptions handling is not explicitly available for CUDA, meaning
that a portion of code can crash the complete program under certain conditions. This also
makes the CUDA code harder to debug.

3.2.3 Caching and Optimization of probabilities

This by far is the most difficult aspect of both CUDA and OpenCL based approaches,
whereby optimization of the previously calculated result is problematic. Since the Branch-
site model itself works on ML, there is a large amount of data collected over each node,
1.e. the likelihood for the nodes originating from it and preceding it. Storing this data in
local blocks is difficult since the local cache is considerably small(usually 2megabytes).
Thus it is essential to recycle the values without any significant cost of memory access
and transfer, which is not possible in this case. This by far is the biggest drawback we
have identified with a GPU only implementation.

Chapter 3. Analysis 19

3.2.4 OpenCL

OpenCL shares many inherent limitations from CUDA, except for platform dependence.
On a hardware level, CUDA and OpenCL share same strategy, thus caching on GPU still
creates a problem. Further, a properly optimized OpenCL code is nearly two to three time
larger than CUDA code, specially since OpenCL based code need specific instruction for
each type of architecture to work optimally. This increases the development time con-
siderably. Apart from this, OpenCL also supports a limited subset of C++ functionality,
and some of the most commonly used functions are not implemented in OpenCL, or in
CUDA. This creates a problem when converting a tightly integrated program like Fast-
CodeML to a GPU based program. This ultimately reduces the portability of the package,
restricting it to a certain environment.

3.3 OpenACC

OpenACC itself has some severe drawbacks compared to other options. Function calls are
not supported in parallel regions, which is a major bottleneck, specially since many sub-
routines in maximum likelihood calculation are situated in the parallel region. Moreover
nested parallelism is not supported, meaning low level parallelism of matrix operations
is not possible without manual intervention(i.e. specifying the parallel blocks manually
using OpenMPI,CUDA,OpenCL).

3.4 Optimal Algorithm

The most optimal algorithm for the implementation would be a modification of Fast-
CodeML, along with OpenACC, as illustrated in Figure 2.4 on page 16. Since the code is
already optimized for parallel execution on a multi-threaded system, it is easier to replace
the OpenMPI directives with OpenACC directives. The CPVs can be calculated on GPU
and can be sorted on CPU for creating an optimal tree based cache, which the the GPU
can utilize. This "blocks" of code can coexist on same system and can run parallel on
both GPU and CPU, with GPU being the bottleneck. The caching mechanism built into
FastCodeML needs to substantially modified to accommodate this conversion, moreover
there is a need to reduce the latency between memory transfer between main memory
and device memory, via prefetching techniques. Use of OpenACC will make the code
compatible with OpenMPI and CUDA based devices, and to some extent with OpenCL
based paradigms, making it easier to create a proof of concept program and a benchmark
to asses the performance of each individual strategy, and then optimize the program using
dedicated strategy like CUDA or OpenCL.

20

4 Benchmarking-Short Read Aligners

4.1 Introduction

High throughput sequencing is becoming cheaper gradually and as a result the data gen-
erated by it is increasing at an exponential rate. A typical Illumina Hi-Seq 2500 run
would result in 2 billion to 3 billion short reads ranging anywhere between 100 to 150 bps
typically. Processing such large amount of read data requires increased computational re-
sources and traditional computational component, a typical x86 based processor is mostly
not sufficient for such tasks in batches. Although a high-end CPU (or Dual/Quad CPU
setups involving Intel Xeons) might be enough for a single instance-single study purpose,
they may or may not scale well with increase of data in terms of performance. GPUs on
the other hand present a completely different scenario as they are highly scalable but pro-
gramming or even porting something on GPU is difficult, given that a problem needs to be
broken into various small parts, and there is requirement of a generalized "solver" which
can work on each part independently. Sensitivity is a measure of underlying algorithm
used in tools, and thus cannot be directly mapped to the architecture used for running the
algorithm, unless a program uses hardware specific instructions(like Intel AVX, SEE etc).

