Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. NumSPO J143 call Num:
General Guidelines:

¢ Library books should be used with great care.
¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead

to disciplinary action.
¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.
¢ The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

I

NI

SP03143

|

I

?—

DEVELOPMENT OF PLATFORM INDEPENDENT
INSTANT MESSENGER

| BY
MAHANTH KUMAR BEERAKA-031005
ASHISH GUPTA-031022
VIVEK AGARWAL-031003

JAYPEE UNIVERSITY OF
INFORMATION TECHNOLOGY

MAY-2007

Submitted in partial fulfillment of the Degree of Bachelor of
Technology

DEPARTMENT OF ELECTRONICS AND
COMMUNICATION
JAYPEE UNIVERSITY OF INFORMATION
TECHNOLOGY-WAKNAGHAT

—y

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

(Established by H.P. State Legislative vide Act No. 14 of 2002)

Waknaghat, P.O. Dumehar Bani, Kandaghat, Distt. Solan - 173215 (H.P.) INDIA
Website : www.juit.ac.in

Phone No. (91) 01792-257999 (30 Lines)

Fax: (91) 01792 245362

Dr. Sarit Pal
Assistant Professor
Department of Electronics and Communication Engineering

CERTIFICATE

This is to certify that the work entitled, “DEVELOPMENT OF PLATFORM
INDEPENDENT INSTANT MESSENGER” submitted by Mahanth Kumar Beeraka,
Ashish Gupta and Vivek Agarwal in partial fulfillment for the award of degree of
Bachelor of Technology in Electronics and communication engineering of Jaypee
University of Information Technology has been carried out under my supervision.
This work has not been submitted partially or wholly to any other University or

Institute for the award of this or any other degree or diploma. n‘

Gt

Supervisor

II

-,

ACKNOWLEDGEMENT

We wish to express our earnest gratitude to Dr. Sarit Pal, for providing us invaluable
guidance and timely suggestions throughout the length of the project. We’d also like

to thank him for his moral support in times when the project was losing pace.

We would also like to thank Dr. Sunil Bhooshan, HOD Electronics and
Communication Department of Jaypee University of Information Technology,

Waknaghat for his support and wise suggestions.

We would like to the thank the faculty of the Electronics and Communication

Department of Jaypee University of Information Technology, Waknaghat for their
M W N& A
Mahanth Kumar Beeraka Ashish Gupta Vivek Agarwal

valuable suggestions that made helped us improve our project.

11X

ABSTRACT

Study of Java Programming and Network Programming through Java has been done.
Report of this study is presented. A Centralized Instant Messenger application using

the same was developed, the details of which are presented.

IV

I
§
|
{
i
|
i
}

TABLE OF CONTENTS
e T T 1 8 D s N or oo A S KRS SISl ol 310 L UV o) A~ I
INGIAN O W BIMTERMEN TGy wmaesbin it smioovissbsrmmbibonspsisiis ihiness s iaesvivs 11
NN T R e v
BISTEOREEIGUR ES oo vonuipecse s onbsevsenves su uaus o0 s snets s sains beid yow iz VIII

Section A: Study

Chapter 1 Instant Messaging

IR h s A, o A e o T e e 1
LI IS ST e o s o it it S e i S K A A e e A b e AR 2
ot e b T e o s B gD TR i e e i e Al i o e 2
1R WHAtTHAR BEen dONE e boisimiaspinamibmisovaii i st nsrssss (verssivmesas 3
1.2.2 What are the various properties that are available in present messengers?......... 3
1.2.3 Some messengers in use with their Properties........cociviriiseiiennviivraisioiiinss 3
IiNisthodologyesa sl ol e oy el ns e R S T e e D 5
19317 What are the various approaches that can be adopted?. v wisnadiniiviiie 5

Chapter 2 Programming Language (JAVA)

e T e v T T P T o T 2 R T o e o B T e e A R R R 8
EaEh oy e Bigemienun e ot e e e T 8
22 The-Java VIIual IMACHING o vosvierainss ruums trospmerervime i oo ey sps mes ecuess e 8
2i T Te08 PIATIODNL. o i i oo s RS PR L e, 50 R T A 9
Zid Key Benefitsof JaVacrmmma o s e s e 10
27 WrE ONCe; RUIE ANYWHEEE, .o v s ovs e sonrvains e was cnnos va v vavas bosnas ety sss 10
D BB L s i b bisbislh i B S E LA Sk TR A e B R RO B e S S s S e s 10

B

SFTRIN Ny O G ST 10 PIOBLAMDING: o svsmvin sevis i smvesimmis st pasenie v 10
Pyt Dynamic, Extensible PrOGrams, cooiivuumiieviiiicovuinserrmsomme snressisisvnnvesns vne 11

RN AT 1L OB IZALION (0o cntuomsnwa s v drminsbinsinsisanssinins £ onie V605 R0 b RS Th $W0A B4 e ik
S ANE R RN G e ULl e D L IR R IE gl 11
oedui=Programmer.Efficiency and Time-to-Market............covivivorinmmininom 12
RO NUCTE AN AN SITCAINS: & v i iivenirs oo dowutlibaiveonis fvian s w s b e 1 bt vy e 12

A BN DT AN d UEDUESTICAM s o vovsiinom mmmrsnassoresassns i i £oim seos aaes cons 13

e Rihatyiand CHAFACIET SITGAMS: . vvv vsvinis s s s asiass shivis é sinve siivsa i Bhonanasin 13

550 Tl rseptng d hn g 811 s e 14

EASTARR B At o INDUL S Ireamm DPCTALIONS. .. . vonsisinn ohrs crvresnsanibn nan sopomesissnn e sone 14

RS R A ICLOLTP UG ST ealy DINEIAtionS vt in hrsmsbismmtine s arssmbass s wios il 15
SR TGRS Treim IR eaders and WYIIeIs . i1 vviiviiiiiiiniviviann o vooimbins s dnsauvwsvs owslvave 15
G I O P S 17
Al i LTy T R 17
prowAslihe [hread Class and the Runnable INtErTACE. ceivocasnsmiinmsroismnms o msams 17
P eTearing and starting threads: s v vivvs oo wnd va Vo ie vsis snvenarass fesmenie 157
PGSR (MORNTTOL I IR rvsvs voms bagstums Vo shessis viwin s He vwn vesve R as sy e s 18
AN e ad B e v s e e e e T e T TE T e 18
2 IR BN, A S e R e S e P R O s B L 19
20 Jikrvianglay i Bl i e ARG I SRSy s R T D 19
MRS BTVETE AN CHOTILS. v s venoim oo s vaties s Seiunimms i s ius os s hs S0si s d e SrEx s sts s 20
23 = PortrAinique place within the maching. .. v.covivin i s isvisin 20
e ia B EreatingiElIents anth SEEVETS, .. o0 i v oouim i s o is s K s s g sas e 21
255 AN i e ol e Lo e v STl i 0 D e A R 0 23
A OHNGI 6o N L i R S R e RNERE e W S e 23

