Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num..S PE30 o) call Num:
General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action. ;

4 Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

TN

SP03001

DISTRIBUTED LIBRARY SYSTEM

By

SHRUTI MALIK 031215
NEHA SHARMA 031276
TARANDEEP KAUR 031280

JAYPEE UNIVERSITY OF
INFORMATION TECHNOLOGY

MAY 2007

Submitted in the partial fulfillment of degree of Bachelor of
Technology

DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING
JAYPEE UNIVERSITY OF INFORMATION
TECHNOLOGY-WAKNAGHAT

CERTIFICATE

This is to certify that the work entitled, “Distributed Library System” submitted by
Shruti Malik(031215),Neha Sharma(031276),Tarandeep Kaur(031280) in partial
fulfillment for the award of degree of Bachelor of Technology in Computer Science
and Engineering of Jaypee University of Information Technology has been carried
out under my supervision. This work has not been submitted partially or wholly to

any other University or Institute for the award of this or any other degree or diploma.

,V@ R

Mr. Ajay Kumar Singh

ACKNOWLEDGEMENT

ﬁ_,_” —meqw—w

Many people have contributed to this project in a variety of ways over the past few
months. We also acknowledge the many helpful comments received from our teachers of
the Computer Science department and visualization courses and seminars. We would like
to express heartfeit gratitude our friends without whose support and encouragement this
project would not have been possible. We are indebted to all those who provided reviews
and suggestions for improving the materials and topics covered in our package, and we

extend our apologies to anyone we might have failed to mention.

Thanks to our Sr. Lecturer Mr. Ajay Kumar Singh

SHRUTI MALIK (031215) Ja s
NEMN SuARMA Coziaté) ~NoJnald

TARAN pEEP KAUR (07312 %0) W

Lot —

2.1
2.2

3.4

4.]
4.2
4.3
4.4

CONTENTS

CHAPTERS
CHAPTER 1

INTRODUCTION
MOTIVATION
DISTRIBUTED LIBRARY: OUR PERSPECTIVE

CHAPTER 2

PROJECT WORK

DATABASE CONNECTIVITY

2.2.1 INTRODUCTION

2.2.2 MICROSOFT ACCESS

223 ADVANTAGES

224 CREATING A DATABASE

2.2.5 REGISTRING A DATABASE

22,6 JDBC

22.7 CONNECTONG TO A DATABASE

CHAPTER 3
INTRODUCTION TO JAVA RMI

INTRODUCTION TO RMI

OVERVIEW

HOW DOES RMI WORK

3.3.1 REMOTE INTERFACE,OBJECTS AND METHODS

3.32 CREATING DISTRIBUTED APPLICATION USING
RMI

ADVANTAGES OF RMI

CHAPTER 4

SOURCE CODE AND TEST RESULTS
MYCLIENT MODULE

MY SERVER IMPLEMENTATION MODULE

MY SERVER MODULE
QUERY DATABASE MODULE

i0
10

13

13
14
14
t4
16
16
17

20
22
23
25

26
36

39
40
42
43

4.5
4.6

6.1
6.2
6.3
6.4
6.5
6.6

RUNNING THE SERVER
RUNNING THE CLIENT
CHAPTER 5

USER INTERFACE

'MODULES

DATABASE
DIRECTORIES AND STRUCTURES

CHAPTER 6
FLOWCHARTS

LOGIN

USER HOMEPAGE

SEARCH

ADD A BOOK

REMOVE/UPDATE BOOK DETAILS
SNAPSHOTS

CONCLUSION
BIBLIOGRAPHY

45
48

52
63
64

65
66
67
68
69
70

77
78

LIST OF FIGURES

Steps to Develop RMI

RMI working

RMI Clients and Servers communication through Stubs and Skeleton
Test Results

4.1 Experimental Setup and Testing

4.2 Compiling files in Java

4.3 Compiling the impiementation class in RMI

4.4 Registering using rmiregistry

5. Start the Server

6. Run the Server passing policy file as argument

7. Running the Client Side

* Compiling and run the Client files

¢ Case: When no Server is running

* Case: Data not found on any Server
L}

Case: Server running,data found and output show
6. Flow Charts

I
2.
3.
4.

7. Snapshots of Library System

21
25
34

44
43
46
47
47
48

48
49
49
50
65

70

- """’”""_“"‘1

LIST OF ABBREVIATIONS

1. JDBC Java Database connectivity
JDK Java Development Kit

JNI Java Native Interface

IP Internet Protocol

ODBC Open database connectivity
RMI Remote Method Invocation
RPC Remote Procedure Call
SQL Structured Query Language

e R

T TR T T

- gt

ABSTRACT

NEED FOR DISTRIBUTION

Presently in such a big world collecting information can be a tiresome and time
consuming task and this problem gets aggravated but the physical location of the host
from which the information is required. Moreover all the information required may not be
present on a single system. And since the reliability of the system also plays its part
centralizing the information on one system so it is not a healthy practice. With these
problems in mind a shift has been made to distributed systems. In distributed systems all
the systems are poocling their resources on one domain and any node can make use of
those resources. Hence in a way no system will ever head towards a situation where it
finds itself heavily loaded with work or out of resources since it can use the resources

from the common pool without the user intervention.

OUR APPROACH

Our main stress is to generate applications in distributed environment making use of
RMi(Remote Method Invocation). Our application will take this supposition that there is
a library of thousands of books distributed over a large network. The user will address his
query for the search of a particular book by some author name. The system would

redirect his query to all other systems, initiate the search and return the compiled results

to the user,

Vo e e

CHAPTER 1
INTRODUCTION
OVERVIEW

“Man’s longing for perfection finding finds theory for optimization. It studies how
to describe and attain what is the best, once one knows how to measure and alter
what is good or bad.”

