
i

 SHOPPING RECOMMENDING SYSTEM

 (ANDROID APPLICATION)

 Project report submitted in partial fulfillment of the requirement for

 the degree of Bachelor of Technology

 In

 Computer Science and Engineering

 By

 Kunal Jandial (121245)

 Under the supervision of

 Ms. Nishtha Ahuja

 To

 Jaypee University of Information Technology

ii

CERTIFICATE

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “SHOPPING

RECOMMENDING SYSTEM” in partial fulfillment of the requirements for the award of

the degree of Bachelor of Technology in Computer Science and Engineering/Information

Technology submitted in the department of Computer Science & Engineering and Information

Technology, Jaypee University of Information Technology, Waknaghat.

 An authentic record of my own work carried out over a period from August 2015 to December

2015 under the supervision of Ms.Nishtha Ahuja(CSE Department)

The matter embodied in the report has not been submitted for the award of any other degree or

diploma.

(Student Signature)

Kunal Jandial

121245

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

(Supervisor Signature)

Nishtha Ahuja

Designation

Department name

Dated:

iii

ACKNOWLEDGEMENT

It was a great chance for learning and professional development we had with JUIT for the help

and Support.

We would like to express our deepest gratitude and special thanks to Ms.Nishtha Ahuja who

in spite of being extraordinarily busy with her duties, took time out to hear, guide and keep us

on the correct path and allowing us to carry out our project. We choose this moment to

acknowledge her contribution gratefully.

We would like to express our special gratitude and thanks to JUIT for giving us such facilities

and to the People who have willingly supported us with the Project, invoking their own efforts

as well.

iv

Contents

LIST OF FIGURES ... vii

ABSTRACT ... viii

CHAPTER- 1 INTRODUCTION .. 1

1.1 Introduction .. 1

Android Components ... 1

1.2 Background Statement .. 2

1.3 Problem Statement .. 3

1.4. Objective ... 3

1.5. Methadology ... 4

1.6. Organisation .. 5

Chapter -2 LITERATURE SURVEY .. 6

2.1 Android Architecture ... 6

Applications Layer ... 7

Application Framework ... 7

Libraries ... 7

Android Runtime Libraries .. 8

Linux Kernel .. 8

2.2 Main Components of Android Application ... 9

Activities .. 9

Broadcast Receivers ... 10

Services .. 10

Content Providers... 11

Intents ... 11

fig 2.2 Activity Stack ... 13

2.1.6 Processes and Threads .. 13

Processes and Threads ... 14

2.1.7 Multi-Tasking ... 16

2.3. Review of Relevant Technologies... 18

2.4 Related Research Fields ... 21

v

2.5 Operators Perspective .. 22

CHAPTER- 3 SYSTEM DEVELOPMENT .. 23

3.1. Introduction ... 23

3.2. The Existing System.. 23

3.2.1. Review of Existing System .. 23

3.2.2. Advantages of the Existing System ... 23

3.2.3. Limitations of the Existing System .. 23

3.3. The Proposed System .. 24

3.3.1. Review of the Proposed System .. 24

3.3.2. Advantages of the Proposed System .. 24

3.3.3. Limitations of the Proposed System .. 24

3.4. System Design ... 25

3.5. Modelling the System.. 25

3.5.1. UML (UNIFIED MODELLING LANGUAGE) MODELLING 25

3.7. System Analysis .. 31

3.7.1 Location acquisition ... 32

3.7.2 Location Discovery .. 33

3.7.3 Recommendation System... 34

3.7.4 Recommendation using Location .. 35

3.7.5 System Overview .. 36

CHAPTER -4 SYSTEM IMPLEMENTATION .. 45

4.1. Introduction ... 45

4.2. Choice of Programming Language ... 45

4.2.1 Platform.. 45

4.2.2 Advantages of Java Technology ... 46

4.2.3 Android Software Development Kit(sdk) ... 47

4.2.4 Eclipse ... 48

4.2.5 Google Places Api... 49

4.2.6 Four Square Api .. 49

4.3. System Requirements .. 50

4.3.1) Hardware Requirements .. 50

4.3.2) Software Introduction .. 50

4.3.3) Software Requirements: ... 51

4.4 Testing Fundamentals .. 52

CHAPTER -5 CONCLUSION .. 58

vi

5.1. Summary ... 58

5.2. Conclusion ... 58

5.3. Recommendations ... 58

5.4. Problems Encountered... 58

5.5. Scope for Further Works ... 59

REFERENCES .. 60

SCREEN SHOT OF APPLICATION ... 62

vii

LIST OF FIGURES

Figure 2.1 Android Architecture

Figure 2.2 Activity Stack

Figure 2.3 Activity on Background

Figure 2.4 Illustration Of Recommendation System

Figure 3.1 Use Case Diagram

Figure 3.2 Class Diagram

Figure 3.3 Component Diagram

Figure 3.4 Deployment Diagram

Figure 3.5 Flow Diagram

Figure 3.6 Comparision Of Placebo with Conventional Systems

Figure 3.7 System Architecture

Figure 3.8 Estimation Algorithm

Figure 3.9 Bayesian Estimation

Figure 3.10 List Of Frequently Visited Shops

Figure 3.11 Divide City Map into Areas

Figure 4.1 Java Platform

viii

ABSTRACT

A recommender system which will tell you the nearby places to shop. And tells you about the

offers available at certain stores.

Basically, user would be able to get List to nearby places to shop after which user can get

details about various places in list and able to add details as per his/her preferences. This

recommender system can facilitate people’s travel not only near their living areas but also to a

city that is new to them. This project is an attempt to provide the advantages of online shopping

to customers of a real shop. It helps buying the products in the shop anywhere through internet

by using an android device. This system can be implemented to any shop in the locality or to

multinational branded shops having retail outlet chains.

1

CHAPTER- 1 INTRODUCTION

1.1 Introduction

Android is a mobile operating system (OS) currently developed by Google, based on

the Linux Kernel and designed primarily for touchscreen mobile devices such

as smartphones and tablets. Android's user interface is mainly based on direct maniulation,

using touch gestures that loosely correspond to real-world actions, such as swiping, tapping

and pinching, to manipulate on-screen objects, along with a virtual for text input. In addition

to touchscreen devices, Google has further developed Android TV for televisions, Android

Auto for cars, and Android Wear for wrist watches, each with a specialized user interface.

Variants of Android are also used on notebooks, game console, digital cameras, and other

electronics.

Android Components

 Application framework enabling reuse and replacement of components

 Dalvik virtual machine optimized for mobile devices

 Integrated browser based on the open source Web Kit engine

 Optimized graphics powered by a custom 2D graphics library; 3D graphics based on

the OpenGL ES specification (hardware acceleration optional)

 SQLite for structured data storage

 Media support for common audio, video, and still image formats (MPEG4, H.264,

MP3, AAC, AMR, JPG, PNG, GIF)

 GSM Telephony (hardware dependent)

 Bluetooth, EDGE, 3G, and Wi-Fi (hardware dependent)

 Camera, GPS, compass, and accelerometer (hardware dependent)

Google Maps:Whether searching for the perfect restaurant, checking out the best

hotels or finding the nearest bank, millions of people around the world get Google

Maps to do the hard work for them. So why not do the same for your own website?

The Google Maps API is one of those clever bits of Google technology that helps

you take the power of Google Maps and put it directly on your own site. It lets you

add relevant content that is useful to your visitors and customise sthe look and feel

of the map to fit with the style of your site. With over 150,000 sites already using

the Google Maps API, we couldn’t fit them all into this booklet so we picked out a

few of the most useful and innovative examples to help inspire you. And if after that

you’re still hungry for more, check out the back of this booklet for links to more

examples and technical information.

Google maps is a great way of viewing the area around the property that you are

interested in, saving you hours of time and frustration being shown properties that do

not match your search criteria. Google maps, together with viewing the full video of

the property, serves as a powerful tool when short listing properties that you wish to

2

physically view. With Google maps you will be able to move up and down the street

as if you were walking along it. You can see satellite views of the property and

surrounding area, view a map, get directions and GPS coordinates to the property and

even search nearby facilities such as schools, churches and shopping centre. As you

become more familiar with Google maps you will discover that there are different

ways to perform certain tasks. You will also learn about many other features that

Google maps has to offer, that are not all covered in this document.

Google Maps is a desktop web mapping service developed by Google. It offers satellite

imagery, street maps, 360° panoramic views of streets (street View) real-time traffic

conditions (Google traffic) , and route planning for traveling by foot, car, bicycle ,

or transportation.

Google Maps began as a C++ desktop program designed by Lars and Jens Rasmussen at

Where 2 Technologies. In October 2004, the company was acquired by Google, which

converted it into a web application. After additional acquisitions of a geospatial data

visualization company and a realtime traffic analyzer, Google Maps was launched in

February 2005. The service's front end utilizes Javascript,XML, and Ajax. Google Maps

offers an API that allows maps to be embedded on third-party websites,[1]and offers a locator

for urban businesses and other organizations in numerous countries around the world. Google

Maps Makerallows users to collaboratively expand and update the service's mapping

worldwide.

Google Maps' satellite view is a "top-down" view; most of the high-resolution imagery of

cities is aerial photography taken from aircraft flying at 800 to 1,500 feet (240 to 460 m),

while most other imagery is from satellites.[2] Much of the available satellite imagery is no

more than three years old and is updated on a regular basis. Google Maps uses a close variant

of the Mercator projection, and therefore cannot accurately show areas around the poles.

The current redesigned version of the desktop application was made available in 2013,

alongside the "classic" (pre-2013) version. Google Maps for mobile was released in

September 2008 and features GPS turn by turn navigation. In August 2013, it was determined

to be the world's most popular app for smartphones , with over 54% of global smartphone

owners using it at least once.

1.2 Background Statement

The advances in location-acquisition and wireless communicationtechnologies enable people

to add a location dimension to traditional social networks, fostering a bunch of location-based

social networking services (or LBSNs) [1], e.g., Foursquare, Loopt, and

GeoLife [2], where users can easily share life experiences in the physical world via mobile

devices.Location as one of the most important components of user context implies extensive

knowledge about an individual’s interests and behavior, thereby providing us with

opportunities to better understand users in a social structure according to not only online user

behavior but also the user mobility and activities in the physical world.Under such a

https://en.wikipedia.org/wiki/Route_planner
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Lars_Rasmussen_(software_developer)
https://en.wikipedia.org/wiki/Google_Maps#cite_note-1
https://en.wikipedia.org/wiki/Google_Map_Maker
https://en.wikipedia.org/wiki/Google_Map_Maker
https://en.wikipedia.org/wiki/Google_Maps#cite_note-2

3

circumstance, a location recommender system is a valuable but unique application in location-

based social networking services, in terms of what a recommendation is and where a

recommendation is to be made [3, 1]. Specifically, location recommendations provide a user

with some venues (e.g., an electronic shop) that match her personal interests within a geospatial

[1]. This application becomes more worthy when people travel to an unfamiliar area, where

they have little knowledge about the neighborhoods.So we provide user with 6 options as

follows:-Laptops,Phones,LED,Consoles,Clothing and Watch .Out of these user will provide

information about shops available in each category.

1.3 Problem Statement

Inferring the rating for a location is very challenging using a user’s location history in a LBSN.

