R S S DU P s

B 1L e

.

forar e

Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num. CP63/62 Call Num:
General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

i

QL

SP03163

CHEBYSHEV LOW PASS FIR FILTER DESIGN
FOR REDUCTION OF NOISE IN HUMAN SPEECH

By

Kundan Singh 031031
Kshitij Sharma 031110
Puneet Jain 031068

JAYPEE UNIVERSITY OF
INFORMATION TECHNOLOGY

May-2007
Submitted in partial fulfillment of the Degree of Bachelor of

Technology

DEPARTMENT OF ELECTRONICS AND
COMMUNICATION ENGINEERING

JAYPEE UNIVERSITY OF INFORMATION
TECHNOLOGY

CERTIFICATE

This is to certify that the work entitled, “Chebyshev Low Pass Fir Filter Design For
Reduction Of Noise In Human Speech” submitted by Kundan Singh, Kshitij Sharma and
' Puneet Jain in partial fulfillment for the award of degree of Bachelor of Technology in
! Electronics and Communication Engineering of Jaypee University of Information
. Technology has been carried out under my supérvision. This work has not been submitted
} partially or wholly to any other University or Institute for the award of this or any other

degree or diploma.

>

Mr. Vinay Kumar Prof. Sunil Bhooshan

Lecturer,
Department of Electronics and
Communication Engineering
Jaypee University Of Information

Technology.

H.O.D.,
"Department Of Electronics and
Communication Engineering
Jaypee Univqrsity Of Information

Technology.

1|Page

ACKNOWLEDGEMENT

In Accordance with our final project submission of 8™ Semester(B.Tech Electronics and
Communication Engg.), we were assigned to study and research on Chebyshev Low Pass
FIR Filter Design For Reduction of Noise In Human Speech and making an application

for same. We would like to cxpress our extreme gratitude to

Mr. Vinay Kumar Prof. Sunil Bhooshan
Lecturer, H.0.D.,
Department of Electronics and Department Of Electronics And
Communieation Engineering Communication Engineering
Jaypee University Of Information Jaypee University Of Information
Technology. Technology.

for guiding us, being extremely helpful, patient and always being there whenever we
were in doubt. Without his help, support and constant supervision, we would have never

been able to complete our final project assignment successfully.

2|Page

I
IM1
v

wh

CONTENTS

Certificate
Acknowledgement
List of figures
List of equations
Abstract
Study And Research
1.1 Introduction To Filter Designing
1.1.1 Typical design requirements
1.2 Digital Filter
1.2.1 Digital filter advantages
1.2.2 Types of digital filters
1.3 Linear Array Of n Elements
1.3.1 Linear Arrays Of n Isotropic Point Sources
1.3.2 The Tchebyscheff Distribution
1.3.3 Tchebyscheff polynomials
1.4 Filter Selectivity
1.4.1 Lowpass Filters
1.4.2 Chebyshev Filters
Design Of Application
2.1 FIR Filter Design
2.1.1 FIR Filter Response with different order
2,1.2 Limitation
2.1.3 Modified Chebyshev FIR Filter
2.2 Speech And Noise Signal Analysis
2.2.1 Signals
2.2.2 Noise Analysis
2.2.3 Input Signal Analysis
2.3 Passing Speech Signal Through The FIR Filter
2.3.1 Concepts
2.3.2 Steps Involved -
2.3.3 Time Domain Representation Of Entire Process
2.3.3 Frequency Domain Representation Of Entire Process
Implementation
3.1 Main Application Source Code
3.2 Test Application Source Code
Deployment
4.1 Screen Shots
Conclusion
Bibliography

3|Pagé

|

LIST OF FIGURES
" Figure 1 : Linear Arrays Of n Isotropic Point Source 16
| Figure 2 : Linear arrays with a uniform amplitude distribution. 18
Figure 3 : Circle diagram of a 6-clement array with A/2 spacing 19
Figure 4 : Even number of elements 21
Figure 5 : Chebyshev polynomials of order ten 22
Figure 6 : Odd number of elements 23
Figure 7 : Chebyshev polynomials of order nine 23
Figure 8 : Tchebyscheff polynomials ,Tm(x) for m even and m odd 25
Figure 9 : Low Pass Filter 28
Figure 10 : Magnitude Response Of 4th order FIR filter 33
Figure 11 :Magnitude Response Of 4th order FIR filter in dB 33
Figure 12 : Magnitude Response Of 6th order FIR filter 34
Figure 13 : Magnitude Response Of 6th order FIR filter in dB 34
Figure 14 : Magnitude Response Of 20th order FIR filter 34
Figure 15 : Magnitude Response Of 20th order FIR filter in dB 34
Figure 16 : Magnitude Response Of 4th order FIR filter 36
Figure 17 : Magnitude Response Of 4th order FIR filter in dB 36
Figure 18 : Magnitude Response Of 6th order FIR filter 36
Figure 19 : Magnitude Response Of 6th order FIR filter in dB 36
Figure 20 : Magnitude Response Of 20th order FIR filter 37
Figure 21 : Magnitude Response Of 20th order FIR filter in dB 37
Figure 22 : Discrete signals, acquired with a digital data acquisition system 38
Figure 23 : Sampling and quantization of a signal (red) for 4-bit PCM 41
Figure 24 : Calculated spectrum of a generated approximation of white noise 46
Figure 25 : Four thousandths of a second of white noise 47
Figure 26 : An example realization of a white noise process o 47
Figure 27 : Speech signal in time domain with only white noise 48
Figure 28 : Speech signal in time domain with white noise and the burst noise 49
Figure 29 : Speech signal in frequency domain with burst noise at 3000Hz 50
Figure 30 : FFT of the speech signal 51
Figure 31 : Filter Response : 52
Figure 32 : Frequency multiplication 53
Figure 33 : Inverse FFT (IFFT) of the resultant signal 53
Figure 34 : Time Domain representation of entire process 54
Figure 35 : Frequency Domain representation of entire process 55
Figure 36 : GUI Panel 68
4|Page

Figure 37 : Browsing an audio(wav}) file 69
Figure 38 : Speech signal with white noise 70
Figure 39 : Speech signal with constant pitch noise at 5000Hz 71
f Figure 40 : Speech signal with white noise and constant pitch noise at S000Hz 72
Figure 41 : Final Signal Filtered using the filter response 73
LIST OF EQUATIONS
Equation 1.2.1 13
Equation 1.2.2 ' 14
Equation 1.2.3 14
Equation 1.2.4 14
Equation 1.2.5 14
Equation 1.2.6 15
Equation 1.3.1 16
Equation 1.3.2 16
Equation 1.3.3 16
Equation 1.3.4 17
Equation 1.3.5 21
Equation 1.3.6 © 22
Equation 1.3.7 22
Equation 1.3.8 23
Equation 1.3.9 23
Equation 1.3.10 26
Equation 1.3.11 26
Equation 2.1.1 31
* Equation 2.1.2 - 31
Equation 2.1.3 _ ' 31
Equation 2.1.4 . 31
Equation 2.1.5 ' 32
Equation 2.1.6 32
Equation 2.1.7 ' 32
Equation 2.1.8 32
Equation 2.1.9 32
Equation 2.1.10 12
Equation 2.1.11 33
Equation 2.1.12 33
Equation 2.1.13 35
S|Page

r

Equation 2.1.14 35
Equation 2.1.15 35
Equation 2.1.16 35
Equation 2.1.17 35
Equation 2.2.1 43
Equation 2.2.2 43
Equation 2.2.3 45
Equation 2.2.4 45
Equation 2.2.5 45
Equation 2.2.6 45
Equation 2.2.7 45
Equation 2.2.8 45

6|Page

T T T =

J—

ABSTRACT

Speech filtering is one of the classical topics of speech signal processing and several
methods have been suggested as well as employed. The filters used for this are mainly
divided into two categories viz. analog filters and digital Filters. The digital filters have
many advantages over traditional analog filters such as accuracy, ease of design. For
speech filtering FIR is most commonly used due to the advantages such as linear phase

and guaranteed stability.

In this paper we will use a Chebyshev FIR low pass filter based on antenna theory
approach to filter noise from speech signal. Low-pass filters allow the low frequency
components of an input signal to pass through while attenuating high frequency
components. Measurement noise falls into the high frequency range of the signal
spectrum, while the underlying process signal usually lies towards the low frequency end.
Thus filters that are used to remove noise from measurements are of the low-pass types.
A signal can be decomposed into components of different frequencies. Thus, one method
of examining the capabilities of filters is to look at what happens to inputs of different

frequencies when they are passed through the filter.

.7|Page

1 STUDY AND RESEARCH

1.1 _INTRODUCTION TO FILTER DESIGNING

Filter design is the process of working out a filter (in the sense in which the term is used
in signal processing, statistics, and applied mathematics), often a linear shift-invariant

filter, which satisfies a set of requirements, some of which are contradicting. The problem

T ——————————

to be solved is to find a realization of the filter which met each of the requirements to a

sufficient degree to make it useful.

The filter design process can be described as an optimization problem where each
requirement contributes with a term to an error function which should be minimized.
Certain parts of the design process can be automated, but normally it is necessary to use

| an experienced electrical engineer to get a good result.

1.1.1 Typical design requirements

Typical requirements which are considered in the design process are

e The filter should have a specific frequency function
e The filter should have a specific impulse response
o The filter should be causal
o Therﬁlter should be stable
e The filter should be localized
e The computational complexity of the filter should be low

e The filter should be implemented in a particular hardware or software.

The frequency function
Typical examples of frequency function are

e A low-pass filter is used to block unwanted high-frequency signals.
e A high-pass filter passes high frequencies fairly well; it is helpful as a filter to
block any unwanted low frequency components.

e A band-pass filter passes a limited range of frequencies.

8|Page

e A band-stop filter passes frequencies above or below a certain range. This is the
least common filter.

e A low-shelf filter passes all frequencies, but boosts or cuts frequencies below the
cutoff frequency by specified amount.

e A high-shelf filter passes all frequencies, but boosts or cuts frequencies above the
cutoff frequency by specified amount.

e A peak EQ filter makes a peak or a dip in the frequency response, commonly used
in graphic equalizers.

e An all-pass filter passes through all frequencies unchanged, but changes the phase

of the signal. This is a filter commonly used in phaser effects.

An important parameter is the required frequency response. In particular, the steepness
and complexity of the response curve is a deciding factor for the filter order and

feasibility.

A first order filter will only have a single frequency-dependent component. This means
that the slope of the frequency response is limited to 6 dB per octave. For many purposes,

this is not sufficient. To achieve steeper slopes, higher order filters are required.