Section B: Project

Chapter 3 Proposed System and Its Implementation

3 e N RO et siris st e T e VR ey B S e R A T e R F oW s Trdes 25

i Bt 001 T e e e e T e T Y TT T 29

S inblementaton-Detatl——— e e e 26

3eii] = Clicht = Berver CommUnICatION vt i i Fhss s s £ Ba AN At g wrans 26

B0 5 PTOA D S it e it e e bt o o e B b i R i e I A P B 26
VI

T S e e e

T n——

e ——
TR e, e are——— | P

ER IR S I T B TTAURE L oy bovsin momssomsismnisny e rwal «omvs sivRes exim o3'a by ob SR L TEEH O TR 29
ERRA IO IO NOTHMREE I Lt 00 v coaros vimsdogini o aivs v/ i 40 44 000 de PR gw e 14 SRR 31
BB BOTI TN SR st 5 svsvmis s vwws os b ok 30w e 4800 S56060 o L5 3 SRR AR Y L B FETE 34
ATl ORI R in e e Y 34
B N N T L s i 0 T s St bt ot R i e e AR, 36
Chapter 4 Conclusion

ARIBR0S e BUutute ENHANCEMIBIS. . vsvsvs ons cosmvens v eos it b spess s sisissos vos s visesivs 38
AT TR s il s o R pw el i S I I g e = 8 S e R 39
BB OB Eph Vel nemaienieas s st e e bk b s S e S s s s 44

\411

LIST OF FIGURES

Chapter 2 Programming language (Java)

Fig.2-1 Illustrates how physical devices map to streams.................ooooinin 12
Fig.2-2 Subclasses of INPUtStream..........oevvervrineiieiniiiiiiii i 14
Fig 2-3 Subclasses of OUtputStream...........oooevvviiiiiiiiiiiii 15
Fig 2-4 Subclasses of Reader class...........ccoooovviiniiiii 16
R esiStibelasses of the WIIter Class, .viivorenssrosisipass sisensnississms snssvsgsrsemnas 16
Fig.2-6 Depicts a Runnable object that creates and starts its own thread................ 18
Fig.2-7 Partial Component Hierarchy.........c.cooeveiiiiiiiniiiini, 23
Rigws8iRartial Jcomponent Hierarchy. ..o cvvrisivocisusmms s imnsisensnvnsssnmvnensenses 24

Chapter 3 The Project

Fig.3-1 Basic topology for the client\server architecture...........cooeeviiiiiiiiiins 25
Bioids) The Server window in default Mode... ..o i i i i ol
Hig3-3 The Client window in default mode.......cooiiimiiimnensraanriisiusiiiniiiisi 2
Fig.3-4 Login dialog box....... AR $E TS R SR o B P s v e R paEnieas 32
RIgiA=5 Clients contieCted 10 SeIVEr cyis s wimis ituvs svsus irs s s evs swwn svwcssvnrs s ons sunsn 32
Eigi3-6 Main chat room — Client Window......ciivevvnivesivvs i 33
Eip: 347 Private chat room = Client Window, ... oo i sisivniivsie setbussvasmseron 33
FigA-8-Server-shitdown——rrrrreree e e 33

VIII

CHAPTER 1
INSTANT MESSAGING

Introduction

Instant Messaging (IM) is a fast and easy method of communicating to another
individual while online in a real time, real time is defined as the immediate response
by a computer system. One of the biggest advantages of IM programs is that they
allow users the ability to chat with someone as if you were sitting right next to them,

having an actual conversation, but instead speaking you are typing.

To communicate with friends, family members and/or co workers, you need to your
friends, family members and/or co workers user names. The user names can be stored
in a program and can be referred to as contact list. Lastly, both parties need to have

the same instant messenger program, such as AOL and MSN, to communicate.

Unfortunately, none of the programs mentioned above are compatible with each other.
There are, however, a few programs available that integrate the different IM programs

into one interface.

Besides being able to see if one of your buddy/contacts is online, Instant messenger
programs also allow users to send each other text message, photos, pictures and word
document files in real time. In addition, some IM programs have voice and Web cam
features to enhance one’s experience. Most IM programs provide ways for creating

your own chat room for multiple users.

Popular instant messaging services on the public Internet include .NET Messenger
Service, AOL Instant Messenger, Excite/Pal, Gadu-Gadu, Google Talk, iChat, ICQ,

Jabber, Qnext, QQ, Skype and Yahoo! Messenger. These services owe many ideas to

an older (and still popular) online chat medium known as Internet Relay Chat (IRC).

1.1 BENEFITS

Instant messaging typically boosts communication and allows easy collaboration. In
contrast to e-mails, the parties know whether the peer is available. Most systems
allow the user to set an online status or away message so peers get notified whenever
the user is available, busy, or away from the computer. On the other hand, people are
not forced to reply immediately to incoming messages. This way, communication via

instant messaging can be less intrusive than communication via phone, which is l
partly a reason why instant messaging is becoming more and more important in 1

corporate environments.
|
1.2 EARLY DEVELOMENTS Jr
|

An early and partial form of messaging systems was implemented on private
computer networks such as the PLATO system in the early 1970s. It was also
available in the 1970s as the "talk" program. Later the Unix/Linux "talk" messaging
systems were widely used by engineers and academics in the 1980s and 1990s to
communicate across the internet. On single line bulletin board systems (BBS), the
system operator (sysop) and the single caller online could typically chat with one |
another. One's typing appeared in real time for the other person as an instant message

equivalent.

Recently, many instant messaging services have begun to offer video conferencing
features, Voice Over IP (VoIP) and web conferencing services. Web conferencing
services integrate both video conferencing and instant messaging capabilities. Some
newer instant messaging companies are offering desktop sharing, IP radio and IPTV

to the voice and video features.

What really characterizes instant messaging from other forms of text messaging
applications is the use of "presence" which enables the user of an instant messaging

application to rendezvous with histher counterparties and see their status of

availability.

1.2.1 What has been done?
Messengers can be characterized as -

% Centralized or decentralized.
» Platform independent or dependent.
%» Various Protocols based.

» Different Programming languages.
1.2.2 What are the various properties that are available in present messengers?

» Instant messaging
» Sharing files and folders
» PC-to-phone calls

» Games and applications

Many messengers have been made and presently being widely used on various
networks (LAN) which connects various computers as clients in the network. These

messengers have various properties (mentioned above).
1.2.3 Some messengers in use with their properties are -

» Windows Live Messenger.
» Outlook Messenger.

» [P Messenger.

» GOIM

1.2.3(1) Windows Live Messenger (WLM), formerly and still commonly referred to
as MSN Messenger or MSN, is a freeware instant messaging client for Windows XP,
Windows Vista, and Windows Mobile, first released on July 22, 1999 by Microsoft.
"MSN Messenger" is often also used to refer to the NET Messenger Service (the
protocols and servers that allow the system to operate) rather than any particular

client. Most major multi-protocol clients can also connect to the service.

3

—

Windows Live Messenger uses the Mobile Status Notification Protocol (MSNP) over
TCP (and optionally over HTTP to deal with proxies) to connect to the .NET
Messenger Service.Windows Live messenger provides various services which include

sharing files and folders, pc to phone calls, instant messaging.

1.2.3(2) Outlook Messenger is a Concept LAN chat for interactive communication
within an Office network (LAN). In addition to the usual rich text chat, voice chat,
group chat, send file, reminders and alert note functions, Outlook Messenger can be
plugged into MS Outlook, allowing the users to share Outlook e-mails, contacts, and
appointments. The Value added feature 'Remote Desktop Sharing' lets users access

and control a remote computer.

This LAN Instant Messaging does not require any internet connection, and it works
across Ethernet port using TCP/IP protocol. As this module is built with peer to peer
architecture, it requires no Server and IP configuration. Installing LAN Messaging
tool is very easy, and system administrator help is not necessary. Just install the
software in all the computers, and the program is ready to use. You need not add User

List manually, its automatically done.