Nowadays in a world so ever increasing the scaling of any problem is a tough task it
becomes a really difficult task for a user far away to find an optimal result for any type of
query. When all the people are trying to get the work from far distant away places the
present domain fust try to get a server client model. But in model like this it becomes
difficult to get all the information on one system since in such a case the reliability of the
model on one centralized system is low and aiso the overhead required for storing such a
information is high. But since everything is guided by laws of nature and no one can defy
it therefore people have to try to device a model. A model that can support information
gathering from any place any time any anywhere. With this in mind people are moving to
Distributed system. But distributed computing has a lot of complexity. In today’s world
the economics plays a major role, where time is money and we will develop a distributed

library which will minimize the searching time and improve the marginality.

There has been a lot of work that has been going on in this direction and the people are
trying to remove scalability from the existing aspect and make people reach each other, A
large number of algorithms have been tried and tested in this field but a system in which
the machine can itself select the algorithms and depending upon overhead and overload
on the system would be very efficient one. Think of a search engine where you would
browse a site and put the name of a book you want to select and the machine would itself
route upon different algorithms on different machines depending upon earlier results that

were collected and the overhead and overload on the other systems.

MOTIVATION TO THE PROJECT

r

Sometimes when we try to gather details about some information that is

related to our work we need to find it in our database system and if that

information is not with us and worse when we are not connected with the internet it
becomes a problem. But if we have a system in which we are connected to local network
in a distributed environment it can be really helpful. But still there are lot of complexities
associated with it since in a distributed network where there are a lot of machines on the
network if we are trying to gather the information there is no way we can do it till we
spend a lot of time searching for that piece of relevant information on each system on the
network independently. But it can be done if we create a system that would associate
information regarding each node and maintain a database of all that and carry out the
searching on its own, returning the complete compiled information to the user. The goal
of this project is that if all the systems are joined to each other by the network that has a
distributed feature then on the basis of the query results would be generated, compiled
and returned to the user. Hence defying all the boundaries and bringing the widespread
book database to our doorstep and making each user able to gather information at any

“time and at any place. !

DISTRIBUTED LIBRARY: OUR PERSPECTIVE

According to our approach we are trying to build a digital library based on

the following models:

* SELECTING A PROPER PLATFORM(RMI)

¢ SELECTING PROPER SEARCH ALGORITHM

¢+ DESIGNING MODULES

10

e INTEGARTING OUR MODULES IN RM1.

SELECTING PROPER PLATFORM

In the past, the use of sockets was the primary way for applications to
communicate with each other. This of course was not an object-oriented approach to
communication and, if you have ever worked with socket code, you realized real fast just
how tedious it was to create a client/server architecture that had some complexity to it
and performed all the necessary operations you may have needed. Remote Procedure Call
(RPC) services were the next attempt at eliminating the complicated communication
layer of using sockets and to also make it easier for programmers to call remote
procedures, but the parameters that could be passed to these procedures usually weren’t
very complex. If the need to pass more complex parameters arose, the burden would lie
on the programmer to process the types and perform monotonous conversions. Plus, the

parameters were usually not very portable between languages.

RMI picks up where RPC services left off by being designed in an object-oriented
fashion which allows programmers to communicate using objects and not just predefined
data types that are language-centric. These objects can be as complex as you need them to
be and values that are returned can be of any type. The communication layer is
completely hidden from the programmer, which allows you to concentrate on more

important aspects of programming, like the business logic.

RMI makes applet coding a dream since you can now have your applets easily
communicate with backend distributed systems. RMI is also very secure and uses
security managers to prevent malicious code from attacking your network. If your

applications require multithreading, RMI also supports threads flawlessly.

11

SELECTING PROPER SEARCH ALGORITHM

String matching and searching is a very importdnt subject in the wider domain of text
processing. String matching algorithms are basic components used in implementations of
practical software. Our project also uses string searching and matching algorithms to find

the authors and books by the authors,

We studied many string searching and matching algorithms from various sites and

found the following algorithms useful for our problem.

Soundex Algorithm

This algorithm was chosen so as to give the user a liberty to the give the name of
the author of the author and search for the books written by the author even if he does not

remember the correct name of author. The soundex algorithm generates codes for

characters on the basis of how they sound. And groups the similar sounding words into
one group and gives the various groups an integer code. The string is then minimized to 4

digit code. The similar sounding words have the same soundex code. The search can be

Ve B AT AT L

made on the basis of generated code.

Y

INTEGRATING OUR MODULES IN RMI

The four main modules in our project are

1. The Interface.

The Implementation of the interface.
The Client side.

A separate module for ODBC connectivity.

hal

After the designing of the individual components, we integrate and implement these

modules collectively as a single entity

[

wEmT

L ROTAT T Rt T

e

CHAPTER 2

PROJECT WORK

JAVA DATABASE CONNECTIVITY

Introduction

A Distributed Library requires access to a database and in such a manner that an
individual file can be accessed easily and the queries be executed conveniently. Java
provides solid capabilities for two types of file processing. Sequential file processing is
appropriate for applications in which most or all of the file’s information is to be
processed. Random Access file processing is appropriate for applications in which it is
crucial to be able to locate and possibly update an individual piece of data quickly, and in
which only a small portion of a file’s data is to be processed at once. One problem with
each of these methods is that they simply provide for accessing data - they do not offer
any capabilities for querying the data conveniently. Therefore none of the above
mentioned methods is fully successful to be used in our case. This problem is solved

using database system.

Database systems not only provide file-processing capabilities, they organize data
in a manner that facilitates satisfying sophisticated queries. The most popular style of
database system on the kinds of computers that use java is the Relational Database. A
language called Structured Query Language (SQL) is almost universally used among
relational database systems to make queries. Java enables programmers to write code that
uses SQL queries to access the information in relational database systems. Some popular
relational database software packages include Microsoft Access, Sybase, Oracle,

Informix, and Microsoft SQL Server.

Having studied all the various database systems we chose MS Access and the

Structured Query Language as the database system and query language respectively.

P MR

A A T

Microsoft Access

A database is a collection of data of a particular type. It is an organized collection
of data viewed as a whole instead of separate unrelated files. A Relational Database is a
muiti-table database where the tables in the database have to be related for storing or
retrieving data. A Relational Database Management System (RDBMS) is used to create

and maintain relational databases.

Main advantages of using MS Access:

» Redundancy can be reduced.
Inconsistency can be avoided.

