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ABSTRACT

This project describes a method for designing Linear Phase Image Processing Filters based on
the orthogonal polynomial approach. The design of Linear Phase Image Processing Filter is a
field where an immense amount of work had been carried out since a long period of time and
numerous distinctive approaches had been taken to carry out designs of different types of Image
Processing Filters. Here we will design a linear phase FIR image processing filter using
orthogonal polynomials in the cylindrical co-ordinate system; i.e., in (p, ®,z).




1. INTRODUCTION

The design of Linear Phase Image Processing Filter is a field where an immense amount
of work had been carried out since a long period of time and numerous distinctive
approaches had been taken to carry out designs of different types of Image Processing
Filters. Here we will design a linear phase FIR image processing filter using orthogonal
polynomials in the cylindrical co-ordinate system,; i.e., in (p, ©,z).

Definition: Two functions g;(x} and g»(x) are said to be orthogonal over a certain interval
X =x sz: lf

xfg,(x) g0dx=0 e (1)
Xy

That is, when we multiply two different functions and then integrate over the interval
from x; to x; the result is zero. A set of functions which has this property is described as
being orthogonal over the interval from x; to x,. The term “orthogonal” is employed here
in correspondence to a similar situation which is encountered in dealing with vectors. The
scalar product of two vectors ¥; and V; (also referred to as the dot product or as the inner
product) is a scalar quantity defined as:

B e, @

In the above equation |V‘| and ‘Vj‘ are the magnitudes of the respective vectors and

cos(V;, V) is the cosine of the angle between the vectors. If it should turn out that V;; = 0
then (ignoring the trivial cases in which ¥; = 0 and/or ¥; = 0) V;and V; are perpendicular
(i.e. , orthogonal ) to one another. Thus vectors whose scalar product is zero are
physically orthogonal to one another and, in correspondence, functions whose integral
product, as in equation (1) is zero are also orthogonal to one another. Physically, it means
that the two signals represented by g,(x) and g»(x) do not have any common energy
between the interval x; to x». ‘
Suppose, we are interested in a function f{x) over a certain interval then it can be
expanded as a linear sum of infinite orthogonal functions, each function having a certain
weight,

f(x) = c1g1(x) + cagax) +...... + cugalx) +...

Where,
&n(x) is a member of orthogonal set of functions, and
¢y 18 the weight of the function.
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A finite impulse response (FIR) filter is a type of a digital filter. It is 'finite' because its
: response to an impulse ultimately settles to zero. This is in contrast to infinite impulse
> response filters which have internal feedback and may continue to respond indefinitely.

Properties

A FIR filter has a number of useful properties which sometimes make it preferable to an
infinite impulse response filter. FIR filters:

e Are inherently stable. This is due to the fact that all the poles are located at the
origin and thus are located within the unit circle.

e Require no feedback. This means that any rounding errors are not compounded by
summed iterations. The same relative error occurs in each calculation.

e (Can have linear phase

The Infinite Impulse Response (IIR) system has an infinite number of non zero terms,
i.e., its impulse response sequence is of infinite duration. IIR structures are usually
implemented using structures having feedback (recursive structures-poles and zeros) and
FIR filters are usually implemented using structures with no feedback (non-recursive
structures-all zeros). The response of the FIR filter depends only on the present and the
past input samples, whereas for IIR filters, the present response is a function of present !
and past N values of excitation as well as past values of response.

Linear phase is a property of a filter, where the phase response of the filter is a linear

function of frequency, excluding the possibility of wraps at +7 . In a causal system,
perfect linear phase may only be achieved with a discrete-time FIR filter.

FIR filters are employed in filtering problems where linear phase characteristics within
the passband of the filter is required. If this is not required, either an IIR or an FIR may
be employed. An 1IR has lesser number of side lobes in the stop band than an FIR with
the same number of parameters. For this reason if some phase distortion is tolerable, an
IIR filter is preferable. Also, the implementation of an IIR filter involves fewer
parameters, less memory requirements a lower computational complexity.

Filters can have a linear or non-linear phase depending upon the delay functions, namely
the phase delay and the group delay. The phase and group delays of a filter are given by

o _$(@) and T, =- df() , Tespectively.
[0 dw

Linear phase filters are those filters in which the phase delay and group delay are
constant, i.e., independent of frequency. Linear phase filters are also called constant time
delay filters. Both these delays of the linear phase FIR filters are equal and constant over
the frequency band.