1.2.3(3) IP Messenger is pop style LAN messaging software for multiple platforms. It
is based on TCP and UDP/IP Protocols. This software does not require server machine
means that it is not centralized, which uses server-client based approach, rather it is

decentralized. The user can connect to this messenger independent of any server.

1.2.3(4) Gamers Own Instant Messenger (GOIM) is a full featured open source
Instant Messaging client based on the open source Jabber/XMPP protocol. Jabber has
many advantages over most other IM protocols - It provides an open protocol which is
implemented by dozens of servers and clients. It has a decentralized server structure
(like email) so you have the freedom of choice which server you are using as well as
which client you want to use. And if you are unhappy with your client just switch to

another one - your contact list (roster) will go with you.

It was primarily developed to appeal to gamers so it not only transmits your presence

status (like available, away, do not disturb) but also on which server you are currently

4

! playing which game. This way you can see where your friends are playing and join

them with a single click.

GOIM is based on the java programming. So all of GOIM's functionality is cross
platform and can be used on Microsoft Windows, Linux and Mac OS - The only

exception being platform specific code to detect game connections as well as the

InGameMessenger.
1.3 METHODOLOGY
1.3.1 What are the various approaches that can be adopted?

» Client/Server approach.
» Peer to Peer approach.

1.3.1(1) Client/server is network architecture which separates the client (often an
application that uses a graphical user interface) from the server. Each instance of the

client software can send requests to a server or application server. There are many

different types of servers; some examples include: a file server, terminal server, or
mail server. While their purpose varies somewhat, the basic architecture remains the

same.

a) Characteristics of a server:
» Passive (slave)
» Waits for requests

» Upon receipt of requests, processes them and then serves replies

b) Characteristics of a client:
» Active (master)
» Sends requests

» Waits for and receives server replies

Servers can be stateless or stateful. A stateless server does not keep any information

between requests. A stateful server can remember information between requests. The

S

scope of this information can be global or session. A HTTP server for static HTML

pages is an example of a stateless server while Apache Tomcat is an example of a

stateful server.

A client is a computer system that accesses a (remote) service on another computer by
some kind of network. The term was first applied to devices that were not capable of
running their own stand-alone programs, but could interact with remote computers via

a network. These dumb terminals were clients of the time-sharing mainframe

computer.
c) Types of client

Clients are generally classified as:

Local storage Local processing
Thin Client No No
Hybrid Client No Yes
Fat Client Yes Yés

A fat client (also known as a thick client or rich client) is a client that performs the
bulk of any data processing operations itself, but does not necessarily rely on the
server. The fat client is most common in the form of a personal computer, as the PC or

laptops can operate independently.

A thin client is a minimal sort of client. Thin clients use the resources of the host
computer. A thin client's job is generally just to graphically display pictures provided

by an application server, which performs the bulk of any required data processing.

A hybrid client is a mixture of the above. Similar to fat client, it is processing locally,
but rely on the server for the storage. This relatively new approach offers features

from both the fat client (multimedia support, high performance) and the thin client

(high manageability, flexibility).

1.3.1(2) Peer-to-peer (or P2P) computer network refers to any network that does not
have fixed clients and servers, but a number of peer nodes that function as both clients

and servers to the other nodes on the network. This model of network arrangement is

contrasted with the client-server model. Any node is able to initiate or complete any
supported transaction. Peer nodes may differ in local configuration, processing speed,

network bandwidth, and storage quantity.

Technically, a true peer-to-peer application must implement only peering protocols
: that do not recognize the concepts of "server" and "client". Such pure peer
i applications and networks are rare. Most networks and applications described as peer-
to-peer actually contain or rely on some non-peer elements, such as DNS. Also, real

world applications often use multiple protocols and act as client, server, and peer

simultaneously, or over time.

CHAPTER 2
PROGRAMMING LANGUAGE (JAVA)

Introduction

In discussing Java, it is important to distinguish between the Java programming
language, the Java Virtual Machine, and the Java platform. The Java programming
language is the language in which Java applications (including applets, servlets, and
JavaBeans components) are written. When a Java program is compiled, it is converted
to byte codes that are the portable machine language of a CPU architecture known as
the Java Virtual Machine (also called the Java VM or JVM). The JVM can be
implemented directly in hardware, but it is usually implemented in the form of a

software program that interprets and executes byte codes.

The Java platform is distinct from both the Java language and Java VM. The Java
platform is the predefined set of Java classes that exist on every Java installation;
these classes are available for use by all Java programs. The Java platform is also
sometimes referred to as the Java runtime environment or the core Java APIs

(application programming interfaces).
: 2.1 The Java Programming Language

The Java programming language is a state-of-the-art, object-oriented language that
has syntax similar to that of C. By keeping the language simple, the designers also

made it easier for programmers to write robust, bug-free code.
2.2 The Java Virtual Machine

The Java Virtual Machine, or Java interpreter, is the crucial piece of every Java
installation. By design, Java programs are portable, but they are only portable to
platforms to which a Java interpreter has been ported. Sun ships VM implementations

for its own Solaris operating system and for Microsoft Windows and Linux platforms.

8

P —

Many other vendors, including Apple and various commercial UNIX vendors, provide

Java interpreters for their platforms.

Although interpreters are not typically considered high-performance systems, Java
VM performance is remarkably good and has been improving steadily. Of particular
note is a VM technology called just-in-time (JIT) compilation, whereby Java byte
codes are converted on-the-fly into native-platform machine language, boosting

execution speed for code that is run repeatedly.

2.3 The Java Platform

The Java platform is just as important as the Java programming language and the Java
Virtual Machine. All programs written in the Java language rely on the set of
predefined classes that comprise the Java platform. Java classes are organized into
related groups known as packages. The Java platform defines packages for func-
tionality such as input/output, networking, graphics, user-inter face creation, security,

and much more.

The Java 1.2 release was a major milestone for the Java platform. This release almost
tripled the number of classes in the platform and introduced significant new

functionality. In recognition of this, Sun named the new version the Java 2 Platform.

It is important to understand what is meant by the term platform. To a computer
programmer, a platform is defined by the APIs he or she can rely on when writing
programs. These APIs are usually defined by the operating system of the target
computer. Thus, a programmer writing a program to run under Microsoft Windows
must use a different set of APIs than a programmer writing the same program for the
Macintosh or for a Unix-based system. In this respect, Windows, Macintosh, and

Unix are three distinct platforms.

Java is not an operating system. Nevertheless, the Java platform provides APIs with a
comparable breadth and depth to those defined by an operating system. With the Java

platform, you can write applications in Java without sacrificing the advanced features

available to programmers writing native applications targeted at a particular

9

g operating system. An application written on the Java plat-for m runs on

underlyin

any operating system that supports the Java platform. This means you do not have to
create distinct Windows, Macintosh, and UNIX versions of your programs, for
example. A single Java program runs on all these operating systems, which explains

why “Write once, run anywhere” is Sun’s motto for Java.

2.4 Key Benefits of Java

This section explores some of the key benefits of Java.

2.4.1 Write Once, Run Anywhere

Sun identifies “Write once, run anywhere” as the core value proposition of the Java
platform. Translated from business jargon, this means that the most important
promise of Java technology is that you only have to write your application once—

for the Java platform—and then you’ll be able to run it anywhere.

Anywhere, that is, that supports the Java platform. Fortunately, Java support is
becoming ubiquitous. It is integrated, or being integrated, into practically all major
operating systems. It is built into the popular web browsers, which places it on

virtually every Internet-connected PC in the world.