[relation to the desired frequency function, there may also be an accompanying
weighting function which describes, for each frequency, how important it is that the
resulting frequency function approximates the desired one. The larger weight, the more

important is a close approximation.

The impulse response

There is a direct correspondence between the filter's frequency function and its impulse
response, the former is the Fourier transform of the latter. This means that any
requirement on the frequency function is a requirement on the impulse response, and vice
versa. However, in certain applications it may be the filter's impulse response which is
explicit and the design process then aims at producing an as close approximation as

possible to the requested impulse response given all other requirements.

9|Page

Causality

In order to be implementable, any time-dependent filter must be causal: the filter
response only depends on the current and past inputs. A standard approach is to leave this
requirement until the final step. If the resulting filter is not causal, it can be made causal
by introducing an appropriate time-shift (or delay). If the filter is a part of a larger system
(which it normally is) these types of delays have to be introduced with care since they

affect the operation of the entire system.

Stability

A stable filter assures that every limited input signal produces a limited filter response. A
filter which does not meet this requirement may in some situations prove useless or even
harmful. Certain design approaches can guarantee stability, for example by using only
feed-forward circuits such as an FIR filter. On the other hand, filter based on feedback
circuits have other advantages and may therefore be preferred, even if this class of filters
include unstable filters. In this case, the filters must be carefully designed in order to

avoid instability.
Locality

In certain applications we have to deal with signals which contain components which can
be described as local phenomena, for example pulses or steps, which have certain time
duration. A consequence of applying a filter to a signal is, in intuitive terms, that the
duration of the local phenomena is extended by the width of the filter. This implies that it

is sometimes important to keep the filter width as short as possible.

Computational complexity

A general desire in any design is that the number of operations (additions and
multiplications) needed to compute the filter response is as low as possible. In certain
applications, this desire is a strict requirement, for example due to limited computational
resources, limited power resources, or limited time. The last limitation is typical in real-

time applications, There are several ways in which a filter can have different

computational complexity. For example, the order of a filter is more or less proportional

10| Page

to the number of operations. This means that by choosing a low order filter, the
computation time can be reduced. For discrete filters the computational complexity is
more or less proportional to the number of filter coefficients. If the filter has many
coefficients, for example in the case of multidimensional signals such as tomography
data, it may be relevant to reduce the number of coefficients by removing those which are

sufficiently close to zero.

Other considerations

it must also be decided how the filter is going to be implemented:

o Analog filter
¢ Analog sampled filter
¢ Digital filter

¢ Mechanical filter

11jPage

1.2 Digital Filter

In electronics, a digital filter is any electronic filter that works by performing digital
mathematical operations on an intermediate form of a signal. This is in contrast to older
analog filters which work entirely in the analog realm and must rely on physical networks

of electronic components (such as resistors, capacitors, transistors, etc.) to achieve the

desired filtering effect.

Digital filters can achieve virtually any filtering effect that can be expressed as a
mathematical function or algorithm. The two primary limitations of digital filters are their
speed (the filter can't operate any faster than the computer at the heart of the filter), and
their cost. However as the cost of integrated circuits has continued to drop over time,
digital filters have become increasingly commonplace and are now an essential element

of many everyday objects such as radios, cellphones, and stereo receivers.

1.2.1 Digital filter advantages

Digital filters can easily realize performance characteristics far beyond what are
implementable with analog filters. It is not particularly difficult, for example, to create a
1000 Hz low-pass filter which can achieve near-perfect transmission of a 999 Hz input
while entirely blocking a 1001 Hz signal. Analog filters cannot discriminate between

such closely spaced signals.

Also, for complex multi-stage filiering operations, digital filters have the potential to
attain much better signal to noise ratios than analog filters. This is because whereas at
each intermediate stage the analog filter adds more noise to the signal, the digital filter
performs noiseless mathematical operations at each intermediate step in the transform.
The primary source of noise in a digital filter is to be found in the initial ADC - analog to
digital conversion step, where in addition to any circuit Loise introduced, the signal is
subject to an unavoidable quantization error which is due to the finite resolution of the

digital representation of the signal.

12]Page'

1.2.2 Types of digital filters

Digital filters are implemented according to one of two basic principles, according to how

they respond to an impulse:

Infinite impulse response (IIR)

Finite impulse response (FIR)

Many digital filters are based on the Fast Fourier transform, a mathematical algorithm
that quickly extracts the frequency spectrum of a signal, allowing the spectrum to be
manipulated (such as to create pass-band filters) before converting the modified spectrum

back into a time-series signal.
Another form of a typical linear digital filter, expressed as a transform in the Z-domain, is

_ B(Z) _ bg-|—b12_l+bgz_2+---+b;\r2_~ (121}
A(z) 14 amzt4agz?2+ 4 aprM

where M is the order of the filter,

H(z)

Infinite Impulse Response

[IR filters are the digital counterpart to analog filters. They use feedback, and will
normally require less computing resources than an FIR filter of similar performance. Due
to the feedback, high order IIR filters may have problems with instability and arithmetic
overflow, and require careful design to avoid such pitfalls. Additionally, they have an
inherent frequency-dependent phase shift, which can be a problem in many situations.
2nd order IIR filters are often called 'biquads’ and a common implémentation of higher

order filters is to cascade biquads.

Finite impulse response

A finite impulse response (FIR) filter is a type of a digital filter. It is 'finite' because its
response to an impulse ultimately settles to zero. This is in contrast to infinite impulse

response filters which have internal feedback and may continue to respond indefinitely.

13|Page

r

Properties

¢ A FIR filter has a number of useful properties which sometimes make it
preferable to an infinite impulse response filter. FIR filters:

e Are inherently stable. This is due to the fact that all the poles are located at
the origin and thus are located within the unit circle.

e Require no feedback. This means that any rounding errors are not
compounded by summed iterations. The same relative error occurs in each
calculation.

e Can have linear phase

¢ (Can have minimum phase

The general form of the difference equation for a linear, time-invariant, discrete-time

system (LTIDT system) is

M (1.2.2)

a(Ryy(n —k) +) btk)x(n — k)
k=1 k=0

=

}!(n) —_—

The transfer function for such a system is given by

by + b(1)z7 ! + b2zt -+ +b(M)z~M (1.2.3)

Hiz Y)Y = , .
@) tta(hz-t+a@z-+a@z 3+ +a(N)zg—¥

The transfer function of an FIR filter, in particular, is given by

Hez™) = bo+b(1)z™ + b1z 4+ + M)z ™™ (.29
and the difference equation describing this FIR filter is given by
M
yin)= Z bikyx(n = k)
k=0
(1.2.5)

= H(Ox () + b(Dx(n — 1+ - - B(M)x(n — M)

We get the output y(n) due to the unit sample input d(n) to be exactly the values b(0),
b(1), b(2), b(3), . . ., b(M). The output due to the unit sample function 8(n) is the unit

sample response or the unit impulse response denoted by h(n). So the samples of the unit

14| Page

impulse response h(n) = b(n), which means that the unit impulse response h(n) of the
discrete-time system described by the difference equation is finite in length. That is why
the system is called the finite impulse response filter or the FIR filter. It has also been
known by other names such as the transversal filter, nonrecursive filter, moving-average
filter, and tapped delay filter. Since h(n) = b(n) in the case of an FIR filter, we can

represent

M (1.2.6)
Hiz = Zh(k)z"" =hO + o)z + 2272 4+ h(M)z 3D
k=0

! The FIR filters have a few advantages over the IIR filters

We can easily design the FIR filter to meet the required magnitude response in
such a way that it achieves a constant group delay. Group delay is defined as 7 =
—(df/dw), where @ is the phase response of the filter. The phase response of a

filter with a constant group delay is therefore a linear function of frequency. It

i transmits all frequencies with the same amount of delay, which means that there
‘ will not be any phase distortion and the input signal will be delayed by a constant
when it is transmitted to the output. A filter with a constant group delay is highly
desirable in the transmission of digital signals.

The samples of its unit impulse response are the same as the coefficients of the

: transfer function. There is no need to calculate A(n) from H(z—1), such as during
| every stage of the iterative optimization procedure or for designing the structures
i (circuits) from H(z—1).The FIR filters are always stable-anc_l are free from limit
cycles that arise as a result of finite word length representation of muitiplier
constants and signal values. The effect of finite word length on the specified
frequency response or the time-domain response or the output noise is smaller
than that for IIR filters.

Although the unit impulse response A(n) of an IIR filter is an infinitely long
] sequence, it is reasonable to assume in most practical cases that the value of the
samples becomes almost negligible afler a finite number; thus, choosing a
sequence of finite length for the discrete-time signal allows us to use powerful

numerical methods for processing signals of finite length.

1S|Page

3 LINEAR ARRAY OF n ELEMENTS

L3 LINEAR ARRAY OF n KLEMEINID

1.3.1 Linear Arrays Of n Isotropic Point Sources

Taking the case of a linear equispaced antenna array with n elements of equal amplitude
and spacing, labelled from left to right where n is a positive integer. The total field ‘E’ at

a large distance in the direction U is given as

E=]+e¥+ ¥+ V4. + M 4 DY (1.3.1)

0 -90°
8=0°

To distant point

1 ¢ 2 a 3 a 4 n

Figure 1 : Linear Arrays Of n Isotropic Point Source

where y the total phase difference of the fields from adjacent sources as given by

w=2—%§cosa+5=kdcosa+§ (1.3.2)
where =5;-5

where & is the phase difference of adjacent sources, i.e. source 2 with respect to 1,3 with

respect to 2 etc.

Taking the case of a linear equispaced antenna array with n elements with different

amplitude, labelled from left to right.

16|Page

E|=Aoe" + A1 + A28 + oy Ay (1.3.3)

where the total phase difference of the fields from adjacent sources as given by

w=2—}£cosa+5=kdcoso +4

Where |E] is the magnitude of the far field

k=2n/i

A is the free space wavelength,

d is the spacing between elements,

o is the angle from the normal to the linear array,
& is the progressive phase shift from left to right,

and ApAnAz.... are complex amplitudes which are proportional to the current

amplitudes.

Suppose that there are N isotropic radiators equally spaced along the z-axis and fed with
equal amplitudes. We assign a fixed phase shift § between progressive elements. The

array factor field is

sin(Ny/2) (1.3.4)

N sin(\@/2)

where v = kd cos o + 0

We use this to plot a universal radiation pattern for the array for two to 10 elements. The
abscissa y is plotted in degrees (360¢ is substituted for 2m in k). Both ends of the plot are
lines of symmetry. The plot is periodic (period 360°). We see that the level of the first
sidelobe (N = 2 has no sidelobe) decreases as N decreases but approaches a limit of 13.3

dB of the continuous aperture.