First, a user can only visit a limited number of physical locations. This results in a sparse

userlocationmatrix for most existing location recommendation systems, e.g., [7, 5], which

directly play a collaborative filtering based model [4, 6] over physical locations.Nevertheless,

a highquality location recommendation has to simultaneously consider the following three

factors. 1) User preferences: the shoppingaholics would pay more attentions to nearby

shopping malls [8]. 2) The current location of a user: As the users prefer the nearby locations,

this location indicates the spatial range of the recommended venues and may affect the ratings

of these recommendations[7]. 3) The opinions of a location given by the otherusers: Social

opinions from the nearby users is a valuable resourcefor making a recommendation [5].

1.4. Objective

The literature on and implementation of shopping recommendation system is quite scattered.

Different research papers that have been brought out on recommendation system may refer to

the same type of institution but they mostly deal with different kinds of assignments, i.e.,

decisions like the number of items, assigning shops to items , or assigning events to locations.

Moreover, each institution has its own characteristics which are reflected in the problem

definition (Robertus, 2002). Yet, there have been no leveling grounds for developing a system

that can work for most of these institutions.

The aim of this work is the generation of shopping recommendation system which provide user

with list of items and based on location shops will be recommended according to price and

4

quality. Provide user with sufficient information about shops value so user can shop with his

own choice.

The objective of the project is to make an application in android platform to purchase items in

an existing shop. In order to build such an application complete web support need to be

provided. A complete and efficient web application which can provide the online shopping

experience is the basic objective of the project. The web application can be implemented in the

form of an android application with web view.

1.5. Methadology

This research is concerned with the problem of constructing recommendation system. The

central concept of the application is to allow the customer to shop virtually using the Internet

and allow customers to buy the items and articles of their desire from the store. The information

pertaining to the products are stores on an RDBMS at the server side (store).

The Server process the items and the shops are submitted by them. The application was

designed into two modules first is for the customers who wish to see the articles. Second is for

the storekeepers who maintains and updates the information pertaining to the articles and those

of the customers. The end user of this product is a departmental store where the application is

hosted on the web and the administrator maintains the database. The application which is

deployed at the customer database, the details of the items are brought forward from the

database for the customer view based on the selection through the menu and the database of all

the products are updated at the end of each transaction. Data entry into the application can be

done through various screens designed for various levels of users. Once the authorized

personnel feed the relevant data into the system, several reports could be generated as per the

security.

5

1.6. Organisation

Chapter 1: Highlights and Underlines of the Location based services. In this chapter, the

introduction Location based services is covered. The key focus defining the problem

statement and specifying the objectives of the project.

Chapter 2: The detailed literature review from the research paper, books, journals and

conferences are done. In this chapter, the extracts from assorted research papers on HCI,

Location Tracking, Tourism.

Chapter 3: Covers the system development which is the key aspect of this work. In this

chapter, the proposed model, algorithm, UML diagrams and related parameters are

emphasized..

Chapter 4: : The simulation of implementation results with the relative performance

analysis is shown in this chapter. The simulation results and screenshots are revealed to

depict and defend the proposed work.

Chapter 5: Detailed conclusion and scope of the future work which guides the upcoming

students and research scholars to enhance the current work with higher efficiency and

effectiveness on Location racking and toursim.

6

Chapter -2 LITERATURE SURVEY

2.1 Android Architecture

Android architecture has mainly 4 following layers:

1. Applications Layer

2. Application Framework

3. Libraries along with android runtime libraries

4. Linux Kernel.

The following diagram shows the architecture in proper stack. Each of the layer is explained

below.

fig 2.1 Android Architecture

7

Applications Layer

Android will ship with a set of core applications including an email client, SMS program,

calendar, maps, browser, contacts, and others. All applications are written using the Java

programming language. These applications comprise the application layer of android.

Application Framework

Application framework provides developers full access to the same framework APIs used by

the core applications. The application architecture is designed to simplify the reuse of

components; any application can publish its capabilities and any other application may then

make use of those capabilities (subject to security constraints enforced by the framework). This

same mechanism allows components to be replaced by the user.

Underlying all applications is a set of services and systems, including:

 A rich and extensible set of Views that can be used to build an application, including

lists, grids, text boxes, buttons, and even an embeddable web browser.

 Content Providers that enable applications to access data from other applications (such

as Contacts), or to share their own data.

 A Resource Manager, providing access to non-code resources such as localized strings,

graphics, and layout files.

 A Notification Manager that enables all applications to display custom alerts in the

status bar.

 An Activity Manager that manages the lifecycle of applications and provides a common

navigation backstack.

Libraries

Android includes a set of C/C++ libraries used by various components of the Android system.

These capabilities are exposed to developers through the Android application framework.

Some of the core libraries are listed below:

 System C library - a BSD-derived implementation of the standard C system library

(libc), tuned for embedded Linux-based devices

 Media Libraries - based on PacketVideo'sOpenCORE; the libraries support playback

and recording of many popular audio and video formats, as well as static image files,

including MPEG4, H.264, MP3, AAC, AMR, JPG, and PNG

8

 Surface Manager - manages access to the display subsystem and seamlessly

composites 2D and 3D graphic layers from multiple applications

 LibWebCore - a modern web browser engine which powers both the Android browser

and an embeddable web view

 SGL - the underlying 2D graphics engine

 3D libraries - an implementation based on OpenGL ES 1.0 APIs; the libraries use either

hardware 3D acceleration (where available) or the included, highly optimized 3D

software rasterizer

 FreeType - bitmap and vector font rendering

 SQLite - a powerful and lightweight relational database engine available to all

applications

Android Runtime Libraries

Android includes a set of core libraries that provides most of the functionality available in the

core libraries of the Java programming language.

Every Android application runs in its own process, with its own instance of the Dalvik virtual

machine. Dalvik has been written so that a device can run multiple VMs efficiently. The Dalvik

VM executes files in the Dalvik Executable (.dex) format which is optimized for minimal

memory footprint. The VM is register-based, and runs classes compiled by a Java language

compiler that have been transformed into the .dex format by the included "dx" tool.

The Dalvik VM relies on the Linux kernel for underlying functionality such as threading and

low-level memory management.

Linux Kernel

Android relies on Linux version 2.6 for core system services such as security, memory

management, process management, network stack, and driver model. The kernel also acts as

an abstraction layer between the hardware and the rest of the software stack.

9

2.2 Main Components of Android Application

There are 5 components around which an android applications revolves. They are

1. Activities

2. Broadcast Receivers

3. Services

4. Intents

5. Content Providers

Activities

An Activity is an application component that provides a screen with which users can interact

in order to do something, such as dial the phone, take a photo, send an email, or view a map.

Each activity is given a window in which to draw its user interface. The window typically fills

the screen, but may be smaller than the screen and float on top of other windows.

An application usually consists of multiple activities that are loosely bound to each other.

Typically, one activity in an application is specified as the "main" activity, which is presented

to the user when launching the application for the first time. Each activity can then start another

activity in order to perform different actions. Each time a new activity starts, the previous

activity is stopped, but the system preserves the activity in a stack (the "back stack"). When a

new activity starts, it is pushed onto the back stack and takes user focus. The back stack abides

to the basic "last in, first out" queue mechanism, so, when the user is done with the current

activity and presses the BACK key, it is popped from the stack (and destroyed) and the previous

activity resumes. (The back stack is discussed more in the Tasks and Back Stack document.)

When an activity is stopped because a new activity starts, it is notified of this change in state

through the activity's lifecycle callback methods. There are several callback methods that an

activity might receive, due to a change in its state—whether the system is creating it, stopping

it, resuming it, or destroying it—and each callback provides you the opportunity to perform

specific work that's appropriate to that state change. For instance, when stopped, your activity

should release any large objects, such as network or database connections. When the activity

resumes, you can reacquire the necessary resources and resume actions that were interrupted.

These state transitions are all part of the activity lifecycle.

10

Broadcast Receivers

Broadcast Receiver is actually a mechanism to send and receive events so that all interested

applications can be informed when something happens. There are heaps of System events

which get broadcast by Android OS such as SMS related events, Connectivity related events,

and camera related events and many more. We are able to broadcast our application specific

events as well, so for example if we have a RSS news reader application and we want to do

something whenever a new item is available, it would be a good idea to use Broadcast Receiver

method, not only because it will separate your event handling code but most importantly

because it will enable other applications to register and receive a notification whenever that

event takes place.

There are two major classes of broadcasts that can be received:

 Normal broadcasts are completely asynchronous. All receivers of the broadcast are

run in an undefined order, often at the same time. This is more efficient, but means that

receivers cannot use the result or abort APIs included here.

 Ordered broadcasts are delivered to one receiver at a time. As each receiver executes

in turn, it can propagate a result to the next receiver, or it can completely abort the

broadcast so that it won't be passed to other receivers. The order receivers run in can be

controlled with the priority attribute of the matching intent-filter; receivers with the

same priority will be run in an arbitrary order.

Even in the case of normal broadcasts, the system may in some situations revert to delivering

the broadcast one receiver at a time. In particular, for receivers that may require the creation of

a process, only one will be run at a time to avoid overloading the system with new processes.

In this situation, however, the non-ordered semantics hold: these receivers still cannot return

results or abort their broadcast.

Services

A Service is an application component that can perform long-running operations in the

background and does not provide a user interface. Another application component can start a

service and it will continue to run in the background even if the user switches to another

application. Additionally, a component can bind to a service to interact with it and even perform

11

inter-process communication (IPC). For example, a service might handle network transactions,

play music, perform file I/O, or interact with a content provider, all from the background.

A service can essentially take two forms:

 Started:- A service is "started" when an application component (such as an activity)

starts it by calling startService(). Once started, a service can run in the background

indefinitely, even if the component that started it is destroyed. Usually, a started service

performs a single operation and does not return a result to the caller. For example, it

might download or upload a file over the network. When the operation is done, the

service should stop itself.

 Bound:- A service is "bound" when an application component binds to it by calling

bindService(). A bound service offers a client-server interface that allows components

to interact with the service, send requests, get results, and even do so across processes

with inter-process communication (IPC). A bound service runs only as long as another

application component is bound to it. Multiple components can bind to the service at

once, but when all of them unbind, the service is destroyed.

Content Providers

Content providers store and retrieve data and make it accessible to all applications. They're the

only way to share data across applications; there's no common storage area that all Android

packages can access.

Android comes with a number of content providers for common data types (audio, video,

images, personal contact information, and so on). You can see some of them listed in

the android.provider package. You can query these providers for the data they contain (although,

for some, you must acquire the proper permission to read the data).

If you want to make your own data public, you have two options: You can create your own

content provider (aContentProvider subclass) or you can add the data to an existing provider —

if there's one that controls the same type of data and you have permission to write to it.

Intents

Three of the core components of an application — activities, services, and broadcast receivers

— are activated through messages, called intents. Intent messaging is a facility for late run-

12

time binding between components in the same or different applications. The intent itself,

an Intent object, is a passive data structure holding an abstract description of an operation to be

performed — or, often in the case of broadcasts, a description of something that has happened

and is being announced. There are separate mechanisms for delivering intents to each type of

component:

 An Intent object is passed

toContext.startActivity() or Activity.startActivityForResult()to launch an activity or get

an existing activity to do something new. (It can also be passed to Activity.setResult() to

return information to the activity that called startActivityForResult().)

 An Intent object is passed to Context.startService() to initiate a service or deliver new

instructions to an ongoing service. Similarly, an intent can be passed to

context.bindService() to establish a connection between the calling component and a

target service. It can optionally initiate the service if it's not already running.