2.4.2 Security

Another key benefit of Java is its security features. The Java platform allows users to
download untrusted code over a network and run it in a secure environment in which
it cannot do any harm: untrusted code cannot infect the host system with a virus,

cannot read or write files from the hard drive, and so forth. This capability alone

makes the Java platform unique.
2.4.3 Network-Centric Programming

Sun’s corporate motto has always been “The network is the computer.” The

designers of the Java platform believed in the importance of networking and

10

latform to be network-centric. From a programmer’s point of
ava p prog p

designed the J
view, Java makes it easy to work with resources across a network and to create

network-based applications using client/server or multitier architectures.

2.4.4 Dynamic, Extensible Programs

Java is both dynamic and extensible. Java code is organized in modular object-
oriented units called classes. Classes are stored in separate files and are loaded into
the Java interpreter only when needed. This means that an application can decide as
it is running what classes it needs and can load them when it needs them. It also
means that a program can dynamically extend itself by loading the classes it needs to

expand its functionality.
2.4.5 Internationalization

When it was created, Java was the only commonly used programming language that
had internationalization features at its core. While most programming languages use
8-bit characters that represent only the alphabets of English and Western European

languages, Java uses 16-bit Unicode characters that represent the phonetic alphabets

- and ideographic character sets of the entire world. Java’s internationalization features

are not restricted to just low-level character representation, however. The features
permeate the Java platform, making it easier to write internationalized programs with

Java than it is with any other environment.

2.4.6 Performance

As described earlier, Java programs are compiled to a portable intermediate form
known as byte codes, rather than to native machine-language instructions. The Java
Virtual Machine runs a Java program by interpreting these portable byte-code
instructions. This architecture means that Java programs are faster than programs or
scripts written in purely interpreted languages, but they are typically slower than C
and C++ programs compiled to native machine language. Keep in mind, however,

that although Java programs are compiled to byte code, not all of the Java platform is

implemented with interpreted byte codes. For efficiency, computationally intensive

11

portions of the Java platform—such as the string-manipulation methods—are

implemented using native machine code.

Java is a portable, interpreted language; Java programs run almost as fast as native,
non-portable C and C++ programs. Performance used to be an issue that made some
programmers avoid using Java. Now, with the improvements made in Java 1.2, 1.3,

1.4 and 1.5 performance issues should no longer keep anyone away.
2.4.7 Programmer Efficiency and Time-to-Market

The final and perhaps most important, reason to use Java is that programmers like it.
Java is an elegant language combined with a powerful and (usually) well-designed set
of APIs. Programmers enjoy programming in Java and are often amazed at how
quickly they can get results with it. Because Java is a simple and elegant language
with a well-designed, intuitive set of APIs, programmers write better code with fewer

bugs than for other platforms, again reducing development time.

2.5 Understanding Streams

A stream is an abstract representation of an input or output device that is a source of, |
or destination for, data. You can write data to a stream and read data from a stream.

Stream as a sequence of bytes that flows into or out of a program can be visualized.

Program
Y
~ Input e
StreanQ
S

Outpu? N
Stream/:

Fig.2-1 Illustrates how physical devices map to streams.

12

2.5.1 Input and Output Streams

When you write data to a stream, the stream is called an output stream. The output
stream can go to any device to which a sequence of bytes can be transferred, such as a
file on a hard disk, or a phone line connecting your system to a remote system. An
output stream can also go to your display screen When you write to your display
screen using a stream, it can display characters only, not graphical output.You read
data from an input stream. In principle, this can be any source of serial data, but is

typically a disk file, the keyboard, or a remote computer.

The main reason for using a stream as the basis for input and output operations is to
make your program code for these operations independent of the device involved.
This has two advantages. First, you don’t have to worry about the detailed mechanics
of each device, which are taken care of behind the scenes. Second, your program will
work for a variety of input/output devices without any changes to the code. Stream
input and output methods generally permit very small amounts of data, such as a
single character for byte, to be written or read in a single operation. Transferring data
to or from a stream like this may be extremely inefficient, so a stream is often

equipped with a buffer in memory, in which case it is called a buffered stream.
2.5.2 Binary and Character Streams

The java.io package supports two types of streams—binary streams, which contain
binary data, and character streams, which contain character data. Binary streams are
sometimes referred to as byte streams. These two kinds of streams behave in
different ways when you read and write data. When you write data to a binary stream,
the data is written to the stream as a series of bytes, exactly as it appears in memory.

Character streams are used for storing and retrieving text. For each numerical value
you read from a character stream, you have to be able to recognize where the value
begins and ends and then convert the token—the sequence of characters that

represents the value—to its binary form.

When you write strings to a stream as character data, by default the Unicode

characters are automatically converted to the local representation of the characters in

13

the host machine, and these are then written to the stream. When you read a string, the

default mechanism converts the data from the stream back to Unicode characters from

the local machine representation.
2.5.3 The Classes for Input and Output

The package java.io contains the classes that provide the foundation for Java’s

support for stream 1/O:

Class Description
InputStream The base class for byte stream input operations.
OutputStream The base class for byte stream output operations.

InputStream and OutputStream are both abstract classes. As you know, you cannot
create instances of an abstract class—these classes serve only as a base from which to
derive classes with more concrete input or output capabilities. Generally, the
InputStream and OutputStream classes, and their subclasses, represent byte streams

and provide the means of reading and writing binary data as a series of bytes.
2.5.4 Basic Input Stream Operations

The InputStream class includes three methods for reading data from a stream: read(),

read(byte[] array), read(byte|] array, int offset, int length).

r InputStream J

4
: | AudiolnputStream }—T]—{ SequencalnputStream |
B |
! For reading audio data i For reading from a |
f sequence of atreams
| FllelnputStream ByteArraylnputStream
g For reading from a file For reading from a byte array |
1 ObjectinputStream I—W —| PipedinputStream | |
For reading objects from a stream For reading from a piped stream :

—-—i FllterInputStream I

For filtaring input from an |
existing stream |

Fig.2-2 Subclasses of InputStream

14

2.5.5 Basic Output Stream Operations

The OutputStream class contains three write() methods for writing binary data to the

streal

m. As can be expected, these mirror the read() methods of the InputStream class.

This class is also abstract, so only subclasses can be instantiated.

r QutputStream

J | [
FileOutputStream ByteArrayOutputStream
For writing to a file For writing to a byte array
ObjectOutputStream L— PipeQutputStream
For writing objects to a stream For writing to a piped stream

FilterOutputStream

For filtering output from
and existing stream

Fig 2-3 Subclasses of OutputStream

2.5.6 Stream Readers and Writers

Stream readers and writers are objects that can read and write byte streams as

character streams. So a character stream is essentially a byte stream fronted by a

reader or a writer. The base classes for stream readers and writers are:

Class Description
Reader The base class for reading a character stream
Writer The base class for writing a character stream

The Reader and Writer classes and their subclasses are not really streams themselves,

but provide the methods you can use for reading and writing an underlying stream as

a character stream. Thus, a Reader or Writer object is typically created using an

underlying InputStream or OutputStream object that encapsulates the connection to

the external device, which is the ultimate source or destination of the data.

