ficwr we weitfir:

Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num. sP 02023 Call Num:
General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

¢ The loss of LRC book(s) must be immediately
“brought to the notice of the Librarian in writing.

—

Learning Resource Centre-JUIT

|

I

SP03023

DATA COMPRESSION TOOLKIT

By

ABHISHEK CHAUHAN -031414
GAURAYV AGRAWAL -031257
PULKIT AGARWAL -031413

MAY-2007

Submitted in partial fulfillment of the Degree of Bachelor of

Technology
y
DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING
JAYPEE UNIVERSITY OF INFORMATION
TECHNOLOGY-WAKNAGHAT
CERTIFICATE

This is to certify that the work entitled, “DATA COMPRESSION TOOLKIT” submitted

by Abhishek Chauhan, Gaurav Agrawal, Pulkit Agarwal in partial fulfillment for the

award of degree of Bachelor of Technology in COMPUTER SCIENCE AND

ENGINEERING of Jaypee University of Information Technology has been carried out

under my supervision. This work has not been submitted partially or wholly to any other

University or Institute for the award of this or any other degree or diploma.

ij:A
il
M¥. Ravindara Bhatt I
Lecturer : E
Department of CSE and I'T)
Jaypee University Of Information Technology fi

1|Page

ACKNOWLEDGEMENT

In Accordance with our final project submission of 8" Semester (B.Tech Computer Science
& Engg.), we were assigned to study and research on ongoing compression algorithms and
making Data Compression Toolkit for same.

We would like to express our extreme gratitude to

Mr. Ralvindara Bhatt
Lecturer
Department of CSE and 1T,
Jaypee University Of Information Technology
For guiding us, being extremely helpful, patient and always being there whenever we were in
doubt. Without his help, support and constant supervision, we would have never been able to

complete our final project assignment successfully.

2|Page

[
v

CONTENTS

CERTIFICATE
ACKNOWLEDGEMENT

LIST OF TABLES

LIST OF FIGURES

ABSTRACT

INTRODUCTION

1.1 Preliminaries

1.2 What is data compression?
1.3 Measure of performance
INFORMATION THEQRY
ENTROPY

3.1 Joint entropy

3.2 Conditional entropy
LOSSY AND LOSSLESS COMPRESSION
4.1 Lossy compression

4.2 Lossless compression

FILE FORMAT
5.1 Video formats
5.1.1 MPEG file structure

5.2 Audio formats

5.2.1 MP3 file structure
5.3 Image formats

5.3.1 Bmp file structure
54 Text formats

5.4.1 Text file structure
COMPRESSION TECHNIQUES
6.1 Lossless compression

6.1.1 Huffman coding

6.1.2 Arithmetic coding

6.1.3 Lempel-Ziv-Welch {(LZW) Encoding
6.2 Lossy compression

6.2.1 Vector quantization

3]

15
16
17

6.2.2 Fractal compression
6.2.3 Wavelet transform
SELECTION OF TECHNIQUE
DESIGN OF APPLICATION
8.1 Statement of purpose
8.2 Context of application
8.3 Event list
8.4 Cartesian Hierarchy
8.5 Data flow diagram
8.5.1 Compression
8.5.2 Decompression
IMPLEMENTATION DETAILS
9.1 Creation of Huffman tree

9.2 Compression

9.3 Decompression

SCREEN SHOTS AND TESTING CASES
10.1 Textfile

10.2 Image file

10.3 Audio file

10.4 Video file

RESULT OF TEST CASES AND COMPRESSION RATIO
COMPARISON OF COMPRESSION RATIO
TIME COMPARISON

LIMITATIONS AND [ISSUES

141 Platform issue

14.2 Algorithm issue

14.3 Performance issue

144 Miscellaneous issue
CONCLUSION

FUTURE SCOPE OF WORK
BIBLIOGRAPHY

4|

LIST OF TABLES

5.1 DETAIL ABOUT THE HEADER CONTENTS

[i.1 COMPRESSION RATIO-1
1.2 COMPRESSION RATIQ-2

21
65
65

.. Y
Sl.i W

[.2.1
4.1
5.1.1
5.1.2
5.4.1
6.2.2.1
8.1
8.2
8.4
8.5
9.1.1
9.2.1
9.3.1
10.1
10.2
10.1.1
10.1.2
10.1.3
10.1.4
10.1.5
10.1.6
10.2.1
10.2.2
10.2.3
10.2.4
10.2.5
10.2.6

LIST OF FIGURES

Compression and reconstruction
Compression and decompression
MPEG file structure

MP3 file structure

Text file structure

Haar Wavelet

Context Diagram

Cartesian Hierarchy

Data flow diagram for compression
Data flow diagram for decompression
Flowchart of creation of Huffman tree
Flowchart for compression

Flowchart for decompression
Graphical user interface of application
Error

Compression of text file (.doc)
Original size of text file

Size of compressed file
Decompression of compressed file
Size of decompressed file
Comparison between original and compressed file
Compression of Image file (.bmp)
Original size of image file

Size of compressed file
Decompressien of compressed file
Size of decompressed file

Compression of Image file (.jpg)

6]

10.2.7
10.2.8
10.2.9
10.2.10
10.2.11
10.3.1
10.3.2
10.3.3
10.3.4
-10.3.5
10.3.6
10.3.7
10.3.8
10.3.9
10.3.10
10.3.11
10.4.1
10.4.2
10.4.3
10.4.4
10.4.5
10.4.6
12.1
12.2
2.3
12.4
13.1
13.2
13.3
13.4

Original size of image file

Size of compressed file

Decompression of compressed file

Size of decompressed file

Comparison between original and compressed file
Compression of Audio file (.wav)

Original size of audio file

Size of compressed file

Decompression of compressed file

Size of decompressed file

Compression of Audio file (.mp3)

Original size of audio file

Size of compressed file

Decompression of compressed file

Size of decompressed file

Comparison between original and compressed file
Compression of Video file (.avi)

Original size of video file

Size of compresséd file

Decompression of compressed file

Size of decompressed file

Comparison between original and compressed file
Comparison of Compression ratio text file
Comparison of Compression ratio image file
Comparison of Compression ratio audio file
Comparison of Compression ratio video file
Time comparison of text file

Time comparison of image file

Time comparison of audio file

Titme comparison of video file

50
51
51
52
53
54
54
55
55
56
57
57
58
58
59
60
6l
61
62
62
63
64
66
66
67
67
68
68
69
69

TlPage

ABSTRACT

Compression is one of the most important aspect that plays not only an important role in
today’s Fast growing world of technology but has also become a necessity for all kind of
business organizations even if they are a small co-operate serving only hand fuli of people.

Compression not only plays an important role in preserving the data but also lays an
empbhasis on increasing the performance of various systems in various fields.

The professionals do not only do compression but various home users also utilize it.
There are many commercial software available for performing both compression and
decompression depending upon the user’s need. As more and more data is being flooded in

various organizations everyday compriession has become really crucial and critical.