 Intent objects passed to any of the broadcast methods are delivered to all interested

broadcast receivers. Many kinds of broadcasts originate in system code.

In each case, the Android system finds the appropriate activity, service, or set of broadcast

receivers to respond to the intent, instantiating them if necessary. There is no overlap within

these messaging systems: Broadcast intents are delivered only to broadcast receivers, never to

activities or services. An intent passed to startActivity() is delivered only to an activity, never

to a service or broadcast.

Activity Stack
• Activities in the system y are managed as an activity stack.

• When a new activity is started, it is placed on the top of the stack and becomes the running

activity ‐‐ the previous activity always remains below it in the stack, and will not come to the

foreground again until the new activity exits.

• If the user presses the Back Button the next activity on the stack moves up and becomes

active.

13

 fig 2.2 Activity Stack

2.1.6 Processes and Threads

When an application component starts and the application does not have any other components

running, the Android system starts a new Linux process for the application with a single thread

of execution. By default, all components of the same application run in the same process and

thread (called the "main" thread). If an application component starts and there already exists a

process for that application (because another component from the application exists), then the

component is started within that process and uses the same thread of execution. However, you

can arrange for different components in your application to run in separate processes, and you

can create additional threads for any process.

When deciding which processes to kill, the Android system weighs their relative importance

to the user. For example, it more readily shuts down a process hosting activities that are no

longer visible on screen, compared to a process hosting visible activities. The decision whether

to terminate a process, therefore, depends on the state of the components running in that

process.

When an application is launched, the system creates a thread of execution for the application,

called "main." This thread is very important because it is in charge of dispatching events to the

appropriate user interface widgets, including drawing events. It is also the thread in which your

application interacts with components from the Android UI toolkit. As such, the main thread

is also sometimes called the UI thread.

14

The system does not create a separate thread for each instance of a component. All components

that run in the same process are instantiated in the UI thread, and system calls to each

component are dispatched from that thread. Consequently, methods that respond to system

callbacks (such as onKeyDown() to report user actions or a lifecycle callback method) always

run in the UI thread of the process.

For instance, when the user touches a button on the screen, your app's UI thread dispatches the

touch event to the widget, which in turn sets its pressed state and posts an invalidate request to

the event queue. The UI thread dequeues the request and notifies the widget that it should

redraw itself.

When your app performs intensive work in response to user interaction, this single thread

model can yield poor performance unless you implement your application properly.

Specifically, if everything is happening in the UI thread, performing long operations such as

network access or database queries will block the whole UI. When the thread is blocked, no

events can be dispatched, including drawing events. From the user's perspective, the

application appears to hang. Even worse, if the UI thread is blocked for more than a few

seconds (about 5 seconds currently) the user is presented with the infamous "application not

responding" (ANR) dialog. The user might then decide to quit your application and uninstall it

if they are unhappy.

Additionally, the Android UI toolkit is not thread-safe. So, you must not manipulate your UI

from a worker thread—you must do all manipulation to your user interface from the UI thread.

Thus, there are simply two rules to Android's single thread model:

1. Do not block the UI thread

2. Do not access the Android UI toolkit from outside the UI thread

Processes and Threads

When an application component starts and the application does not have any other components

running, the Android system starts a new Linux process for the application with a single thread

of execution. By default, all components of the same application run in the same process and

15

thread (called the "main" thread). If an application component starts and there already exists a

process for that application (because another component from the application exists), then the

component is started within that process and uses the same thread of execution. However, you

can arrange for different components in your application to run in separate processes, and you

can create additional threads for any process.

When deciding which processes to kill, the Android system weighs their relative importance

to the user. For example, it more readily shuts down a process hosting activities that are no

longer visible on screen, compared to a process hosting visible activities. The decision whether

to terminate a process, therefore, depends on the state of the components running in that

process.

When an application is launched, the system creates a thread of execution for the application,

called "main." This thread is very important because it is in charge of dispatching events to the

appropriate user interface widgets, including drawing events. It is also the thread in which your

application interacts with components from the Android UI toolkit. As such, the main thread

is also sometimes called the UI thread.

The system does not create a separate thread for each instance of a component. All components

that run in the same process are instantiated in the UI thread, and system calls to each

component are dispatched from that thread. Consequently, methods that respond to system

callbacks (such as onKeyDown() to report user actions or a lifecycle callback method) always

run in the UI thread of the process.

For instance, when the user touches a button on the screen, your app's UI thread dispatches the

touch event to the widget, which in turn sets its pressed state and posts an invalidate request to

the event queue. The UI thread dequeues the request and notifies the widget that it should

redraw itself.

When your app performs intensive work in response to user interaction, this single thread

model can yield poor performance unless you implement your application properly.

Specifically, if everything is happening in the UI thread, performing long operations such as

network access or database queries will block the whole UI. When the thread is blocked, no

events can be dispatched, including drawing events. From the user's perspective, the

application appears to hang. Even worse, if the UI thread is blocked for more than a few

seconds (about 5 seconds currently) the user is presented with the infamous "application not

responding" (ANR) dialog. The user might then decide to quit your application and uninstall it

if they are unhappy.

16

Additionally, the Android UI toolkit is not thread-safe. So, you must not manipulate your UI

from a worker thread—you must do all manipulation to your user interface from the UI thread.

Thus, there are simply two rules to Android's single thread model:

1. Do not block the UI thread

2. Do not access the Android UI toolkit from outside the UI thread

2.1.7 Multi-Tasking

An application usually contains multiple activities. Each activity should be designed around a

specific kind of action the user can perform and can start other activities. For example, an email

application might have one activity to show a list of new email. When the user selects an email,

a new activity opens to view that email.

An activity can even start activities that exist in other applications on the device. For example,

if the application wants to send an email, we can define intent to perform a "send" action and

include some data, such as an email address and a message. An activity from another

application that declares itself to handle this kind of intent then opens. In this case, the intent

is to send an email, so an email application's "compose" activity starts (if multiple activities

support the same intent, then the system lets the user select which one to use). When the email

is sent, your activity resumes and it seems as if the email activity was part of your application.

Even though the activities may be from different applications, Android maintains this seamless

user experience by keeping both activities in the same task.

A task is a collection of activities that users interact with when performing a certain job. The

activities are arranged in a stack (the "back stack"), in the order in which each activity is

opened.

The device Home screen is the starting place for most tasks. When the user touches an icon in

the application launcher (or a shortcut on the Home screen), that application's task comes to

the foreground. If no task exists for the application (the application has not been used recently),

then a new task is created and the "main" activity for that application opens as the root activity

in the stack.

17

 fig 2.3 Activity in background

When the current activity starts another, the new activity is pushed on the top of the stack and

takes focus. The previous activity remains in the stack, but is stopped. When an activity

stops, the system retains the current state of its user interface. When the user presses the

BACK key, the current activity is popped from the top of the stack (the activity is destroyed)

and the previous activity resumes (the previous state of its UI is restored). Activities in the

stack are never rearranged, only pushed and popped from the stack—pushed onto the stack

when started by the current activity and popped off when the user leaves it using the BACK

key. As such, the back stack operates as a "last in, first out" object structure. Figure 1

visualizes this behavior with a timeline showing the progress between activities along with

the current back stack at each point in time.

If the user continues to press BACK, then each activity in the stack is popped off to reveal the

previous one, until the user returns to the Home screen (or to whichever activity was running

when the task began). When all activities are removed from the stack, the task no longer

exists.

A task is a cohesive unit that can move to the "background" when users begin a new task or

go to the Home screen, via the HOME key. While in the background, all the activities in the

task are stopped, but the back stack for the task remains intact—the task has simply lost focus

18

while another task takes place. A task can then return to the "foreground" so users can pick

up where they left off. Suppose, for example, that the current task (Task A) has three

activities in its stack—two under the current activity. The user presses the HOME key, then

starts a new application from the application launcher. When the Home screen appears, Task

A goes into the background. When the new application starts, the system starts a task for that

application (Task B) with its own stack of activities. After interacting with that application,

the user returns Home again and selects the application that originally started Task A. Now,

Task A comes to the foreground—all three activities in its stack are intact and the activity at

the top of the stack resumes.

Recommending Systems are not new there is lot of ubiquitous research but Recommending

peripheral Shops based on user current location is a part of interest in advancement of

technology . So to bring this system in android to assuage people all around the world by just

carry out phone and get location of shops providing Quality items at Affordable price is main

motive of the team. A location recommender system is a valuable but unique application in

location-based social networking services, in terms of what a recommendation is and where a

recommendation is to be made and that what need to be seen

2.3. Review of Relevant Technologies

We found that more than half of the recommendation approaches applied content-based

filtering (55%).Collaborative filtering was applied by only 18% of the reviewed approaches,

and graph-based recommendations by 16%. Other recommendation concepts included

stereotyping, item-centric recommendations, and hybrid recommendations. The content-based

filtering approaches mainly utilized papers that the users had authored, tagged, browsed, or

downloaded. TF-IDF was the most frequently applied weighting scheme. In addition to simple

terms, n-grams, topics, and citations were utilized to model users’ information needs. Our

review revealed some shortcomings of the current research. First, it remains unclear which

recommendation concepts and approaches are the most promising. For instance, researchers

reported different results on the performance of content-based and collaborative filtering.

Sometimes content-based filtering performed better than collaborative filtering and sometimes

it performed worse. We identified three potential reasons for the ambiguity of the results. A)

19

Several evaluations had limitations. They were based on strongly pruned datasets, few

participants in user studies, or did not use appropriate baselines. B) Some authors provided

little information about their algorithms, which makes it difficult to re-implement the

approaches. Consequently, researchers use different implementations of the same

recommendations approaches, which might lead to variations in the results. C) We speculated

that minor variations in datasets, algorithms, or user populations inevitably lead to strong

variations in the performance of the approaches. Hence, finding the most open-source

frameworks.

We use the term "idea" to refer to a hypothesis about how recommendations could be

effectively generated. To differentiate how specific the idea is, we distinguish between

recommendation classes, approaches, algorithms, and implementations (Figure 4). We define

a "recommendation class" as the least specific idea, namely a broad concept that broadly

describes how recommendations might be given. For instance, the recommendation concepts

collaborative filtering (CF) and content-based filtering (CBF) fundamentally differ in their

underlying ideas: the underlying idea of CBF is that users are interested in items that are similar

to items the users previously liked. In contrast, the idea of CF is that users like items that the

users' peers liked. However, these ideas are rather vague and leave room for different

approaches.

A "recommendation approach" is a model of how to bring a recommendation class into

practice. For instance, the idea behind CF can be realized with user-based CF [221], content-

boosted CF [222], and various other approaches [223]. These approaches are quite different

but are each consistent with the central idea of CF. Nevertheless, these approaches to represent

a concept are still vague and leave room for speculation on how recommendations are

calculated.

A "recommendation algorithm" precisely specifies a recommendation approach. For instance,

an algorithm of a CBF approach would specify whether terms were extracted from the title of

a document or from the body of the text, and how terms are processed (e.g. stop-word removal

or stemming) and weighted (e.g. TF-IDF). Algorithms are not necessarily complete. For

instance, pseudo-code might contain only the most important information and ignore

basics,such as weighting schemes. This means that for a particular recommendation approach

there might be several algorithms.