15

2.5.6(1) Readers

Reader
| 1
InputStreamReader PipedReader
: F_or.re:a:é_iﬁg-a character stream For reading from a PipedWriter
BufferedReader — ~—— CharArrayReader

For buffering other readers For reading from a char array
i
FilterReader StringReader '
|
For reading filtered streams For reading from a string |

Fig 2-4 Subclasses of Reader class

2.5.6(2) Writers

[Writer I
] ¥ |
l OutputStreamWriter }—[T—{ PipedWriter I
For'writing a character stream For writing to a PipedReadear
l BufferedWriter CharArrayWriter I
For buffering other writers For writing to a char array
| PrintWritar { { StringWriter I
- For writing formated data For writing to a string
—-—l FilterWriter |
For writing filtered streams

Fig 2-5 Subclasses of the Writer class

No conversion occurs when characters are written to, or read from, a byte stream.
Characters are converted from Unicode to the local machine representation of

characters when a character stream is written.

16

2.6 Threads

[n Java, working with threads can be easy and productive. In fact, threads provide the

only way to effectively handle a number of tasks. Threads are integral to the way Java

works.
2.6.1 Introducing Threads

Conceptually, a thread is a flow of control within a program. A thread is similar to the
more familiar notion of a process, except that multiple threads within the same
application share much of the same state--in particular, they run in the same address
space. Multiple threads in an application have the some problems, you can't have
several threads trying to access the same variables without some kind of coordination.

A thread can reserve the right to use an object until it's finished with its task.

2.6.2 The Thread Class and the Runnable Interface

A new thread is born when we create an instance of the java.lang. Thread class. The
Thread object represents a real thread in the Java interpreter. With it, we can start the
thread, stop the thread, or suspend it temporarily. The constructor for the Thread class
accepts information about where the thread should begin its execution. We use the
Runnable interface to create an object that contains a "runnable" method by
implementing the java.lang.Runnable interface. Every thread begins its life by
executing a run() method in a particular object. It is public, takes no arguments, has

no return value, and is not allowed to throw any exceptions.

2.6.3 Creating and starting threads

A newly born Thread calls its start() method. The thread then wakes up and
proceeds to execute the run() method of its target object. start() can be called only
once in the lifetime of a Thread. Once a thread starts, it continues running until the
target object's run() method completes, or we call the thread's stop() method to kill

the thread permanently.

17

Fig.2-6 Depicts a Runnable object that creates and starts its own Thread.

2.6.4 Controlling Threads

We have seen the start () method used to bring a newly created Thread to life. Three
other methods let us control a Thread's execution: stop(), suspend(), and resume().
None of these methods take any arguments; they all operate on the current thread
object. The stop() method complements start(); it destroys the thread. start() and
stop() can be called only once in the life of a Thread. By contrast, the suspend() and
resume() methods can be used to arbitrarily pause and then restart the execution of a

Thread.

Another common need is to put a thread to sleep for some period of time.
Thread.sleep() is a static method of the Thread class that causes the currently

executing thread to delay for a specified number of milliseconds:

Thread.sleep() throws an InterruptedException if it is interrupted by another
Thread.[1] When a thread is asleep, or otherwise blocked on input of some kind, it
doesn't consume CPU time or compete with other threads for processing.

[1] The Thread class contains an interrupt() method to allow one

thread to interrupt another thread.

2.6.5 A Thread's Life

A Thread continues to execute until one of the following things happens:
® [treturns from its target run() method
® [t'sinterrupted by an uncaught exception

® [ts stop() method is called

18

e run() method for a thread never terminates, and the

So what happens if th
application that started the thread never calls its stop() method? The answer is that

the thread lives on, even after the application that created it has finished. This means
we have to be aware of how our threads eventually terminate, or an application can

end up leaving orphaned threads that unnecessarily consume resources.

2.7 Networking

One of Java's great strengths is painless networking. The programming model you use
is that of a file; in fact, you actually wrap the network connection (a "socket") with
stream objects, so you end up using the same method calls as you do with all other

streams. Java's multithreading is handy when handling multiple connections at once.

2.7.1 Identifying a Machine

Of course, in order to tell one machine from another and to make sure that you are
connected with the machine you want, there must be some way of uniquely
identifying machines on a network. This is accomplished with the IP (Internet

Protocol) address that can exist in two forms:

1. The familiar DNS (Domain Name Service) form. If my domain name is
abe.com, and suppose I have a computer called xyz in my domain. Its domain
name would be xyz.abe.com. This is exactly the kind of name that you use
when you send email to people, and is often incorporated into a World-Wide-

Web address.

2. Alternatively, you can use the dotted quad form, which is four numbers
separated by dots, such as 123.255.28.120. In both cases, the IP address is
represented internally as a 32-bit number (so each of the quad numbers cannot
exceed 255), and you can get a special Java object to represent this number
from either of the forms above by using the static InetAddress.getByName()
method that's in java.net. The result is an object of type InetAddress that you

can use to build a "socket" as you will see later.

i 19

2.7.2 Servers and clients

The whole point of a network is to allow two machines to connect and talk to each
other. Once the two machines have found each other they can have a nice, two-way
conversation. The machine that is being seeked is called the server, and the one that
seeks is called the client. This distinction is important only while the client is trying to

connect to the server. So the job of the server is to listen for a connection, and that's
performed by the special server object that you create. The job of the client is to try to
make a connection to a server, and this is performed by the special client object you
create. Once the connection is made, you'll see that at both server and client ends, the
connection is just magically turned into an I0 stream object, and from then on you can
treat the connection as if you were reading from and writing to a file. This is one of

the nice features of Java networking.
2.7.3 Port: A unique place within the machine

An IP address isn't enough to identify a unique server, since many servers can exist on
one machine. Each IP machine also contains ports, and when you're setting up a client
or a server you must choose a port where both client and server agree to connect. The
client program knows how to connect to the machine via its [P address, but ports are
responsible for connecting it to the desired service (potentially one of many on that
machine). The idea is that if you ask for a particular port, you're requesting the service
that's associated with the port number. Typically, each service is associated with a
unique port number on a given server machine. The system services reserve the use of .
ports 1 through 1024, so you shouldn't use those or any other port that you know to be
in use. The socket is the software abstraction used to represent the "terminals" of a
connection between two machines. For a given connection, there's a socket on each
machine, and you can imagine a hypothetical "cable” running between the two
machines with each end of the "cable" plugged into a socket. In Java, you create a
socket to make the connection to the other machine, then you get an Inputstream and
Outputstream from the socket in order to be able to treat the connection as an I0
stream object. There are two stream-based socket classes: a Serversocket that a server
uses to "listen” for incoming connections and a Socket that a client uses in order to

initiate a connection. Once a client makes a socket connection, the ServerSocket

20

returns (via the accept() method) a corresponding server side Socket through which
direct communications will take place. At this point, you use the methods
getlnputStream() and getoutputstream() to produce the -corresponding
InputStream and OutputStream objects from each Socket. These must be wrapped
inside buffers and formatting classes just like any other stream object. ServerSocket
seems to be a bit misnamed, since its job isn't really to be a socket but instead to make
a Socket object when someone else connects to it When you create a ServerSocket,
you give it only a port number. You don't have to give it an IP address because it's
already on the machine it represents. When you create a Socket, however, you must
give both the IP address and the port number where you're trying to connect. (On the

other hand, the Socket that comes back from ServerSocket.accept() already contains

all this information.).
2.7.4 Creating Clients and Servers

Using BufferedReader and PrintWriter objects, you can communicate over the
network with sockets-all you need is a Domain Name Service (DNS) address for the

server and a free port on that server.

In the following case a client program connects to a server program, sends a message,
and gets a message back. I will use the DNS 127.0.0.1 (the local host) and use an
arbitrary port number 8765. The port number selected should not be in use already

and the server and client should connect to the same port.