8||'. G

1 Introduction to data compression

1.1 Preliminaries

-Computers process miscellaneous data. Some data, as colures, tunes, smells, pictures, voices,
are analogue. Contemporary computers do not work with infinite-precise analogue values, so
we have to convert such data to a digital form. During the digitalisation process, the infinite
number of values is reduced to a finite number of quantised values. Therefore some
information is always lost, but the targer the target set of values, the less information is lost.
Often the precision of digitalisation is good enough to aliow us neglecting the difference
between digital version of data and their analogue original. There are also discrete data, for
example written texts or databases contain data composed of finite number of possible
values. We do not need to digitize such types of data but only to represent them somehow by
encoding the original values. In this case, no information is lost,

Regardless of the way we gather data to computers, they usually are sequences of elements.
The elements come from a finite ordered set, called an alphabet. The elements of the
alphabet, representing all possible values, are called symbols or characters. One of the
properties of a given alphabet is its number of symbols, and we call this number the size of
the alphabet. The size of a sequence is the number of symbols it is composed of.

The size of the alphabet can differ for various types of data. For a Boolean sequence the
alphabet consists of only two symbols: false and true, representable on | bit only. For typical
English texts the alphabet contains less than 128 symbols and each symbol is represented on
7 bits using the ASCH code. The most popular code in contemporary computers is an 8-bit
code: some texts are stored using the 16-bit Unicode designed to represent all the alphabetic
symbols used worldwide. Sound data typically are sequences of symbols, which represent
temporary values of the tone. The size of the alphabet to encode this data is uéua]ly 2% 21 or
2*. Picture data typically contain symbols from the alphabet representing the colures of
image pixels. The colour of a pixel can be represented using various coding schemes. We
mention here only one of them. the RGB code that contains the brightness of the three
components red, green, and blue. The brightness of each component can be represented, for

example, using 28 different values, so the size of the alphabet is 2°* in this case.

9l -

A sequence of symbols can be stored in a file or transmitted over a network. The sizes of
modern databases, application files, or multimedia files can be extremely large. Reduction of
the sequence size can save computing resources or reduce the transmission time. Sometimes
we even would not be able to store the sequence without compression. Therefore the

investigation of possibilities of compressing the sequences is very important.

1.2 What is data compression?

A sequence over some alphabet usua]ly' exhibits some regularities, what is necessary to think
of compression. For typical English texts we can spot that the most frequent letters are ¢, t, a,
and the least frequent letters are g, z. We can also find such words as the, of, to frequently.
Often also longer fragments of the text repeat, possibly even the whole sentences. We can
use these properties in some way, and the following sections elaborate this topic.

A different strategy to compress the sequence of picture data is needed. With a photo of night
sky we can still expect that the most frequent colures of pixels is black or dark grey. But with
a generic photo we usually have no information what color is the most frequent. In general,
we have no a priori knowledge of the picture, but we can find regularities in it. For example,
colures of successive pixels usually are similar, some parts of the picture are repeated.

Video data are typically composed of subsequences containing the data of the successive
frames. We can simply treat the frames as pictures and compress them separately, but more
can be achieved with analysing the consecutive frames. What can happen in a video during a
small fraction of a second? We can assume that successive video frames are often similar.
We have noticed above that regularities and similarities often occur in the sequences we want
to compress. Data compression bases on such observations and attempts to utilise them to
reduce the sequence size. For different types of data there are different types of regularities
and similarities, and before we start to compress a sequence, we should know of what type it
is. One more thing we should mark here is that the compressed sequence is useful only for
storing or transmitting, but not for a direct usage. Before we can work on our data we need to
expand them to the original form. Therefore the compression methods must be reversible.
The decompression is closely related to the compression, but the latter is more interesting

because we have to find the regularities in the sequence,

0] e

A EIarE

fricoeas

EE 1 1] Ay

LY T T

I “/; 3
A /T‘L'L
\\‘\\‘C-".-- ._.‘r-,,)'\ -
LRI T Qj\‘\\ o ""n_""fa-,r : B RS AT [TV 0 g Pt e
It) Ir#‘.
YOOV REDEVE AL T, UTUVRETE Ve R B
O AL e PLoLn
LT U PLVEaL Y AT CINHITIRN TR
T Pus Ry TWOILE R
Orrivinal Reconstrocted

Fig 1.2.1 Compression and reconstruction

1.3 Measures of Performance

A compression algorithm can be evaluated in a number of different ways. We could measure
the relative complexity of the algorithm, the memory required to implement the algorithn,
how fast the algorithm performs on a given machine, the amount of compression, and

how closely the reconstruction resembles the original,

A very logical way of measuring how weli a compression algorithm compresses a given set
of data is to look at the ratio of the number of bits required to represent the data before
compression to the number of bits required to represent the data after compression. This ratio
is called the compression ratio. Suppose storing an image made up of a square array of
256%256 pixels requires 65,536 bytes. The image is compressed and the compressed version
requires 16,384 bytes. We would say that the compression ratio is 4:1. We can also represent
the compression ratio by expressing the reduction in the amount of data required as a
percentage of the size of the original data. In this particular example the compression ratjo

calculated in this manner would be 75%.

|

|
, .]1 'l:.|_;_' S j
|

!

Another way of reporting compression performance is to provide the average number of bits
required to represent a single sample. This is generally referred to as the rate. For example, in
the case of the compressed i image described above, if we assume 8§ bits per byte (or pixel),
the average number of bits per pixel in the compressed representation is 2, Thus, we would
say that the rate is 2 bits per pixel. -

In lossy compression, the reconstruction di‘ffers from the original data. Therefore, in order to
determine the efﬁciency of a compression algorithm, we have to have some way of
quantifying the difference. The difference between the original and the reconstruction is
often called the distortion. Lossy techniques are generally used for the compression of data
that originate as analog signals, such as speech and video. In compression of speech and
video, the final arbiter of quality is human. Because human responses are difficult to model
mathematically, many approximate measures of distortion are used to determine the quality
of the reconstructed

‘waveforms.

Other terms that are also used when talking about differences between the reconstruction and
the original are fidelity and quality. When we say that the fidelity or quality of a
reconstruction is high, we mean that the difference between the reconstruction and the
original is small. Whether this difference is a mathematical difference or a perceptual

difference should be evident from the context.

12/Page

r

2 Information theory
Information is constantly send and received the form of text, speech, and images. Information
is an clusive non-mathematical quantity that cannot be precisely defined, captured, and

measured.

The standard dictionary definitions of information are as follows

* Knowledge derived from study, experience, or instruction.
* Knowledge of a specific event or situation; intelligence;
* A collection of facts or data.

* The act of informing or the condition of being informed, communication of knowledge.

The importance of information theory is that it quantifies information. It shows how to
measure information, so that we can answer the-question “how much information is included
in this piece of data?” with a precise number! Quantifying information is based on the

observation that the information content of a message is equivalent to the amount of surprise

In the message. If [tell you something that you already know (for example, “you and I work

here™), 1 haven’t given you any information. If I tell you something new (for example, “we
both have got an increase”), | have given you some information. If | tel] you something that
really surprises you (for example, “only [have got an increase”), I have given you more
information, regardless of the number of words | have used, and of how you feel about my

information.

13| Paye

3 Entropy

Shannon borrowed the definition of entropy from statistical physics to capture the notion of
how
much information is contained in a and their probabilities. For a set of possible messages, S

Shannon defined entropy as,

. |
His = }_‘ [y low,

TS

EYRY

where is p(s) the probability of message. The definition of Entropy is very similar to that in
statistical physics—in physics S is the set of possible states a system can be in and p(s) is the

probability the system is in state s.

Getting back to messages, if we consider the individual messages s belonging to S, Shannon

defined the notion of the self-information of a message as

. !
slot = log, ——

- 'l”': -~ l

This self-information represents the number of bits of in-formation contained in it and,
roughly speaking, the number of bits we should use to send thét message. The equation says
that messages with higher probability will contain less information (e.g., a message saying
that it will be sunny out in LA tomorrow is less informative than one saying that it is going to

snow).