20

Finally, the "implementation" is the actual source code of an algorithm that can be compiled

and applied in a recommender system. It fully details how recommendations are generated and

leaves no room for speculation. It is therefore the most specific idea about how

recommendations might be generated

 FIG 2.4 Illustration Of Recommendation System

A "recommender system" is a fully functional software system that applies at least one

implementation to make recommendations. In addition, recommender systems feature several

other components, such as a user interface, a corpus of recommendation candidates, and an

operator that owns/runs the system. Some recommender systems also use two or more

recommendation approaches: CiteULike, a service for discovering and managing scholarly

references, lets their users choose between two approaches.

The "recommendation scenario" describes the entire setting of a recommender system,

including the recommender system and the recommendation environment, i.e. the domain and

user characteristics.

21

2.4 Related Research Fields

Several research fields are related to user modeling and (research-paper) recommender

systems. Although we do not survey these fields, we introduce them so interested readers can

broaden their research. Research on academic search engines deals with calculating relevance

between research papers and search queries . The techniques are often similar to those used by

research-paper recommender systems. In some cases, recommender systems and academic

search engines are even identical. As described later, some recommender systems require their

users to provide keywords that represent their interests. In these cases, research-paper

recommender systems do not differ from academic search engines where users provide

keywords to retrieve relevant papers. Consequently, these fields are highly related and most

approaches for academic search engines are relevant for researchpaper recommender systems.

The reviewer assignment problem targets using information-retrieval and informationfiltering

techniques to automate the assignment of conference papers to reviewers .The differences from

research-paper recommendations are minimal: in the reviewer assignment problem a relatively

small number of paper submissions must be assigned to a small number of users, i.e. reviewers;

research-paper recommender systems recommend a few papers out of a large corpus to a

relatively large number of users. However, the techniques are usually identical. The reviewer

assignment problem was first addressed by Dumais and Nielson in 1992 six years before Giles

et al. introduced the first research-paper recommender system. A good survey on the reviewer

assignment problem was published by Wang et al. [Scientometrics deals with analyzing the

impact of researchers, research articles and the

links between them. Scientometrics researchers use several techniques to calculate document

relatedness or to rank a collection of articles. Some of the measures – h-index , co-citation

strength and bibliographic coupling strength– have also been applied by research-paper

recommender systems However, there are many more metrics in scientometrics that might be

relevant for research-paper recommender systems

User modeling evolved from the field of Human Computer Interaction. One thing user

modeling focuses on is reducing users’ information overload making use of users’ current tasks

and backgrounds User modeling shares this goal with recommender systems, and papers

published at the major conferences in both fields (UMAP15 and RecSys16) often overlap. User

modeling is a central component of recommender systems because modeling the users’

information needs is crucial for providing useful recommendations. For some comprehensive

22

surveys about user modeling in the context of web personalization, refer to Other related

research fields include book recommender systems educational recommender systems

academic alerting services expert search automatic summarization of academic articles

academic news feed recommenders academic event recommenders venue recommendations

citation recommenders for patents recommenders for academic datasets and plagiarism

detection. Plagiarism detection, like many research-paper recommenders, uses text and citation

analysis to identify similar

documents Additionally, research relating to crawling the web and analyzing academic articles

can be useful for building research-paper recommender systems, for instance, author name

extraction and disambiguation title extraction or citation extraction and matching Finally, most

of the research on content-based or collaborative filtering from other domains, such as movies

or news can also be relevant for research-paper recommender systems.

2.5 Operators Perspective

It is commonly assumed that the objective of a recommender system is to make users "happy"

9+by satisfying their needs . However, there is another important stakeholder who is often

ignored: the operator of a recommender system . It is often assumed that operators of

recommender systems are satisfied when their users are satisfied, but this is not always the

case. Operators may also want to keep down costs of labor, disk storage, memory, computing

power, and data transfer . Therefore, for operators, an effective recommender system may be

one that can be developed, operated, and maintained at a low cost. Operators may also want to

generate a profit from the recommender system . Such operators might prefer to recommend

items with higher profit margins, even if user satisfaction is not optimal. For instance,

publishers might be more interested in recommending papers the user must pay for than papers

the user can freely download.

The operator’s perspective has been widely ignored in the reviewed articles. Costs of building

a recommender system, or implementing an approach were not reported in any article. Costs

to run a recommender system were reported by Jack from Mendeley . He stated that the costs

on Amazon’s S3 were $66 a month plus $30 to update the recommender system that served 20

requests per second generated by 2 million users.

23

CHAPTER- 3 SYSTEM DEVELOPMENT

3.1. Introduction

System Analysis is the study of a business problem domain to recommend improvements and

specify the business requirements and priorities for the solution. It involves the analyzing and

understanding a problem, then identifying alternative solutions, choosing the best course of

action and then designing the chosen solution.

It involves determining how existing systems work and the problems associated with existing

systems. It is worthy to note that before a new system can be designed, it is necessary to study

the system that is to be improved upon or replaced, if there is any.

3.2. The Existing System

3.2.1. Review of Existing System

The current system for shopping is to visit the shop manually and from the available product

choose the item customer want and buying the item by payment of the price of the item.It is

traditional and time-consuming method without the aid of digital application.

3.2.2. Advantages of the Existing System

The timetable generation process by the education center staff is:

 Subjective and can be made better through collaboration with the different entities

involved.

3.2.3. Limitations of the Existing System

 Repeated time allocations may bemade for a particular course thereby leading to data

redundancy.

 A lot of administrative error may occur as a result of confusing time requirements.

24

 User must go to shop and select products.

 It is difficult to identify the required product.

 Description of the product limited.

 It is a time consuming process

 Not in reach of distant users.

 It is not flexible as changes may not be easily made.

3.3. The Proposed System

3.3.1. Review of the Proposed System

The proposed systems was developed to solve the problem people face everyday while

shopping electronic items,gadgets,accessories etc.With this system shops will be recommended

based on user location .Location will be traced and shops in user periphery will be shown with

price of chosen item which aid the purchase of item.

3.3.2. Advantages of the Proposed System

The timetable generation process by the education center staff is:

 Unlike the manual shopping, the system offers flexibility.

 It utilizes minimal processing/computing power.

 It greatly reduces the time needed to generate shop.

 It provides an easy means for recommending items through an intuitive interface.

 It increases productivity.

3.3.3. Limitations of the Proposed System

The following are the challenges in the system due to time constraints:

 The proposed system can only generate recommendation based on a few hard course

constraints.

 The proposed system can only generate recommendation based on price.

 Recommendations generated by this system is still subject to revision by end user.

 Not all of the algorithm principles are implemented in the system.

25

3.4. System Design

System design is the specification or construction of a technical, computer-based solution for

the business requirements identified in a system analysis. It gives the overall plan or model of

a system consisting of all specifications that give the system its form and structure i.e. the

structural implementation of the system analysis.

3.5. Modelling the System

Modeling a system is the process of abstracting and organizing significant features of how the

system would look like. Modeling is the designing of the software applications before coding.

Unified Modeling Language (UML) tools were used in modeling this system.

3.5.1. UML (UNIFIED MODELLING LANGUAGE) MODELLING

The Unified modeling language is an object-oriented system notation that provides a set of

modeling conventions that is used to specify or describe a software system in terms of objects.

The Unified Modeling Language (UML) has become an object modeling standard and adds a

variety of techniques to the field of systems analysis and development hence its choice for this

project.

UML offers ten different diagrams to model a system. These diagrams are listed below:

 Use case diagram

 Class diagram

 Object diagram

 Sequence diagram

 Collaboration diagram

 State diagram

 Activity diagram

 Component diagram

 Deployment diagram

 Package Diagram

26

In this project, the Use case diagram and Class diagram will be used for system modeling.

3.5.1.1 Use Case Diagram

Use case diagrams describe what a system does from the standpoint of an external observer.

The emphasis of use case diagrams is on what a system does rather than how. They are used to

show the interactions between users of the system and the system. A use case represents the

several users called actors and the different ways in which they interact with the system.

ACTORS

 User

 Shopping Recommending System

USE CASES

 Choose The Product

 Get The Location

 Search Nearby Shops

 Fetch The Shops

 Show The Shops Along With Offers

 Recommend Shop

27

Figure 3.1.: Use Case Diagram to show the interaction between the system and user

3.5.1.2. Class Diagram

A class diagram is an organization of related objects. It gives an overview of a system by

showing its classes and the relationships among them. Class diagrams only display what

interacts but not what happens during the interaction hence they are static diagrams.

CLASSES

 Item

 Laptop

 Clothes

 Mobile

 Console

 Watches

 TV

 Shops

 User

28

Figure 3.2.: Class Diagram to show the relationships between the different classes associated

with the system

29

3.5.1.3. Component Diagram

 Fig 3.3

30

3.5.1.4. Deployment Diagram

 Fig 2.4

3.5.1.5. Flow Diagram

 Fig 2.5

31

3.7. System Analysis

TODAY, recommendation systems are used in many online shopping sites. Their chief

function is to recommend items that match each customer's preferences and needs, which are

estimated from information gathered through their past activities at the site, for example which

items they bought or which items they showed interest in.

Recommendation systems have numerous benefits. Studies in experimental psychology say

that, when used effectively, recommendation systems in shopping sites have the ability to

increase the perceived credibility of the site[9], thus leading customers into buying more items.

It is this ability of generating increased profit that has brought about the current popularity of

recommendation systems among shopping sites. When seen from a customer's point of view,

recommendation systems are helpful in the sense that they assist them to easily find items that

match their tastes. They are perceived as an intelligent tool that effectively helps them out as

consumers in this age of information overload.

 But despite the benefits that recommendation systems grant to its customers and shopping site

owners, we believe that a single fact is severely limiting us from appreciating them to their

full potential: the single fact, that recommendation systems can only be used for shopping on

the Internet, not for shopping in the city, or in other words, in the real world.

Despite the growing popularity of online shopping, the majority of shopping activities is still

done at real-world shops. Thus it can be inferred that, for us to be able to fully appreciate the

benefits of recommendation systems, we must apply them to real-world shopping. The

difficulty of this task lies in that it is extremely more difficult to acquire sufficient customer

activities needed for estimating preferences in real-world shopping, compared to online

shopping where all user activities can be easily recorded in the server. In this paper, we

introduce Placebo, a real-world recommendation system designed to run on mobile devices,

which recommends shops to users based on preferences estimated from their past location

history. Location data can be easily acquired using means such as GPS, and it contains rich

information about each user's personal preferences. Our system effectively applies location

data to the widely used item-based collaborative filtering algorithm, by transforming

continuously recorded location data into a form of a list that contains each user's {¥it frequently

32

visited shops}, and rating values which indicate how fond the user is of each shop. This list can

be directly used as input to the filtering algorithm to make recommendations in the exact same

manner as conventional recommendation systems. We have devised a custom algorithm for

this transformation of data, which automatically finds each user's frequently visited shops and

calculates rating values without any need of explicit user manipulation. We have also enabled

the system to take into account information such as the user's usual shopping routes, and the

ease of access from the user's current location to each shop, to provide more timely

recommendations.

To assess the effectiveness of our system, we have conducted an evaluation test at Daikanyama,

one of Tokyo's most revered shopping districts. The results show great promise in the system's

ability to make accurate recommendations, although various aspects of the system still needs

polish.

3.7.1 Location acquisition

One important characteristic of our system is that it makes extensive use of location data.