Initial attempts to use GPU for general purpose computation were rather arcane in na-
ture (in Bioinformatics), requiring use of OpenGL or some other third party graphic API
to translate data to a graphical (i.e. pixels and vector) instruction format, communicate
with subunits and then applying calculations on this temporary floating dataset[12]. Then
with the emergence of unified shader architecture from Nvidia and ATI, it was possible
to address a single shader, or technically now a computing unit individually. Also, with
the launch of Tesla architecture, Nvidia launched a programming interface for their cards.
This interface, named as CUDA, essentially allowed a reduced subset of C/C++ to run
on GPU. This converted the GPU into a general purpose compute device, albeit with the
inherent limitations. Manavski and his group were first to utilize CUDA for the purpose
of sequence alignment, by porting Smith-Waterman algorithm to GPU[13]. Initial CUDA
implementations were crippled by limited local memory to store a reference sequence,
where the memory was in ranges of megabytes. MUMmerGPU was one of the first align-
ers to efficiently break the reference into smaller pieces for further processing(partially
assisted by the tree style data structure used to process alignments in algorithm)[14].
The scenario now is completely different, with high end Tesla GPUs containing 24GB of
frame buffer and consumer grade Titan X having 12GB of memory, enough for holding
the reference or most of it in the local memory. High throughput sequencing technologies
were also being developed in parallel, and data generated by them was large in quan-
tity, but each individual point in dataset was small, creating a large homogeneous dataset.
GPUs are designed to work on such datasets, and thus there is a recent trend of porting or

Chapter 4. Benchmarking-Short Read Aligners 21

developing aligners for such short reads in CUDA (OpenCL and other equivalent imple-
mentations exist, and will be discussed later in report). The biggest perceived advantage
of a GPU based implementation for short read alignment is speed. While the sensitivity
and specificity measurements are comparable to the CPU based counterparts, claims of
GPU based implementation to be 5-10x times faster are usually present in the respective
publications from authors[10][9].

A simplified algorithm followed by GPUs(included in benchmark) for alignment can
be condensed as:

e Build an index for storing reference in a fast access format/GPU compatible format.
-Uses CPUJ[9]

e Seed and find approximate positions
e Align
e Pass additional alignments to CPU.[10]

e Condense the results and convert them to BAM/SAM format.

4.2 Method

We selected following aligners for benchmark:
e BARRACUDA: GPU -v0.7.107a
e SOAP3-DP: GPU/CPU —Source taken from latest release as on 1-August-2015
e Bowtie: CPU —vl.1.1
e STAR: CPU/Splice Aware —v2.4.1d
e HISAT: CPU/Splice Aware —v0.1.6 Beta
Specification of machine:
e CPU: Intel Xeon E5-2640 v3
e RAM: 128GB DDR4
e GPU: 3x Nvidia Titan X (All cards at PCle 16x electrical lanes-Full Bandwidth)
e Accelerator Card: Nvidia Tesla K40 (At PCle 16x electrical lanes-Full Bandwidth)
e Chipset: X99
e Graphic Driver Version: 346.59

e OS: Ubuntu 15.04

Chapter 4. Benchmarking-Short Read Aligners 22

e Storage: 512GB PCle 4x SSD
e CUDA Toolkit Version : 7.0

We used the provided binaries wherever possible, to make sure that any of the compiler
or OS dependent parameters don’t affect performance. For CPU based aligners, we used
all 16 threads available for computation. As for GPU aligners, we used Nvidia Titan X as
the working device. Although there was a scope of using multiple GPUs by dividing the
input, we decided to asses single GPU performance to be more fair against a single CPU,
provided that they both fall in similar 1000$ price bracket. No other non-essential tasks
were running on the server while benchmarking was done.

4.2.1 Read Generation

We used ART([15] for generating the simulated reads. The reference genome hgl9 was
downloaded from UCSC Genome browser in condensed format, instead of chromosome
by chromosome basis. We used four different read datasets for evaluation, with difference
in error rate and sequencer in question(HiSeq 2000 and 2500). First set of reads were gen-
erated using default parameters, with following command:

art_illumina -sam —-i reference.fa -1 100

-ss 25 —-c 100000 -o default

Second set of reads with a static insertion/deletion rate of 0.0002 were generated using
following command:

art_illumina —-insRate 0.0002 -dr 0.0002

—-sam -1 reference.fa -1 100 -ss 25 -c

100000 -o twenty

Similarly third set was generated by altering the insertion and deletion rate to 0.0004. For
the forth set, the substitution rate was 1/10th of default using following command:
art_illumina -i reference.fa -gs 10 —-gs2