The entropy is simply a weighted average of the information of each message, and therefore

the average number of bits of information in the set of messages. Larger entropies represent

l4|Pave

more information, and perhaps counter-intuitively, the more random a set of messages (the
more even the probabilities) the more information they contain on average. Here are some

examples of entropies for different probability distributions over five messages.

MR = e 025 10025, 00025 1, 125}
o= 4. un2n |u'-_'._. L2 2 . fu_u_,N
= |-P - U.I_.“I
= M
Plst = 25 0 25 G 20 1)
‘= uir. A N 1 A lu._l_';_;..\:
= a4 1.5
—
I L N VT S R VR TP TR VTN R PR
I
i =75 =« ll..»g_';i.i-_-;“l b G2 - o, 1O
= {3+ |
= {3

Note that the more uneven the distribution, the lower the Entropy.

In particular if message p(4) and p(B) are independent, the probability of sending one after

the other is p(4) p(B) and the information contained in them is

| 1 |
Wy =l — = |y — g — = /[. | IWENE
' ! gl Vgl 44 ’L*,ulj_l)_r_ Topion ot ot

The logarithm is the simplest unction that has this property.

3.1 Joint entropy

The joint entropy of two discrete random variables X and Y is merely the entropy of their
pairing: (X, ¥). this implies that if X and Y are independent, then their joint entropy is the sum

of their individual entropies.

IS|Page

IEE——

For example, if (X, 1) represents the position of a chess piece -— X the row and ¥ the column,

then the joint entropy of the row of the piece and the column of the piece will be the entropy

of the position of the piece.

X Y) = Exy[-log plroy)| = - Z;)(;;r,y) log plr. y)

E7

Despite similar notation, joint entropy should not be confused with cross entropy.

3.2 Conditional entropy

The conditional entropy of X given random variable ¥ (also called the equivocation of ¥
about 1) is the average conditional entropy over ¥:

HXY) = Ev[II(Xip)| = - Zp(y) Z plxliy) log p(aly) = Zp(.'r, y) log _My)
oy

ey re X })(.T, U) .

Because entropy can be conditioned on a random variable or on that random variable being a
certain value, care should be taken not to confuse these two definitions of conditional
entropy, the former of which is in more common use. A basic property of this form of

conditional entropy is that: , ,{:3

(XYY = (X, Y 1Y), |

16| Page

4 Lossy and lossless compression

4.1 Lossy compression

The assumed recipient of the compressed data influences the choice of a compression
‘method. When we compress audio data some tones are not audible to a human because our
senses are imperfect. When a human will be the only recipient, we can freely remove such
unnecessary data. Note that after the decompression we do not obtain the original audio data,
but the data that sound identically. Sometimes we can also accept some small distortions if it
entails a significant improvement to the compression ratio. It usually happens when we have
a dilemma: we can have a little distorted audio, or we can have no audio at all because of
dala storage restrictions. When we want to compress picture or video data, we have the same
choice—we can sacrifice the perfect conformity to the original data gaining a tighter
compression. Such compression methods are called lossy, and the strictly bi-directional ones
are called lossless. |

The lossy compression methods can achieve much better compression ratio than lossless
-ones, It is the most important reason for using them. The gap between compression results
for video and audio data is so big that lossless methods are almost never employed for them.
Lossy compression methods are also employed to pictures. The gap for such data is also big
but there are situations when we cannot use lossy methods. Sometimes we cannot use lossy
methods to the images because of the law regulations. This occurs for medical images as in
many countries they must not be compressed loosely. Roughly, we can say that lossy

compression methods may be used to data that were digitised before compression.

4.2 Lossless compression

-When we need certainty that we achieve the same what we compressed after decompression,
lossless compression methods are the only choice. They are of course necessary for binary

data or texts (imagine an algorithm that could change same letters or words). It is also

17|Page

sometimes better to use lossless compression for images with a small number of different
colours or for scanned text,

The rough answer to the question when to use lossless data compression methods is: We use
them for digital data, or when we cannot apply lossy methods for some reasons.

This dissertation deals with lossless data compression, and we will not concern lossy
compression methods further. From time to time we can mention them but it will be strictly

denoted. If not stated otherwise, further discussion concerns lossless data compression only.

—— 3 Compression Decompression |~

v

Fig. 4.1 Compression and Decompression

Where X is Original file
Y is Compressed file

X" 1s Uncompressed file

If X=X" then. Lossless compression
p

If X # X"~ then, Lossy compression

181 wae

5 File format

A [ile formal is a particular way to encode information for storage in a file. Since a disk
drive, or indeed any computer storage, can store only bits, the computer must have some way
of converting information to Os and Is and vice-versa. There are different kinds of formats
for different kinds of information. Within any format type, e.g., word processor documents,

there will typically be several different formats. Sometimes these formats compete with each

other,

Types of file formats

Video
Audio
Image

Text

5.1 Video formats

A video format describes how one device sends a video pictures to another device, such as
the way that a DVD player sends pictures to a television or a computer to a monitor. More
formally, the video format describes the sequence and structure of frames that create the
moving video image. Video formats are commonly known in the domain of commercial
broadcast and consumer devices; most notably to date, these are the analog video formats of
NTSC, PAL, and SECAM. However, video formats also describe the digital equivalents of
the commercial formats, the aging custom military uses of analog video (such as RS-170 and
-RS-343), the increasingly important video formats used with computers, and even such
offbeat formats such as color field sequential..Video formats were originally designed for
display devices such as a CRTs. However, because other kinds of displays have common
source material and because video formats enjoy wide adoption and have convenient
organization, video formats are a common means to describe the structure of displayed visual

information for a variety of graphical output devices.

19| Page

8.1.1 MPEG file structure

The file structure is as follows:

D’ack start code l Pack header | Packet Packet | ..o Packet Fnd code

I Packet start code | Packet header l Packet data

Fig. 5.1.1 MPEG File structure

5.2 Audio formats

An audio format is a medium for storing sound and music. The term is applied to both the
physical medium and the format of the content - in computer science it is often limited to the
audio file format, but its wider use usually refers to the physical method used to store the
data. Music is recorded and distributed using a variety of audio formats, some of which store

‘additional information.

5.2.1 MP3 Audio Frame structure

MPEG-3 Audio Frame

Sync Word Frame Header Side Info Main data Ancillary Data

Fig. 5.2.1 MP3 structure

Sync Word is: OxFFF (1111 TTEL T111)
Frame Header: [8 bit structure

Side Info: variable bit length structure

~ Main Data: compressed sound packets.

Ancillary Data: Ignored by decoder, for inserting user defined data into the bit stream, e.g.

Song Title etc. (NB. not ID3 tags).

Here is a presentation of the header content. Characters from A to M are used to indicate

different fields. In the table below, you can see details about the content of each field.