Numerous studies on location-based systems have been previously conducted, with various

methods of location acquisition.

The Olivetti Active Badge[10] and the ParcTab[11] acquire user location using infrared

waves. Infrared, being cheap, convenient and unregulated, has long been a popular choice for

location acquisition, although it has some disadvantages such as limited accuracy and poor

performance in environments abound with obstacles.

RADAR[12][13] detects location using wireless LAN (WLAN). WLAN is increasingly

becoming popular as the method of choice for location-aware systems, since in most cases no

special equipments are needed, as many recent PCs and mobile devices are already equipped

with built-in WLAN capabilities, and the number of hotspots in urban areas is rapidly

increasing. RADAR acquires user location from the strengths of signals observed by several

WLAN base stations, by using a predefined map consisting of observed signal strengths for

sample locations spreading throughout the environment.

The Active Bat[14] system uses ultrasound waves to acquire extremely precise location. The

system consists of a small device (a Bat) with ultrasound-emitting capabilities, and a dense

array of receivers mounted on ceilings. The relatively slow speed of ultrasound allows the

33

system to correctly measure the distance between each receiver and the Bat, and the precise

location of the user can be calculated by triangulation with an accuracy of around 3 centimeters.

The CyberGuide[15] is an example of a system using GPS. The advantages of using GPS are

that no equipment other than a GPS receiver is needed, and that fairly high accuracy can be

achieved, if only outdoors.

3.7.2 Location Discovery

Our system, Placebo, makes recommendations based on information about each user's

frequently visited shops, which are automatically estimated by the system. The task of finding

frequented places from GPS input (location discovery) has been investigated in a number of

past researches.

Commotion[16] is one example of a location discovery system. The system tracks users'

locations using GPS, and identifies frequently visited locations (buildings), by keeping track

of positions where GPS signals were continuously lost. Places where signals were often lost

are defined as frequently visited locations. Then, the user can annotate the defined locations

with information such as location names, memos, and to-do lists.

Ashbrook and Starner[17], and Zhou et al[18], proposes location discovery methods based on

clustering algorithms, which offer more precise results but are more computationally

expensive.

The system we propose in this paper finds users' frequently visited buildings in a somewhat

similar manner as the above systems, but instead of using a clustering approach, we introduce

a completely new algorithm for location discovery, which is much more computationally

efficient. This is possible because in our system we only need to search for frequently visited

shops, which are located in discrete locations, as opposed to conventional location discovery

systems which search for frequented places, which exist continuously in a two-dimensional

space. The discrete nature of shops allows our system to look for frequented places in a much

smaller search space, and therefore the computation cost can be reduced greatly.

34

3.7.3 Recommendation System

The concept of recommendation systems have long been explored, and there have already been

numerous researches conducted on the field. At the core of recommendation systems is the

filtering algorithm, which filters out unnecessary data and decides which data should be

recommended to the user. The two most commonly used types of filtering algorithms are

content-based filtering, and collaborative filtering.

1) Content-based Filtering: The basic idea of content-based filtering[19][20] is to express the

content of each data in a form that can be objectively evaluated, and filter out data whose

content doesn't match the user's preferences. The most commonly used method for expressing

content is the feature vector method.

According to the feature vector method, the content of each piece of data is expressed in the

form of a vector, consisting of values for a set of features. Features are defined so that they can

effectively convey the content of each data, and that they can be expressed in numerical values.

For example, in the case of text data, features are defined as the frequency with which several

keywords appear in the text. If the keywords are cleverly chosen, the resulting vector should

be able to communicate the content of the text with significant accuracy. The preferences of

each user is also expressed as a vector using the same set of features, and if a vector for a piece

of data is similar to the content of the text with significant accuracy. The preferences of each

user is also expressed as a vector using the same set of features, and if a vector for a piece of

data is similar to the vector for the user preference, there should be good chance that the user

will like the data, and thus the data is recommended to the user. Most content-based systems

are intended only for recommending text data, since appropriately expressing the content of

each data is difficult for other types of data.

2) Collaborative Filtering: Collaborative filtering[21][22] recommends data that was given

high ratings by a number of users, with similar preferences as the user who requested the

recommendation.

The first step of collaborative filtering is calculating the similarity of preferences between

users. Then, several users with the highest similarity values (nearest neighbors) are picked

out. Data that has received high ratings among the nearest neighbors, and that the user who

requested the recommendation has not yet evaluated, is recommended.

35

The biggest advantage of collaborative filtering over content-based filtering is that

collaborative filtering requires no previous knowledge about the content of the data, and thus

can be applied to any type of data, regardless of content.

On the other hand, collaborative filtering also has some disadvantages. First, the only data

that can be recommended using collaborative filtering are ones that have already been

evaluated by some other user, which means that it may take some time before a piece of data

newly introduced in the data space can have a chance of being recommended. When the relative

size of the data space is extremely large compared to the number of users, a considerable

portion of the data space will not be available for recommendation. Next, collaborative filtering

only functions properly when there are users with similar preferences. When the number of

users is small, the nearest neighbors found by the system might not necessarily have similar

preferences, which may result in the system producing inaccurate recommendations. Finally,

the computation cost of collaborative filtering can be a problem, especially when the number

of users is large.

There is a variation of collaborative filtering called item-based collaborative filtering[23]. In

this approach, instead of calculating the similarity between users, the similarity between items

are calculated. Items which show high similarity with the items that the user has given high

ratings are recommended.

3.7.4 Recommendation using Location

There have been numerous studies of recommendation systems and shopping assistance

systems which make use of location data, but so far they seem to be limited to using only the

current user location. The personal shopping assistant[24] by Asthana et al. presents users with

information on special deals according to their current location. Pilgrim[25] is a website

recommendation system which takes into account the location from which the user had

accessed websites. To the best of our knowledge, our proposed system is the only

36

recommendation system which uses the history of continuously recorded location data for

recommendation.

3.7.5 System Overview

The basic idea of our recommendation system, Placebo, is to estimate the users' individual

preferences from the history of their location data collected using GPS, and recommend shops

upon request. The system is intended to be useful for various kinds of shoppers, in various

situations. For example, the system can be helpful for shoppers new to the area wanting to find

shops that match their tastes, or for shoppers more familiar to the area willing to try something

new.

Fig. 2 illustrates how Placebo compares with conventional recommendation systems for

online shopping. Whereas conventional systems estimate users' preferences from their online

activity records, such as items bought or

Fig. 3.6. Comparison of Placebo(right) with conventional recommendation systems(left)

checked in the past, our system estimates preferences based on their location history during

shopping in the city.

It should be noted that our recommendation system recommends shops, as opposed to

conventional systems in shopping sites which recommends items. We dismissed the idea of

recommending items, for the two reasons discussed below.

37

First, in order to recommend items, information about each specific item that the user has

bought or has showed interest in must be obtained, to estimate preferences. In online shopping,

these information can be easily acquired from the server log. But in the real-world, these

information can only be acquired if every item is equipped with a smart tag like an RFID, or

every shop employs a strict customer surveillance system. The latter method is obviously

unrealistic, due to privacy concerns. The former method seems more plausible, since smart tags

are assumed to become pervasive and replace bar codes in the coming years. However, if we

are to base our recommendation system on smart tags, the issue of coverage rate must be

considered. If every item in every shop becomes equipped with a smart tag, the coverage rate

will be 100%. But considering the current coverage rate of bar codes, assuming that the actual

rate will become anything close to this is unreasonable. Therefore, a recommendation system

based on smart tags will inevitably be a crippled one, since it automatically excludes a

considerableportion of items sold in the city. In contrast, our system can include every shop

except those in places where GPS does not work, for example inside large building, and the

coverage rate is relatively high. The rate should become even higher in the near future, with

the advance of alternative location acquisition techniques like the Wi-Fi.

Next, there is no effective filtering algorithm applicable for recommending real-world items.

Content-based filtering is almost exclusively used for recommending text data, which is rarely

seen in real-world shopping. Collaborative filtering is incapable of dealing with the extremely

fast cycle in which new items appear and disappear in the real world, since it cannot

recommend items that had not yet been evaluated by a respectable number of users. The

algorithm can only work for items like books which are continuously sold for a significant time

span, or items that are produced in large quantities. In case of items which are produced in

scarce numbers and sold for only a short period of time, for example fashion itemsmade by

lesser known producers, sufficient evaluation results needed for collaborative filtering to

properly function cannot be achieved. In contrast, our system is unaffected by this fact because

shops exist for a relatively long period of time, enough for gathering evaluations.

Placebo is solely based on location data acquired using GPS, and does not require any other

sensors. Considering the growing popularity of GPS receivers and GPS-embedded mobile

phones, a system that can function using only GPS has a chance of being widely used, and

developing such a system should be a worthy attempt.

Fig. 3 illustrates the system architecture of Placebo. The main components of our system are

client devices carried by users, and a server that performs recommendations. The client device

38

can be any mobile computer device which is or can be equipped with Internet and GPS

capabilities. Potential client platforms include PDAs, notebook PCs and mobile phones.Our

system analyzes, and transforms raw location data received from GPS into a list of each user's

frequently visited shops. This list is used as input to our filtering algorithm, and so it must be

kept inside the server in order to carry out recommendations. If the client device has enough

memory space and high computational capabilities, the transformation of location data can be

done inside the client. But if the capabilities of the client device is insufficient, the

transformation must be done inside the server, and thus the users' raw location data has to be

sent to the server. This results in decreased privacy, and should be avoided if possible.

Fig. 3. 7 The Placebo system architecture

Below, we describe the process by which the system makes recommendations. The

recommendation process can be divided into two phases, the data acquisition phase and the

recommendation phase.

39

A. Data Acquisition Phase

In the data acquisition phase, raw location data from GPS is reconstructed into a list of each

user's frequently visited shops. The process can be further divided into three sub-phases:

monitoring user location, detecting visits to shops, and finding frequently visited shops.

1) Monitoring user location: The location of the user is consistently monitored using GPS.

Data acquired by GPScontains errors deriving from a variety of causes. Even in ideal conditions

where no tall buildings are present, an error of around 10 meters will inevitably exist, mainly

due to the effects of the ionosphere. Also, since GPS signals cannot penetrate through building

walls, the system cannot acquire the user's location when he/she is indoors. The location of the

user is periodically recorded into a database, inside the client device or the server if the client

has insufficient memory. This information is used later to identify the user's usual shopping

routes through the city.

2) Detecting visits to shops: We exploit the fact that GPS signals cannot penetrate through

walls, to detect if the user is indoors or outdoors. But naively using the loss of GPS signals as

a proof that the user is inside leads to frequent errors. There are two possible user situations

when GPS signals cannot be received: either the user is inside a building, or is surrounded by

tall buildings and signals are blocked. On the other hand, simply believing that the user is

outdoors because of the availability of GPS signals also leads to errors, since the user may

either be outdoors, or inside a building that allows GPS signals to penetrate through its walls

due to its structure and building materials (buildings that have high ceilings and walls

consisting mainly of glass often fit into this category).