// CLIENT PROGRAM

import java.net. *;

import java.io. *; Jaghat,

s

class client {
public static void main(String args[]) throws Exception {
int character;
Socket socket = new Socket("127.0.0.1", 8765),

InputStream in = socket.getlnputStream(),

OutputStream out = socket. getOQuiputStream(),

21

String string = "Hello!\n", }
byte buffer[] = string. getBytes(), l f
out.write(buffer); |

while ((character = in.read()) = -1) { ’
System.out.print((char) character); '

) .

J
socket.close(), Yl ‘
} i
4 éi
|
//SERVER PROGRAM '

import java.io. ™, !
import java.net.*;

public class server {

public static void main(String([] args) { |

try {
q ServerSocket socket = new ServerSocket(8763); |
Socket insocket = socket.accept(),

BufferedReader in = new BufferedReader (new

InputStreamReader(insocket.getInputStream()));
PrintWriter out = new PrintWriter
(insocket. getOutputStream(),
true);
String instring = in.readLine(), [
out.printin("The server got this: " + instring);
Insocket.close(); :
} |
; catch (Exception e) {} |

22 |

i i i s s i 4

2.8 AWT

AWT (the Abstract Window Toolkit) is the part of Java designed for creating user
interfaces and painting graphics and images. It is a set of classes intended to provide
everything a developer requires in order to create a graphical interface for any Java
applet or application. Most AWT components are derived from the
java.awt.Component class as figure below illustrates. (Note that AWT menu bars and

menu bar items do not fit within the Component hierarchy.)

component
= Button
= Canvas
= CheckBoox
b (LA e -6 VAN] m— R ot
= Containex ScxrollPane , i
L Label Window c;ﬁ)‘malqg - Filabhialog
- Ligt ki
= Sorollbary
TexthArea
- Tax tConponant x
» TextField

Fig.2-7 Partial Component Hierarchy

The Java Foundation Classes consist of five major parts: AWT, Swing, Accessibility,
Java 2D, and Drag and Drop. Java 2D has become an integral part of AWT, Swing is
built on top of AWT, and Accessibility support is built into Swing.

The five parts of JFC are certainly not mutually exclusive, and Swing is expected to
merge more deeply with AWT in future versions of Java. The Drag and Drop API was
far from mature at the time of this writing but we expect this technology to integrate
further with Swing and AWT in the near future. Thus, AWT is at the core of JFC,

which in turn makes it one of the most important libraries in Java 2.

2.9 SWINGS

Swing is a large set of components ranging from the very simple, such as labels, to the
very complex, such as tables, trees, and styled text documents. Almost all Swing
components are derived from a single parent called JComponent which extends the

AWT Container class. Thus, Swing is best described as a layer on top of AWT rather

23

i
a
:
[

than a replacement for it. Figure below shows a partial JComponent hierarchy. If you
compare this with the AWT Component heirarchy of previous figure you will notice
that for each AWT component there is a Swing equivalent with prefix “J”. The only
exception to this is the AWT Canvas class, for which JComponent, JLabel, or JPanel

can be used as a replacement. You will also notice many Swing classes with no AWT

counterparts.

Figure below represents only a small fraction of the Swing library, but this fraction
consists of the classes you will be dealing with most. The rest of Swing exists to

provide extensive support and customization capabilities for the components these

classes define.

JComponean t JToggleButtﬁn{::Jﬁhe9kﬁgx
14Abstractﬁuttcn JButton JRadicButton
+ JColorChooser JMenultem

4 JComboBox JMenu

=+ JFileChooser JRadioButtonMenultem
+JInternalFrame JCheckBut tonMenultem
=+ JLabeal

+ JLayeredPane —+JDesk topPane

= JList

= JMenuBax

=+ JOoptionPane

=+ JPanel

= JPopupManu

=+ JProgressBar

= JRootPane

=+ JScrollBar

=+ JScrollPane

=+ JSeparator

= J8lider

= JSplitPane

=+ JTabbedPane

=+ JTable

=+ JTableHeader JTextArea

=+ JTextComponent JTextField—— JPasswordField
= JToolBar JEditorPane— JTextPane

= JToolTip

=+ Jlrees

=+ JViewport

Fig.2-8 Partial Jcomponent Hierarchy

24

a3 die Rt & onins %

CHAPTER 3
PROPOSED STUDY AND ITS IMPLEMENTATION

3.1 Theory
3.1.1 Outline

MAV is chatting software based loosely on IRC system. There is a central server
handling all communications to and from clients. Fach user can run the client program
and connect to server to start chatting. All clients and server will have list of online
users. List is updated as soon as the status of some client changes. There is one main
chat room in which all messages can be seen by all clients. Users can also choose to
chat in private with any one on the list. Multiple chat rooms have not been

implemented but provisions are provided in code for easy deployment.

Client 1
Main
Room Server
Config File
Client 4 Client 2
Main Private SERVER Main
Room | Room [&—— <+ Room
A
' 3
v .
Client Main Private
Config File Room | Room
Client 3

Fig.3-1 Basic topology for the client\server architecture

25

3.2 Implementation Details

Language Used Java

Libraries Used JDK 1.5

IDE JCreator

platform Java runtime environment 5.0
User Interface Graphical

3.2.1 Client — Server Communication

The server is bound to a fixed socket and listens for connection requests from clients.
The clients try to connect to server on this port and predefined host. Once the
communication channels are set up, both talk in terms of objects defined as protocols.
Upon receiving these objects the program then extracts relevant information and takes
appropriate actions. All communications are through server and may change the

protocol parameters if required.

3.2.2 Protocols

Self designed protocols have been defined to enable communications between server
and clients. Protocols have primarily been defined as classed which have required

parameters. The objects of these classes are then exchanged

3.2.2(1) Message Protocol

This defines how messages are to be handled between users and server. The user can
send public and private message. For private message it is important to know the

recipient and the sender of the message.

Fields:
* Audience — public or private message
* RoomNumber — Currently of no use. In future can be used for multiple rooms

« Recieverld — Id of the recipient. Useful only for private messages

26

genderld — Id of sender. Useful only for private messages
Message — Text that the user wants to send

3.2.2(2) Client Information Protocol

This is meant to exchange client information between user and server. When a new
client connects to the server its relevant information is kept in an object of this class.

Other users are notified of arrival of new client using information from this protocol.

Fields:

. Clientld — Identification number of client within the server.

. ClientName — The login name provided by the user.

3.2.2(3) Chat Request Protocol

This protocol is used to notify a client that another client wants to start a private chat
with it. A message of this type must be sent before any private conversation can start.
This message is sent when user chooses to start a private conversation. Upon
receiving this request the recipient's client takes steps to receive private messages

from the server by the specified sender.

Fields:
«+ Senderld — The clientId of the client machine that initiated the request.

o Recieverld — The clientld of the client machine that is to be notified.

3.2.2(4) Update Client List Protocol

When a new user logs in to the server all clients have to be notified of this arrival.
Also when a user logs out, all users must be notified. This protocol is used to simplify
this process. A message of this type with the new clients name is broadcast to all

client machines.

Fields:

* Request Type — Indicates if the user has to be added or removed

27

The name of the client that the information is about - ‘

ClientName —

Protocol |
3,2.2(5) Log Out Proto |

When a user chooses to logout of the system the server and all other users must be

notified. Upon users choice the local client machine sends a message of this type to

the server. Upon receiving this message the server forwards it to all clients. Then

breaks connection with the client.
There are no fields

3.2.2(6) Shut Down Protocol

If the server has to be shut down it must notify the clients. This message is broadcast

to all clients that they must close their connections.