AAAAAAAA AAABBCCD EEEEFFGH ITJJKLMM

A Frame sync (all bits set) j
B MPEG Audio version 1D
C Layer description
D Protection bit
E Bit rate index
Sampling rate frequency index (values are in Hz)
G Padding bit
H Private bit. It may be freely used for specific needs of an application.
I Channel Mode

Table 5.1: Detail about the header contents

02%

53 Image formats e,

Image file formats provide a standardized method of organizing and storing image data. This
article deals with digital image formats used to store photographic and other image
information. Image files are made up of either pixel or vector (geometric) data, which is
rasterized to pixels in the display process, with a few exceptions in vector graphic display.
The pixels that comprise an image are in the form of a grid of columns and rows. Each of the

pixels in an image stores digital numbers representing brightness and colo

21 |Page

5.3.1 BMP file format

BMP is a standard file .format for computers running the Windows operating system. The
format was developed by Microsoft for storing bitmap files in a device-independent bitmap
(DIB) format that will allow Windows to display the bitmap on any type of display device.
The term "device independent” means that the bitmap specifies pixel color in a form
independent of the method used by a display to represent color.

Since BMP is a fairly simple file format, its structure is pretty straightforward. Each bitmap

file contains:

A bitmap-file header: this contains informationﬁbout the type, size, and layout of a device-
independent bitmap file.

A bitmap-information header which specifies the dimensions, compression type, and color
-for'mat for the bitmap.

A colour table, defined as an array of RGBQUAD structures, contains as many elements as
there are colours in the bitmap. The colour table is not present for bitmaps with 24 color bits
because each pixel is represented by 24-bit red-green-blue (RGB) values in the actual bitmap
data area.

An array of bytes that defines the bitmap bits. These are the actual image data, represented by
consecutive rows, or "scan lines," of the bitmap. Each scan line consists of consecutive bytes

representing the pixels in the scan line, in left-to-right order.

BMP files always contain RGB data. The file can be:

I-bit: 2 colours (monochrome) |

4-bit: 16 colours

8-bit: 256 colours.

24-bit: 16777216 colours, mixes 256 tints of Red with 256 tints of Green and Blue.

22| Pavce

5.4 Text Formats

Basic text files contain data which is basically written in a language. The compression is
achieved on various types of text files by applying various algorithms on various parameters

-such as repetition, ansii codes etc.

5.4.1 Text File Structure

A text file is simply a stream of characters.
¢ They contain human-readable text.
® The characters can represent numbers, words, or anything else,

e People can read and write them using a text editor.

There is no structure to a text file. People see text as having structure, though:
e pages, of
» lines, of

e characters

This structure by giving some characters special meanings:
e EOL -end of line

e EOP - end of page

¢ EOF -endof file

23 e

text Tile
File bady EOF I
!1
* g
Page :
M‘-h"‘"-\ I
|
Page body EOP]
|
-
Line
Line body EQL
x
Character
Fig. 5.4.1 Text file structure |
|
".
i
I
I‘
i
|
I
i} |
i
24| Paue

6 Major techniques used in lossless and lossy compression

Lossless compression

Statistical techniques:

¢ Huffman coding.
* Arithmetic coding, E{I

Dictionary techniques:

o LZW,LZ77. |

!
i
|
Lossy compression ”
l‘
Major techniques: rf«:
"
* Vector Quantization. "!
* Wavelets.

!
¢ Fractal transforms.

- ' 25| Page

6.1 Lossless compression

6.1.1 Huffman coding

The Huffman compression algorithm is named after its inventor, David Huffiman, formerly a
professor at MIT.
Huffman compression is a lossless compression algorithm that is ideal for compressing text

or program files. This probably explains w]ﬁy it is used a lot in compression programs.

How Huffman compression works
Huffman compression belongs into a family of algorithms with a variable codeword length,
That means that individual symbols (characters in a text file for instance) are replaced by bit
sequences that have a distinct length. So symbols that occur a lot in a file are given a short
sequence while other that are used seldom get a -Ionger bit sequence.
A practical example will show you the principle: Suppose you want to compress the
following piece of data:
| ACDABA
Since these are 6 characters, this text is 6 bytes or 48 bits long. With Huffman encoding, the
file is searched for the most frequently appearing symbols (in this case the character 'A’
occurs 3 times) and then a tree is build that replaces the symbols by shorter bit sequences. In
this particular case, the algorithm would use the following substitution table: A=0, B=10,
C=110, D=111. If these code words are used to compress the file, the compressed data look
like this:

01101110100

This means that 11 bits are used instead of 48, a compression ratio of 4 to | for this particular
file.
Huffman encoding can be further optimized in two different ways:
« Adaptive Huffman code dynamically changes the code words according to the change
of probabilities of the symbols.
« Extended Huffiman compression can encode groups of symbols rather than single

symbols.

26 Pz

6.1.2 Arithmetic Coding

Arithmetic coding is also a kind of statistical coding algorithm similar to Huffman coding.
However, it uses a different approach to utilize symbol probabilities, and performs better
than Huffman coding. In Huffman coding, optimal codeword length is obtained when the
symbol probabilities are of the form (1/2) ¥, where x is an integer. This is because Huffman
ccoding assigns code with an integral number of bits. This form of symbol probabilities is rare
in practice. Arithmetic coding is a statistical coding method that solves this problem. The
code form is not restricted to an integral number of bits. It can assign a code as a fraction of a
bit. Therefore, when the symbol probabilities are more arbitrary, arithmetic coding has a
better compression ratio than Huffman coding. In brief, this is can be considered as grouping
input symbols and coding them into one long code. Therefore, different symbols can share a
bit from the long code. Although arithmetic coding is more powerful than Huffman coding in
compression ratio, arithmetic coding requires more computational power and memory.
Huffman coding is more attractive than arithmetic coding when simplicity is the major

concern.

0.1.3 LZW coding

LZW is named after Abraham Lempel, Jakob Ziv and Terry Welch, the scientists who
developed this compression algorithm. It is a lossless 'dictionary based' compression
algorithm. Dictionary based algorithms scan a file for sequences of data that occur more than
once. These sequences are then stored in a dictionary and within the compressed file,
references are put where-ever repetitive data occurred. This compression algorithm maintains
its dictionary within the data themselves.

Suppose you want to compress the following string of text: the quick brown fox jumps over
the lazy dog. The word 'the' occurs twice in the file so the data can be compressed like this:
the quick brown fox jumps over << lazy dog. in which << is a pointer to the first 4 characters

‘in the string,.

27 1 Page

'In 1978, Lempel and Ziv published a second paper outlining a similar algorithm that is now
referved to as LZ78. This algorithm maintains a separate dictionary.

Suppose you once again want to compress the following string of text: the quick brown fox
Jumps over the lazy dog. The word 'the' occurs twice in the file so this string is put in an
index that is added to the compressed file and this entry is referred to as *. The data then look

like this: * guick brown fox jumps over * lazy dog.

How LZW works

LZW compression replaces strings of characters with single codes. It does not do any
analysis of the incoming text. Instead, it just adds every new string of characters it sees to a
table of strings. Compression occurs when a single code is output instead of a string of
characters.

The code that the 1.LZW algorithm outputs can be of any arbitrary length, but it must have
more bits in it than a single character. The first 256 codes (when using eight bit characters)
are by default assigned to the standard character set. The remaining codes are assigned to
strings as the algorithm proceeds. The sample program runs as shown with 12 bit codes. This

means codes 0-255 refer to individual bytes, while codes 256-4095 refer to substrings.

Advantages and disadvantages

LZW compression works best for files containing lots of repetitive data. This is often the
case with text and monochrome images. Files that are compressed but that do not contain any
repetitive information at all can even grow bigger!

LZW compression is fast.