17|Page

ot s it ity 4 Ko

Z

i
X L]

/1]

P

D 1o \ \ 5 \ \ i \\ i

g LN AN

Lé‘ 14 m\\ 1 ‘z / \ 5

< g i, b A WA
_t8 ' ’ /]
% IWATAR 4N

0 20 40 (510] 80 100 120 140 160 180
kdcoso+§

Figure 2 : y-space pattern of linear arrays with a uniform amplitude distribution,

Above figure demonstrates the periodic pattern for N = 6 and shows a projection to a
polar pattern when the progressive phase between elements is zero and the elements are
spaced A/2. We can plot similar curves for other array distributions; all have a period of
360°. An array can be analyzed as a sampling of the continuous distribution that produces

a Fourier series of the distribution. A Fourier series has multiple responses.

18{Page

~360 -90 o 90 18 290 360
! 360 sin ¢{Spacing/a :
- Vlsﬂ?ie -
Region

L U S

——

e P

Figure 3 : Circle diagram of six-element uniform-amplitude array with)U2'spacing

1.3.2 The Tchebyscheff Distribution

Taylor developed an aperture distribution based on Dolbh’s use of the Chebyshev
polynomials to produce the narrowest beamwidth for a specified sidelobe level for an
array. The Chebyshev array design produces equal-amplitude sidelobes that we discover
to be unciésifable for large arrays because the equivalent aperture distribution peaks at the

ends and the average value of the sidelobes limits the directivity to 3 dB above the

19|{Page

sidelobe level, Large edge peaking of the distribution requires a feed network containing
a large ratio of coupling values. Mutual coupling between elements causes unwanted
excitation for a large ratio of element amplitudes and we lose control. Our usual practice
is to sample a Taylor distribution for large arrays. The distribution has limited edge
peaking, and large arrays can realize high gains. Aperture distribution synthesis involves
manipulating pattern nulls to achieve desired characteristics. Taylor used the zeros of the
Chebyshev array to alter the positions of the inner nulls of the uniform distribution to

lower sidelobe levels.

1.3.3 Tchebyscheff polynomials

Using Euler’s formula (ef“)m = edM) = cosimu) + j sin(mu)

2

and the trigonometric identity sin’ u = I- cos’u we have

cos(Ou)=1
cos(lu) = cosu

cos(2u) = 2cos? -1

3
cos(3u) = 4cos” 1~ 3cosu
cos(du) = 8cos? —8cos?u +1

cos(Sir) = 16c0s” u—20cos°> u+5cosu

_ Substitutirig Zz=cosu , (u = %cosg = arccos(z)]

we identify the Tschebyscheff polynomials:

20| Page

i@

cos(mu)=T,,(2)

cos(Ou) =1=Ty(z)
cos(lu)y=z=T,(z)

cos(2u) =272 1= T5(z)
cos(3u) = 4z> -3z =T (2)
cos(4u) =8z% -8z +1 =T,(2)

cos(5u) =16z° —20z° +5z=T5(2)

cos(Qu) = 256:9 ~5762" +432:5 12027 +9- =Ty (2)
9

Thus
Tn(Xx) = cos(mcos™x) 0 < |x|<1
Tm(X) = cos(mcos™x) I < |x| (1.3.5)

Dolph-Tschebyschev Array Design

In this section linear in-phase arrays with nonuniform amplitude distributions are
analysed, and the development and application of Dolph-Tchebyscheff distribution are
discussed. Let us consider a linear array of an even number n, of isotropic point sources
of uniform spacing d. All sources are in same phase. The direction 6=0 is taken normal to

the array with the origin at the center of the array. The individual sources have the

amplitudes Ag,A1,A2,As... etc.

Even number of elements:

21| Page

b

R

e o o 3 b - i ira e e e e

Figure 4 : Even number of elements

Defining u=~‘5§ cos @, cos(u) =z, cos(mu) =Ty(z)

where T,,(z) is the Tschebyscheff polynomial, we can write the array factor as:

1 3 £2M -1
AFZM — ale/ikdcasﬁJr e’ adcos @ o + aMe,r—--i——"kdeos (2]
(1.3.6)
~ikd cos @ -Rkd cos N4 o8
+rae 1 + ae ¢ b + ame z
A common factor of 2 can be normalized and we
M M
AFyy = D a, cos [31‘2‘—'1«2’ cosB:I = a, cos[(2n—u]
u=I1 n=1
= a1 (D + a3 () + o315 () +. +ay Tiapg 1y (2) (1.3.7)

M
Z anT(_Mul) (2)
get: =l

It

Figure § : Chebyshev polynomials of order ten

Only odd order polynomials present.

o Highest order one less than number of elements, 2M.

¢ (Odd number of elements:

2
B

¥

sat TLEEY SERERE SESEE SRR B
ag!
v

Figure 6 : Odd number of elements

Jkd cos @ J2kd cos® JM kd cosé

ARy =200 +aqe +aqe

— j2kd cosi?

... tay e

+a2€—jkdcos£) +age ;. +aM—t—-l€—JM kd cos¢!

* Note that the center element has amplitude 2a;

(1.3.8)

23| Page

« A common factor of 2 can be normalized and we get:

M M+l 1.3.9
AFgpia = 2, Oy cos[{n—1)kd cos 8] = > a, cos[20m=1)u] (1.3.9)

n=I n=1
= a Ty (2) + ayTa (D) +@Ty () +. 4 app 1 T2a1 (2)

M+l
= D 4, Typpy(2)

n=1

Figure 7 : Chebyshev polynomials of order nine

Only even order polynomials present:

Highest order one less than number of elements, 2M+1. Take this sum of polynomials to

be equal to the highest order polynomial present which then will represent the total array

factor.

This is possible because only even or odd order polynomials are present.
Procedure for finding the coefficients:

1. Select the appropriate AF according to the number of elements (even or odd).
2. Expand the AF. Replace each cos(mu) by its series expansion.

3. Determine the point z = zy such that Tx(zg) = Ry (voltage ratio). N is always one less

than number of elements.

4. Substitute cos(u) = z/z¢ in the expanded AT of step 2.

24| Page

5. Take the expanded AF to be equal to the Tschebyscheff polynomial of order one less

than the number of elements [Trm(2)],
in order to find the coefficients.

6. Write down the AF using the found coefficients.

AT,.X A Tu(x)
,. | L pererme e 1 I |
iV avs gl tiav ava

Figure 8 : Tchebyscheff polynomials ,Tn(x) for m even and m odd

L A SO P]

Consider the Tchebysceff polynomial of m™ degree
Tu(x) = cos(m cos™ x) = cos(mé) : £

. 1
Where cos d = x

The nulls of the pattern are given by the roots cos(md) = 0

That is by 63 = 2% k=12,....m

ook R —— i
b it i] T S B e 45 R e i o)

\
|
|
|
|
The Tchebyscheff polynomials are defined by
i
i
:
!

Tow(x) = cos(mecos™'x) < |x| <1

|
25|Page

r

) = cos(mcos'lx) 1< |x|

By inspection To(x) = 1, Ti(x) =x

The higher—order polynomials can be derived as follows
To(x) = cos(2 cos™ ¥ = cos 26

1

d=cos ' 'x orx =coso

1 Now since cos 26 = 2cos’ & -1

Tax) = 25"~ 1

Similarly, it can be shown that

Tt 1(%) = 2Tn(x)T1(x) — Tri-1(x)

So that T = 4x° — 3x and Ty(x) = 8x'—8x*—1 andsoon r
Now consider the function y, For a broadside array J
w = pd cos 0

As @ varies from 0 to /2 to m, y goes from Bd to 0 to — fd and the range of is 2f3d. Now
let x = xgcos y/2 . Then as @ varies from 0 through 7/2 to x, y varies from Sd through 0
to —Ad, and x will vary from xy cos mwd/A to xp back to xy cos (-wd/2) = x¢ cos md/A.For
example, if d=4/2, y will range from 7 through zero to -z and x will range from 0 to +xo
and back to 0. Again if d=4, y will range twice around the circle from 2z fhrough 0 to -

2m,(two major lobes) and x will range from -x(j.to xp and back to xy.

The nulls of the Tchebyshev pattern occur at values of x given by
xD =cos &y
So the corresponding position for the nulls on the unit circle will be given by

0 vk
X = Xp COS™

26| Page

O DR

o

0= 1 Xk
or ¢, = 2cos xa

2 =2 cos -:[GO;GE] (1.3.10)
o

where 6= 2% k=123,m (1.3.11)

The above equation gives the required spacing of nulls on the unit circle for a pattern
whose side lobes are all equal. The degree m of the polynomial used will be equal to the
number of nulls on the unit circle, and this will be one less than n, the apparent number of
elements. The value of xg is determined by the desired ratio of b of principal to side lobe

amplitudes. The value of x, is given in terms of b by
Tm(x0)=b

It can be calculated by noting that if & = cosh p, then
Xo = cosh (p/m)

The graphical-analytical method for obtaining the pattern of the from the location of the
nulls yields a detailed and accurate plot of relative field strengths versus the defined angle
y. For many purposes a rough sketch of the pattern may be adequate, and this can be

obtained directly from the properties of the Tchebyshev polynomial. Thus, knowing the

 location of the nulls in the pattern and the amplitude of all the side lobes relative to the

principal lobe, the pattern as a function of y may be sketched in with good accuracy.

27|mlu’nz'1ge

DN

1.4 FILTER SELECTIVITY

A filter’s primary purpose is to differentiate between different bands of frequencies, and
therefore frequency selectivity is the most common method of classifying filters. Names
such as lowpass, highpass, bandpass, and bandstop are used to categorize filters, but it
takes more than a name to completely describe a filter. In most cases a precise set of
specifications is required in order to allow the proper design of a filter. There are two
primary sets of specifications necessary to completely define a filter's response, and each
of these can be provided in different ways. The frequency specifications used to describe

the passband(s) and stopband(s) could be provided in hertz (Hz) or in radians/second

(rad/sec).