10 -1 100 -c 100000 -s 10 -sam -o

suppressed_er

Why ? We used a small number of reads to assure that computations are completed
in small period of time, at the same time we also took 1.4 billion reads to measure the
speed performance of aligners, but with default parameters from ART. A typical run from
a sequencer would ideally result in more than 3 billion reads, but since performance fig-
ures(True positive rate etc) are more or less independent of the input data size (the number
of reads were variable in all the input, due to tendency of ART to simulate only a certain
subset of mappable reads, and the performance figures were still same).

4.2.2 Benchmark

We used Rabema[16] for benchmarking the resultant alignments. First step was to use
perfect alignment generated by ART and generate a "Gold Standard" for comparison.

Chapter 4. Benchmarking-Short Read Aligners 23

Following commands were used for conversion and sorting perfect alignment using Sam-
tools package[17]:

samtools view —-Sb sim.sam >sim.bam

samtools sort sim.bam coord

And following command was used to generate gold standard using Rabema Oracle mode:
rabema_build gold_standard -oracle-mode

-0 sim.gsi -r reference.fa -b coord.bam

This step was repeated for all four datasets to create four different gold standards. For
actual evaluation, following command was used:

rabema_evaluate -r genome.fa -g sim.gsi

-b results.bam

Further, no logging was enabled and variant calling performance was not measured. The
biggest bottleneck was construction of gold standard, which took considerable amount of
time with given amount of reads, and was the main reason behind low number of reads.

Chapter 4. Benchmarking-Short Read Aligners

24

A

Secondary
Storage

<
<
> s
o <
8} i
N
>
A T
Q
o
]
=92
25 o
gy
muim
S coc
el
.%g%
S0
>3 g
= Q o
OC -
g2 @
Q2
=9
ST ——
Q
O(IJ
22
]
OUJ
v v
N
>
>
o
5}
<
<

FIGURE 4.1: Basic 10 diagram between CPU and GPU. Notice the lack of
direct interface between system memory and GPU.

25

Chapter 4. Benchmarking-Short Read Aligners

NdO

% i _

UOISIBAUOD
1ewlo04/6uissasold []

Indino _ |

% i _

Buipoouz/Buissasold

Jauubiy

PEOPLIOM

[ollesedauswubly

ndu)

diysuonejoy [puley/leauq

Jad/Mowap

210D

[e00

H

Ndo

Jayng
awel [eqo|n

$210)

FIGURE 4.2: Approach followed by GPU based aligners

26

Chapter 4. Benchmarking-Short Read Aligners

Jswubly [eul4

aoualajey pejuswbog

¢

speay

Buipeeg, auswubily [enuj

9ouslajey papoou]

uonewlojsuel |

J«— 9ouaijey

FIGURE 4.3: A simplified representation of short read aligners

27

S5 Benchmarking-Results

5.1 Numbers

After running the benchmarks, it is clearly evident (results in table 5.1) that all three BWA
based DNA-seq short read aligners[10][9][18] have quite similar performance statistics.
While it is assumed that additional cores in a GPU can give benefit by utilizing multiple
instances of same read on multiple core and map with more confidence, the results don’t
illustrate so. Although Bowtie is oldest of the three, it still performs quite well, at the
expense of speed. Mapping performance to number of cores, Bowtie can perform as good
as a GPU based aligners in terms of speed on a 14 core system(28 threads), maybe even
faster. There was less than 1% difference in mapping performance in every benchmark
instance, which is quite interesting since SOAP3-DP claims to use dynamic program-
ming for reads which are difficult to map. More detailed analysis is done in respective
subsection:

5.1.1 Speed

The major advantage of using a GPU over CPU is the sheer amount of speed potential
it gains from additional cores. While this might be true in applications[19] which use
GPU for visualization or empirical calculations, same might not be true in case of se-
quence alignment. Text processing problems constitute a considerably large subset of
algorithms intended to give "exact" and with large datasets "heuristic" based results, and
short read sequence alignment falls in between two such sets. While opting for dynamic
programming is highly inefficient in terms of speed and resource usage, it can give high-
est sensitivity, and at the same time heuristic or randomized algorithms can give a speed
increase, they tend to be struck on localized result rather than the global result. The three
DNA-seq aligners which we tested used a compression algorithm as a mean to store data
and perform alignment, by analyzing the seeds in reverse direction. BARRACUDA is a
direct implementation of of BW Aligner[20] on GPU, while SOAP3-DP and Bowtie have
custom implementation of the indexing algorithm. It is interesting to draw conclusions on
the basis of speed. While we didn’t use a very large dataset(due to time restrictions), the
results were no less exciting with a smaller dataset. Roughly, SOAP3-DP is twice as fast
as Bowtie, and both can analyze a typical sequencing run from a Illumina HiSeq 2500
under five hours(3 billion reads of 100bp reads in average). In a typical single run/single
study scenario, both aligners are good enough and will not create a bottleneck in down-
stream analysis, but in a scenario where data is processed in large batches(like in 1000
Genomes project), SOAP3-DP might prove more efficient and will result in considerable
time saving. This also holds true where cloud computing instances are used for analysis

28

Chapter 5. Benchmarking-Results

s1ojowreIed ssoxoe sourwiIofiad [eouewnN :1°¢ ATAV]

99v¢911 0C8¢€TSS GTC8ISS 19C'1IL 8Y€8°19 dILMO4d
I1800LLI 00L6EIL C0L6EIL £00C'C6 7700°08 LV SIH
STrSoeT 0€e8LSL 8TEBLSL 9%98°L6 761618 AVLS
8LO69TI 0C8¢CSS £C8eCSS eeeeIL SL6819 vanovaddvd
80V6LI1 06£691¢S 88€691S £0€9°0L 9L8T 19 dVOS
000" 918y UOTA[o(J/UonIasu]
809.L911 0€€0Tsse 7£60CSC SCET'IL 786819 HLLMOY
006S9L1 0CcseviL LISEVIL I8L1'C6 I#70°08 LV SIH
98L9€C¢C 0€9¢8SL £e9e8CL CLS8'L6 LSLO'YS AVLS
0ST9911 0099C¢<¢S 1099C¢¢S 8CIC L £€976°19 vanoviavd
8SeVLIL 0S90LYS 8V90LYS 816S°0L 7667 19 dVOS
000" 918y UON[o(J/uonIasu]

€12019 0Ccr106S STri106s 619C 1L LT1'99 dILMO4d
€6C9L6 0S9LE9L LY9LEIL SLTTTO 818568 LVSIH
19¢0¥¢1 0681018 €6817018 9698°L6 L1806 AVLS

Y1¥6€9 0¥0L06S I70L06S 86CC’IL 668199 vanovivd
159942 0TI01S8¢S 6001¢8¢S 1€S9°0L 1296°S9 dVOS

o[golid nefad Jo %01

0S6.L911 CLI9ETSS SLOETSS eeSTIL 716819 dILLMO4
€0E6SLI1 COLBYVIL COLBYVIL €917C6 1001°08 LVSIH
(429534 L9E98CL L9E98CL Cl98°L6 £€00°68 AVLS
LI8Y9I11 CC08TSS ¢C08TsS €60¢’IL LOv6°'19 vYanovdiavd
6681811 OLTTLYS S80I TLYS CSLS 0L 720¢° 19 dVOS

pPI[eAU] spedy-pozijewioN speay poddey ojqeddejn-poddely [e1ol-podden Iou3Iy

Chapter 5. Benchmarking-Results 29

pipeline, whereby the restrictions are on basis of time, not hardware. In such scenario
GPU based aligners might be more advantageous.