28 |

6.2 _ Lossy compression

6.2.1 _Vector quantization 3

Vector Quantization (VQ) is a lossy compression method. It uses a codebook containing i
pixel patterns with corresponding indexes on each of them. The main idea of VQ is to |
represent arrays of pixels by an index in the codebook. In this way, compression is achieved i‘l
because the size of the index is usually a small fraction of that of the block of pixels. The [
main advantages of VQ are the simplicity of its idea and the possibie efficient l
implementation of the decoder. Moreover, VQ is theoretically an efficient method for image E{| !
compression, and superior performance will be gained for large vectors. However, in order to fl |
use large vectors, VQ becomes complex and requires many computational resources (e.g. |
memory, computations per pixel) in order to efficiently construct and search a codebook. |
More research on reducing this complexity has to be done in order to make VQ a practical i
image compression method with superior quality,
[n data compression, vector quantization is a quantization technique often used in lossy data AL
compression in which the basic idea is to code or replace with a key, values from a

multidimensional vector space into values from a discrete subspace of lower dimension.

6.2.2 Wavelet compression

Wavelets are functions defined over a finite interval. The basic idea of the wavelet transform
1S 1o represent an arbitrary function f(x) as a lincar combination of a set of such wavelets or
basis functions. These basis functions are obtained from a single prototype wavelet called the

mother wavelet by dilations (scaling) and transiations (shifts). H‘ *

The purpose of wavelet transform is to change the data from time-space domain to time- I

frequency domain which makes better compression results. g

=

~ 290z i

The simplest form of wavelets, the Haar wavelet function (see Figure 4) is defined as:

O otheingse

A
Y .
!:
! ;
|
T >
1 T

Fig 6.2.2.1 Haar Wavelet

The following is a simple example to show how to perform Haar wavelet transform on four
Sample numbers. Assume we have four numbers

X(0) = 1.2x(1) = 1.0x(2) =-1.0x(3) = -1.2.

Let us perform Haar wavelet transform on these four numbers.

vty T L1 o 0w T 22T | |

S i I | . _

il ! Lo—1 0 00 xib VU }j

= " =, .]i:

|00 1L NIy 22 [

YRS o o 1 - lJ' vidy|D 0.2 |

Notice we can always do inverse transform from x to y: I

30 .

N0y Lo o v
BRICT I AN Bt S USRS NN
..‘-.'l.:]lzj. SRR B l?‘u.’l
WIRTI G0 L =1 Ay

I 0.2 is below our quantization threshold, it wiil be replaced by 0.

Then, reconstructed x will be [1.1, 1.1, <11, -1.1].

After first transform, we keep y(7) and y(3) at the finest level and iterate the transform on

y(0) and 1(2) again.

z2(0) = y(0) + w(2) = Oand z(2) = y(Q) — y(2) = 4.4.

Those four numbers become [0, 0.2, 4.4, 0.2]. After quantization, they could be [0, 0, 4, 0],

which are much easier to be compressed.

0.2.3 _ Fractal compression

The application of fractals in image compression started with M.F. Barnsley and A. Jacquin.
Fractal image compression is a process to find a small set of matlilemalical equations that can
.describe the image. By sending the parameters of these equations to the decoder, we can
reconstruct the original image. In general, the theory of fractal compression is based on the
contraction mapping theorem in the mathematics of metric spaces. The Partitioned Iterated
Function System (PIFS). which is essentially a set of contraction mappings. is formed by
analyzing the image. Those mappings can exploit the redundancy that is commonly present
in most images. This redundancy is relfated to the similarity of an image with itself, that is,
part 4 of a certain image is similar to another part B of the image, by doing an arbitrary
number of contractive transformations that can bring 4 and B together. These contractive
transformations are actually common geometrical operations such as rotation, scaling,

skewing and shifting. By applying the resulting PIFS on an initially blank image iteratively,

we can completely regenerate the original image at the decoder. Since the PIFS often consists

31 Ii’ i

of a small number of parameters, a huge compfession ratio (e.g. S00 to 1000 times) can be
achieved by representing the original image using these parameters. However, fractal image
compression has its disadvantages. Because fractal image compression usually involves a
‘large amount of matching and geometric operations, it is time consuming. The coding

process is so asymmetrical that encoding of an image takes much longer time than decoding.

2jPave

T e e RS S+ ot T

7 Selection of technique

Since our main objective was to implement lossless compression and decompression. We
implemented Huffman compression in developed application. Huffman compression
algorithm is one of the oldest compression algorithm. All the other compression algorithms
are derived from it. The time and space complexity of Huffman compression algorithm is
slightly less as compared to all other lossless comptression algorithms. The implementation of
Huftman algorithm is less complex as compared to other lossless algorithms and the results

are quite optimal as compared to other lossless compression algorithms.

33

8 Design of application

), e

8.1 Statement of Purpose

The Data Compression Toolkit facilitates the compression and decompression of any file.

The compression and decompression is done on two basic parameters: algorithin complexity

and amount of compression.

8.2 Context of the Application

Environment: User who acts as a controller and inputs the required inputs for the

applicationto work. The application responds to the user by showing a status report.

Data cafmpression toolkit 56 ncompressed file
send.edmpressed file

user 3
1

’ 2) . user
request for compressi a file

request for decompressian of a file

Fig 8.1 Context diagram

8.3 Event list

* Send file for compression (Flow Event)
* Send file for decompression (Flow Event)
. * Receive compressed/encoded file (Flow Event)

* Receive decompressed/decoded file (Flow Event)

34

[

‘8.4 Cartesian Hierarchy

1
Data
compress
ion toolkit
send file for send file for receive decgenflzep;essed
compression decompression compressed file P

file

Fig. 8.2 Cartesian hierarchy

8.5 Data flow diagram

Data Flow diagrams which are shown below are totally in consideration to the GUI of

designed application. The internal details of the compresston algorithm will be explained

later on in the document.

35 | o iy

1 |

8.5.1 Compression

specify location

P T
D

Eéady for action

A
=
/_entéred by user

if not entered

linked to compile application

- '/

<

perfdrme compressyep—— - - -

output

N

o

Fig.8.4 Data flow diagram fou

grror message

compression riot succhiul

- compression

36 |

»

8.5.2 Decompression

il
Is - -.\-‘

) . i
specify location Vi
& ’ 7 i
|
\l'\-, i;r[
réady for action i3

3 ! J

A I

b

Z-entered by user : ':
if not entered

$ linked {o compiled application
. decompression not suEZeful
Derforion . .

output

~

“
defompressed filp

Fig..8.5 Data flow diagram for de-compression

370y

9.1

Implementation Details

Creation of Huffman tree

Start

!