The other major filter specifications are the gain characteristics of the passband(s) and
stopband(s) of the filter response. A filter's gain is simply the ratio of the output signal
level to the input signal level. If the filter's gain is greater than 1, then the output signal is
larger than the input signal, while if the gain is less than 1, the output is smaller than the
input. In most filter applications, the gain response in the stopband is very small. For this

reason, the gain is typically converted to decibels (dB).

gaingg = 20 log(gain) (1.4.1)
1.4,1 Lowpass Filters

0 T
a 288 .
P « Passband —»
a « Stopband —
stop i =
g
o
o
0 oass fmop Freq.

Figure 9 : Low Pass Filter

2.8.|Page

Figure shows a typical lowpass filter’s response using frequency and gain specifications
necessary for precision filter design. The frequency range of the filter specification has
been divided into three areas. The passband extends from zero frequency (dc) to the
passband edge frequency fpass, and the stopband extends from the stopband edge
frequency fstop to infinity. These two bands are separated by the transition band that
extends from fpass to fstop. The filter response within the passband is allowed to vary
between 0 dB and the passband gain apass, while the gain in the stopband can vary
between the stopband gain astop and negative infinity. (The 0 dB gain in the passband
relates to a gain of 1.0, while the gain of negative infinity in the stopband relates to a gain
of 0.0.) A lowpass filter's selectivity can now be specified with only four parameters: the
passband gain apass, the stopband gain astop, the passband edge frequency fpass, and the

stopband edge frequency fstop.
Applications of Low Pass Filter

Lowpass filters are used whenever it is important to limit the high-frequency content ofa
signal. For example, if an old audiotape has a lot of high-frequency “hiss,” a lowpass

filter with a passband edge frequency of 8 kHz could be used to eliminate much of the

hiss.

Thus this filter can be used to remove high frequency noise from any speech signal.

1.4.2 Chebyshey Filters

' Chebyshev filters are used to separate one band of frequencies from another. Although

they cannot match the performance of the windowed-sinc filter, they are more than

adequate for many

applications. The primary attribute of Chebyshev filters is their speed, typically more
than an order of magnitude faster than the windowed-siﬁc. This is because they are
carried out by recursion rather than convolution. The design of these filters is based on a
mathematical technique called the z-transform. The Chebyshev response is a
mathematical strategy for achieving a faster rolloff by allowing ripple in the frequency

response. Analog and digital filters that use this approach are called Chebyshev filters.

Chebyshev filters have the property that they minimise the error between the idealized

filter characteristic and the actual over the range of the filter, but with ripples in the

"" passband. These types of filters are derived from Chebyshev polynomials.

30|Page

F
4

2 DESIGN OF APPLICATION

2.1 FIR FILTER DESIGN

Taking the case of a linear equispaced antenna array with n elements with different

amplitude, labelled from left to right as in equation (1.3.3)

[E|=|4o® + 41" + 426 + A 2™ + 4, 1) @2.1.1)
From equation (1.3.2)
l,t/=z—:icosﬂ+6=ﬁdcos€+y (2.1.2)

where |E| is the magnitude of the far field

B=2mn/A,

A is the free space wavelength,

d is the spacing between elements,

8 is the angle from the normal to the linear array,

v is the progressive phase shift from left to right,

and Ap ,ApA4,..... are complex amplitudes which are proportional to the current

amplitudes.

Substituting z = ¢¥ then equation (4.1.1) becomes

HE) = Ao+ Az + As2? +.oooo ¥ Ani?? + Ani?™ (2.1.3)

This equation represents the equation (1.2.4) .
H(z') = by + b(1)z"! + b(2)z? + ... + b(M)z" which is the equation of a FIR Filter
where H(z) is impulse response of the filter with 7= Ap AL As......... represents

amplitudes at the corresponding frequencies.

The Chebyshev Polynomial is given by efluation (1.3.5)

Tu(x) = cos(mcos"'x) 0 < |x| <!l

T(x) = cos(mcos™'x) 1< x| (2.1.4)
The nulls of the Tchebyshev pattern occur at values of x given by equation

(1.3.10) which is

0_ -1 m.s"]

Y, = 208 [-——-k-%

where 82 = (- 1 =123, s m
Zm

For the FIR filter 0 = i and 8§ = e, and m is the order of the filter

Thus

Wm = 2c0s™! {cos((ﬂfn:i)/xg} (2.1.5)

60 =y = (2k-1) n/2m,
Thus

wm = 2cos” fcos(wy)/xo} (2.1.6)
It can be calculated by noting that if b = cosh p, then

xg = cosh (p/m)
Substituting Xo in equation (2.1.6) we have

= 2c0s” {cos(wy)/ cosh (p/m)} (2.1.7)
and p = cosh™b |

substituting p in equation (2.1.7) the location of zeros, ®m, on unit circle can be

calculated by the following equation

®,, = 2cos” {cos(ey)/ cosh (cosh™b fm)} (2.1.8)
Similarly
w, = 2cos” [1/{cosh(1/mcosh b)}] (2.1.9)
_ § cosh{(1/m)cosh~1(b/N2)) (2.1.10)
wp=2c08 1[cosk(1/moosh~1b)]
32”| Page

where

m is the order of the filter

i b is the absolute value of attenuation in the stop band,
s is the stopband frequency,

o, is the passband frequency.

Using the relation z,, = e’*m ,we can write equation (2.1.3) as

H(z) = (2-21) (220 (2-Zn) @.1.11) il
where, il
71,Z2,.... are location of zeros,
H(z) is the frequency response in z-transform domain. il

Replacing z by ¢ and z, s by €/“m ‘s in equation (2.1.11) fi

H(z) = (e/¥ —e/¥1)(e/* - el9s),...(e/¢ —el¥m) (2.1.12)
2.1.2 FIR Filter Response With Different Order a q 1';
keeping b=100 and varying order of filter H: il
il
(e
Order of the filter m=4
1 0
0.8 1 -20
% 0.6 % 40
§ 2
S 04 Eb -60
0.2] -80
% 1 2 3 4 = 1 2 3 4
Frequency Frequency

Figure 10 : Magnitude Response Of 4th order FIR Figure 11 :Magnitude Response Of 4th order FIR filter
filter in dB

|
! : I
33|Page [

Order of the filter m=6

=
o

Magnitude
S
>

0 0.5 1 15 2 2.5 3 35
z Frequency

Figure 12 : Magnitude Response Of 6th order FIR
filter

Order of the filter m=20

Magnitude
=,
.

e,

0 05 === p A) 3 35
Frequency

(=]

Figure 14 : Magnitude Response Of 20th order FIR
filter

2.1.3 Limitation

Magnitude (dB)
.
=

-80
-100
-120 . . :
0 1 2 3 4
Frequency

Figure 13 : Magnitude Response Of 6th order FIR filter
in dB

Magnitude (dB)

-100 A : x
0 1 2 3 4
Frequency
Figure 15 : Magnitude Response Of 20th order FIR
filter in dB

For a given order filter we cannot change the filter bandwidth. So we cannot change the

cutoff frequency for a given order of filter.

34|Page

2.1.4 Modified Chebyshev FIR Filter

To overcome this limitation we are introducing a new parameter ‘a’

In the original Chebyshev polynomial we will multiply a new parameter ‘e’ with

parameter ‘X’ .

Tu(ax) = cos(meos™ ax) 0<|x| <1
Tu(ax) = co,srh(mco.S'h"r ax) 1 < |x|

Then @ ,0m and ®, becomes

ws = 2cos” [1/at{cosh(1/mcosh™b)}]

wm = 2cos” [cos(@)/{ a (cosh(]/mcosh" b)}]

o _/[eosh{(1/m)cosh—1(b/N2)}
wp = 2co0s [cosh(1/meosh—15)]
where

wy = (2k -1)7/2m,

and k=1...m.

and

H(z) = (e — el@1)(el® — efo2).... (e — e/¥m)

(2.1.13)

(2.1.14)
2Ll

(2.1.16)

(2.1.17)

Using this modified FIR filter we can change the cuttoff frequency and bandwidth of the

filter.
Modified FIR Filter Response Varying Alpha

Order of the filter m=4

al;;h::l e al;;h:=1 | I
oo} “oealphas1.33] “oo--alphe=1.33 “
————— alpha=0.9 200 ——alpha=09 H
08t
? o7} .
-0 .
ALL . |
£ os E % 80 ! g 1 !
g’ 0.4 E = 15; l
a0 i] !
03 il .
i 1 ; i
-100 {) |
0.1 i [‘
Wi s) g : i i | :
% 05 1 15 2 25 3 35 195 05 1 15 2 25 : 3 35 il
Frequency Frequency | |
Figure 16 : Magnitude Response Of 4th order FIR Figure 17 : Magnitude Response Of 4th order FIR 1] %
filter filter in dB } ‘
4
| »
AR | j
We can see that the position of zeroes change with varying the value of alpha. | 3
| i .i
\ 4
/ Order of the filter m=6 1
5
0 = , . |
——alpha=1 '
civeveee- aipha=1.33
20 ————glpha=0.9 H

AUk

Magnitude (dB)
8

-80 4 i
I
100 f 4
. TR
Frequency Frequency
Figure 18 : Magnitude Response Of 6th order FIR Figure 19 : Magnitude Response Of 6th order FIR |E
filter é filter in dB ||

.3.6.|Page

Order of the filter m=20

|
'R / L fpha1
\ d \ i \] i slpha=
osp\: /1| [A f ———————— alpha=1.33 !
} ! Pl 4k 4 P
& pegi) i ! i b g ’ ——— gipha=0.9
" I ; Lol | L i i P!
AT R PR RRSN |
casf it L L R g |
2 o [8 v bE a1 1 i
for \F | 1 gu“;;ig; £ |
{ | 132G g i I E |
® g4} } 14 1 0 i 2 .a0f
LU VAR A F I o [a S = '
03F 1y } - H H I i H 1 140
vk A B R
02 | TR | I 160 alpha=1
i ! oeresalpha=1.33
01 \ ! 1‘ | 1] 4 180 e glpha=0.9
0 ! ih 200 L 1 L L g - 1
0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35

Frequency Frequency | ‘

Figure 20 : Magnitude Response Of 20th order FIR Figure 21 : Magnitude Response Of 20th order FIR |
filter filter in dB ;‘

37|Page i

2.2 SIGNAL AND NOISE ANALYSIS i

—

2.2.1 Signals

A signal is a description of how one parameter is related to another parameter. For

example, the most common type of signal in analog electronics is a voltage that varies

e T

e e e i
i bt

with time. Since both parameters can assume a continuous range of values, it is known as

a continuous signal. A continuous-time signal that is periodic contains the values of its

e R e

fundamental frequency and the harmonics contained in it, as well as the amplitudes and

phase angles of the individual harmonics. We define a continuous-time signal as a

function of an independent variable that is continuous. A one-dimensional continuous-

U

time signal f (t) is expressed as a function of time that varies continuously from ~—eo to c. l‘

But it may be a function of other variables such as temperature, pressure, or elevation. In

comparison, passing this signal through an analog-to-digital converter forces each of the

e S SNy

two parameters to be quantized.