To reduce these errors, we incorporate two timers for indoor and outdoor detection (Fig. 4) The

indoor judgment timer (IJT) is initially set at zero, and starts counting up at the moment when

GPS signals are lost. IJT keeps counting up as long as GPS signals are continuously lost, and

returns to zero every time when signals become available again, if even for a moment. When

IJT reaches a predefined time limit, the system judges the user as indoors. The time limit is

decided according to the GPS-friendliness of the area: in rural areas it should be set to a low

number, and in urban areas it should be a high number, because of the commonness of blocked

signals. The outdoor judgment timer (OJT) works in almost the same manner as the IJT. When

GPS signals become available even for an instant, the OJT starts counting up from zero. OJT

keeps counting up as long as GPS signals are available, and returns to zero when signals are

blocked. When OJT reaches the time limit, the system judges the user as outdoors. The time

limit, like in the case of IJT, is predefined according to the area. In rural areas they are set high,

40

and in urban areas they are set low, because there can be frequent signal blocks even when the

user is outside.

The system determines that the user has visited a building when the user is first judged as

indoors, then as outdoors. Then, the system records the current user location (latitude,

longitude) and the approximate duration of the visit.

3) Finding frequently visited shops: From the record of users' visits to shops, we can reveal the

presence of frequently visited shops, by searching for clusters of recorded visits. But since the

locations of the recorded visits contain errors, the exact shops that the user is frequently visiting

cannot be directly determined. Here, we propose a technique which automatically finds out the

exact shops which the user is frequently visiting using anestimation algorithm. Theestimation

algorithm is based on

t-test.

Whenever a new visit to a shop is detected, the system picks up shops that are located within a

predefined radius from the location at which the visit took place. Then, for each of those shops,

the system searches for past visits within a certain distance from the shop (sample visits). From

the sample visits, the system evaluates if it is plausible that the shop is a frequently visited

shop, by applying two tailed t-test to the sample visits. A more detailed explanation of this

method is as follows. First, we assume that the observed latitude and longitude values of visits

to a certain shop follow a normal distribution, with the actual location of the shop as the mean.

Given this assumption, the latitude and longitude values of the sample visits around a shop will

follow t-distributions. Then, we use t-test to evaluate if the means of the t-distributions can be

regarded as statistically identical to the actual location of the shop. If the shop is a frequently

visited shop, the two locations should be statistically identical. Fig. 5 illustrates the procedure

of this method.

41

Fig. 3.8 . Estimation Algorithm (t-test)

If, as the result of the t-test, the two locations can be considered as statistically identical, the

shop is judged as a user's frequently visited shop. The shops is included in the user's frequently

visited shops list, with a rating value calculated from the number of visits and the average

duration of those visits.

If a large number of sample visits can be expected to be acquired, we can use Bayesian

estimation instead of t-test. In this case, the plausibility that the shop is a frequently visited

shop, is calculated using the following equation.

P=A∫∫p(μx,μy) (1)

p(μxμy) is a probability density function calculated using Bayesian estimation. It indicates the

probability density with which the shop that caused the sample visits is located at (μx,μy). is a

small area centered around the actual shop location. Simply put, AP is the estimated probability

that the location of the shop at which the sample visits took place is located inside A. If the

plausibility P is above a threshold value, the shop is judged as the user's frequently visited

shop. The shops are added to the user's frequently visited shops list,with rating values

42

calculated from the plausibility P and the average duration of the visits. Fig. 6 illustrates this

method. We have described two methods for finding frequently visited shops, one based on t-

test, and the other based on Bayesian estimation. Whichever method we use, we end up with a

list of frequently visited shops and rating values (Fig. 7). This list is stored in the server

database and is used for recommendation.

Fig. 3.9. Estimation Algorithm (Bayesian estimation).

with rating values calculated from the plausibility P and the average duration of the visits. Fig.

6 illustrates this method.

We have described two methods for finding frequently visited shops, one based on t-test, and

the other based on Bayesian estimation. Whichever method we use, we end up with a list of

frequently visited shops and rating values (Fig. 7). This list is stored in the server database

and is used for recommendation.

B. Recommendation Phase

Upon user request, the server recommends shops using the list obtained in the data acquisition

phase. Recommendation is done in two steps: filtering, and adding weights according to areas.

1) Filtering: As the filtering algorithm, we use the item-based collaborative filtering algorithm.

The similarity between two shops A and B is calculated using the following

equation.

Sim(A,B)=Ru,ARu,BuΣRu,A2uΣRu,B2uΣ (2)

43

Here, Ru,A indicates the rating value for shop by user , and AuRu,B indicates the rating value

for shop B by user . The similarity increases when there is an observed tendency that users who

frequently visit shop also frequently visit shop uAB. Since item-based collaborative filtering

does not take into account the content of the data, correlations between shops of different

categories, such as cafes and clothing stores, can be defined. The system picks out several shops

which have high similarity with the user's frequently visited shops. These shops are regarded

as having high chances of matching the user's preferences well.

2) Adding weights according to areas: Our system is intended to be used in the city, which

means that there will be physical distances between users and recommended shops. Compared

to online shopping where users can check recommended items with one click of a mouse, our

system requires users to overcome these distances before they can appreciate the results of the

recommendations. In cities like Tokyo where many people shop on foot, the distances can

easily become too demanding for users. Therefore, we must make sure that the recommended

shops are relatively easily accessible from the users.

To meet this requirement, we first divide the city into areas, and model users' movements

using Markov models, with areas as nodes. The shops picked out by the filtering algorithm are

added with weight values according to the areas in which they are located. Shops with higher

weight values are given increased chances of being recommended to the user. Shops located in

the current area of the user, or in areas where the user is likely to advance next are added large

weight values, and thus will more likely to be recommended. Below we explain this procedure

in detail.

Fig. 3.10. List of frequently visited shops

1. Dividing the city map into areas-Areas must be defined so that any two points located

in the same area are easily accessible from one to the other. Our algorithm for this task,

based on cluster analysis, is as follows:

44

Fig 3.11 Dividing city map into area

The resulting clusters are chosen as the areas. The algorithm defines areas so that the maximum

distance the user has to cover to travel between two points in the same area is minimized.

3.7.6. LIMITATIONS Of ALGORITHM

 The proposed system can only generate recommendation based on a few hard course

constraints.

 The proposed system can only generate recommendation based on price.

 Recommendations generated by this system is still subject to revision by end user.

 Not all of the algorithm principles are implemented in the system.

45

CHAPTER -4 SYSTEM IMPLEMENTATION

4.1. Introduction

The system implementation defines the construction, installation, testing and delivery of the

proposed system. After thorough analysis and design of the system, the system implementation

incorporates all other development phases to produce a functional system.

4.2. Choice of Programming Language

 Java is the language of choice for this project because of its high speed and low memory usage.

The recommendation system is combinatorial in nature hence the need for a programming

language that has enhanced CPU optimizing capabilities for the development of and algorithm

like the Collaborative filtering algorithm which optimizes search space and avoids local

optima.

4.2.1 Platform

A platform is the hardware or software environment in which a program runs. We’ve

already mentioned some of the most popular platforms like Windows 2000, Linux, Solaris,

and MacOS. Most platforms can be described as a combination of the operating system and

hardware. The Java platform differs from most other platforms in that it’s a software-only

platform that runs on top of other hardware-based platforms.

The Java platform has two components:

 The Java Virtual Machine (Java VM)

 The Java Application Programming Interface (Java API)

You’ve already been introduced to the Java VM. It’s the base for the Java platform and is

ported onto various hardware-based platforms.

46

The Java API is a large collection of ready-made software components that provide many

useful capabilities, such as graphical user interface (GUI) widgets. The Java API is grouped

into libraries of related classes and interfaces; these libraries are known as packages. The

next section, What Can Java Technology Do?, highlights what functionality some of the

packages in the Java API provide.

The following figure depicts a program that’s running on the Java platform. As the figure

shows, the Java API and the virtual machine insulate the program from the hardware.

Figure 8: Java Platform

Native code is code that after you compile it, the compiled code runs on a specific hardware

platform. As a platform-independent environment, the Java platform can be a bit slower

than native code. However, smart compilers, well-tuned interpreters, and just-in-time

bytecode compilers can bring performance close to that of native code without threatening

portability.

4.2.2 Advantages of Java Technology

Java Technology makes your programs better and requires less effort than other languages.

We believe that Java technology will help you do the following:

 Get started quickly: Although the Java programming language is a powerful

object-oriented language, it’s easy to learn, especially for programmers already

familiar with C or C++.

47

 Write less code: Comparisons of program metrics (class counts, method counts,

and so on) suggest that a program written in the Java programming language can be

four times smaller than the same program in C++.

 Write better code: The Java programming language encourages good coding

practices, and its garbage collection helps you avoid memory leaks. Its object

orientation, its JavaBeans component architecture, and its wide-ranging, easily

extendible API let you reuse other people’s tested code and introduce fewer bugs.

 Develop programs more quickly: Your development time may be as much as

twice as fast versus writing the same program in C++. Why? You write fewer lines

of code and it is a simpler programming language than C++.

 Avoid platform dependencies with 100% Pure Java: You can keep your program

portable by avoiding the use of libraries written in other languages. The 100% Pure

JavaTM Product Certification Program has a repository of historical process

manuals, white papers, brochures, and similar materials online.

 Write once, run anywhere: Because 100% Pure Java programs are compiled into

machine-independent bytecodes, they run consistently on any Java platform.

4.2.3 Android Software Development Kit(sdk)

The Android software development kit (SDK) includes a comprehensive set of development

tools. These include a debugger,libraries, a handset emulator based on QEMU, documentation,

sample code, and tutorials. Currently supported development platforms include computers

running Linux (any modern desktop Linux distribution), Mac OS X 10.5.8 or later,

and Windows XP or later. As of March 2015, the SDK is not available on Android itself, but

the software development is possible by using specialized Android applications.

Until around the end of 2014, the officially supported integrated development

environment (IDE) was Eclipse using the Android Development Tools (ADT) Plugin,

though IntelliJ IDEA IDE (all editions) fully supports Android development out of the box, and

https://en.wikipedia.org/wiki/Software_development_kit
https://en.wikipedia.org/wiki/Debugger
https://en.wikipedia.org/wiki/Software_library
https://en.wikipedia.org/wiki/Emulator
https://en.wikipedia.org/wiki/QEMU
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/List_of_Linux_distributions
https://en.wikipedia.org/wiki/Mac_OS_X
https://en.wikipedia.org/wiki/Windows_XP
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Eclipse_(software)
https://en.wikipedia.org/wiki/IntelliJ_IDEA

48

NetBeans IDE also supports Android development via a plugin. As of 2015, Android

Studio, made by Google and powered by IntelliJ, is the official IDE; however, developers are

free to use others. Additionally, developers may use any text editor to edit Java and XML files,

then use command line tools (Java Development Kit and Apache Ant are required) to create,

build and debug Android applications as well as control attached Android devices (e.g.,

triggering a reboot, installing software package(s) remotely).

Enhancements to Android's SDK go hand in hand with the overall Android platform

development. The SDK also supports older versions of the Android platform in case developers

wish to target their applications at older devices. Development tools are downloadable

components, so after one has downloaded the latest version and platform, older platforms and

tools can also be downloaded for compatibility testing.

4.2.4 Eclipse

In computer programming, Eclipse is an integrated development environment (IDE). It

contains a base workspace and an extensible plug-in system for customizing the environment.

Eclipse is written mostly in Java and its primary use is for developing Java applications, but it

may also be used to develop applications in other programming languages through the use of

plugins,including: Ada, ABAP, C, C++, COBOL, Fortran, It can also be used to develop

packages for the software Mathematica. Development environments include the Eclipse Java

development tools (JDT) for Java and Scala, Eclipse CDT for C/C++ and Eclipse PDT for PHP,

among others.