Considering the cost of hardware, the GPU which we used was selling for $990 per
unit at the time of writing, while the CPU was selling at $980 per unit. In a lab where
datasets are usually small or downstream analysis in limited to low number of samples(10-
15 on average on whole genome), a CPU would be beneficial, mainly because of the ver-
satility it can provide as it can run many downstream analysis softwares which are yet not
available for GPU(for variant analysis etc). GPUs are currently restricted to limited avail-
ability of softwares specifically made to utilize the built in wide SIMD implementation.
This scenario might change in future, due to aggressive efforts by Nvidia to introduce
CUDA based hardware and development tools to researchers. Recently, Intel also intro-
duced MIC(Many Integrated Core) architecture, which is essentially a set of multiple x86
processors on a fast topology to transfer data between them. The biggest advantage of
such architecture is that many of the preexisting libraries and programming tools are op-
timized for x86 architecture, thus it requires considerably less effort to parallelize code
on Xeon Phi(the commercial name of architecture). Researchers have used Xeon phi to
create extremely fast short read aligner(named MICA), but the results are quite new and
the tool is still not validated by any third party study[21]. The paper clearly illustrates
scalability of a traditional architecture, but unlike CUDA, which is already widespread
now, Xeon Phi and related development ecosystem will still take time to mature. We
can safely assume that in future we may see more short read aligners implemented on
MIC. The biggest problem with GPUs for general purpose computing is that they can
implement only a limited subset of commonly used languages like C++, and the memory
management in GPUs is drastically different than CPU. There are various levels of mem-
ory in a GPU, and while the local memory is now large enough to hold whole reference
genome, the local cache and memory available to per core can limit the performance with
larger reads(BW Transformation was mainly used in context of limited memory). Even
after initial alignment is done, the output needs post processing to convert it to a more
standard format like BAM/SAM. In case of a traditional CPU, even though the number of
cores are in range of 6-14, each core can access the main system RAM directly, and can
performance complex operations without any explicit intermediate process. These give
CPU a distinctive advantage over GPU. While GPUs can parallelize tasks, the amount of
optimization required is high and the increase in performance is sometimes restricted by
the algorithm in question.

We also tested STAR and HISAT, just to check their speed an performance in DNA
seq data. The results clearly illustrated the tendency of a splice aware aligner to align
everything which is possible. In terms of speed, they don’t have any contemporary rivals
from DNA-seq aligners, regardless if they are either GPU or CPU based. STAR was
fastest, taking 36 seconds to process nearly 800000 reads, while HISAT was close enough
with 48 seconds. This should potentially allow use of these aligners in a batch scenario,
even in standalone machines with decent specifications. But researchers should use them
on DNA-seq experiments cautiously, mainly because of their high invalid alignment rate.

Chapter 5. Benchmarking-Results 30

5.1.2 Performance

There is not much to discuss in terms of performance, as mentioned above, the perfor-
mance of the GPU based aligners and Bowtie is nearly similar. We didn’t test the overlap
of alignments in result, but that can elucidate algorithmic differences. Variant calling
performance was not measured due to time restrictions, but there exist a complete bench-
marking pipeline for that purpose[22] which I plan to use later to access the sensitivity.
Splice aware aligners cannot be used for variant calling, mainly because of high rate of
invalid alignment. Barracuda performed better, if we take a precision till three decimals
which can be significant if there is a very large dataset but for smaller datasets(i.e. <
1 billion reads), the performance in quite similar. STAR and HISAT, both have a very
high sensitivity and mapped more than 80% of reads in nearly every case, with STAR
generally mapping 5% more reads. This was at the expense of high number of invalid
reads, sometimes more than 15% of total dataset, which is not good enough for variant
calling. Biologists can use such tools just for primitive mapping for finding approximate
locations of reads on reference genome, and then can use dynamic programming based
algorithms for making those mappings exact. Invalid alignments are those which show
deviation of more than 4% from the gold standard. HISAT presents an interesting case, as
it show a decreased number of mapped reads, but a considerable decrease (8% or more)
in invalid alignments too, and therefor can be used to map DNA-seq reads better, unlike
STAR, which is suitable only for RNA(HISAT is built on top of Bowtie2, and hence better
performance in terms of DNA-seq reads).