For instance, imagine the conversion being done with 12 bits at a sampling rate of 1000

samples per second. The voltage is curtailed to 4096 (212) possible binary levels and the
time is only defined at one millisecond increments. Signals formed from parameters that il
are quantized in this manner are said to be discrete signals or digitized signals. For the il
most part, continuous signals exist in nature, while discrete signals exist inside computers

(although you can find exceptions to both cases). It is also possible to have signals where i

one parameter is continuous and the other is discrete. :|1
' |
8 T T 8 T H T T l’ :
[2. Mean=05,0=1 |] [6. Mean=30,0=02 | "l | g
s ‘n‘i |
4 4 0
3 T 3 e L i
& 21 - g 24— !
5 5
[:] 0 k
-2 | — 2
_ 4 4
1] 64 128 592 256 320 384 448 51t 0 64 128 192 256 320 334 448 51
Sample number Sample munber

Figure 22 : Shows two discrete signals, such as might be acquired with a digital data acquisition system

38| Page i

S

The vertical axis may represent voltage, light intensity, sound pressure, or an infinite
number of other parameters. Since we don't know what it represents in this particular

case, we will give it the generic label: amplitude.

This parameter is also called several other names: the y-axis, the dependent variable, the
range, and the ordinate. The horizontal axis represents the other parameter of the signal,
going by such names as: the x-axis, the independent variable, the domain, and the
abscissa. Time is the most common parameter to appear on the horizontal axis of

acquired signals; however, other parameters are used in specific applications.
Time Domain/Frequency domain

A signal that uses time as the independent variable (i.e., the parameter on the horizontal
axis), is said to be in the time domain. Another common signal uses frequency as the
independent variable, resulting in the term, frequency domain. Likewise, signals that use
distance as the independent parameter are said to be in the spatial domain (distance is a

measure of space).

The type of parameter on the horizontal axis is the domain of the signal. Sometimes the
x-axis is labeled with something very generic, such as sample number? Such signals can
be referred to as being in the time domain. This is because sampling at equal intervals of
time is the most common way of obtaining signals. Each sample is assigned a sample
number or index. The variable, N, is widely used to represent the total number of samples

in a signal.

Sampling theorem

Sampling Rate

The sampling rate, sample rate, or sampling frequency defines the number of samples per
second (or per other unit) taken from a continuous signal to make a discrete signal. For
time-domain signals, it can be measured in hertz (Hz). The inverse of the sampling
frequency is the sampling period or sampling interval, which is the time between

samples.

39|Page

The Sampling Frequency for a given signal (continuous) should be in accordance with
the Nyquist criterion, following which, will ensure adequate samples in the discrete

domain such that the signal can be perfectly reconstructed.

The Nyquist-Shannon sampling theorem states that perfect reconstruction of a signal is
possible when the sampling frequency is greater than twice the bandwidth of the signal
being sampled, or equivalently, that the Nyquist frequency (half the sample rate) exceeds
the bandwidth of the signal being sampled. If lower sampling rates are used, the original
signal's information may not be completely recoverable from the sampled signal. For
example, if a signal has a bandwidth of 100 Hz, to avoid aliasing the sampling frequency

should be greater than 200 Hz.
Analog to digital conversion

Analog-to-digital conversion is an electronic process in which a continuously variable
(analog) signal is changed, without altering its essential content, into a multi-level

(digital) signal.

The input to an analog-to-digital converter (ADC) consists of a voltage that varies among
a theoretically infinite number of values. Examples are sine waves, the waveforms
representing human speech, and the signals from a conventional television camera. The
output of the ADC, in contrast, has defined levels or states. The number of states is
almost always a power of two -- that is, 2, 4, 8, 16, etc. The simplest digital signals have
only two states, and are called binary. All whole numbers can be represented in binary

form as strings of ones and zeros.

Digital signals propagate more efficiently than analog signals, largely because digital
impulses, which are well-defined and orderly, are easier for electronic circuits to
distinguish from noise, which is chaotic. This is the chief advantage of digital modes in

communications.

40|Page

Pulse Code Modulation
Modulation

Pulse-code modulation (PCM) is a digital representation of an analog signal where the
magnitude of the signal is sampled regularly at uniform intervals, then quantized to a

series of symbols in a digital (usually binary) code.

In the following diagram, a sine wave (red curve) is sampled and quantized for PCM. The
sine wave is sampléd at regular intervals, shown as ticks on the x-axis. For each sample,
one of the available values (ticks on the y-axis) is chosen by some algorithm. This
produces a fully discrete representation of the input signal (shaded area) that can be easily
encoded as digital data for storage or manipulation. For the sine wave example at right,
we can verify that the quantized values at the sampling moments are 9, 11, 12, 13, 14, 14,
15, 15, 15, 14, etc. Encoding these values as binary numbers would result in the
following set of nibbles: 1001, 1011, 1100, 1101, 1110, 1110, 1111, 1111, 1111, 1110...

There are many ways to implement a real device that performs this task. In real systems,
such a device is commonly implemented on a single integrated circuit that lacks only the
clock necessary for sampling, and is generally referred to as an ADC (analog-to-digital
converter). These devices will produce on their output a binary representation of the input
whenever they are triggered by a clock signal, which would then be read by a processor

of some sort.

A

=

ta

=

=

[T IR I R P A B
' '

Lagrg 40 b4 a1

Figure 23 : Sampling and quantization of a signal (red) for 4-bit PCM

41|Page

—

Demodulation
To produce output from the sampled data, the procedure of modulation is applied in
reverse. After each sampling period has passed, the next value is read and the output of

the system is shifted instantaneously (in an idealized system) to the new value.

The electronics involved in producing an accurate analog signal from the discrete data are
similar to those used for generating the digital signal. These devices are DACs (digital-to-
analog converters), and operate similarly to ADCs. They produce on their output a
voltage or current (depending on type) that represents the value presented on their inputs.

This output would then generally be filtered and amplified for use.

Quantization

In digital signal processing, quantization is the process of approximating a continuous
range of values (or a very large set of possible discrete values) by a relatively-small set of

discrete symbols or integer values.

A common use of quantization is in the conversion of a discrete signal (a sampled
continuous signal) into a digital signal by quantizing. Both of these steps (sampling and
quantizing) are performed in analog-to-digital converters with the quantization level
specified in bits. A specific example would be compact disc (CD) audio which is sampled
at 44,100 Hz and quantized with 16 bits (2 bytes) which can be one of 65,536 (i.e. 2'°)

possible values per sample.

Discrete Fourier Transform

The discrete Fourier transform (DFT), occasionallyr called the finite Fourier transform, is
a transform for Fourier analysis of finite-domain discrete-time signals. It is widely
employed in signal processing and related fields to analyze the frequencies contained in a
sampled signal, to solve partial differential equations, and to perform other operations
such as convolutions. The DFT can be computed efficiently in practice using a fast

Fourier transform (FFT) algorithm.

Since FFT algorithms are so commonly employed to compute the DFT, the two terms are

often used interchangeably in colloquial seftings, although there is a clear distinction:

42.| Page

—

"DFT" refers to a mathematical transformation, regardless of how it is computed, while

"FFT" refers to any one of several efficient algorithms for the DFT.

The sequence of N complex numbers Xo, ..., Xn-1 is transformed into the sequence of N

complex numbers Xj, ..., Xy-1 by the DFT according to the formula:

2 i, 22]
Y=o e b N @)

n=0
Where e is the base of the natural logarithm, 1 is the imaginary unit (* =-1), and 7 is pi.

The transform is sometimes denoted by the symbol.?'- , as in X=F {X}or F (x)or
FxX,

The inverse discrete Fourier transform (IDFT) is given by

i 22,2
ZXk82 i 71=0,...,JV—-1. § 4

Note that the normalization factor multiplying the DFT and IDFT (here 1 and 1/N) and
the signs of the exponents are merely conventions, and differ in some treatments. The
only requirements of these conventions are that the DFT and IDFT have opposite-sign

exponents and that the product of their normalization factors be 1/N. A normalization of

1/ Y for both the DFT and IDFT makes the transforms unitary, which has some
theoretical advantages, but it is often more practical in numerical computation to perform

the scaling all at once as above.
Fast Fourier Transform

A Fast Fourier Transform (FFT) is an efficient algorithm to compute the discrete Fourier
transform (DFT) and it’s inverse. FFT’s are of great importance to a wide variety of
applications, from digital signal processing to solving partial differential equations to

algorithms for quickly multiplying large integers.

Let xo,, Xy.1 be complex numbers. The DFT is defined by the equation

43| Page

N—-1
Xp=3 zne 8" k=0,...,N-1
=()

Evaluating these sums directly would take O(N?) arithmetical operations. An FFT is an
algorithm to compute the same result in only O(N log N) operations. In general, such
algorithms depend upon the factorization of N, but (contrary to popular misconception)
there are FFTs with O(N log N) complexity for all N, even for prime N.

_2mi

Many FFT algorithms only depend on the fact that € "N is a primitive root of unity, and
thus can be applied to analogous transforms over any finite field, such as number-

theoretic transforms.

Since the inverse DFT is the same as the DFT, but with the opposite sign in the exponent

and a 1/N factor, any FFT algorithm can easily be adapted for it as well.
FFT algorithms
The most commonly used FFT algorithms comprise of the following:

Cooley-Tukey FFT algorithm

By far the most common FFT is the Cooley-Tukey algorithm. This is a divide and
conquer algorithm that recursively breaks down a DFT of any composite size N = N|N;
into many smaller DFTs of sizes Nj and N, along with O(N) multiplications by complex

roots of unity traditionally called twiddle factors.

The most well-known use of the Cooley-Tukey algorithm is to divide the transform into
two pieces of size N / 2 at each step, and is therefore limited to power-of-two sizes, but
any factorization can be used in general '.(as was known to both Gauss and
Cooley/Tukey). These are called the radix-2 and mixed-radix cases, respectively (and
other variants such as the split-tadix FFT have their own names as well). Although the
basic idea is recursive, most traditional implementations rearfange the algorithm to avoid
explicit recursion. Also, because the Cooley-Tukey algorithm breaks the DFT into
smaller DFTs, it can be combined arbitrarily with any other algorithm for the DFT.

744|P.age

o

Goertzel algorithm

The Goertzel algorithm computes a sequence, s(n), given an input sequence, x(1), as

s(n) = x(n) + 2cos2nw)s(n — 1) — s(n — 2)

(2.2.3)

Where s(— 2) = s(— 1) =0 and ® is some frequency of interest, normalized with respect

to the sampling frequency. This effectively implements a second-order IIR filter with

poles at ¢ ¥ and e ~ 2o and requires only one multiply (assuming 2cos(w) is pre-

computed), one addition and one subtraction per input sample. For real inputs, these

operations are real.