The initial codebase originated from IBM VisualAge. The Eclipse software development

kit (SDK), which includes the Java development tools, is meant for Java developers. Users can

extend its abilities by installing plug-ins written for the Eclipse Platform, such as development

toolkits for other programming languages, and can write and contribute their own plug-in

modules.

Released under the terms of the Eclipse Public License, Eclipse SDK is free and open-source

software (although it is incompatible with the GNU General Public License). It was one of the

first IDEs to run under GNU Classpath and it runs without problems under IcedTea.

https://en.wikipedia.org/wiki/NetBeans
https://en.wikipedia.org/wiki/Android_Studio
https://en.wikipedia.org/wiki/Android_Studio
https://en.wikipedia.org/wiki/Command_line
https://en.wikipedia.org/wiki/Java_Development_Kit
https://en.wikipedia.org/wiki/Apache_Ant
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Workspace
https://en.wikipedia.org/wiki/Plug-in_(computing)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Ada_(programming_language)
https://en.wikipedia.org/wiki/ABAP
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/COBOL
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Mathematica
https://en.wikipedia.org/wiki/Codebase
https://en.wikipedia.org/wiki/IBM_VisualAge
https://en.wikipedia.org/wiki/Software_development_kit
https://en.wikipedia.org/wiki/Software_development_kit
https://en.wikipedia.org/wiki/Eclipse_Public_License
https://en.wikipedia.org/wiki/Software_development_kit
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/GNU_Classpath
https://en.wikipedia.org/wiki/IcedTea

49

4.2.5 Google Places Api

4.2.6 Four Square Api

You’ll need your client ID and client secret to make a userless venue search or explore request

("venues" are what we call places on Foursquare). This is essentially the simplest way to

interact with the Foursquare API—there’s no need to use OAuth. If you choose not to use a

client library, you can directly make HTTP requests to the venues/search or venues/explore

endpoints and get back a JSON response.

In the HTTP request, you need to pass in your client ID, client secret, a version parameter, and

any other parameters that the endpoint requires:

https://api.foursquare.com/v2/venues/search

 ?client_id=CLIENT_ID

 &client_secret=CLIENT_SECRET

 &v=20130815

 &ll=40.7,-74

 &query=sushi

50

.

4.3. System Requirements

Below are the conditions a computer system on which the timetable software will be run:

Hardware is best described as a device that is physically connected to your computer or

something that can be physically touched. Most hardware will contain a circuit board, ICs, and

other electronics. A perfect example of hardware is a computer monitor, which is an output

device that lets you see what you're doing on the computer. Without any hardware,

your computer would not exist, and software would not be able to run. In the image to the right,

are a webcam and an example of an external hardware peripheral that allows users to make

videos or pictures and transmit them over the Internet.

4.3.1) Hardware Requirements

The system must have the following hardware requirements:

• Pentium IV Processors

• Minimum 2GB of RAM

• 5GB of Hard Disk

4.3.2) Software Introduction

Software is a general term for the various kinds of programs used to operate computers and

related devices. (The term hardware describes the physical aspects of computers and related

devices.)

Software can be thought of as the variable part of a computer and hardware the invariable part.

Software is often divided into application software (programs that do work users are directly

http://www.computerhope.com/jargon/p/pcb.htm
http://www.computerhope.com/jargon/i/ic.htm
http://www.computerhope.com/jargon/m/monitor.htm
http://www.computerhope.com/jargon/o/outputde.htm
http://www.computerhope.com/jargon/o/outputde.htm
http://www.computerhope.com/jargon/c/computer.htm
http://www.computerhope.com/jargon/s/software.htm
http://www.computerhope.com/jargon/e/external.htm
http://searchsoftwarequality.techtarget.com/definition/program
http://searchwinit.techtarget.com/definition/computer
http://searchcio-midmarket.techtarget.com/definition/hardware
http://searchsoftwarequality.techtarget.com/definition/application

51

interested in) and system software (which includes operating systems and any program that

supports application software). The term middleware is sometimes used to describe

programming that mediates between application and system software or between two different

kinds of application software (for example, sending a remote work request from an application

in a computer that has one kind of operating system to an application in a computer with a

different operating system).An additional and difficult-to-classify category of software is

the utility, which is a small useful program with limited capability. Some utilities come with

operating systems. Like applications, utilities tend to be separately installable and capable of

being used independently from the rest of the operating system.

This project involves SQllite for Saving the Product Detail, Location Manager for Phone

Locations and SimpleCursorAdapter for Data Binding and Displaying Records in Row And

Column format the Records are shown in Scrollable View

Software can be purchased or acquired as shareware (usually intended for sale after a trial

period), liteware (shareware with some capabilities disabled), freeware (free software but with

copyright restrictions), public domain software (free with no restrictions), and open

source (software where the sou1rce code is furnished and users agree not to limit the

distribution of improvements).

 4.3.3) Software Requirements:

At Client Side:-

The system must have the following software requirements:

• JDK (Java Development Kit)

• Eclipse.

• Android Development Tools for Developing Android Application

At Developer Side :-

 Android SDK Tools

 Java 2SE JDK v6.

 Eclipse version 4.6

 Emulator

http://searchwinit.techtarget.com/definition/system
http://searchcio-midmarket.techtarget.com/definition/operating-system
http://searchsoa.techtarget.com/definition/middleware
http://searchenterpriselinux.techtarget.com/definition/shareware
http://whatis.techtarget.com/definition/liteware
http://searchenterpriselinux.techtarget.com/definition/freeware
http://whatis.techtarget.com/definition/public-domain-software
http://searchenterpriselinux.techtarget.com/definition/open-source
http://searchenterpriselinux.techtarget.com/definition/open-source
http://searchsoa.techtarget.com/definition/source-code

52

4.4 Testing Fundamentals

Android provides an integrated framework that helps you test all aspects of your app. The

Android platform and Testing Support Library include tools and APIs for setting up and

running test apps within an emulator or physical device.

This document guides you through key concepts related to Android app testing, and provides

an overview of the testing tools and APIs developed by Google. If you want to skip the

conceptual overview, and start learning how to build and run your tests using these APIs and

tools, go to Getting started with testing in Android Studio. If you are not using Android

Studio, go toTesting from the command line.

Testing Concepts

Android testing is based on JUnit. In general, a JUnit test is a method whose statements test a

part of the app. You organize test methods into classes called test cases, and group test cases

into test suites.

In JUnit, you build one or more test classes and use a test runner to execute them on your

local machine. With Android Studio, you can build one or more test source files into

an Android test app and use it to test your app on the Emulator or physical Android device.

The structure of your test code and the way you build and run the tests in Android Studio

depend on the type of testing you are performing. The following table summarizes the

common testing types for Android:

 table 4.1 (testing types)

Instrumentation

https://developer.android.com/training/testing/start/index.html

53

Android instrumentation is a set of control methods, or hooks, in the Android system. These

hooks control an Android component independently of its normal lifecycle. They also control

how Android loads apps.

The following diagram summarizes the testing framework:

 fig 4.1

Normally, an Android component runs in a lifecycle that the system determines. For example,

an Acticity object's lifecycle starts when an Intent activates the Acticity. The system calls the

object's oncreate() method, on then the onResume() method. When the user starts another

app, the system calls the onPause() method. If the Activity code calls the finsih() method, the

system calls the onDestroy() method. The Android framework API does not provide a way

for your code to invoke these callback methods directly, but you can do so using

instrumentation.

The system runs all the components of an app in the same process. You can allow some

components, such as content providers, to run in a separate process, but you typically can't

force an app onto the same process as another running app.

Instrumentation tests, however, can load both a test APK of your test classes and your app's

APK into the same process. Since the components of your app and their tests are in the same

process, your tests can invoke methods, and modify and examine fields in your app.

Testing Source Sets:

When you create a new app module, Android Studio creates

the src/test/ and src/androidTest/ source set directories for you. Place the test classes you

want to run locally on your machine in the test/ source set and the test classes you want to run

on an actual Android device in the androidTest/ source set. Gradle uses

54

the androidTest/source set when generating the test APK you use to test your app. To learn

more about build variants and source sets, read the Configure your build overview.

fig 4.2 Default app module test directories.

Tests in the androidTest/ source set are common to all your build variants. However, you can

create additional source set directories for tests that are specific to certain build variants:

src/

 main/

 androidTest/

 flavor1/

 androidTestFlavor1/

 flavor2/

 androidTestFlavor2/

For example, when building a test APK for the "flavor1" version of your app, Gradle uses

both the androidTestFlavor1/ and androidTest/ source sets. By default, all tests run against

the debug build type. You can change this to another build type by using

the testBuildType property in your module-level build.gradle file, as shown in the following

code snippet.

android {

 ...

55

 testBuildType "staging"

}

Gradle automatically generates manifest files for your androidTest/ source sets. Optionally,

you can create your own manifest, for example, to specify a different value for

minSdkVersion or register run listeners just for your tests. When building your app,

Gradle merges multiple manifest files into one manifest.

4.2 Testing APIs:

The following list summarizes the common APIs related to app testing for Android.

JUnit

You should write your unit or integration test class as a JUnit 4 test class. JUnit is the most

popular and widely-used unit testing framework for Java. The framework offers a convenient

way to perform common setup, teardown, and assertion operations in your test.

JUnit 4 allows you to write tests in a cleaner and more flexible way than its predecessor

versions. Unlike the previous approach to Android unit testing based on JUnit 3, with JUnit 4,

you do not need to extend the junit.framework.TestCase class. You also do not need to

prepend the test keyword to your test method name, or use any classes in

thejunit.framework or junit.extensions package.

A basic JUnit 4 test class is a Java class that contains one or more test methods. A test

method begins with the @Test annotation and contains the code to exercise and verify a

single functionality (that is, a logical unit) in the component that you want to test.

The following snippet shows an example JUnit 4 integration test that uses the Espresso APIs

to perform a click action on a UI element, then checks to see if an expected string is

displayed.

@RunWith(AndroidJUnit4.class)

@LargeTest

public class MainActivityInstrumentationTest {

 @Rule

 public ActivityTestRule mActivityRule = new ActivityTestRule<>(

 MainActivity.class);

 @Test

 public void sayHello(){

 onView(withText("Say hello!")).perform(click());

56

 onView(withId(R.id.textView)).check(matches(withText("Hello, World!")));

 }

}

In your JUnit 4 test class, you can call out sections in your test code for special processing by

using the following annotations:

 @Before: Use this annotation to specify a block of code that contains test setup

operations. The test class invokes this code block before each test. You can have

multiple@Before methods but the order in which the test class calls these methods is not

guaranteed.

 @After: This annotation specifies a block of code that contains test tear-down operations.

The test class calls this code block after every test method. You can define

multiple @After operations in your test code. Use this annotation to release any resources

from memory.

 @Test: Use this annotation to mark a test method. A single test class can contain multiple

test methods, each prefixed with this annotation.

 @Rule: Rules allow you to flexibly add or redefine the behavior of each test method in a

reusable way. In Android testing, use this annotation together with one of the test rule

classes that the Android Testing Support Library provides, such as Activity Test

Rule or ServiceTestRule.

 @BeforeClass: Use this annotation to specify static methods for each test class to invoke

only once. This testing step is useful for expensive operations such as connecting to a

database.