TABLE 5.2: Average time in seconds

aligner time

BARRCUDA 183.73
SOAP3-DP 91.32
BOWTIE 234
STAR 36
HISAT 48

5.1.3 Discussion

The results clearly show that GPU based aligners are faster than CPU based aligner, giv-
ing a speed advantage of nearly 2x(SOAP3-DP), and a better accuracy(Barracuda). But
it is also worth noting that the performance figures let alone cannot account of blind use
of GPUs in this scenario. The prices of high end consumer GPUs are equal to a good
server grade processor, and dedicated accelerator cards like Tesla cost 3 to 4 times more
than their consumer counterparts. This may hinder large scale use of GPUs in labs where
small scale studies are performed. Also, the versatility of a CPU allows researchers to run
nearly all of the downstream analysis programs on a single machine, and massive paral-
lelization may give speed boosts equivalent or better than GPUs. Also, recent advances in
secondary analysis may increase decrease the gap in performance, given that now the core

Chapter 5. Benchmarking-Results 31

problem is to assure that the resources are utilized properly. Recently, a study sponsored
by Intel illustrated the importance of preprocessing data into format which can remove
bottleneck related with amount data available to each processing node[23]. In the end,
we can’t really say from the tests about the "best" aligner, but it is quite evident from the
results that GPU aligners tend to be faster than the CPU aligners, even when they share
some underlying process. In year 2016 Nvidia launched their own version of "Heteroge-
neous" GPU (already launched by AMD in 2015), which can work in tandem with CPU
to accelerate parallel tasks automatically, without explicit programming constructs from
developers.

32

6 Conclusion

This thesis was done in two parts. The seventh semester was primarily dedicated to ap-
plications of GPU based computing in field of Bioinformatics, specifically Short read
aligners. This was primarily done to analyze the actual efficacy of GPUs and to asses
if GPUs can replace traditional CPUs in high performance task. The eighth semester
was dedicated to development of a GPU based algorithm in field of Bioinformatics. We
tried to develop an algorithm for searching positive selection using GPU by implementing
Branch-Site model. In due course, we learned more about the peculiarities of development
related with GPU, and learned implementation of a computationally intensive problem on
a parallel architecture.

6.0.1 Conclusion: I

As for the conclusion to first part, we identified the main obstacle in implementation of a
fairly straight forward mathematical model. The reason behind lack of a GPU based im-
plementation for searching positive selection is mainly due to the inefficiency of caching
local variables. Although it might be possible, we were unable to find a solution in stip-
ulated time frame. The problem was made more complex by the fact that tree pruning
generates considerable amount of data, even if for short duration which requires sizable
working memory, something which is not possible for each individual processing unit in
a GPU. Considering the advent of new programming tools like OpenACC, it is possible
to convert the preexisting program for a highly parallel architecture like a GPU, but as
of now the technology is still not suitable for direct replacement. The basic structure of
problem prohibits use of OpenACC for complete acceleration. Still, given time and re-
sources, it can be used to identify best programming paradigm for the problem, either
CUDA or OpenCL and then the developer can utilize any one of them as the main parallel
directive(depended on the hardware).

6.0.2 Conclusion: II

For the second part of thesis, we believe that GPUs, if used efficiently can provide consid-
erable speedup. Although the nature of problem differed considerably(Alignment versus
Prediction), even sequence alignment was considered to be unachievable on GPU before.
Our results show how much the advanced the GPUs have become. There was a perfor-
mance increase of at least 2x for even worst case, validating our believe that GPUs are
better suited for parallel computations than CPUs.

Chapter 6. Conclusion 33

6.0.3 Limitations of this study

The primary limitation of this study is that we were not able to provide a proof of concept
for the first part of thesis. Given that we misjudged the complexity of problems and this
lead to a large gap in the end. While we conceptualized an algorithm and program in the-
ory, we still can’t say with absolute faith that a GPU based solution in current condition
would work best for a problem related to phylogenetics. Calculations alone cannot vali-
date an theory without an experiment to back it. As for the second part, we believe that
the study was rounded up quite quickly, and still stands unique since there is no review or
subjective comparison of GPU based tools used in NGS pipeline. Also, the results were
validated multiple times to ensure that there are no discrepancies. Per se, there are no
limitations but there are future possibilities, which will be discussed in next subsection.