The data can be shared.

Standards can be enforced.
Security restrictions can be applied.

Integrity can be maintained.

¥V V. ¥ VvV Y V¥

Conflicting requirements can be balanced.

Creating a database:

Step I: identify the types of objects to be created,

An access database consists of the following types of objects - Tables, Queries, Forms,

Reports, Data Access Pages, Macros, and Modules. In this case we use Tables.

Step I1: Identify the names and fields of the table.

The names of the fields are book name, studentname, password, date of issue, date of

return. The name of the table is Student.

Step I Identify the data type of each field in the tables.

An access database allows the following types of data types.Text, memo, number,

date/time, currency, autonumber, yes/no, OLE object, Hyperlink, lookup wizard.

Step IV: Identify the fields that contain unique values in the tables.

Primary Key

The primary key ensures that there are no duplicate rows in the table. Every

table must have a column that uniquely identifies each row in the table. In our

case we use the login as the primary key and the book number.

Foreign Key
When primary key of a table appears as a field in another table, it is called a foreign key.

Composite Key

When a primary key contains a combination of one or more fields, it is called composite

key.

Step V: Identify the method to create the database.,

Access offers two methods:
> Using the database wizard
> Using a blank database

We chose the second option.

Step VI: Identify the name and location where the database has to be saved.

By default a database is saved in My Documents folder in the C drive unless specified

otherwise. We chose the default setting only.

Step VII: Identify the method to create the tables.

Access offers three methods:
» .Using datasheet view.
> Using the table wizard.
» Using the design view,

We chose the third option. Besides that we also added entries to the table from the

command prompt using the update command of SQL.

Registering the datubase:

After the database is created, the next important step is to register the database as
an ODBC source. The following steps are followed in order to register the database.

» Go to the Control Panel from the Start Menu.

» Open the ODBC Data Source Administrator dialog by double-click.

» Make sure the User DSN tab is selected and click Add.

» Create New Data Source dialog appears, select the Microsoft Access Driver and
click Finish.

» The ODBC Microsoft Access 97 Setup dialog appears. Here enter the name of the
data base.

» Click the Select button to display the Select Database dialog. Using this dialog
locate and select the database. When done click ok.

» Click OK and dismiss the dialog box.

Now the database is registered to be used as ODBC data source. We can now access the

ODBC data source using the JDBC-to-ODBC bridge driver.

JDBC:

The Java Database Connectivity (JDBC) API is the industry standard for
database-independent connectivity between the Java programming language and a wide
 range of databases — SQL databases and other tabular data sources, such as spreadsheets

or flat files. The JDBC API provides a call-level API for SQL-based database access.

JDBC technology allows you to use the Java programming language to exploit
"Write Once, Run Anywhere" capabilities for applications that require access to
enterprise data. With a JDBC technology-enabled driver, you can connect all corporate

data even in a heterogeneous environment

r

o

Connecting to the database:

The main task of connecting to the database is followed after the registration of
the database as ODBC data source. This is done as follows. Please note the complete

coding is attached in the end.

Import java.sql.*;
Connection conn;

Import the package “java.sql” which contains classes and interfaces for
manipulating relational databases in Java. We declare a Connection reference (package
java.sql) called conn. This will refer to an object that implements interface Connection. A
Connection object manages the connection between the Java Program and the database. It
also provides support for executing SQL statements to manipulate the database and

transaction processing.

String url = “jdbc:odbe:db3”;

The above mentioned line specifies the URL (Uniform Resource Locator) that
helps the program locate the database. The URL specifies the protocol for
communication (jdbc), the sub protocol for communication (odbc) and the name of the
database (db3). The sub protocol odbe indicates that the program will be using jdbc to

connect to a Microsoft ODBC data source.

ODBC is a technology developed by the Microsoft to allow generic access to
disparate database systems on the Windows platform. The Java 2 Software Development

Kit (J2SDK) i.e. the software used comes with the JDBC-to-ODBC bridge database

17

driver to allow any java program to access any database source. The driver is defined by

class JdbcOdbceDriver in package sun.jdbe.odbe.

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

The class definition for the database driver must be loaded before the program can
connect to the database. It uses static method forName of class Class (package java.lang)
to load the class definition for the database driver. This line throws a

java.lang.ClassNotFoundException if the class cannot be located.

Conn = DriverManager.getConnection(url);

This line uses the static method getConnection of class DriverManager (package
java.sql) to attempt a connection to the database specified by url. The username and
password arguments can also be passed here if the data source is set up to require a
username and password. Our database does not use the username and password. If the
DriverManager cannot connect to the database, method getConnection throws a

java.sql.SQLException. If the connection attempt is successful it proceeds to the

following statement.
Statement stat = con.createStatement();

It declares a Statement (package java.sql) reference that will refer to an object that
implements interface Statement. This object will submit the query to the database. It
invokes Connection method createStatement to obtain an object that implement the

Statement interface. We can now use stat to query the database.

i
|
i

ResuliSet resultl = stat.executeQuery(query);

This line declares a ResultSet (package java.sql) reference that will refer to an
object that implements interface ResultSet. When a query is performed on a database, a
ResultSet object is returned containing the results of the query. The methods of interface
ResultSet allow the programmer to manipulate the query results. The query passed as the

argument is either the actual SQL query or a string containing the query.

Resultl.next ();

This moves the ResultSet cursor that keeps track of the current record in the
ResultSet to the next record in the ResultSet. This method returns false if there are no
more records in the ResultSet. Since initially the pointer points to the beginning of the

records and is in an invalid cursor state this method is called.

CHAPTER 3

INTRODUCTION TO JAVA RMI

Remote Method Invocation(RMI) is a part of Java Development Kit.It allows us to develop
distributed applications.Distributed Systems require computations that are running in
different address spaces,practically on different machines,must be able to communicate
between one machine to another. Java RMI facilitates such a communication specifically for
java applications.The RMI is platform independent because Java is platform independent.The
RMI can communicate only from one java virtual machine to another. Using RMI we can

write reliable distributed applications that are as simple as possible.