Scan elements ang
count frequency

sort elements in

descending arder

depending upen
frequency

painter is reefed to
lask memory location

Two elements
having lowest
frequency become
child nodes

Assign parent node
whose frequency is
sum of two child

nodes
scan next ne Check all
element having ——— elements
lowest frequency are scanned
decrement
pointer
‘ yes
scan node o
b} es
" if node is y assign Q to
assign 1 to - lift child the branch

the branch

‘——’ move to next 4—|

node

\

all nodes no

scanned

k yes

Assign binary
code each leaf
node

End

Fig 9.1.1 Flowchart of creation of Huffman tree

38 |

9.2 Compression

start

l

Get Huffman
tree

pointer points to
beginning element
of file

Scan elements

of file 4

search for
Huffman code

pointer points

to next element

write Huffman

code in output
file

increment
pointer

All elements
scanned

#yes

End

Fig 9.2.1 Flowchart for compression

39|

9.3 Decompression

start

'

Get Huffman

Tree i
ol
I
A
" ‘
il
II‘
o
no Find the match ;}_j".p;i
Search along «—> element for - i
with next bit corresponding ! o
Huffrman code 1
yes
’ _ Write element
in output file ,
increment o il
pointer i g‘ ;
i
|
All Huffman no g
code ~—————»Scan next bit o
Matched ol
ol
yes |
|
End _ : IE
[in
B
Fig 9.3.1 Flowchart for decompression || L.
B
b
i i

40 e Ll
|

10 Screen shots and testing cases
Below are the screen shots of the designed application while working on to the various file
formats
N
Initial Configuration of the Main Application g 'I
. . L
Screen shot of when application is started E
|
o
Compression algarithm 7’77‘j_:—‘_ i..l'
58 - Huffran ‘ L
Closs I fri
" :
[|
Source file; T C T i;
"

Compressed file: o e) .D,E'F'jnt'p“_a:%sf l

Decarnpressed file:

w

Fig. 10.1 GUI of application

Error
Screen shot of when application is executed to perform a task without giving any input

'-’jg SR RIS)

Compressior algotithne {1y, #man ‘
e Close
— - * | Hose
— ConmressDeno
Source file: - - T oL .Em'“""?s, 1
Tutof ey, B o !
Compressed file: T & R P D',Er_:'_:'m‘_jr_e_“s,l
Decompressed (e T o !
. o _ o
Fig. 10.2 when application is executed to perform a task without giving any input b
[
411 - i

Below are the screen shots that were taken when application was used to perform both

compression and decompression on various types of file formats

10.1 Text file

Cormpression algorithm: Huftman Closs

! et Cornprass
Sowce file: G:\documentation. doc o

) [R S P Decompress
Compressed file: G:\Mest doc. hf o A

Decompressed fils:

Fig. 10.1.1 We compressed the text file of .doc extension over here

421,

O TN TR o
aETuni cuslom | aummany
A
: gocumestetoe das
Type offia Torogofl O e d 872003 Doaure
Doere v Tl TFhoe W Sesena
oAt G:
Gis
SizE om Tk
Crestad Todey 2o 18,2007 11522022 2
s 3fied Trureday, Som 12, 2007 12820 =
-ressed Todey, ~o- 1€, 2707 112224 P
-itotes i lreazs atiwinld ~JV¥anced
!
'
i
i sEToE /
ST £ v

Fig.10.1.2 Highlighted text shows the original size of the text file

431

.-“
(3]
Cir
Iy
I

Trve cifre, FREg
Tvera U 2o g0 zen o e
-
_I0EN =
3za 1T RE 1282 130 o]
Trege disn: 1TEUENITIT: brtas
Treaes Toogp Soe 18 2207 1122ie o
Tfer Tozey Sp 1207007 Meadn o
SIIEesen: N R § D
< 33 N =, T A :
ES [N -2 e T Dder -

s

]

Fig.10.1.3 Highlighted text shows the size after the compression of the text file

] Compression algoithm:

Sourze file;
Compressed file:

Decompressed file:

Huffman

[BiMestdochi

IGMestdos

mmm_

Fig.10.1.4 The same file was decompressed

Tope cffizs Mloeser® (¥ oe Vined 372000 oo g

Qperg wties e Voezestt (Fes Vo range Y
vy
i
if
T SET O (3
L el
I8 LL.,E AB 3 ETE Lol bhas
— . gy —
¥ es on Jige: ZEEMB Iz ETE i bides
Ty b e - = n oo
Created Taday, ~oed 18, 2007 11818 B

Saisssed Tadey, fovi 15, 2007 115230 F
SR [JFReascee | |Hd32 Sdvanzea.

Fig.10.1.5 we got the original file with the same size as the size was not decreased it showed

Lossless compression. o

2.5

: 2
-
.

- 15
3

- S
=
=

0.5

0

Text file

Ongnal file

m Clompressed tile

docx

File format

Fig.10.1.6 Comparison between original and compressed file.

46" .

10.2 Image file

D
! aﬁs Crininess

Comprassion algorithm:

[Hulfman

Source fle: [Gurtiledbmp

Comprassed fils;

G\testbmp hf

[r=compressad file:

2l
. <
J\l - U Pt
Teoe offa Bimap vazs
Inl‘p- a - - SR s - = St mm ==
AN RF b reth e oot ey BEF
- —ma - -~
[[i
3Ig
Tra e g SELIE S LY M T mdae
remodens J2T MBI K nkey
gt L . zemge A ST TT Eo.q= ot
Sraged Toeadzy Raman 23 2007 105502
L T _— - - -
Srrten aent 25 EE
R el 1E TR B R e
=zIE8ee] cEy. e 1E, L. 11:5%:0 >
A e Sazowemw |1 edas- Ceimem .
S OUISE ad=T=P i 1 md3s Bt = e T
-
-3

-

Fig.10.2.2 Highlighted text shows the original size of the

image file

Close

Compress |

i
Desompress

j

4 N B 1T YT T Y
RS LIMMENEETODE xS
N
o imam]
SRS Saecudty f Summar
|
! e

Teos ofbler MEFR:

ey - 1 ey mtoes = _—ct = -

doane el CPRRDLTT SO0 SEL D rEtge

SITANMY G

Se B2V KR 91 T btas

s caook BB 715 cynes

T - = =" - - g e Bk

~BEIET “’-:E:rDr:;'. A LR 11:= Do

- =% . "= ot mrmiz L eman Piai TerY

Wrdfied Yastsrdey, o 15, 270 1:5%

~zassed Yegtzeday, coet 18, 2007 11EREY R

Lo tae Tazanary Lomoen SIVUEeIET ™
l-’,-’z

.
g
Cie 2anoe

Fig.10.2.3 Highlighted text shows the size after the compression of the bmp image file

m ThoitmimEs

Corpression algamthn:

i Huffman T . i Closze |

T - U |

I . Corpress

I

ZEUEEC IVE ST me H

" e e A = fasen e [N Decompress |
Cornpre s sed file; Gibest brop W - '

Deconpressedlie Griestimg |

Source file:

Fig.10.2.4 The same file was decompressed

48 |

Type of fil= Btran vaze
Crers i) Misrogsh Offics Poture Sezcse

o R
2IT DM DS
SrE3IED

o270
P Y
S oededl
=1
T B
o i = —
QIR =ez - e etz man
e i fat-1-pe ooe TR IE

o]
2
I |
o
"
b

-

=

r

10.2.5 we got the original file with the same size as the size was not decreased it showed

Lossless compression.

49"';' U

JPG file (encoded)
r!ia Comaress

Compression algorithr:

Source file:
Canmpressed file;

Decompreszed file:

Hafman

[G-Abond_WP_6_1024x7E8.jpg

éﬁ?'&bond.ipghf B

Close ‘

|
. Compress
e Decompress -

ORI AN SRS

. ————

—

- - .
Seted Sesunty I Sumeary |

Tome offia: JREG mags

et et srg Fole EtaF TratE

wozabIn G

S25 £ D KE 55 Tilope |

Szeon ek SEDKE BV RS bpss

Tregtad sEyp e 1T ETITOILITIIE S
ey

Bedéad: Tozaday. vamoey 15 2107 3 I1FLED

Sooesssd Tzaw o 1TEDIT YIS A

[Rzs0<miy

Snbutes:

by
Lo
o
Iy
q

Fig.10.2.7Highlighted text shows the original size of the image file

50 .