6.0.4 Future possibilities

Given that we were not able to create a proof of concept program for first part, and there
exists no program on GPU for searhing positive selection using Branch-Site Model, it is
safe to assume that the outlines can be enough to provide a quick start for the tool itself
from scratch. And as for the second part, we didn’t measure variant calling performance,
which can be measured to identify the aligners which can be best suited for areas where
mutation study is essential, like oncology. Moreover, it is possible to combine the exist-
ing tools to create a NGS data processing pipeline completely based on GPU, which can
compete with existing pipelines like Casava.

I would like to conclude the study hoping that the future batches would find it useful,
and will be interested in pursuing the cutting edge technology which has a potential to
change the field of computational biology drastically.

34

Bibliography

[1]

[10]

Z. Yang, “PAML 4: phylogenetic analysis by maximum likelihood”, Mol. biol.
evol., vol. 24, no. 8, pp. 1586-1591, 2007.

D. L. Ayres, A. Darling, D. J. Zwickl, P. Beerli, M. T. Holder, P. O. Lewis, J. P.
Huelsenbeck, F. Ronquist, D. L. Swofford, M. P. Cummings, A. Rambaut, and

M. A. Suchard, “BEAGLE: an application programming interface and high-performance
computing library for statistical phylogenetics”, Syst. biol., vol. 61, no. 1, pp. 170—
173, 2012.

S. Guindon, J. F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk, and O. Gascuel,
“New algorithms and methods to estimate maximum-likelihood phylogenies: as-
sessing the performance of PhyML 3.07, Syst. biol., vol. 59, no. 3, pp. 307-321,
2010.

C.L.Hung, Y. S. Lin, C. Y. Lin, Y. C. Chung, and Y. F. Chung, “CUDA ClustalW:
An efficient parallel algorithm for progressive multiple sequence alignment on
Multi-GPUs”, Comput biol chem, vol. 58, pp. 62-68, 2015.

A. Gudy and S. Deorowicz, “QuickProbs—a fast multiple sequence alignment algo-
rithm designed for graphics processors”, Plos one, vol. 9, no. 2, 88901, 2014.

C. Ling, K. Benkrid, and T. Hamada, “High performance phylogenetic analysis on
cuda-compatible gpus”, Sigarch comput. archit. news, vol. 40, no. 5, pp. 52-57,
Mar. 2012, 1SSN: 0163-5964. DOI: 10.1145/2460216.2460226. [Online].
Available: http://doi.acm.org/10.1145/2460216.2460226.

M. A. Suchard and A. Rambaut, “Many-core algorithms for statistical phylogenet-
ics”, Bioinformatics, vol. 25, no. 11, pp. 1370-1376, 2009.

M. Valle, H. Schabauer, C. Pacher, H. Stockinger, A. Stamatakis, M. Robinson-
Rechavi, and N. Salamin, “Optimization strategies for fast detection of positive
selection on phylogenetic trees”, Bioinformatics, 2014.

P. Klus, S. Lam, D. Lyberg, M. S. Cheung, G. Pullan, I. McFarlane, G. S. h. Yeo,
and B. Y. Lam, “BarraCUDA - a fast short read sequence aligner using graphics
processing units”, Bmc res notes, vol. 5, p. 27, 2012.

R. Luo, T. Wong, J. Zhu, C. M. Liu, X. Zhu, E. Wu, L. K. Lee, H. Lin, W. Zhu,
D. W. Cheung, H. F. Ting, S. M. Yiu, S. Peng, C. Yu, Y. Li, R. Li, and T. W. Lam,

“SOAP3-dp: fast, accurate and sensitive GPU-based short read aligner”, Plos one,
vol. 8, no. 5, €65632, 2013.

http://dx.doi.org/10.1145/2460216.2460226
http://doi.acm.org/10.1145/2460216.2460226

BIBLIOGRAPHY 35

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

K. Kabir, A. Haidar, S. Tomov, and J. Dongarra, “On the design, development, and
analysis of optimized matrix-vector multiplication routines for coprocessors”, En-
glish, Lecture Notes in Computer Science, vol. 9137, J. M. Kunkel and T. Ludwig,
Eds., pp. 58-73, 2015. po1: 10.1007/978-3-319-20119-1_5. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-20119-1_5.