 @AfterClass: Use this annotation to specify static methods for the test class to invoke only

after all tests in the class have run. This testing step is useful for releasing any resources

allocated in the @BeforeClass block.

 @Test(timeout=<milliseconds>): Some annotations support the ability to pass in elements

for which you can set values. For example, you can specify a timeout period for the test. If

the test starts but does not complete within the given timeout period, it automatically fails.

You must specify the timeout period in milliseconds, for example:@Test(timeout=5000).

For more annotations, see the documentation for JUnit Annotations and the Android-Specific

Annotations.

57

You use the JUnit Assert class to verify the correctness of an object's state. The assert

methods compare values you expect from a test to the actual results and throw an exception if

the comparison fails. Assertion Classes describes these methods in more detail.

Android Testing Support Library APIs

The Android Testing Support Library provides a set of APIs that allow you to quickly build

and run test code for your apps, including JUnit 4 and functional UI tests. The library

includes the following instrumentation-based APIs that are useful when you want to automate

your tests:

AndroidJUnitRunner

A JUnit 4-compatible test runner for Android.

Espresso

A UI testing framework; suitable for functional UI testing within an app.

UI Automator

A UI testing framework suitable for cross-app functional UI testing between both system and

installed apps.

Assertion classes

Because Android Testing Support Library APIs extend JUnit, you can use assertion methods

to display the results of tests. An assertion method compares an actual value returned by a

test to an expected value, and throws an AssertionException if the comparison test fails.

Using assertions is more convenient than logging, and provides better test performance.

To simplify test development, you should use the Hamcrest library, which lets you create

more flexible tests using the Hamcrest matcher APIs.

Monkey And MonkeuRunner

The SDK provides two tools for functional-level app testing:

Monkey

This is a command-line tool that sends pseudo-random streams of keystrokes, touches, and

gestures to a device. You run it with the Android Debug Bridge (adb) tool, and use it to

stress-test your app, report back errors any that are encountered, or repeat a stream of events

by running the tool multiple times with the same random number seed.

monkeyrunner

58

 CHAPTER -5 CONCLUSION

5.1. Summary

This study was carried out as is to reduce the intense manual effort being put into creating and

developing Shopping Recommendations. The Recommendation automation system currently

is a conceptual work in progress but has the capability to generate near optimal

Recommendations based on two unit courses with minimized course constraints.

5.2. Conclusion

In this paper, we have proposed Placebo, a shop recommendation system for real-world

shopping based on user location history. The results of the evaluation test show that Placebo

estimates users' frequently visited shops with acceptable accuracy when there is a sufficient

amount of data, and also demonstrate its potential ability to provide users with beneficial

recommendations.

5.3. Recommendations

In furtherance of this work, the following are recommended:

 The Shopping recommendation system developed as the outcome of this project should

be made open to avid students of computing who can collaborate and improve on the

techniques and ideas inherent in this project.

 Further works on developing a Shopping recommendation system should be based on

this research work so as to utilize the incremental model of software development.

 A collaborative model of Shopping Recommendation system which utilizes a computer

network can also be built which entails different departments and entities allocating

courses and constraints concurrently while the system threads and reports clashes.

5.4. Problems Encountered

Timing constraints was a major issue in the development of this system due to the robustness

of the system. Given the time allotment for this project, the system developed could not meet

up to the intended robustness.

59

5.5. Scope for Further Works

Since the amount of data collected in our evaluation test was too small for statistical analysis,

we must conduct another evaluation test in a larger scale. We are planning of porting Placebo

to mobile phones and making it publicly available, which should help us gather users for our

evaluation test.

One modification which should definitely be done in future versions of Placebo is introducing

some constraints to the recommendation results regarding some basic information about the

user, such as age or sex. In the evaluation test, a shop which only sells fashion items for women

was recommended by our system to a male user, and consequently received a rating of 1.

Obvious mismatches like this should be excluded from the recommendation results, by defining

several basic attributes for each shop and filtering out data with unwanted attributes.

60

 REFERENCES

1. Y Zheng. Location-based social networks: Users. In Computing with

2. SpatialTrajectories, Zheng, Y and Zhou, X, Ed. Springer, 2011.

3. Y. Zheng, X. Xie, and W.Y.Ma. Geolife: A collaborative social networkingservice

among user, location and trajectory. IEEE Data Engineering Bulletin,33(2):32–40,

2010.

4. Mohamed Mokbel, JieBao, Ahmed Eldawy, Justin Levandoski, and MohamedSarwat.

Personalization, Socialization, and Recommendations inLocation-based Services 2.0.

In PersDB. VLDB, 2011.

5. Marmasse, N. Schmandt, C. Location-aware Information Delivery with Commotion. In

Proceedings of the 2nd international symposium on Handheld and Ubiquitous

Computing table of contents Bristol, UK. Pages: 157 - 171, 2000.

6. Ashbrook, D. and Starner, T. Learning signifcantlocations ?nd predicting user

movement with GPS. In Proc. of 6th IEEE Intl. Symp. on Wearable Computers, Seattle,

WA, 2002.

7. J.A. Konstan, B.N. Miller, D. Maltz, J.L. Herlocker, L.R. Gordon, and J.

Riedl.Grouplens: applying collaborative filtering to usenet news. Communications

ofthe ACM, 40(3):77–87, 1997.

8. J. Levandoski,MohamedSarwat, Ahmed Eldawy, and Mohamed Mokbel. Lars:A

location-aware recommender system. In ICDE, 2012.

9. TzvetanHorozov, NityaNarasimhan, and VenuVasudevan. Using location

forpersonalized poi recommendations in mobile environments. In SAINT, pages124–

129, 2006.

10. Fogg, B. J., Persuasive Technology : Using Computers to Change What We Think and

Do. Morgan Kaufmann Publishers, 2003.

11. Want, R., Hopper, A., Falcao, V., and Gibbons, J. The Active Badge Location System.

ACM Transactions on Information Systems (TOIS), v.10 n.1, p.91-102, Jan. 1992.

12. Want, R., Schilit, B., Adams, A., Gold, R., Petersen, K., Goldberg, D., Ellis, J., and

Weiser, M. The ParcTab Ubiquitous Computing Experiment. Technical Report CSL-

95-1, Xerox Palo Alto Research Center, March 1995.

13. Bahl, P., and Padmanabhan, V. N. RADAR: An In-Building RF Based User Location

and Tracking System. In INFOCOM 2000, pages 775– 784, 2000.

61

14. Bahl, P., and Padmanabhan, V. N. A Software System for Locating Mobile Users:

Design, Evaluation, and Lessons. MSR Technical Report, February 2000.

15. Ward, A., Jones. A., Hopper, A. A New Location Technique for the Active Office. In

IEEE Personal Communications, Vol. 4, No. 5, October 1997, pp 42-47.

16. Aboud, G.D., Atkeson, C.G., Hong, J., Long, S., Kooper,R., Pinkerton, M., Cyberguide:

A mobile context-aware tourguide, ACM Wireless Networks, 1997, pp.421-433.

17. Marmasse, N. Schmandt, C. Location-aware Information Delivery with Commotion. In

Proceedings of the 2nd international symposium on Handheld and Ubiquitous

Computing table of contents Bristol, UK. Pages: 157 - 171, 2000.

18. Ashbrook, D. and Starner, T. Learning signifcantlocations ?nd predicting user

movement with GPS. In Proc. of 6th IEEE Intl. Symp. on Wearable Computers, Seattle,

WA, 2002.

19. Zhou, C., Frankowski, D., Ludford, P., Shekhar, S., Terveen, L. Discovering Personal

Gazetteers: An Interactive Clustering Approach. In Proceedings of ACM GIS 2004,

Washington DC, 2004, pp. 266-273.

20. Chen, L., and Sycara, K. WebMate: Personal Agent for Browsing and Searching.

Proceedings of the 2nd International Conference on Autonomous Agents and Multi

Agent Systems, AGENTS ’98, ACM, May, 1998, pp. 132 - 139.

21. Lang, K. NewsWeeder: Learning to Filter Netnews. In Proceedings of 12 th

International Conference on Machine Learning, Lake Tahoe, CA, Morgan Kaufmann,

pp. 331-339, 1995.

22. Goldberg, D., Nichols, D., Oki, Brian M., Terry, D., Using Collaborative Filtering to

Weave an Information Tapestry. Communications of the ACM, v.35 n.12, p.61-70, Dec.

1992.

23. Shardanand, U., Maes, P., Social Information Filtering: Algorithms for Automating

”word of mouth”. In Proceedings of ACM CHI’95 Conference on Human Factors in

Computing Systems. NewYork, (pp. 210-217).

24. Sarwar, B., Karypis, G., Konstan, J., Riedl, J Item-based Collaborative Filtering

Recommendation Algorithms. In Proceedings of 10th International World Wide Web

Conference, ACM Press, 2001, pp.

.

62

SCREEN SHOT OF APPLICATION

63

	LIST OF FIGURES
	ABSTRACT
	CHAPTER- 1 INTRODUCTION
	1.1 Introduction
	Android Components

	1.2 Background Statement
	1.3 Problem Statement
	1.4. Objective
	1.5. Methadology
	1.6. Organisation

	Chapter -2 LITERATURE SURVEY
	2.1 Android Architecture
	Applications Layer
	Application Framework
	Libraries
	Android Runtime Libraries
	Linux Kernel
	2.2 Main Components of Android Application
	Activities
	Broadcast Receivers
	Services
	Content Providers
	Intents
	fig 2.2 Activity Stack
	2.1.6 Processes and Threads
	Processes and Threads
	2.1.7 Multi-Tasking

	2.3. Review of Relevant Technologies
	2.4 Related Research Fields
	2.5 Operators Perspective

	CHAPTER- 3 SYSTEM DEVELOPMENT
	3.1. Introduction
	3.2. The Existing System
	3.2.1. Review of Existing System
	3.2.2. Advantages of the Existing System
	3.2.3. Limitations of the Existing System

	3.3. The Proposed System
	3.3.1. Review of the Proposed System
	3.3.2. Advantages of the Proposed System
	3.3.3. Limitations of the Proposed System

	3.4. System Design
	3.5. Modelling the System
	3.5.1. UML (UNIFIED MODELLING LANGUAGE) MODELLING
	3.5.1.1 Use Case Diagram
	3.5.1.2. Class Diagram
	3.5.1.3. Component Diagram
	3.5.1.4. Deployment Diagram
	3.5.1.5. Flow Diagram

	3.7. System Analysis
	3.7.1 Location acquisition
	3.7.2 Location Discovery
	3.7.3 Recommendation System
	3.7.4 Recommendation using Location
	3.7.5 System Overview

	CHAPTER -4 SYSTEM IMPLEMENTATION
	4.1. Introduction
	4.2. Choice of Programming Language
	4.2.1 Platform
	4.2.2 Advantages of Java Technology
	4.2.3 Android Software Development Kit(sdk)
	4.2.4 Eclipse
	4.2.5 Google Places Api
	4.2.6 Four Square Api

	4.3. System Requirements
	4.3.1) Hardware Requirements
	4.3.2) Software Introduction
	4.3.3) Software Requirements:

	4.4 Testing Fundamentals

	CHAPTER -5 CONCLUSION
	5.1. Summary
	5.2. Conclusion
	5.3. Recommendations
	5.4. Problems Encountered
	5.5. Scope for Further Works

	REFERENCES
	SCREEN SHOT OF APPLICATION