In RMI the application is divided into objects.The objects communicate with each other

through an interface.This interface is used to access the remote objects and its methods. RMI

passes objects by their true type, as a result the behavior of those objects is not changed when
they are sent to another virtual machine. To develop the distributed applications application

£ using RMI we have to follow the steps given below:

¢ Define the interface

s Implementing these interfaces

¢ Compile the interfaces and their implementations with the java
compliler

¢ Compile the server implementations with the RMI compiler

1 e Run the RMI registry

Run the application

20

Methods 2 Sorvr D)

Interface Implemented By Source

Sorver N
Class
Filo

Source

Copy To

Class
File

o

; Applicoliqn:s codebase
|spec'd by CLASSPATH+

21

OVERVIEW OF RMI

RMI applications are developed as two separate programs: a server and a client. Server
applications create a number of remote objects,make a reference to those remote objects.
Client application gets a remote reference to one or more remote objects in the server and
then invokes methods on them. RMI provides the mechanism by which the server and the

client communicate and pass information back and forth.

RMI distributed application uses a registry to obtain a references to remote object. The
server creates the objects, registers it in the local registry by the object’s name. The client
looks up the remote object by its name in the server registry and then invokes a method of
the server object. The RMI system also uses the existing web server to load Java classes

bytecodes (objects) from server to client and from the client to server, when needed.

The RMI architecture consists of four layers and each layer can perform specific functions:

¢ Application Layer: It has contained the actual object definition

e Proxy Layer: It consists of two parts namely Stub and Skeleton. These
are used for marshalling and unmarshaling the data that is transferred
through the network.Marshaling is the process by which we can convert
the java bytecodes into the stream of bytes,and unmarshaling is the
reverse process of it. Stub is the proxy for the server. It is placed on the
client side of the applications whereas the skeleton is placed on the

server side.

» Remote Reference Layer: It gets the stream of bytes from the transport

layer and sends it to the proxy layer.

22

¢ Transport Layer: This layer is responsible for handling the actual

machine to machine communication.

HOW DOES RMI WORK?

RMI uses a registry to store information regarding servers that have been bound to
it. This article uses the rmiregistry provided in the JDK; however, it's possible to

write an RMI-based application without it.

Binding i1s done by calling the Naming.rebind() method in the server object's
constructor (found in the java.rmi package). If the method fails, it'll throw one of the
following exceptions RemoteException, MalformedURLException or
UnknownHostException. In the case of RemoteException, there was an error with
the registry, often occurring because rmiregistry wasn't executed before the server
object attempted to bind. Once the server has been bound to the registry, a client can

do a Naming.lookup() to get an instance of the RMI server object.

After the client has an instance of the server object, it'll be able to call all the
methods defined in the server's list of promised remote methods. These methods are
defined in an interface that both the client and server objects implement. By using

rmic, we can create a stub and skeleton to use for compiling our client object.

The stub sits in the client's codebase or classpath (the client's .class file usually
resides in the same directory). This stub object is what tells the client what methods

may be called from the server and handles all the details that allow us to call a

remote object's method via the registry.

The skeleton is similiar to the stub, except it must be in the server's classpath (like
the stub, the skeleton usually resides in the same directory as the .class file for the
server). The skeleton handles incoming requests/parameters from clients and returns

the results via the registry.

23

RMI applications often comprise two separate programs, a server and a client. A typical
servet program creates some remote objects, makes references to these objects accessible,
and waits for clients to invoke methods on these objects. A typical client program obtains
a remote reference to one or more remote objects on a server and then invokes methods
on them. RMI provides the mechanism by which the server and the client communicate
and pass information back and forth. Such an application is sometimes referred to as a

distributed object application.
Distributed object applications need to do the following:

¢ Locate remote objects: Applications can use various mechanisms to obtain
references to remote objects. For example, an application can register its remote
objects with RMI's simple naming facility, the RMI registry. Alternatively, an
application can pass and return remote object references as part of other remote
invocations.

e Communicate with remote objects: Details of communication between remote
objects are handled by RMI. To the programmer, remote communication looks
similar to regular Java method invocations.

e Load class definitions for objects that are passed around: Because RMI
enables objects to be passed back and forth, it provides mechanisms for loading

an object's class definitions as well as for transmitting an object's data.

The following illustration depicts an RMI distributed application that uses the RMI
registry to obtain a reference to a remote object. The server calls the registry to associate
(or bind) a name with a remote object. The client looks up the remote object by its name
in the server's registry and then invokes a method on it. The illustration also shows that
the RMI system uses an existing web server to load class definitions, from server to client

and from client to server, for objects when needed.

24

,_rrnlre‘giét_ry

Advantages of Dynamic Code Loading

One of the central and unique features of RMI is its ability to download the definition of
an object's class if the class is not defined in the receiver's Java virtual machine, All of
the types and behavior of an object, previously available only in a single Java virtual
machine, can be transmitted to another, possibly remote, Java virtual machine, RMI
passes objects by their actual classes, so the behavior of the objects is not changed when
‘ they are sent to another Java virtual machine. This capability enables new types and
behaviors to be introduced into a remote Java virtual machine, thus dynamically
extending the behavior of an application, The compute engine example in this trail uses

this capability to introduce new behavior to a distributed program,

Remote Interfaces, Objects, and Methods

Like any other Java application, a distributed application built by using Java RMI is made
up of interfaces and classes. The interfaces declare methods. The classes implement the
methods declared in the interfaces and, perhaps, declare additional methods as well. In a
distributed application, some implementations might reside in some Java virtual
machines but not others. Objects with methods that can be invoked across Java virtual

machines are called remote objects.

25

An object becomes remote by implementing a remofe interface, which has the following

characteristics:

o A remote interface extends the interface java.rmi.Remote.
o Each method of the interface declares java.rmi.RemoteException in its throws

clause, in addition to any application-specific exceptions.

RMI ftreats a remote object differently from a non-remote object when the object is
passed from one fava virtual machine to another Java virtual machine. Rather than
making a copy of the implementation object in the receiving Java virtual machine, RMI
passes a remote stub for a remote object. The stub acts as the local representative, or
proxy, for the remote object and basically is, to the client, the remote reference. The
client invokes a method on the local stub, which is responsible for cairying out the

method invocation on the remote object.