W. Liu, B. Schmidt, G. Voss, and W. Muller-Wittig, “Streaming algorithms for bio-
logical sequence alignment on gpus”, Parallel and distributed systems, ieee trans-
actions on, vol. 18,n0. 9, pp. 1270-1281, 2007, 1SSN: 1045-9219. DO1: 10.1109/
TPDS.2007.1069.

S. A. Manavski and G. Valle, “CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment”, Bmc bioinformatics, vol. 9
Suppl 2, S10, 2008.

M. C. Schatz, C. Trapnell, A. L. Delcher, and A. Varshney, “High-throughput se-
quence alignment using Graphics Processing Units”, Bmc bioinformatics, vol. 8,
p. 474, 2007.

W. Huang, L. Li, J. R. Myers, and G. T. Marth, “ART: a next-generation sequencing
read simulator”, Bioinformatics, vol. 28, no. 4, pp. 593-594, 2012.

M. Holtgrewe, A. K. Emde, D. Weese, and K. Reinert, “A novel and well-defined
benchmarking method for second generation read mapping”, Bmc bioinformatics,
vol. 12, p. 210, 2011.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G.
Abecasis, and R. Durbin, “The Sequence Alignment/Map format and SAMtools”,
Bioinformatics, vol. 25, no. 16, pp. 2078-2079, 2009.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome”, Genome biol.,
vol. 10, no. 3, R25, 2009.

D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A.
Onufriev, C. Simmerling, B. Wang, and R. J. Woods, “The Amber biomolecular
simulation programs”, J comput chem, vol. 26, no. 16, pp. 1668—1688, 2005.

H. Li and R. Durbin, “Fast and accurate short read alignment with Burrows-Wheeler
transform”, Bioinformatics, vol. 25, no. 14, pp. 1754-1760, 2009.

R. Luo, J. Cheung, E. Wu, H. Wang, S. H. Chan, W. C. Law, G. He, C. Yu, C. M.
Liu, D. Zhou, Y. Li, R. Li, J. Wang, X. Zhu, S. Peng, and T. W. Lam, “MICA: A fast
short-read aligner that takes full advantage of Many Integrated Core Architecture
(MIC)”, Bmc bioinformatics, vol. 16 Suppl 7, S10, 2015.

J. C. Mu, M. Mohiyuddin, J. Li, N. Bani Asadi, M. B. Gerstein, A. Abyzov, W. H.
Wong, and H. Y. Lam, “VarSim: a high-fidelity simulation and validation frame-

work for high-throughput genome sequencing with cancer applications”, Bioinfor-
matics, vol. 31, no. 9, pp. 1469-1471, 2015.

http://dx.doi.org/10.1007/978-3-319-20119-1_5
http://dx.doi.org/10.1007/978-3-319-20119-1_5
http://dx.doi.org/10.1109/TPDS.2007.1069
http://dx.doi.org/10.1109/TPDS.2007.1069

BIBLIOGRAPHY 36

[23]

B. J. Kelly, J. R. Fitch, Y. Hu, D. J. Corsmeier, H. Zhong, A. N. Wetzel, R. D.
Nordquist, D. L. Newsom, and P. White, “Churchill: an ultra-fast, deterministic,
highly scalable and balanced parallelization strategy for the discovery of human

genetic variation in clinical and population-scale genomics”, Genome biol., vol.
16, p. 6, 2015.

	Certificate
	Acknowledgements
	Summary
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Introduction
	Problem Statement
	Objectives
	Existing Tools

	Development Strategy
	Phase I
	Phase II
	Phase III

	Intro to CUDA/OpenCL
	CUDA
	OpenCL

	Technical Specifications
	Overview
	Host and Kernels

	FastCodeML to GCodeML
	Libraries

	Option 2
	Option 3

	Analysis
	Drawbacks in FastCodeML
	OpenMPI
	Coding

	CUDA and OpenCL
	CUDA framework and restrictions
	Hardware restrictions
	Caching and Optimization of probabilities
	OpenCL

	OpenACC
	Optimal Algorithm

	Benchmarking-Short Read Aligners
	Introduction
	Method
	Read Generation
	Benchmark

	Benchmarking-Results
	Numbers
	Speed
	Performance
	Discussion

	Conclusion
	Conclusion: I
	Conclusion: II
	Limitations of this study
	Future possibilities

	Bibliography