[ Since the group delay of a filter that has linear phase (or generalized linear phase)
| property is constant, all frequency components have equal delay times. So the distortion
due to the frequency selective delays are not present which is mostly a desired feature.
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However, a filter with non-linear phase has a group delay that varies with frequency,
resulting in phase distortion.

Some examples of filters having linear and non-linear phases are given below for
comparison purposes.

a) FIR Fitter (Type Ii} having Linear Phase

| | ] ]
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¢) lIR Filter having Non-Linear Phase

b) FIR Fitter (Type IV) having Linear Phase
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d) FIR Filter having Non-Linear Phase
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Fig. 1




About Digital Image Processing:

Interest in digital image processing methods stem from two principal application areas:
improvement of pictorial information for human interpretation, and, processing for image
data for storage, transmission and representation for autonomous machine perception.

An image may be defined as a two dimensional function, {(x,y), where x and y are spatial
(plane) coordinates, and the amplitude f at any pair of coordinates (x,y) is called the
intensity or gray level of the image at that point. When x, y and the amplitude values of f
are all finite, discrete quantities, we call the image a digital image. The field of digital
image processing refers to processing digital images by means of a digital computer.
Note that a digital image is composed of a finite number of elements, each of which has a
particular location and value. These elements are referred to as pixels.

The filter that we shall design would be in the domain of frequency. So, the image must
also be converted into the frequency domain so that it can pass through the filter. The one
dimensional discreet fourier transform and its inverse are well known. Extension of one-
dimensional DFT and its inverse to two dimensions is straight forward. The DFT of a
function (image) f(x,y) of size MxN is given by the equation

M- A=

1 o ,
F(H. 'L?) = m 2 Ef(“ y)e-jin(fn-;.\hu_r,-’_\]I

=0 y=0

As in the 1-D case, this expression must be computed for values of u=0, 1, 2........... ,
M-1,and also forv=0, 1, 2,......... N-1. similarly, given F(u,v), we obtain f(x,y)} via the
inverse Fourier transform, fiven by the expression

M1 N}

f(x‘ }’) = 2 E Flu. v)e,lzﬂ[u.\‘,"l\fd-r_\',n\)

w={l =

These two equations comprise the two-dimensional, discrete Fourier transform (DFT)
pair. The variables u and v are the transform or frequency variables, and x and y are the
spatial or image variables.
Filtering in the frequency domain is straightforward. It consists of the following steps:
1. Multiply the input image by (-1)*"? to center the transform.
Compute F(u,v), the DFT of the image from (1).
Multiply F(u,v) by a filter function H(u,v).
Compute the inverse DFT of the result in (3).
Obtain the real part of the result in (4).
Multiply the result in (5) by (-1)*".

S RN




Fig. 2

The figure above shows a three dimensional perspective of H(u,v), the filter function of
an ideal low pass filter, as a function of u and v. The term ideal filter indicates that
frequencies below the cut off frequency are passed with no attenuation, whereas, all
frequencies above it are completely attenuated. The low pass filter that we have
considered is radially symmetric about the origin. Sharp cut off frequencies of an ideal
low pass filter cannot be realized with electronic components, although they can certainly
be implemented in a computer. A low pass filter causes blurring of the input image.
Blurring in the image is a clear indication that most of the sharp detail information in the
picture is removed by the filter. Blurring reduces as we increase the cut off frequency of
__the filter. The advantage of adding a low pass filter is that it will remove all noise above
the cut off frequency. The image thus blurred can be sharpened using various image
processing techniques




II. PROCEDURE:

Here we have developed a set of two dimensional orthogonal polynomials which are in
the cylindrical co-ordinate system. All polynomials are orthogonal because they follow
the following property:

2n

| ]P,.<p) P,(plodpdg=0 oo (3)

Where, p represents the {requency component and @ is the angle.

The procedure to design an Image Processing Filter with linear phase includes the
following steps.

Step 1:

Let the set of orthogonal polynomials is represented as follows:

Pip)=1 5
Py(p) = I+azp

Pio(p) = 1+aso0’+b100" +erop®+diop’+eiop’ 100"+ g 100" +hiop! +isop™

Pn(p) = ]+anp2+bnp4+ ------
Where, a,, b, ¢, o are constant numeric coefficients that are to be calculated.

Step2:
From equation (3), we get

27 [ PLp) P, (pdpdp =0

ie. [Pio) P (oo = 0= (4)




In order to find the constant numeric coefficients of any polynomial P,(p), we have to
multiply P.(p) by all the polynomials from Pifp) to P,.;(p) individually and apply it in
equation {4). By solving these equations we get a set of simultaneous linear equations
only in terms of constant numeric coefficients of P,(p), since the coefficients for
polynomials up to P,.,(p) have already been calculated. This is illustrated as follows-

i'[ Polynomial P,(p) does not have any constant numeric coefficients.