A stub for a remote object implements the same set of remote interfaces that the remote
object implements. This property enables a stub to be cast to any of the interfaces that the
remote object implements. However, only those methods defined in a remote interface are

available to be called from the receiving Java virtual machine.

Creating Distributed Applications by Using RMI

Using RMI to develop a distributed application involves these general steps:

I Designing and implementing the components of your distributed application.
2. Compiling sources.

3. Making classes network accessible.

4. Starting the application,

26

Designing and Implementing the Application Components

First, determine your application architecture, including which components are local

o'bjects and which components are remotely accessible. This step includes:

Defining the remote interfaces: A remote interface specifies the methods that can be
invﬁked remotely by a client. Clients program to remote interfaces, not to the
) implementation classes of those interfaces. The design of such interfaces includes the
_determination of the types of objects that will be used as the parameters and return values
ﬁ)r these methods. If any of these interfaces or classes do not yet exist, you need to define

them as well.

Implementing the remote objects: Remote objects must implement one or more remote
~interfaces. The remote object class may include implementations of other interfaces and
- methods that are available only locally. If any local classes are to be used for parameters

or return values of any of these methods, they must be implemented as well.

Ihwplementing the clients: Clients that use remote objects can be implemented at any

~ time after the remote interfaces are defined, including after the remote objects have been

deployed.

. .Compiling Sources

As with any Java program, you use the javac compiler to compile the source files. The
source files contain the declarations of the remote interfaces, their implementations, any

other server classes, and the client classes.

27

Making Classes Network Accessible

In this step, you make certain class definitions network accessible, such as the definitions
for the remote interfaces and their assocjated types, and the definitions for classes that
need to be downloaded to the clients or servers. Classes definitions are typically made

network accessible through a web server.

DEFINING INTERFACES

Defining interfaces is the first step to writing RMI programs. In RM] programming, any
class that exports objects must implement an interface that defines the methods that can be
accessed via a remote application(ie client) .The class may have method that are not
defined in this interface. Then the client cannot access these methods. It is also possible for

the single class to implement many remote interfaces.

Each remote object is identified by its remote interface. The remote interface is an interface
that declares a set of methods that may be invoked from a remote Java Remote Machine. A
client gets a handle to interface describing the remote method of an object. This interface
must extend from java.rmi.Remote. The java.rmi.Remote serves to identify all remote
interfaces. All the remote objects must directly or indirectly implement this interface. Only
the remote interfaces can be invoked via RMI. Local interfaces cannot be called in this

manner,

28

IMPLEMENTATION OF INTERFACES

SERVER IMPEMENTATION:

In general, the server implementation class of a remote interface should do the following:
* Declare the remote interfaces being implemented
* Define the constructor of the remote object
* Provide the implementation for each remote method in the remote
interface.
The server needs to create a remote object and register it with the local
registry. This procedure can be encapsulated in a main() method in the remote object
implementation class itself, or it can be included in another class entirely. This procedure
should

* Create one or more instance of the remote object

* Register atleast one of the remote objects with the RM registry in

order to be located by perspective clients.

-

Defining constructor for the remote objects

The first method in the MyServerlmpl class is the constructor MyServerlmpl(). The
constructor does not take any arguments. It throws a Remote Exception. Each and every
remote method in a remote object should throw a Remote Exception so that the client will
be informed if there is any problem in passing the parameters or in the connection

between the client and the server.

Passing objects in RMI

Objects that are not remote,such as parameters, return values and exceptions, are passed
by value in remote method calls. This means that a copy of the objects is created in the
receiving virtual machine. Any changes to this object’s state at the receiver are reflected

only in the receivers copy, not in original instance.

The main() method is not a remote method, which means that it cannot be called from
different virtual machine. Since the main() method is declared static, the method is not
associated with any object, Instead, the method is associated with the class in which it is

declared.

The main() method creates an object of the MyServerImpl class, registers it with the
registry using Naming.rebind() and then gives the output that the server is ready to use.
The Javarmi.Naming interface is used as a front-end for binding , or registering and
looking up remote objects in the registry. Once a remote object is registered with the RMI
registry on the local machine ,callers on the any machine can look up the remote object
by-name; obtain its reference, and then invoke remote methods on the object. All servers
tunning on a machine may share the registry, or an individual server process may create

Oruse its own registry, if desired.

30

The following parameters are the arguments to call Naming.rebind():

f e An URL-formatted name associated with the remote object

e A new remote object to associate with the name

The first parameter, which is an URL formatted Java.lang.String, represents the
location and the name of the remote object. The location includes the [P address of
the server machine. If both of these are omitted from the URL, it defaults to the IP

address of the local machine.

The RMI runtime substitutes a refernce to the stub for the remote object reference
specified by the argument. Remote implementation objects,such as instances of
MyServerlmpl mever leaves the virtual machine where they are created. So,when a
client performs a lookup in the server’s remote object registry, a refernce to the stub
is returned.

An application can bind,unbind or rebind remote object references only with a
registry on the same machine. This restriction prevents a remote client from
removing or overwriting any of the entries in a server’s registry. The advantage of
rebind method over the bind method is that any existing binding for the same name is
replaced by rebind whereas bind gives an error if a binding for the same name exists

already,

Once the server has registered with the local RMI registry, it prints out a message
indicating that is ready to start handling calls and then the main method exists. It is
¢ Not necessary to have a thread waijt to keep the server alive. As long as there is a
' reference to the server object in another virtual machine,local or remote, the server

object will not be shut down, or garbage collected. The server object is reachable
i from-the remote client because the program binds a reference to the server object in

the registry.

FR I i i e =

3t

CLIENT IMPLEMENTATION

After writing the server implementation, we move on to the client implementation.
This has to be separate because this part alone should be run in all the branches of
Perfect Solution Limited. For the client implementation ,we will use an applet so that
the user can interact easily with the applicant. Any method in the client that calls a
remote method should have a try and catch clause or throw a RemoteException. The

applet it should import java.applet.* and it extends the Appiet class.