There are no fields
3.2.2(7) Join Chat Room Protocol
This protocol is reserved for when multiple chat rooms will be implemented.

Fields
« Request Type -- Indicates if the user has to be added or removed

« Room Number — RoomlId of the room that the user wants to join

3.2.2(8) Kicked Out Notice Protocol

If the administrator chooses to kick out a user the server must send this message to the
| kicked out client. The client is told out of which room the user has been kicked out of.

H If the user is kicked out of the main room it is equivalent of a forced log out.

28 n,

R T S

Fields
RoomNumber — Indicates which room the user has been kicked out of

3.2.2(9) Connection Notice Protocol

If the server rejects the connection then this object is sent to the client. The reason

might be over occupied server or clients nick already in use.

' Fields
' . Status — indicates whether the connection was accepted or rejected by the server.

3.2.3 User Interfaces:

3.2.3(1) Server Interface | :

The interface has been developed in Swing. Interface has been kept separate from the i

network processes. The main components of the server interface are as follows

- Messages Area: Connection acceptance, rejection, login messages are shown here
- List of Online Users: On the right side of the message window is the list of users

that are connected to the server currently. A user can be selected from this list by . l\

clicking on name.

- Configure Server Dialog: This dialog is shown when option is selected from the
menu. This dialog will allow new values and saving to configuration file.

- Main Menu: The options available for the server. The options include configure

server, shutdown server.

3.2.3(2) Client Interface

i The interface has been developed in Swing. Interface has been kept separate from the

network processes. The main components of the client interface are as follows

- Message Tabs: These are the conversation tabs. All conversation windows are

kept within these tabs.

- Message Entry Field: This is place at the bottom of the window. This is where the il

user enters whatever message he/she wants to send. Message is sent by either

B Sl 5 o i

pressing enter or pressing the send button. Where the message is sent depends on :

29

Bhitat posiin s =

which tab is open

Online User List: This list shows all the users who are logged in at the server.
Double clicking on a user will open a conversation window with him.

Configure Dialog: This dialog is shown when option is selected from the menu.
This dialog will allow new values and saving to configuration file. You can
change server host name and port.

Main Menu: The options available for the server. The options include connect,

disconnect, configure, exit, close current tab, close all tabs, Help

30

T —

3. Snapshots

AV SERVER

\}

[}

= Help

i :ztening For Connections...

i
i
1
1
|
1
|
i
1
1
i
1
|
i
|
{
|
|
|

Online Users

it Kick Out

Shut Dou_\m

Fig.3-2 The Server window in default mode

%WWWW?TW T A A

m“wwww*wwwww&mm@‘

File Tabs Help

Online Users

1»]

il Send

31

g bbb biss s iisas o - i

Fig.3-3 The Client window in default mode

s SV S Y N —

Zo LAV CHAT CLIENT

=

zitw Tahs Help

Online Users

L ol

[ox || cancel |

o
V|

S
‘[Send j

Fig.3-4 Login dialog box

S)

AV SERVER

1
v

File Help

i istening For Connections... l' Online Users

reakmachine/172.16.7.90 : Maha...
H-7-211172.16.7.27 : vivek

Cenneclion accepted: 2 akshunni172.16.7.87 : Akshunn
Connection accepted: 3

wection accepted: 1

Kick Out i St!mpq_wn__ :

Fig.3-5 Clients connected to Server

ATV A R 3

& Gt et

File Tabs Help

[Main Room [Akshunn | Mahanth |
IMahanth says = hi all.
ivek says * hello |

,Akshunn says = hey...hi akshunn/172.16.7.87 : Akshunn

Mahanth says = hey long time no see
Akshunn says = i was busy...in my project
vivek says = same here

Mahanth says = well its almost done...finally

(KT

[sema |

Fig.3-6 Main chat room — Client window |

RV Rl <25 e

File Tabs Help

{ MainRoom |* Akshunn | Mahanth |

vivek says = hi

'Mahanth says > hi howr u? : :

wivek says = | m doin fine whts up on ur side? ||[akshunni172.16.7.87 : Akshunn B

Mahanth says » nothin much life's usual - | B
{1

il =

e

Fig.3-7 Private chat room — Client window

o MAV Chat Cliant <> vivek
File Tabs Help

{ Hiain Room |
(Mahanihsays >hiall. [Connection Error

fvivek says » |
ghkshu:xssa;ﬂ%e i [_ 72.16.7.87: Akshunn ||
b vhi | @y . : |
‘IMahanth says > hey long t Server Has Been Shut Down |
{#kshunn says » i was bus
iivek says » same here

thiahanth-says=wellits-al

<«

! l Send] i i

Fig.3-8 Server shutdown

|
33 |

™ L

|

3.4 Algorithm ' i
|

3.4.1 Chat Server il
l

1. Control goes to the main method of the public class ChatServer. |

2. New object of ChatServer class is formed and its constructor is called.

f 3. The constructor calls the method getConfiguration(), which configures "
serverPort number and serverLimit number (By default 1665 and 20
respectively).

4. Make onlineUsers = 0 and then bind the server on socket, show interface and ;
listen for client connection requests by calling the method |
listenForClients(ServerSocket). M

5. Listen to socket. When request is received, start a thread handler (int ClientID, Q; |
Socket client) which is an object of class ChatHandler. B

6. Now start method is called by handler. This method creates the ouput stream
and input stream and checks if client limit is exceeded or not and write

1 appropriate status to output stream(true when limit is not exceeded and vice
versa).

7. Then handshake() method is called, which first of all gets the client name

from the input stream. If the client with the same name is already present in

the client list the method will return false. Otherwise it will add client to the
client list and send the complete client list to the output stream. Tell all other
clients about the new client. Construct a protocol object and broadcast it and

increment the online users by 1.

34

If handshake returns false then return to the method listenForClients().
Otherwise create a new thread object and call the object’s start method which

will execute the code written in the run method (an overridden method).

Now the run() method continuously listens to input stream for messages from

“this” client.

If message received

- Public message then broadcast

- Private message then locate the intended receiver. Get the id of recipient
(recieverld), the reference of handler and send message on its output
stream.

If chat request is received

- Tell the intended recipient that this client wants to start a private chat.
Locate the intended receiver. Get the id of recipient (recieverld), the
reference of handler and send request on its output stream.

If Logout request is received

— Then decrement the online users by one and break from the loop after

which the stop() method is executed

35

3.4.2 Chat client

1

Control goes to the main method of the public class ChatClient.
New object of ChatClient class is formed and its constructor is called.

The constructor sets the Boolean variable connected = false and creates an

object listener of class InputListener.

When the client enters a login name via a graphical interface to connect to a

server the control transfers to the method connectToServer().

The method connectToServer() calls the method getConfiguration(), which
configures serverSocketNumber and serverAddress (By default 1665 and

Jocalhost respectively).

An object addr of the inbuilt java class InetAddress is created and assigned
server address. Now the object of class Socket, socket connects to the server

by calling the constructor using addr and serverSocketNumber as an argument.

Now it creates the input stream and the output stream and the control shifts to

the method handShake().

The handShake() method reads the status from the input stream and if it is
true then writes the login name of the client on the output stream and if it is
false displays the message "Name Already In Use. Change Login Name” and
returns false. Get the client list from the input stream and assigns to client id

the value of number of clients in the clientList minus 1 and returns true.