Pi(p)=1
The constant numeric coefficients for the next polynomial, P(p) is calculated as follows:

{P\(p) P,(p)pdp=0

Pifp)=1, Psp)=1-a p°

1
ie, [1x+g,p"pdp =0
o]
i.e., l+ @ — 0
2 4
ie., a,=-2» the constant numeric coefficient of Pa(p)

Therefore, Ps(p)=1-2 o’
The next polynomial, Pi(p)=1+a 3,02+b 3p4

Taking P;(p) and P;(p)
[Pp) P (p)pdp =0

. L N

1.e. fix(+g,p* +b, pedo=0

ie., loa bi_o. (i)
2 4 6

Taking P,(p) and P;(p)

JP,(p) P,(p)pip =0

. t 2 4
Mo a2 o)+ g 0" b p mdp =0

10
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Solving the equations (i) and (ii), we get,
a5
b,=6

Where, a3 and b; are the constant numeric coefficient of P;(p)
4
Hence, P_;(p)=1—6,02+60

Likewise we follow the same procedure for the rest of the polynomials and get their
coefficients, and the polynomials up to P;o(p) as calculated, are as follows:

Pup) = 1-(192/31)p°+(190/31)p"+(20/31)p°

Ps(p) = 1-20p°+90p"-140p°+70p°

Ps(p) = 1-300°+210p"-5600°+630p°-252p"°

Pi(p) = 1-420°+420p°-1680p°+3150p%-2772p"+924p"

Ps(p) = 1-56p°+756p"-4200p°+11550p°-16632p""+12012p"-3432p"

Pop) = 1-720°+12600°-9240p"+346500°-72072p'"+84084p"*-51480p"*-
12870p"° ‘

Pro(p) = 1- (113461974/9448465)p” +(4369887180/145506361)p"
(409164420/20786623)p"- (88976385/41573246)p"+
(53757117/9448465)p'"-(6353367/726805)p"*+
(8413128/1017527)0""- (17877897/4070108)0"°+
(1986433/2035054)p"°

Step 3:
Now we shall calculate the approximate function for the filter.

Suppose the ideal filter function is given by the following equation in frequency domain:
0 0< p< ps

fm= e ()
1000 else

Where, p, is the cutoff frequency.

F()

Fig. 3
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We will approximate our filter function by a linear sum of finite number of weighted
orthogonal polynomials; i.e. ,

Ful0)=wiP1(p)+ WaP2(p)+ wiPs(p) ... ... +wPro(p) - (6)

where, w, = weight of the n" polynomial

To calculate w,, we multiply equation (6) by p P.(p), then integrate it over limits 0 to 1
with respect to p. Hence the terms in equation (6) that do not contain w;, get eliminated
because of the property stated in equation (4). Solving the remaining equation we get the
value of the weight of that polynomial.

[ £@P. (o) pdo = [ Pu(0) [wiP1 (0)+ WoP2 (B) + .t waPu () ..t wio Pro (0)] o

0
On solving this equation, we get the weight of the n™ polynomial as,

[0 P (0)pp
W=t
[Pl (p)pdp

For PI1, wi would be,

0.5

1
1O Pp)dp+ [£(0) Py(p)pdp =0+10000£1 x pdp

Q

wl = 1 1
[Ple)pdp 12 pdp
0 0

i.e.,w/=750

Likewise this method is used to calculate the weights for the rest of the orthogonal
polynomials and are as follows:

wy =-562.5

w3 =-468.75

wy = 59.04

ws = 263.6712

306.152

= 66.65048

=-198.4407
= 0.073

Wi=-81.89

12
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aph (4) does not follow graph (3) faithfully because simply having a set of orthogonal
nctlons and having a procedure for evaluating coefficients does not guarantee that the
----- ries so developed can represent an arbitrary function. Such can well be the case even
when the orthogonal set consists of an infinite number of independent functions. When,
wever, the orthogonal set does indeed include all the functions necessary to allow and
error free expansion of an arbitrary function then the set is said to be complete. The set of
orthogonal functions that we have developed is hence, incomplete.