The init() method adds two labels, the text fields and the text area to the applet and
sets the EchoCharacter as “*’ for the password text field. It looks up the registry to
get an interface of the server or the remote objects, using the Naming.lookup()

method. Suppose client part and server part resides in different machines and server

resides in a machine whose IP address is 172.16.28.130, then the statement:
EK = (Emplnt)Naming.lookup(*EmpServer”);
Can be rewritten as follows:

EK = (EmpInt)Naming.lookup(“rmi://172.16.28.130/EmpServer”);

If we wish to specify the IP address during runtime, the statement can still be

modified as follows:
EK = (EmplInt)Naming.lookup(“rmi://” + args[0] + “/EmpServer”);

Where args[0] represents the IP address of the machine.

32

The Naming.lookup() is a static method that searches for the server using the server

name registered with the RMI registry. It takes in a single parameter of String type

representing the URL-formatted name for the remote object and returns a reference for

the remote object associated with the specified name. if the name is not currently bound

to the registry, then it throws the NotBoundException. If the registry could not be

contacted then lookup method throws a RemoteException.

ARCHITECTURE OF RMI

Architectufe of RMI can be stated as:
e RMI Layers
o The RMI Registry

¢ RMI Flow

BUILDING RMI DISTRIBUTED APPLICATION

RMI makes network communications mostly transparent to the developer, but it does

require some extra steps in building and running programs.

Shown in are the major pieces of an RMI program that you need to be concerned with for

the purpose of this discussion. During this discussion, consider "Java RMI" to be a black

box that takes care of making the remote calls happen without you having to worry about

it. Also, the client shown is an applet, but it can be any Java executable.

Clients interface with RMI through a chunk of code called a stub. Servers interface with

RMI through skeletons. Stubs and skeletons are program specific, user don't have to write

them. They are generated with a utility called rmic acting upon the class or classes

containing the implementation of your remote object's interface methods. During

Program operation, RM1 transparently loads the stubs and skeletons so that the client

and server can communicate. This means that it is very important that the platforms

hosting the client and server know where to find the stub and skeleton.

Figure - RMI clients and servers communicate through stubs and skeletons.

Building an RMI program consists of five steps:

1. Write RMI interfaces to describe the methods you want exposed in your remote object.

2. Implement the interfaces in RMI server sources and call the specified methods as

necessary in the client sources.

3. Compile the client and server sources into class files.

4. Run rmic on the server class which implements your RMI interface methods to

generate the stub and skeleton for the remote object. On Windows, the rmic utility is an
-exe. If your system's PATH variable is set up to access the Java Developer Kit's bin
directory (as it would have to be if you were using javac), then simply open a DOS
window and cd to the location of the server's class file where you can call rmic on it.

Remember that you must specify the class file's fully qualified, case-sensitive name

(including package names delimited with the *." character) to rmic.

3. Finally, put all of the classes (stubs and skeletons are classes, too) in the right place.

RUNNNING RMI DISTRIBUTED APPLICATIONS

There are two main steps to running the RMI application,

1. Launch the rmiregistry on each server hosting RMI server objects.

2. Load the server program. If your client is an applet, users access it via their browser, so

you don't need to load it. If your client is an application, then you have to load it. Make

sure that your stub is in a place that can be found with your CLASSPATH setting,

Accessing the RMI Registry

RMI server applications use the RMI registry on the server to expose their remote objects

with the arbitrary service names specified by their programmers.

Once a client has one reference to a remote object, it can be used to obtain others without

having to access an RMI registry . However, to get that first remote object, the client will

have to look it up from the naming service on the hosting server.

So, RMI servers need to bind their primary remote objects into the registry so that clients

can find them.

If your server is not already running an RMI name registry, you must either start one up

programmatically with the Java.rmi's LocateRegistry class and

its static createRegistry(int portID) method or after you have already loaded Java, you

can enter a command at the monitor like the one below:

rmiregistry

Note: The default port for the RMI registry is 1099. If your server needs that port for

something else, you can specify another port number when you start up the registry.

However, then the clients will have to know the unique port number as weil.

P er Program
Lo_@_(_l!_ggfthe Serv gr

If your server program performs a registry bind (most will perform at least one), and you

attempt to load it before you load the registry, your program will throw a class not found

exception as it attempts to find the registry. So, load your server application after you

have loaded the registry.

In order to add a remote object to the registry, your server program must get a reference

to the registry using one of java.rmi LocateRegistry's static

getRegistry() methods and then add the remote object and its name to the registry. The

Naming.rebind() method handles this automatically.

Clients must already know the domain name or [P address of the server hosting the

registry and the registry's port number in order to access the registry to obtain a remote

object. An applet already knows the connection information about its server and so can

easily obtain the server's name or [P using java.net's InetAddress class methods.

ADVANTAGES OF RMI

At the most basic level, RMI is Java's remote procedure call (RPC) mechanism. RMI has

several advantages over traditional RPC systems because it is part of Java's object

oriented approach. Traditional RPC systems are language-neutral, and therefore are

essentially least-common-denominator systems-they cannot provide functionality that is

not available on all possible target platforms.

The primary advantages of RMI are:

¢ Object Oriented: RMI can pass full objects as arguments and return values, not

Just predefined data types. This means that you can pass complex types, such as a

standard Java hashtable object, as a single argument. In existing RPC systems

36

e i

you would have to have the client decompose such an object into primitive data
types, ship those data types, and the recreate a hashtable on the server. RMI lets

you ship objects directly across the wire with no extra client code.

Mobile Behavior: RMI can move behavior (class implementations) from client to

server and server to client. For example, you can define an interface for

“examining employee expense reports to see whether they conform to current

company policy. When an expense report is created, an object that implements
that interface can be fetched by the client from the server. When the policies
change, the server will start returning a different implementation of that interface
that uses the new policies. The constraints will therefore be checked on the client
side-providing faster feedback to the user and less load on the server-without
installing any new software on user's system. This gives you maximal flexibility,
since changing policies requires you to write only one new Java class and install it

once on the server host

Design Patterns: Passing objects lets you use the full power of object oriented
technology in distributed computing, such as two- and three-tier systems. When
you can pass behavior, you can use object oriented design patterns in your
solutions. All object oriented design patterns rely upon different behaviors for
their power; without passing complete objects-both implementations and type-the

benefits provided by the design patterns movement are lost.