Now control returns back to the method connectToServer() and if
handshake() returns false then connection to the server is not established,

otherwise if it is true make Boolean variable running = true, which is a field in

the InputListener class. If connecting for the first time, start the listener object

36

10.

11

+++

(which will execute the method run()), make Boolean variable connected =

true and the connection to the server is established.

Now the run() method continuously listens to input stream for messages from

the server and stores it in the object server message of class Object.

If message received is from another client connected to server then

- If message is public show in main room tab.

- If message is private show in private room tab.
If chat request is received

- It will accept the request and open a new tab corresponding to that
senderld.

If UpdateList request is received

- Then update the clientList according to the value of the Boolean variable
requestType. If it is true add client in the clientList else remove the client.

If ServerShutDown request is received

- Then disconnect from the server and display the same.

If KickedOutNotice request is received

- Then disconnect from the server and display the message "Server Kicked

You Out".

If user logs out then the control goes to the method
disconnectFromServer(Boolean reason) and sets the Boolean variable running
— false and if reason = true then write the object of class logout to the output
stream. Close the output stream and the socket, clear the client list and make

the Boolean variable connected = false.

37

CHAPTER 4
CONCLUSION

Study of Java Programming and Network Programming through Java has been done.
A Centralized Platform Independent Instant Messenger Application using the same
was developed. Both the server and client are reconfigurable. The Server reserves the
right to decide the maximum number of clients and disconnect any particular client
during a session. Private rooms for communication between any pair of clients have

been provided along with a main room for conferencing by all clients connected.

4.1 Possible Future Enhancements

The following features can be incorporated in future to enhance its functionality:

- File Transfer — File Transfer between clients.
- VoIP —Voice over Internet Protocol — Voice Chat Enhancement.
- Chat History Logging - A Log file containing the recent chat history.

- Compression of Data - For Faster and Secure Delivery over large networks.

- Multiple chat rooms — Multiple Chat Server Connection capability in the client.

Appendix

Appendix A:

Main Classes and their functionalities.

15

Chat Server:

This is the main class of the MAV Chat Server. It provides the core
functionality of the server and is responsible for handling clients and their
connections. Information about all clients is kept in this class. Error handling

has been done in this class. An object of chat handler is created fro each client.

Chat Handler:

This is an inner class in the chat server. This is basically responsible for
handling each individual clients i.e. their sockets, the input and output stream.
It runs as a separate thread for each client. Creation and deletion of the

connection and broadcasting of message is done in this class.

Server Interface:

This is the class responsible for the GUI provided to the server administrator.
The administrator is provided with an easy to use interface providing multiple
paths to carry out a particular task. Menus have been incorporated and buttons
are also placed on the screen to provide assistance to the user of the server.

Error Messages from the chat server class are displayed in this class.

Chat Client:

This is the main class of the MAV Chat Client. It provides the core
functionality of the client and is responsible for making connection with the
server and sending and receiving messages and classifying them according to

the used protocols. Error handling has been done in this class.

39

5. Client Interface:
This class is responsible for the GUI of the client part of the application.
Again a user friendly interface has been provided to the user for easy usage of |
the software. Multiple paths have been provided to carry out a particular task. !
User can view the messages sent in the main room as well switch to the |
different tabs provided to use the private chat option of the application. Errors '

captured in the chat client class are displayed in this class.

6. Input Listener:

This is an inner class in the chat client. This class is sub class of the thread
class. This class listens to the incoming transmissions from the chat server.

The objects are then classified according to the protocols and then the

appropriate action is taken by the other classes. ’

40

Appendix B: Error Messages

Server Error Messages

i Message Reason
|

Class of a serialized object Error in communication

‘cannot be found between server and client
\

'Something is wrong witha Error in communication
|
‘class used by serialization. between server and client

Control information in the Error in communication

'stream is inconsistent. between server and client

Primitive data was found in Error in communication
|

'the stream instead of 'between server and client

‘ objects.
|

| Cannot Setup Connection ‘Error establishing

| " : ;
i connection with client
i

File options to file

Cannot Save Configuration |Error saving configuration

‘-Conﬁguration File Not :Error finding and opening

Found, Using Defaults configuration file.

Error Reading Configuration File found but cannot be

| File, Using Defaults read. File may be created

'Cannot Start Server Another program may be

i ‘using the port on the

'machine

41

Press OK. If keeps repééting '

Press OK. If keeps répeatiﬁgi

Just Press OK. If keeps £

rRetry Configuring,. -If keéps -,

.Retry Configuring. If keeps k

.Shutdown other progfém if [\

Solution

shutdown

shutdown

Press OK. If keeps repéa&iﬁg '

shutdown

Press OK. If keeps répeaﬁng |

shutdown

repeating shutdown

repeating check if file is

corrupted

Press OK. If keeps repéating ‘

check if file has been
deleted.

repeating check if file is

corrupted

possible. Else change port
number in the configuration

file

L

'Error closing connection to

Message

client

Client Error Messages

Message

!Server Has Been Shut Down Server Has Been Shut Down Press OK. Reconnect later

b=t
‘Server Kicked You Out

!Class of a serialized object

!rcannot be found

| ST
| Something is wrong with a

‘class used by serialization.

IControl information in the

| o ;
'stream is inconsistent.
Primitive data was found in

|
|

ViCannot Save Configuration

File

!Found, Using Defaults

Configuration File Not

Reason Solution

Error whilé trying to break Press OK.

connection with client

Reason Solution

Administrator kicked you out Press OK. Reconnect later

'Error in communication Press OK. Reconnect later

between server and client

I 4
Error in communication Press OK. Reconnect later

between server and client

Error in communication Press OK. Reconnect later

between server and client

'Error in communication Press OK. Reconnect later

'the stream instead of objects. between server and client

Error saving configuration Retry Configuring. If keéﬁé
‘options to file repeating check if file is

corrupted

| Error finding and opening | Press OK. If keebs
configuration file. repeating check if file has

been deleted.

‘Error Reading Configuration File found but cannot be read. Retry Configuring. If kéébs

'File, Using Defaults

!—Host Not Found, Reconfigure Server host machine cannot Check your configuration,

File may be created repeating check if file is

corrupted

be found. change if neccessary

Message

: Server Not Found, Check If

'Server Exists

Cannot Create Data Stream,

Closing Client

|

‘Name Already In Use.
Change Login Name

B
‘Maximum User Limit

'Reached. Server Rejected

i Connection

Reason

.No server could be found

listening to the port on the

‘specified machine

Connection Established but

data stream cannot be

resolved

‘Someone has already logged

in with your chosen name

Maximum numbers of users

allowed have connected to

server.

43

Reconnect and choose a

Try connecting later

Sl

|
Salarele |

Server may not have been

started. Retry later.

Reconnect later

different name.

Bibliography
Study of Java Programming and Network Programming through Java
1. Thinking in Java, 2 Edition — BruceEckel — http://www.BruceEckel.com —

Java Programming.

2. Java Network Programming, 2™ Edition — Merlin Hughes, Michael Shoffner,
Derek Hamner — http://nitric.com/jnp/ -- Network Specific Java Programming.

|
3. Java 2 Black Book — Steven Holzner — Java Programming and Swing. l
|
r

4. Sun's Java Tutorial -- http://iava.sun.com/docs/books/tutorial — Swing and
Updated Methods.

5. Java 2 Swing — O’Reillys.
6. Beginning Java™ 2, JDK™ 5 Edition — Ivor Horton — Java Programming.

7. www.wikipedia.com.

44