The Z transform of this process is

S(z) _ 1 _ 1 (2.2.4)
X(z) 1-2cos(2mw)z~t+22 (1- et2mivy=1)(1 — e~2riwz-1)
Applying an additional, FIR, transform of the form
Y(’Z) =1 8—211'1'102—1 (2-2-5)
S(2)
Will give an overall transform of
SY() Y - (- g~ 2w z=1) B 1 (2.2.6)
X(2) 8(z) X(2) T (1 — et?rioy-1)(1 — e~Pmiwy—l)] — et2miwz-l
The time-domain equivalent of this overall transform is
T
y(n) = 2(n)re?myin=1) = 37 a(k)erre
k=—00 7 ‘
— ptimiun i r(k)e—Zﬂiuk (2.2.7)
k==—00

Which, when x(n) = 0 for all n <0, becomes

s ke 2.2.8
y(ﬂ) — e+2mwn Z x(k)e-—.’%ﬂ:wk ()

k=0
45 | Pa g e

Or, the equation for the (n + 1)-sample DFT of x, evaluated for ® and multiplied by the

+ 2
scale factor e * 2",

Other FFT algorithms

e Prime-factor FFT algorithm,
e Bruun's FFT algorithm,

s Rader's FFT algorithm,

e Bluestein's FFT algorithm.

2.2.2 Noise Analysis

White noise

White noise is a random signal (or process) with a flat power spectral density. In other

words, the signal's power spectral density has equal power in any band, at any centre

frequency, having a given bandwidth. White noise is considered analogous to white light

which contains all frequencies.

b

.
L%)
T

~oops by {4

sy

1040
Praquerey ()

whie Nols2

100a8

Figure 24 : Calculated spectrum of a generated approximation of white noise

a6 | b . .

An infinite-bandwidth white noise signal is purely a theoretical construction. By having
power at all frequencies, the total power of such a signal is infinite. In practice, a signal

can be "white" with a flat spectrum over a defined frequency band.

Figure 25 : Four thousandths of a second of white noise

The term white noise is also commonly applied to a noise signal in the spatial domain
which has an autocorrelation which can be represented by a delta function over the
relevant space dimensions. The signal is then "white" in the spatial frequency domain
(this is equally true for signals in the angular frequency domain, e.g. the distribution of a
signal across all angles in the night sky). The i’mage below displays a finite length,

discrete time realization of a white noise process generated from a computer.

‘ il iil_! (N
‘. |

Figure 26 : An example realization of a white noise process

47| Page

Thermal Noise

Thermal noise is the Electronic noise generated by the thermal agitation of the charge
carriers (the electrons) inside an electrical conductor in equilibrium, which happens

regardless of any applied voltage.

Thermal noise is approximately white, meaning that the power spectral density is equal
throughout the frequency spectrum. Additionally, the amplitude of the signal has very

nearly a Gaussian probability density function.

Burst Noise

Burst noise is a type of electronic noise that occurs in semiconductors. It is also called
impulse noise, bi-stable noise, or random telegraph signals (RTS noise). It consists of
sudden step-like transitions between two or more levels (non-Gaussian), as high as
several hundred microvolts, at random and unpredictable times. Each shift in offset

voltage or current lasts for several milliseconds.

2.2.3 Input Signal Analysis

The input signal is a speech signal in time domain represented as in the figure below:

Input Signal in Time Domain with Noise
1 T T T T

Amphtude

Tune (8)

Figure 27 : Speech signal in time domain with only white noise

The graph describes a discrete time signal which has been sampled off a continuous
speech (recorded using a traditional microphone) signal at a sampling frequency 8000Hz
using Pulse Code Modulation (PCM) at 8 Bits in the mono mode. The duration of the
signal is 4seconds, and the total number of samples are equal to 32000 (= 4seconds*
8000Hz). Here, the maximum desirable value of the frequency is 3500Hz to 4000Hz (i.e.,
towards the lower end of the frequency spectrum or a male human voice) thus, resulting
in a sampling frequency of about 8000Hz. Also, the recorded signal has been corrupted

by white noise (hissing noise).

On corrupting the above signal with an arbitrary co sinusoidal noise (modeled as Burst

Noise) centered at frequency of 3000Hz, the following signal results:

Input Signal in Time Domain with Noise

Amplitude

Time (s)

Figure 28 : Speech signal in time domain with both the white noise as well as the burst noise

As is clearly visible, the Signal to Noise ratio decreases, making the original speech
almost inaudible. The same can be more lucidly displayed by representing the signal in
frequency domain. Thus, applying a 32767 point FFT on the above signal, we get the

following:

49|Page

100 . : , .

Magnitude (dB)

i i i i i i o
0 500 1000 1500 2000 2500 3000 3600 4000
Frequency (Hz)
Figure 29 : Speech signal in frequency domain with burst noise centered at 3000Hz

Thus, the problem statement as summarized by the graphs above is to design and

implement a filter that effectively cancels the burst noise, as well as attenuates the high

. r':
frequency noise components of the White Noise (or the persistent high frequency hiss in ;I“
the recorded signal). : u '

50| Page

2.3 PASSING SPEECH SIGNAL THROUGH THE FIR FILTER

o s L S e L A T W A e

2.3.1 Concept

The Filter obtained from the chapter 2.1 and after analysing the speech signal we can

design the application to suppress high frequency noise from the speech signal. In order

to cancel the burst noise at a given frequency we can design our filtering such a way so’

that the first zero of the filter lies on that particular frequency so as to cancel that noise
completely. Further the side lobes of the filter are used to suppress the higher frequency
components of the white noise. The zeroes of the filter can be changed by changing the
value of alpha (the new parameter introduced in chapter 2.1 equation 2.1.13) .The
individual frequency components are multiplied by the filter frequency response so that
the lower frequency signal had a 0 dB attenuation while the higher frequency signal has a
significant attenuation in the frequency spectrum. To achieve this result, fast Fourier
transform of the speech signal is taken and the individual frequency component is

multiplied with its corresponding filter response in z domain.

2.3.2_Steps involved

a, Take FFT of the speech signal

70 , , : ! ;

Magnitude (4B}

30 | 1 1 i i
U] 1000 2000 3000 4000 5000 6000
Fregquency (Hz)

Figure 30 : FFT of the speech signal

The number of samples in the time domain is usually represented by the variable M.
Here N =32000 samples

While N can be any positive integer, a power of two is usually chosen, i.e., 128, 256, 512,

1024, etc. There are two reasons for this.

» Digital data storage uses binary addressing; making powers of two a natural

signal length.

» The most efficient algorithm for calculating the DFT, the Fast Fourier Transform
(FFT), usually operates with N that is a power of two.

Here we take 32768 point FFT of the audio signal

b. Plotting Filter Response

Order of Filter: 6

Location Of First Zero: 3000Hz (To cancel the sinusoidal noise at 3000Hz) Ll
Alpha: 1.78

Attenuation: 40dB

‘100 r . v T :

50

Q

Hagnitude {d8)

'
]
e

i i i i i
1] 1000 2000 3000 4000 S000 G000
Frequency (Hz)

Figure 31 : Filter Response

S52|Page

¢. Frequency multiplication

Multiplying individual frequency components of the speech signal with the filter

response we get

T T

100 T , y
: : —~—— Waveform

Amplitude

i i ;
3000 4000 5000 6000
Time {s)

. i i
1500 1000 2000

Figure 32 : Frequency multiplication

d. Taking in inverse FFT (IFFT) of the resuitant signal

oY ! i

Amplitude

Time (s)

¥ Figure 33 : Inverse FFT (IFFT) of the resultant signal

2.3.3 Time Domain re resentation of entire process

Original Voice Signal Final Result

Noise addition

Filtering the noise |

2

0.5 1.5 2.5

1
Time (s)

Output Voice Signal

Figure 34 : Time Domain representation of entire process

54| Page

Original Voice Signal

458 i ; ; i H
] 000 2000 3000 4000 5000 €000
Frequency (Hz)

Output Voice Signal

2.3.4 Frequency Domain representation entire process

Final Result

Noise addition

: Filtering the noise

Figure 35 : Frequency Domain representation entire process

55|Page

3 IMPLEMENTATION

3.1 MAIN APPLICATION SOURCE CODE

function varargout = untitled3(varargin)

% Begin initialization code

gui Singleton = 1;

guil State = struct{'gui_Name', mfilename,
'gqui Singleten', gui_Singleton,
'gui_ OpeningFen', @untitled3_OpeningFen,
'gui OutputFen', @untitled3_OutputFecn,
'gui LaycutFecn', (1 .
'gui Callback!', (1)

if nargin && ischar(varargin{l})

gui_ State.gui_Callback = str2func(varargin{l});
end

if nargout

[varargout {l:nargout}] = gui_mainfcn(gui_State, varargin(:});
else

gui mainfcn(gui_State, varargin{:}):
end

% End initiaiization code
% Executes just before untitled? is made visible.

function file_menu_Callback(hObject, eventdata, handles)

% hCbject handle to file menu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAR
% handles structure with handles and user data

set (handles.axes8, 'HandleVisibility', 'OFF');

% get file from user

clear global;

global FileName

global PathName o
[FileName, PathName] = unigetfile('*.wav', 'Select the Wav-file');

% reading wav file

global x

global fs

[x, fs]=wavread (fullfile(PathName, FileName));
global t3

t3=(0:length(x)-1)/fs;

% plotting original signal

set (handles.axesl6, 'HandleVigikility™, 'ON");

axes (handles.axesl6);

axis on;

plot (£3,x/(max(x)), 'Color', [0.3137 0.3137 0.3137]);
grid on;

cle;

56 | Pag'e

AR

=
.:T:fi

function untitled3 OperingFcn{hObject, eventdata, handles, varargin) i
% This function has no output args :

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB -
] % handles structure with handles and user data ?

$ varargin command line arguments to untitled3 .