Safe and Secure: RMI uses built-in Java security mechanisms that allow your
system to be safe when users downloading implementations. RMI uses the
security manager defined to protect systems from hostile applets to protect your
systems and network from potentially hostile downloaded code. In severe cases, a

server can refuse to download any implementations at all.

Easy to Write/Easy to Use: RMI makes it simple to write remote Java servers

and Java clients that access those servers. A remote interface is an actual Java

37

e T e

interface. A server has roughly three lines of code to declare itself a server, and
otherwise is like any other Java object. This simplicity makes it easy to write
servers for full-scale distributed object systems quickly, and to rapidly bring up

prototypes and early versions of software for testing and evaluation. And because

RMI programs are ¢asy to write they are also easy to maintain.

Connects to Existing/Legacy Systems: RMI interacts with existing systems
through Java's native method interface JNI. Using RMI and JNI you can write
your client in Java and use your existing server implementation. When you use
RMI/JNI to connect to existing servers you can rewrite any parts of you server in
Java when you choose to, and get the full benefits of Java in the new code.

Similarly, RMI interacts with existing relational databases using JDBC without

modifying existing non-Java source that uses the databases.

Write Once, Run Anywhere: RMI is part of Java's "Write Once, Run
Anywhere" approach. Any RMI based system is 100% portable to any Java
Virtual Machine*, as is an RMI/JDBC system. If you use RMI/INI to interact

with an existing system, the code written using JNI will compile and run with any

Java virtual machine,

Parallel Computing: RMI is multi-threaded, allowing your servers to exploit

Java threads for better concurrent processing of client requests.

CHAPTER 4

SOURCE CODE AND TEST RESULTS 1.
MYCLIENT MODULE

importjava.rmi.*; |
importjava.io.*; 1
import java.awt.*; |

public class MyClient

{ ' 1
static String hostName=""; 1
static String abc=""; |

static String filetoSend = "datafile.dat";

static String PID;

public static void main(String args[]) "
{ ;-
int tempdata=0; i
//hostName="localhost"; i",: |
PID = args[1];
int i=0; =‘ _

}

public static void searchhost(int i)

{

)

String hostName[]={ "172.16.28.105","172.16.28.130","172.16.28.142"};

e

try 1
{ 0

System.out.printIn("Looking up machine : "+hostName[i]+"\n\n"); 4

MyServer server = (MyServer)Naming.lookup("//"+hostName[i]+"/MyServer"); .: ;

] |
System.out.printin("Machine "+hostName[i]+" found and connection established.\n"); il

System.out.printIn("Sending query to host : "+hostName[i]+"...")
boolean endofFile = false;
int ch;

String buffer=""; // Have to send the query String here.

:

ey ——

abe = server.processData(PID, new String("")); //fileHandle.close();
System.out.println(abc);

g hnm-‘-‘lﬂ‘t"ﬂ"ﬂ"—‘:-:_;

39

e e e

i tica

’.

| -

System.out.printin("\nData file sent successfully.\n");

}

catch (Exception ex)

{

System.out.printIn(ex);

}
11

MYSERVERIMPL MODULE

import java.rmi.*;
import java.rmi.server.*;
import java.io.*;

import javax.swing.*;

public class MyServerImpl extends UnicastRemoteObject implements MyServer
{
static String hostName = "";
FileReader fileReadHandle;
FileWriter fileWriteHandle;
String filetoStore;

public void setHostName(String name) throws RemoteException

{
hostName=name;

}

public MyServerImpl() throws RemoteException

{
super();

public static void main(String args[])

{

try
{

SYStem.setSecurityManager(new RMISecurityManager());

40

MyServerlmpl instance = new MyServerImpl();
instance.setHostName("localhost");
//instance.setHostName("172.16.28.142");
Naming.rebind("//localhost/MyServer", instance);
//Naming.rebind("//172.16.28.142/MyServer", instance);
System.out.printin("\n"+hostName+" registered with RMI registry!");
) »
catch (Exception ex2)
{
System.out.printIn("RMI Exception : " +ex2+"\n");
}
}
public void setFileName(String filename) throws RemoteException
{
try
filetoStore = new String(filename);
fileWriteHandle = new File Writer(filetoStore);
!
catch (IOException E)
{
System.out.printin(E);
}
}
public String processData(String query,String Result) throws RemoteException
{
intn=0;
try
{
Result = Result.concat(QueryDatabase.getResults(query));
if(Result.equals("Not Found") && n<3)
MyClient.searchhost(++n);
a)
! if(Result.equals("Not Found") && n==3)
§ Result= Result.concat("Roll no not found");
} :
; else
{

1 41

DataOutputStream dout = new DataOutputStream (new F
FileQutputStream{query+".result"));
dout.writeBytes(Result);
dout.flush();

System.out.printIn("\nData received and written to File");
dout.close();

}

}

catch (Exception E)

{
System.out.printin(E);

}

return(Result);

}
}

MYSERVER MODULE

import java.rmi.*;

public interface MyServer extends Remote

{

public void setF iteName(String filename) throws RemoteException;

public String processData(String query, String Result) throws RemoteException;

QUERY DATABASE MODULE

import java.util.*;
import java.net.*;
import java.sql.*;
import java.io.*;

import java.lang.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class QueryDatabase
// Contacts the Personalinfo database and returns the name and phone number i

public static String getResults(String PID)
{

Stringres =" ",

try{
Class.forName("sun.jdbc.odbc.JdbcOdbeDriver");

Connection con = DriverManager.getConnection("jdbc:odbc:db3");
// JOptionPane.showMessageDialog(null,"connection successful"); 1
System.out.printIin("Connection successful"}; |
Statement stat = con.createStatement();
ResultSet result] = stat.executeQuery("SELECT studentname FROM student WHERE
tollno = " + Integer.parseInt(PID) + " ");
/7 JOptionPane.showMessageDialog(null,"query executed™); i
System.out.println("queryexecuted"); i ‘
resultl.next(); g
res = resultl.getString(1); 3
/ I0ptionPane.showMessageDialog(null,res); |
System.out.printin(res); ' ‘ ,
|

catch(Exception E)