LITIel

Tooe oflie wFFe
~ i ' .
Do withs Umbimoun gpphosh lirgroa
Lnsal N
e
Iz 7 omk
—aslel Toogy, ~or 17 2107 122 Tas 208
1y R iy Teme 1T SMTT LT T

sifed; Todey. mor 17, 2027 122742 =00
piedel 222 T Toogy, ~pe 1703007 180722 27
-itoales L iFeen —3nE “IVETZED

W

o
W
f

Fig.10.2.8 Highlighted text shows the size after the compression of the jpg image file

(m " (AR,

Compression algarithn:

Sonrce file;
Compressed file:

Decompreszed file:

Huffman

e e ey

A

TRt e s P

iGAbondjpghl

IGMestipg

Compress |

i
Close !

Decompress |

Fig.10.2.9 The same file was decompressed

51+

2

-

Eh:

h ‘I
]
-
il EE
il =L e
Teva ffier PEE mezs
Civnegmgs <l < S '
e ER e StET e
Lrzar: z .
- X ‘
Sz tL ‘
- - < wl C
¥Is oo dak: B
SEELED Tosew, for 17 3007 10 iras s
e e
et o soEy o 1T 12315 =
- aeae mglen e |
~IIEEERD soay, mor 1702 [l R !
~lrouies Ll Ressn _ i mEoern ~IYENCE D

Fig.10.2.10 we got the original file with the same size as the size was not decreased it |

showed Lossless compression.

52|

il
Image file
2.5
2
)
= ;
g ' i
< A
= 8 Onginal File {‘
e i . ;
e & Compressed file v
= "
05 '
O [e
Dmp Apg
File format

Fig.10.2.11 Comparison between original and compressed file.

53]

10.3__Audio file of .wav format -‘
’ga RN BT .]

Cormpression slgorithm;

{Huffran -l Cloze

! R s Compress L
Source fils; [G:Anoise. wav RS

) e i|:§ Sansed b Fries o TN Decampiess
Campressed file: IGr\naise. wav. b e C

Decomprassed file;

.

)
AN

A Teens
Toee -5 fie Lwenete ey
R . ao Trea
ize RSB TII Illcvnes
Sze v opebr PEIRETES T8 peces '
lrzzed: Today for 1T 2007 YMI2E2 0
£
Modfes Wigwzzy fpm IS 2107 E1eidf B
M Tozzy 2o 17 ZIITAltEI L
|
RN - 1] TESo [- = L =]
aly larze
t
Fig.10.3.2 Highlighted text shows the original size of the audio file ‘
l .
! S4(v a0
i
i
|

Tups 42, =F i
Dommewinn Leans

—E. SETIE
’
]
et ~IVETIED
" N mym am
LN LET IS

Fig.10.3.3 Highlighted text shows the size afier the compression of the .wav audio file

r'jﬂ IR S T

Comprassion algonithm.

Saurce file:;
Compressed file;

Decampressed file;

Huffman

|
|
i
L

b

[G:\noise. wav.hf

Grhbest way

- Closa i
e

) Compress J

_— Decompress]

Fig.10.3.4 The same file was decompressed

55 | L O

Tyoe of fis L mede fis W
| Uperswit: o YLD meza oeper

Tregad Toogy, o 17, 2007 12,2128 2
lzafizd Today, 2o 17, 2007 120148 2
Tagsy, Ao 17, 20TE 123 e 20
Srn e R [=222 LavEtnas

Fig.10.3.5 we got the original file with the same size as the size was not decreased it showed

Lossless compression.

56|

MP3

’m BRI

Compression algorithn: 1 Hudfman

P

Sourca file:

Compressed fils;

Decompreseed e

{G:ABhula Do.mp3

{G\BhulaDomp3hi

COTRENAL.

e Lo

Close

Compress

Decompress

Fig10.3.6 We compressed the audio file of .mp3 extension over here

LI - -
LT e
- I TEsges

PAD Repeze = e m
FOORDMIEL STAT 2
ot e s
(I R R

O

~

-

FUVME LRI 0 oves

Today. s 17, 2707, 1221048

Troz el [,
! (== | i L~
- .

-~ i -

il 2

“
Jharze
‘1
iy}
[T el 2
-2UETIED
b2

Fig.10.3.7 Highlighted text shows the original size of the audio file

i

[

1

i B ?

l.. J—
- -

Tvce *4's “iRe
Ogeng i L 300 23 Tratza.
--zt- I
LIzt 3

I
3 IS 17 O
- .
orazted -
Tteuts Tz il B T
CITgd ey mo 150200 1222735
. P,
lammnnad Tasz: ame -
soaneed o A e T
=R il-T-= o in-Y S oUET IR
e -t

Fig.10.3.8 Highlighted text shows the size after the compression of the .mp3 audio file

i &
m Campress

Comprassion alaotithm: |, fiman

— — T Close i

_ . . o A . Compress
Dot file: | Z' Senssn imel mIImE - -

Demampress

Compressed He: J:AB s Do.mp3 b

Decompressed file: ;G'\teslmpé T

Fig.10.3.9 The same file was decompressed

581 .

el

T oms
-t T

Fig.10.3.10 we got the original file with the same size as the size was not decreased it

showed Lossless compression.

Iy o

R < rer ey

2eTunly 0 oRMmaTy
[=
A=t

IR X LR Sy
T,p-.: ar e LI= % oemat Zound

: + il -

g ar AR e M B s ..
Doaeng T LCRINER R Srztge
LITELD -

Tz }
~__)

3 IS 70 28Rl
Sreated
Yhad e

oITel
e ==
el b~)

Zes ! Y - -
-- == T -hET TR

File

{in MB)

s1ze

Audio file

7 Onenal File

u Compressed tile

wWav amp3

File format

Fig.10.3.11 Comparison between original and compressed file.

60 |

10.4 Video file :
. r—

Compression algorith

:Huffman - Chose . [

Compress |

Souwrce file: o . e _r
= . g
i 3
1
|

|G:\eri to.avi

Compressed file: GiMeri to.avibf

Decompressed file: !

Fig.10.4.1 we compressed the video file of .avi extension over here

™ 1
i
i SR
i
i
! DE)
"4‘
: i
: I:‘
i . i
i Tuena H e 2l %.‘
Fhage @ oror ¥ Vs mmere Dlem s Dimem o ;a’
P (il S @ RS TIOYT T3 ;,; 7
! N
- .
R =
55
TIzooeooee

.
CREEd
;
:
1ated
- ETAGAST
ettt =]
arein, B e LA e i m = =
S = 5 ! 2RIy R Raeel -3VECIET
; -
; 53R

ol | v

Fig.10.4.2 Highlighted text shows the original size of the video file

Security 1{ Summary |

|
-
'i R Mooz gooizst s Trenze. 4
i]
H —- I
: e . -
: - =Sk . o
i
‘ < s 1 51 05T EOE sy
: ER 2SI IB P LR E e
1
Srece deks RSB IELATI TN butas
e g m e
Togey, ~or YT 2007 Yoidie -
c . - o
hnafes Todey. S0 17,2000 1aR%iis -
. ‘ - e - |
Looesesd Togey, fon 17, 2025 1addei =l |
- tad- R B =T r= e
: Eetaling - 8 -]"'-:c._. - Loi™2Zs ~IVETSES
i - - N
I i
; ‘
| ‘
|
]
¢
e Jerle

Fig.10.4.3 Highlighted text shows the size after the compression of the .avi video file

r= ™ |
A omooes :

Compression Al0oathm | Huffrean
pres 2 | Huftriean

- Clase |

]

] [. Comptess |

[. [! j

S file: . Zzosec prer 3LERvS o SRR
y

) I B Lo Decomprass |
Cormpressed fite GiMeri to.avi ; : =

Decompressed file: IG-\test avi

Fig.10.4.4 The same file was decompressed

.
g a1
=y
Tyoe of fis dez i
Joeeg wit @-‘ dowg Made Heys Sraros.
_IIELD s
-
Sz a0 den
Craatad Today. 2o 17 2007 12857 oy
Trafes: Taday, 2omi 17, 2007 1253008 200
“Iiesiel: Toogw, Sow 17 0007 108007 2
TS SEERE =3 SavEnen

ig.10.4.5 we got the original file with the same size as the size was not decreased it showed

Lossless compression.