\-1-} (-‘

t::-_ 4:

t is known that a desirable filter function can be obtained by equispacing the cut off
frequencies of a filter on the appropriate arc of the unit circle. A pattern obtained by
-:.mspacmg the cut off frequencies indicates how a better pattern can be obtained. For a

en width of passband, the first side lobe can be decreased by moving the second cutoff
quency closer to the first. Of course, this increases the second side lobe, but that is
uissible as long as it does not exceed the passband. The optimum transfer function is
med when all the side lobes have the same level. We use the following result,
ied from the Tehebysheff polynomials, used in design and synthesis problems, to
votimze our filter

d'
=

i

_4.
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Thus we get f (w) by substituting equation (7) into equation (6). Here f (w) is the transfer
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Ideally, the response of the filter should look like:
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we choose u and v as the frequency components of w.

Where,
1
o Al ni(8)
Substituting e in equation (7), we get
£ 2
e .(9)
i 2
| We use this value of p in the polynomials. Using these polynomials in equation (6), we
| get the three dimensional filter response.
Ei? W72 1 6'.‘3 3\1}31 423\latestprogramimad.m 5 |
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20 - P4 =1 - (192/31) qre{u. 24v. 2
30- PS =1 20 qre (u.~2+4v,
31= Pp6 =1~ 30 qrt (W.*2+v. 2
325 p7=1- 42 fart (u.rzev.r2
I"43= pa =1 - 56 qre (u.22+4v.*2
| 34~ F9=1- 72 qre (U, 24v.°2
4 35 - P10= 1 - (113461974/ qre(u.~2+v.~2
. l:36
r | a7 % weights
|38 = al = 750;
3= az = -562.5}
i3 - a3 = -468.75;
3 a4 = 59.04;
42 = as = 263.6712;
43 - a6 = 306.152;
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| 45 = an =-198.4407;
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43 % filter reaponse
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|53 = end
51 memdl}
55 end
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Stepb6:
Wwe choose the following image and pass it through the filter.

" \172,16.7. 3031420\ atestprogranimgd.m
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2 cle: TR BU Wi 3 T B
a = figure; i

H ; - format long &; 1

m=1;

w0 o
1

10:= rho=1;
11
12 % cos
18
| |--14
i 118

18 = for v = -pi
4] %
20 5 hold on

2
2

23 % = sqref(u
124
; 2% & nolynomials
W@ Py o= 1;
a7 P =1l =2
: ! j: P3E1-.6 : o Display range:| | sqrt (u."24v."2)/2)) ."4:
‘ 20 P4 = 1 - (192/97 I LT e TP LT L 90T 1] ——T STt (4. 24V, %2) /2) ). + (2
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': = IF—‘: : ; : :2 : (cos[aqrt(u.:Zw.:Z]fZH.:2 + 210 * (cos(sqrt(u.*2+4v.*2)/2)).%4 - 5
= il : (:ns(aqtc(u.nzw.azuzn.Az + 420 * (cos(sqrt(u.”2+v.*2)/2))." - 1
3 St (cos (sqrt (u.*2+v."2)/2)).%2 + 756 t (cos(sqrtiu.”2+v.~2)/2))."4 - 4
Pg + 1260 * {cos(sqrt(u.”2+v.~2)/2))."4

- 72 * (cos(sqrt(u.”24v.”2)/2)).%2

[serint [tn 31 col "
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+iow, we add Gaussian noise to this image. The image now looks like:
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4 - figure;
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I 15 5 i e Y ER .
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~iow we can apply the filter on the noisy image. After passing through the filter the
image looks like-
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Fig. 10

We observe a significant reduction in noise in the image. The image is getting blurred
beeause the filter used passes only the lower frequencies. Blurring of the image can be
comzected afterwards. Till now, the filter has reduced a major portion of the noise that was

» the image.
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CONCLUSION

We have drawn the following conclusions based on the work we have done;

(1) The filter obtained from the orthogonal polynomials closely approximates the
ideal filter. Thus, our approach towards designing an image processing filter is
correct.

(2) The transition band is narrow and the side lobes are much below the passband of
the filter. Hence, the filter is an optimum one.

(3) The fiiter removes the noise added to the filter that is above the cutoff frequency.
Hence, it is serving the purpose it was designed for.

(4) The output image from the filter is blurred, proving again that it is a low pass
filter.

(5) The output image is not distorted in terms of spatial co-ordinates, proving that it is
a linear phase filter.

(6) The polynomials used did not have any factors in terms of the dependent variable
in the denominator. So, it cannot have any poles. Hence, it is an FIR filter,

This work provides a mathematical view of the problem and gives us an approximate
solution to the problem, while we have discussed a new method for realizing a linear
phase FIR filter through orthogonal polynomial approach.
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