% Choose default command line output for untitled3 =

handles.output = hCbject; -

% Update handles structure fﬂ
guidata (hObject, handles); Bk

% UIWAIT makes untitled3 wait for user response (see UILRESUME)
% uiwait (handles.figurel); '+

function order Callback (hObject, eventdata, handles) i

% hObject handle to order i
% eventdata reserved - to be defined in a future version of MATLAB :
% handles structure with handles and user data Ny

s

—-- Executes during object creation, after setting all properties.

function order CreateFcn (hObject, eventdata, handles)

% hObject handle to order (see GCBO) :

% eventdata reserved - to be defined in a future version of MATLAB !
% handles empty - handles not created until after all Createlcns :
called - ’

3 Hint: edit controls usually have a white background on Windows.

if ispc && isequal{get (hObject,'BackgroundColor'},
get (0, *defaultlicontrolBackgroundColer'))
set (hObject, 'BackgroundColor’, 'white');

t=(0:1length{x)-1}/fs;
L=length{x};

end
% --- Executes on button press in ok. :
function ok Callback(hObject, eventdata, handles) v
% hObject nandle to ok (see GCBEO) :
% eventdata reserved - to be defined in a future version of MATLAB)
% handles structure with handles and user data (see GUIDATA) ﬂ
: glcbal u ;
global x g
global fs i
o

% fourier transform of signal ‘ﬁ
NFFT = 2”nextpow2 (L) ; - :
Y=f£ft (u, NFFT) ; i

» plotting frequecy spectrum

f = fs/2*linspace(0,1,NFFT/2);

om22 = str2num(get {handles.order,'String')};
be = str2num(get (handles.db, 'string')):

fg str2num{get (handles.cutoff, 'string'});
be2=10"{be/20};

y Fs2=length{f); ¥
57|Page a8

templ=(fgq*Fs2) /max{f);

temp2={(pi*templ) /Fs2;
yelpha=(cos(pi/(2*om22)))/((cos(temp2/2))*(cosh((l/om22)*aCOSh(be2))));
set (handles.alpha, 'String’, yelpha) :
frnew=20%1ogl0 (abs (Y (1l:length({f)))};
set(handles.axes6,'Handlevisibility',‘ON'):

axes (handles.axes6);

plot(f,fnew,'Color',[0.3137 0.3137 0.31371);

grid on;

%Filter Design Starts Here
b=be2;

m=om22 ;

a=[1l:m];

i=1;

freq=0;

Fs2=length(£f):

h=1;
p=1:
omegak=((2*a—1)*pi)/(2*m);
omegam=2*acos((cos(omegak))/(((yelpha)*(cosh(l/m*acosh(b))))));
while (freg<Fs2)

om=2*pi*freq/ (2*Fs2);

k=exp (j*om) ;

while {(i<=m)

h=h* (k-exp (j*omeganm (i)));
i=i+1;

end

hl(p)=abs(h);

p=p+l;

freq=freq+l;

h=1;

i=1;
end
h2=(hl/max(hl}));
h3=20*logl0(h2);;
set{handles.axesll,'HandleVisibility',‘ON‘);
axes (handles.axesll);
axis tight;
plot(f,h3,'Color',[0.3137 0.3137 0.31371):
grid on; s
mul=(Y(l:length(£))).*h2";
mul2=abs {mul} ;
mulnew=20*1logl0(mul2);
set(handles.axesl3,‘HandleVisibiliiy',‘ON‘);
axes {handles.axesl3);
axis tight;
plot(f,mulnew,‘Color',[0.3137 0.3137 0.3137]):
grid on;
mul3=ifft {mul, NFFT};
muld=abs {mul3);
mul5=max (mulé};
mul6=nuld/mul5;

rmul=real(mul3(1:length(x)));

58{Page

n A e~ R ol

set(handles.axesl2,‘Handlevisibility','ON');
axes(handles.axele);

axis tight; .
plot(t,rmul/(max(rmul)),'Color',[0.3137 0.3137 0.3137)); ;

| grid on; ’
] global rfinal.
rfinal=rmul/ (max (rmul)};

% storing the final filtered signal
wavwrite(rfinal(1:length(x)),fs,‘ksfinal.wav');
cle:

% -—— Outputs from this function are returned to the command line.
function varargout = untitled3_0utputhn(hobject, eventdata, handles)
% varargout cell array for returning output args

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data

3 Get default command line output from handies structure

varargout{1l} = handles.output;

function db_Callback(hObject, eventdata, handles)

% hObject handle to db

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data

3 --- Executes during object creation, after setting all properties.
function db_Creatchn(hObject, eventdata, handles)

% nObject handle to db

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreatefFcns
called

if ispc && isequal(get(hObject,'BackgroundColor'),

get(O,‘defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white‘);

end

function cutoff_Callback(hObject, eventdata, handles)

% hObject handie to cutoff

% aventdata reserved - to pe defined in a future version of MATLAB
i handles structure with handles and user data

4 —-- Executes during object creation, after setting all properties.
function cutoff_Creatchn(hObject, eventdata, handles)

% hObject handle to cuteif

& gventdata raserved - toO be defined in a fulure version of MATLAB
¢ pandles enpty - handlaes not crestad until after all Createkcns
1 called

if ispc && isequal(get(hobject,'BacquoundColor'),
get(O,'defaultUicontrolBackgroundColor'))

59 I.Page

. 2 - | Binn

Set(hObject,'BackgroundCo}or','White')i
end

function alpha Callback(hObject, eventdata, handles)

% hCbject handle to alpha
% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data

A e

4 --- Executes during obiject creation, after setting all properties.
function alpha_CreateFcn(hObject, eventdata, handles)

% hObject handle to alpha

% eventdata reserved — to be defined in a future version of MATLAB
% harndles empty - handles not created until after all CreateFcns
called

if ispc && isequal(get(hObject,'BackgroundColor'),
get(O,'defaultUicontrolBackgroundCoior')))

set(hObject,'BackgroundColor’,'white'); i
end :

function inp_Callback(hObject, eventdata, handles)

i % hObject handle to inp :
E 2 aventdata reserved - to be defined in a future version of MATLAB i
% handles structure with handles and user data
% --- Executes during obiject creation, after setting all properties. 3
1 function inp CreateFcn(hObject, eventdata, handles) :
: % hObject handle to inp ' A
4 % eventdata reserved - to be defined in a future version of MATLAR fj
? % handles empty - handles nct created unti) after all Createfcns !
' called :
: if ispc && isequal(get(hobject,‘BackgroundColor'),
| get (0, 'defaultUicontrolBackgroundColor')) g
: set (hObject, 'BackgroundColor’, 'white'); ;
] end :
% ——— Executes on button press in plavl. ;
function playl Callback(hObject, eventdata, handles} ;l
$ hObject handle to playl o
% aventdata reserved - to be defined in a future version of MATLAB o
% handles structure with handles and user data i
global x P
; global fs |
: global rfinal ' |
2 wavplay(rfinal (1:length(x}),£fs); o
, % ~-- Executes on button press in playe.]j
function play2 Callback({hObject, eventdata, handles) | -
% hObject handle to play? !
% eventdata reserved - to be defined in a future version of MATLAZR ; !
% handles structure with handles and user data | §
global u ;*i |
) global fs j g
60|Page i
5
f
|

PRt d O

wavplay(u, £s8);

% --- Executes on button press in original.

function original_Callback(hObject, eventdata, handles)

% hObject handle to original

% eventdata reserved - to be defined in a future version of MATLABR

% handles structure with handles and user data ;
global x 4
global fs :

wavplay{x, £8)i

3 --- Executes on button press in pushbuttonb.

function pushbuttonS_Callback(hObject, eventdata, handles)

% hObject handle to pushbuttond {(see GCBO)

s eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global x

white = 0.l1*rand(1l, (length(x)}}:

NFFT2 = 2“nextpow2(length(white));

Y2=fft (white,NFFTZ);

global fs

£f2 = fs/2*linspace(0,1,NFFT2/2);

fnew2=20*log10(abs(Y2(1:length(f2))));

fnew2 (1: (length (fnew2) /2})=0;

ql=ifft (Y2, NFFT2});

g2=abs (ql};

g3=max (g2} ;

gd=q2/q93;

global g5

q5=0.1*(real(q4(1:length(x))));

qlobal fs

pin=str2num(get(handles.freqn,'String'));

cpnoise =0.1%* cos(2*pi*pin*(O:length(x)—l)/fs)‘;

global u

u = x;

if (get(handles.pushbuttonS,'Value')
u=u+ qgb';

end

if (get(handles.pushbutton6,“Value')
u = u + cpnoise;

end

I
i

get (hObject, "Max'))

I
Il

get(hObject,‘Max'))

global fs

% saving the noisy file

wavwrite {u, fs, 'mynoisyfile.wav'); P
t=(0:length(u)-1)/fs; f
set(handles.axesS,'iandleVisibility','ON');

axes (handles.axesB) ;

axis on;

plot(t,u/(max(u)),‘Color',[0.3137 0,3137 0.3137));
grid on;

3 plotting frequecy spectrum
t=(0:length(x)~-1)/fs;

L=length{x);

61|Page

% fourier transform of signal

NEFT = Z~nextpow2{L};

y=f£ft (u,NFFT);

f = fs/2*linspace(0,1,NFFT/2);

omz2 = str2num(get(handles.order,‘String'));
be = str2num(get (handles.db, 'string'}):

fq = str2num(get(handles.cutoff,'string'));
be2=10~{be/20);

Fs2=length(f):

templ={fq*Fs2) /max(£f);
temp2=(pi*templ) /Fs2;

yelpha=(cos(pi/(2*om22)})/((cos(temp2/2))*(cosh((l/om22)*acosh(be2))));

set (handles.alpha, 'String', yelpha)
fnew=20*log10(abs(Y{l:length(f))));

set (handles.axes6, "HandleVisibility', "ON");
axes {handles,.axesé);
plot(f,fnew,'Color',[0.3137 0.3137 0.3137])):

grid on;

§ --- Executes on button press in pushbutton6.

function pushbuttonG_Callback(hObject, eventdata, handles)

% hObject handle to pushbuttont (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA}
global x

global fs

pin=str2num(get(handles.freqn,'String'));

cpnoise =0.1% cos (2*pi*pin* (0:length(x)-1)/fs)"';

global u

U = %;

length (u)

length{cpnoise)

if (get(handles.pushbuttonG,'Value')
u = X + cpnoise;

end

if (get(handles.pushbuttonS,'Value‘)
global g5
u=u+ gb";

end

global fs

It
1

get (hObject, "Max'})

Il
i

get (hObject, 'Max'))

% plotting freguecy spectrum
t=(0:length(x)}-1)/fs;
L=length (x);

% fourier transform of signal

NFFT = 2~nextpow2 (L);

Y=fft {u,NFFT});

f = fs/2*linspace (0, 1,NFFT/2};

omz22 = str2num(get(handles.order,'String'));
be = str2num(get(handles.db,'string'));

fq = str2num{get (handles.cutoff, 'string')]);
be2=10" (be/20};

Fs2=length{£f);