631

Video file
34
33
é 32
g 3 21
= 5 Onzwal file : H
E‘: 30 @ {ompressed fule . ‘F
20
28
i Lavi
File format
Fig.10.4.6 Comparison between original and compressed file.
, ;
E

I1 Result of test cases and compression ratio

[File format Original File Compressed file Compression ratio (in %)
docx 2.55MB 1.78 MB 30.19 %
bmp 2.25MB 683 KB 69.73 % l‘;
Jpg 54 KB 52 KB 3.7% d
wav 861 KB 785 KB 8.82%]
.mp3 3.71 MB 3.68 MB 0.806 %
avi 33.7MB 299 MB 11.27 %

Table 11.1: Compression ratio

Where, Compression ratio = ({original size — compressed size)+(original size)) *100

File format Original File Compressed file Compression ratio i
.docx 2.55MB 1.78 MB 1.468 i’
bmp , 225MB 683 KB 3.295 "
Jpg 54 KB 52 KB 0.0i9
wav 861 KB 785 KB 1.096
.mp3 3.71 MB 3.683 MB 1.008
.avi 33.7MB 29.9 MB 1127

Table 11.2: Compression ratio

Where. Compression ratio = (original size +~ compressed size)

65|

12 Comparison of compression ratio with commercial applications

Text file (2.25MNB)
34

33

—— g
L g m Y

32

1# Hutliou codiny
u Rar

CZwp

#LZW

Compression ratio(in %)

Fig.12.1

g e

Image file (bmp 2.25MNB)
76
74

72

70
a8 Huftinan coding
B Rar

~ Zip

e LZW

63

66

64

Compression ratio(in %)

G2

60

Fig.12.2

661w

Compression ratio(in %}

Compression ratio(in %)

(s

16

14

12

10

G

Audio file (mp3 3.71MB)

Fig12.3

Figi2.4

P R

s Hutfuan ¢odhing

8 R
Zip
L7\

& Hutthon cosling
Rin

Zip
mLZW

67 |

13

Time comparison with commercial applications

Time (in ms)

Time (in ms)

76

74

3G

84

80

78

76

74

72

Fig.13.1

Image File (bmp 2.25NB)

Fig.13.2

Text File (2.2

SMNB)

£ Hutfinan coding
@ Ry

Zip
BLZW

Hutfinon coding
u Rar

Zip
gLZW

68w

Time {(in ms)

Time (in my)

170
168
166
164
162
160
158
156
154
152
150

Audio file(.mp3 3.71NB)

Fig.13.3

Video file(.avi 33.7MNB)

& Hutlinan codmg
a R {
Zip
mlZW

& Hutfian codimg

= Ror
Zip

@ [LZW

14 Limitations and issues
There are few limitations and issues associated with the developed application which are as
follows,

14.1 Platform Issue

This issue remains in the mind that whether it will work on al] the version of windows such
as Windows 98/NT/2003 as the operating system used while designing we used Windows
XP.

14.2 _ Algorithm Issue

As we will implemented only one algorithm for all type of file formats i.e. audio, video and
text files. Compression ratio of audio, video files is much less as compared to text files
because of the reason that audio and video files are digitally encoded. Also the time taken to
compress and decompress audio and video files suffers due to the Very same reasons.

14.3 Performance Issue

The designed application achieves the goél of both compression and decompression for
various type of file formats as mentioned above in algorithm issue .But it may happen that
designed application may be slower as compared to the other commercial applications
available in the same field of Data compression toolkit,

14.4 Limitations and Miscellanecus Issues

The designed application does not have its own extension for compressed and decompressed
tiles. We have to specify the name of the targeted file while performing compression and

decompression.

700

15 Conclusion

The software performs the basic task of compression and decompression successfully but
there is still scope for improvement in terms of additional features, various complexities etc.
The scope and scale of this application can be extended by future developers. it can be used

N
by both professional and home users according to their own wish. i i

TH[P e

16 Future scope of work

Storing data has become one of the most tmportant aspects for growth of any organization
belonging to any industry. Research is done constantly in the field of compression to get
better compression ratio and time complexity. The future scopes of developed application are
as follows:

I. The developed application can be use widely in offices and institutes, as the main data used
for day-te-day work consist of text mainly. Since the developed application uses Huffiman
compression algorithm which is considered as one of the best algorithm for text compression.
Thus developed application can be used for storing data in offices and institutes in
compressed form. |

2. The developed application can also be used in various biological researches, the data that is
used to predict the various inventions can be stored in compressed form by the developed

software. For instance storing of various DNA and RNA sequences in compressed files.

(V8]

The developed application can be used by both home and professional users for both
: compression and decompression purposes.
4. By doing some modification(by adding various features like split file archieve, developing an
extension for compressed files) the developed application can be made to compete with
commerciai software’s like WinZip, WinRar and 7-zip etc. .
5. The developed application can be used to build better and fast file sharing internet sites once
the developed software has made its hold in the market.
6. By doing slight changes in the source code .the application can be made to run on other

operating systems also.

721

17 Bibliography

Books

I Sayood, Khalid. /ntroduction to Data Compression. Morgan Kaufmann Publishers.

New York, 2000

2. Nelson, Mark. The Data Compression. IDG Books Worldwide, Inc., 1998

3. Bell, Timothy C., Cleary, John G.. Witten, lan H. Texs Compression, Prentice Hall,
Englewood Cliffs NJ, 1990
Mickey Williams and David Bennett, Visual C++ 6 Unleashed. Sams. Jul 24,2000
Jesse Liberty. Programming CH: Building NET Applications with C#, O'Reilly
(February 22, 2005).

S

Research Paper

{11 M. G. Ross. Measuring Image Quality. IRE Trans. Image Quality, 1Q-27 pp 18-22. 1996.

[2] Panrong, Xiao. fmage Compression By Wavelet Transform.IRE Trans, Image
Compression, 1C-14 pp 16-19. 2001,

[3] Sebastian. Deorowicz. Universal lossless data compression algorithms, IRE Trans.

Lossless data Compression Algorithms, LDCA- 10 pp 7-28. 2003

Internet Sources

I http//wwiw.ics.uci.edu/~dan/pubs/DC-Secd.html,

2. hup/iwww.es.elac.uk/Dave/Multimedia/node203.html.
3. htp:/iwww breadfan.com/algorithms/ahuffhtml.
4. http//www.rasip.fer.hi/research/compress/.

73|