62|Page

XS

templ=(fg*Fs2)/max(f};

temp2=(pi*temp1)/F52;
yelpha=(cos(pi/(2*om22)))/((cos(tempZ/Zi)*(cosh((l/om22)*acosh(beZ))));
set (handles.alpha, 'String', yelpha)

fnew=20*log10(abs(Y(l:length(f))));
set(handles.axes6,'Handlevisibility‘,'ON');

axes (handles.axes6é};

plot (£, fnew, 'Color', [0.3137 0.3137 0.3137])):

grid on;

3 saving the noisy file

wavwrite (u, fs, 'mynoisyfile.wav'};
t=(0:length{u}-1)/fs;
set(handles.axesa,'HandleVisibility','ON');

axes (handles.axes8);

axis on;

plot(t,u/(max(u)),'Color',[0.3137 0.3137 0.3137]1):
grid on;

function freqn_Callback(hObject, eventdata, handles)
% hObject handle to freqgn (see GCBO)

¢ eventdata reserved - to be defined in & future version of MATLAB
% handles stiructure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of fregn as text

% str2double (get (hObject, '$tring')) returns contents of fregn as
a double

4 --- Executes during object creation, after setting all properties.
function freqn_preatchn{hObject, eventdata, handles)

% hObject handle to freqn (see GCBO;

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hobject,‘BacquoundColor'),

get(O,'defaultUicontrolBackgroundColor'})
set(hObject,'BackgroundColor','white');

end

 63|Page

3.2 TEST APPLICATION SOURCE CODE

clear all:
cle;
file=input {'Enter WAV filename : ',

's');
% reading a wave file
[x,fs)]=wavread(file);
t2=(0:length(x)-1}/fs;

%creating neise signal

neise = cos(2*pi*3*fs/8*(0:length(x)-1})/fs}';
! u = x + noise; i
: wavwrite (u, £s, 'mynoisyfile.wav');
cle;

% plot waveform
t=(0:length{u)-1)/fs; % times of sampling instants

% Create figure
figurel = figure('Color',[1 1 1]);

% Create axes

axesl = axes|(... : !
"FontName', 'Arial', ... [
'FontSize',9,...
'FontWeight', 'bold"', ... N
'¥Color', [0.2353 0.2353 0.2353],... 'j
'YColoxr', [0.2353 0,2353 0.2353],... A
'ZColor', {0.2353 0.2353 0.2353],... I
'Parent', figurel}); i

ylim(axesl, [-1 1]); ‘

title{axesl, 'Input Signal in Time Domain with Noise');

xlabel (axesl, "Time (s)}');

yvlabel {axesl, "'Bmplitude'};

box{axesl, ‘on');

grid(axesl, 'on'});

hold(axesl, 'all');

% Create plot

plotl = plot{...
t,u/max{u), ...
'Color’, [0.3137 0.3137 0.3137],...
'MarkerEdgeColor', [1 1 1},...
'Parent ', axesl);

% Create legend

legendl = legend(...
axesl, {'Waveform'}, ..
'FontName ', 'Arial', ...
'FontSize',9, ...
'FontWeight', 'bold’', ...
'"Orientation', "horizontal', ...
‘EdgeColer®, [1 1 1]); ; 1

PSE-Syp P

T T

]
|
!
]
1

L=length(x);

NFFT = 2*nextpowZ(L);

% do fourier transform of windowed signal
Y=Ffft {u, NFFT); ’

f = fs/2*linspace{0,1,NFFT/2);
fnew=20*log10(abs(Y(l:length(f))));
figqurel = figure;

% Create axes
axesl = axes(...
‘Color', (01 1],.
'FontAngle', 'italic',.
‘FontSize', 11, ...
'"FontWeight', 'bold", ...
'¥Color', (1 0 01,.
'yColor', {1 0 0),..
r9color', (1 0 01,.
'pParent', figurel);
xlabel (axesl, 'Time (38)'};
ylabel(axesl,‘Amplitude');
box (axesl, 'on'}:
grid(axesl,‘on‘);
hold(axesl, 'all');

% Create plot

plotl = plot{...
f, fnew, ...,
‘MarkerEdgeColor', [1 1 11,...
'Parent',axesl);

% {reate legend

legendl = legend(...
axesl, { 'Waveform'}, ...
‘Coleor', {1 1 O],..
‘FPontAngle’, 'italic', ...
'‘FontSize',11, .
'FontWeight', 'bold', ...
"Orientation', 'horizontal');

legend ('Spectrum’);
xlabel ('Freguency (Hz) ")
ylabel {'Magnitude {dB) ")
I=ifft (Y,NFFT);

% Filter Design Starits Here
b=100;

i=1;
alpha=1.7827;
freg=0;
Fs2=length{f);

65| Page

LE L i SEEEE

h=1;
p=1;
omegak=((2*a—l)*pi)/(2*m);
omegam=2*acos((cos(omegak))/((alpha*(cosh(l/m*acosh(b))))));
while (freq<Fs2)

om=2*pi*freq/(2*Fs2);

k=exp (j*om) ;

while (i<=m)

h=h* (k-exp (j*omegam(i)));
i=i+1l;

end

hl (p)=abs (h);

p=p+1;

freg=freq+l;

h=1;

i=1;
end
h2=(hl/max (hl));
h3=20*10gl0 (h2);
hold on;
plotif;ha, tetl)
mul=(Y(l:length(f))).*h2‘;
mul2=abs (mul);
mulnew=20*1ogl0(mul2);
% Create figure
figurel = figure;

% Create axes
axesl = axes(...
'‘Color', [0 1 11,.
'Fonthngle','italic‘,...
'FontSize',11, ..
'FontWeight', 'bold', ...
'¥Color',[1 0 01, .
'vYColoxr',[1 0 0),...
'7Color',[1 0 0], .
'parent', figurel);
xlabel (axesl, 'Time (8 ")
ylabel(axesl,‘Amplitude‘);
pox (axesl, 'on');
grid(axesl,‘on');
hold(axesl, "all');

% Create plot

plotl = plot(...
f,mulnew, ..
'MarkeridgeColor', [1 1 i
'Parent',axesl);

. Create legend

legendl = legend(...
axesl, { 'Waveform'}, ..
‘color',; [11 0)sv..
‘FontAngle', 'italic', ..
'FontSize',11l,..

66 |Page

iy 0 R R e e

ety U T TR

'FontWeight', 'beld!', ...
"Orientation', *horizeontal');

% plot{f,20*loglO(mulZz)};

hold on;

plot (£f,h3,'r+");

mul3=ifft (mul, NFFT);

muld=abs (mul3};

mulS5=max (muld};

mul6=muld /mulb;

% Create figqure

figurel = figure;

rmul=real (mul3(1l:length(x})):

% Create axes

axesl = axes(...
"Color', [0 1 1],.
'FontAngle', 'italic', ...
'FontSize',11,...
'FontWeight ', 'bold', ...
'XColor', [1°0 01,...
'YColor',[1 0 0],...
'ZColor', [1 0 031, .
'Parent’', figurel)

xlabel (axesl, 'Time (s}');

ylabel (axesl, 'Anplitude’);

box {axesl, 'on'); :

grid{axesl, 'on'});

hold{axesl, 'all'};

% Create plot i

plotl = plot{...
t,rmul/max{rmul}, ... ‘
'"MarkerFdgeColor', (1 1 1],... o
'Parent’',axesl);

% Create legend

legendl = legend(...
axesl, { 'Waveform'}, ...
"Color', [1 1 0],...
'FontAngle', 'italic', ..
'FontSize', 11,
"FontWeight', "bold', ... C
'"Orvientation', 'horizontal'); :

rfinal=rmul/ (max (rmul}); ;

wavwrite{rfinal{l:length(x)},fs, 'ksfinal.wav"'}; - G

clc; i

- 7 67|Page

| 4 DEPLOYMENT

4.1 SCREEN SHOTS |

Figure 36 : GUI Panel

68| Page

Figure 37 : Browsing an audio (wav) file

'6'9|Page

th white noise

: Speech signal w

Figure 38

.70|Pagc

untitledd

Figure 39 : Speech signal with constant pitch noise at 5000 Hz

71| Page

3
——

s 500 1000 2

OUTPUT SIGNAL
Amp
@)

‘Time 6) . frequencyir)

Figure 40 : Speech signal with white noise and constant pitch noise

72|Page |

Figure 41 : Final Signal Filtered using the filter response

7'3.|Page

S CONCLUSION

The application successfully removes the burst noise and attenuates the higher frequency
components of the white noise. The filter designed here can be realised practically and
can be used with applications for speech filtering. Digital filters can easily realize
performance characteristics far beyond what are practically implementable with analog
filters. Because of its finite impulse response characteristics it can be easily adopted for
mathematical calculations. The scope of this application can be extended for various

other filtering applications. The potential areas of extension are listed below

e The filter concept can be modified to give a high pass filter or band pass filter.

¢ Instances of constant pitch noise occurring in the voice signal can be easily
removed by multiple filtering using the same concept.

o It can be used as an anti-aliasing filter.

e It can be used for ‘destriping’ images by subsequent low pass and high pass
filtering.

¢ It can be used for limiting the frequency band of the luminance signal in a video

recorder.

74|Pag.c

6 BIBLIOGRAPHY

Books

Edward C. Jordan, Keith G Balmain, Electromagnetic Waves and Radiating
Systems, 2nd. Ed., Prentice-Hall Inc., 1968

John D. Kraus , Ronald J. Marhefka , Antenna for all applications, 3" Ed,,
McGraw-Hill Science/Engineering/Math; (November 12, 2001)

Alan V. Oppenheim, Ronald W. Schafer, John R. Buck, Discrete-Time Signal
Processing, 2" Ed, Prentice-Hall Inc,.2005

B. A. Shenoi, Introduction To Digital Signal Processing And Filter Design,
Wiley-Interscience (October 19, 2005)

References

Sunil Bhooshan and Vinay Kumar. Design Of Chebyshev FIR Filter Based On
Antenna Theory Approach

L. J. Karam and J. H. McClellan. Complex Chebyshev approximations for FIR
filter design. IEEE Trans. on Circuits and Systems II, 42(3):207--216, March
1995.]

X. Chen and T.W. Parks, Design of FIR Filters in the complex domain, IEEE
Trans. Acoust. ,Speech, Signal Processing ,’Vol. ASSP35 ,pp.144-153,Feb. 1987
D. Burnside and T.W. Parks, “Accelerated design of FIR Filter in the Complex
Domain,” in Proc. IEEE ICASSP 1993, pp.81-84, 1993,

Website

http://en.wikipedia.org
http://www.wolfram.com
http://mathworld.wolfram.com
http://www.dsprelated.com

http://www.mathswofk.com

75|Page