{ //System.out.printIn("Exception caught : "+E); |
res = res.concat("Not Found™), i! ‘.
""‘//Ej'printStackTrace(); i

}

return (res); } }

43

EXPERIMENTAL SETUP AND TESTING

it

® e

The working of the distributed system can be explained as shown in the Figure above. In
the above figure the RED rectangle represents the system acting as Server while the
BLACK rectangle represents the Client system. In a distributed system any system can at
any point of time act as Server or Client or Both. The red lines show how the server
works. It sends the query to the processor, and the result is retumed. The black lines
represent how the client works. The Client sends the query which is first checked on the
same system if the same system is acting as the server also. If the result is not found the
query is passed to next active server and checked for result. In the same way the query is
Passed from one system to another until either the result is found or there are no more
servers left. The green lines in the above figure depict how the result of the query sent by

the client reaches the client. One server contacts the other server using the IP address and

Passes the query through the interface method.In the above figure the letter ‘R’ represents

* the result while the letter ‘Q’ represents the query.

44

! T TS ek S T R T

e

g

TEST RESULTS

RUNNING THE SERVER

1. Compiling files in java:

G Copyvlght 1985-20081 chru soft Corp.

:NDocuments and Settings\welcome>cd\

C:\>cd c:\javashin

:NJavashin?javac MyServer. java

NJavasbin?

.HPT[UEPSEOHIb

C:Nded c:Njavashin
C:nJavasbhin>javac MyServer.java
NJavasbin>javac MyServerInpl.j

NJavasbin >

.266801

<G> Cop;rlght 1985“2@@1 Microsoft Corp.

C:\Documents and Settings:welcome>cd\

ava

45

IHT"*"”"‘"

r-r-"ﬁ

(G CDpJPtht 1985—2ﬁ31 H1cr030§t Corp.

C:\Documents and Settingsi\welcomelcd\
:\>ed c:Njavashin
C:\Javashin>javac MyServer.java

C:\Javashin?>javac MyServerlnpl. java

C:\Java\bhin>javac QueryDatahase.java

C:\Javanhin>_

2.Compiling the implementation class in RMI

AP ion 5.1.26881]
<G> Cop;rlght 1985-2801 Hicrosoft Corp.

:NDocuments and Settings>welconedcdN
:n2ed c:Njavasbin
C:\Javasbhin>javac MyServer.java

C:\JavaNhin>javac MyServerInpl. java

B

C:N\Javashin>javac QueryDatabase.java

N T 2

N

C:\Javasbin?>rmic MyServerlmpl

NJavasbin?

46

3. Registering using rmiregistry.

CAWINDOWS\system3 2iemd. exe
Microsoft Windous XP [Uersion 5.1.26801
¢G> Copyright 1985-2001 Microsoft Corp.

:\Documents and Settings \welconelcd
:N>ed c:N\javashbin
IC:\Javarbin>javac MyServer.java
:NJavasbin>javac MyServerlnpl.java
:nJavashin>javac QueryDatahase. java
IC:N\Javashin>rmic HyServerlImpl
:NJavasbin2start rmiregistry

C:N\Javasbin>

1. Start the Server

WINALNSY: 1oL

H crosoft Windows RP [Gersian ?il.ZﬁB@]
(C) Copyright 1985-2881 Microsoft Corp.
\Docunents and Settingsi\uelcomelecd\
C:\>ed ciNjavanhin

NJavanhin?javac MyServer. java
C:\Javashin>javac MyServerlnpl.java
C:\Javashin>javac QueryDatabase.java
C:\Javashin>rmic MyServerlmpl
C:\Javashin>start rmiregistry
C:\Javashin)start java MyServer

C:\Javashin>

47

17

2. Run the server passing policy file as argument.

IC:N\JavaNbhin>javac MyServer.java

C:N\Javaszbhin>javac MyServerInmpl.java

NJavashin>javac MyClient. java

:NJavasbin>javac Querylatabase.java
IC:N\Javasbin>emic MyServerlnpl
IC:N\Javarshin>start emiregistry

IC:N\Javanhin?>start java MyServer

NJavasbin?>java —Djava.security.poelicy=c:\javasbinNwideopen.policy MyServerimpl

localhost registered with RMI registry!?

RUNNING THE CLIENT SIDE

1. Compiling and running the client file.

:Njavashin>javac MyClient.java
C:N\javasbhin>javac HyServerlmpl. java

C:Njavasbin?rnic HMyServerlmpl

:Njavasbin? java —~Djava.security.policy=c:Njavasbin\wideopen.policy MHyClient 172

.16.28.128 8

48

2. Case I: When no Server is running.

IC:Njavasbin>java —Djava.security.policy=c:\javasbin\uideopen.policy HyClient 172§

.16.28.120 8
Looking up = 172.16.28.1685%

iConnection Refused
ooking up @ 172.16.28.1308

iConnection Refused
lLooking up = 172.16.28.142

Refused
woking up = 172.16.28.148

Connection Refused

NJavasbino

2. Case II: Data not found on any server.

Njavashin>java —Djava.security.policy=c:\java\hin\wideopen.policy MyClient 172
.16.28.120 18
ooking up : 172.16.28.1685

onnection Hefused
ooking up : 172.16.28.138

[lConnection Refused
ooking up : 1972.16.28.142

achine 172.16.28.142 found and connection established.
Sending query to host : 172.16.28.142...
NotFound

ata file sent successfully.

:Njavasbin)

49

3. Case III: Server running, data found and output shown successfully.

o PR A B e T R
Micruvsoft Wi 5 AP [Uers f.
(C> Copyright 1985-2081 Microsoft Corp.

[C-“Docunents and SettingsSue leoneded\
Noed eiNjavasbin
CNdavasbin>eonnil
SJavasbhin>javae MyScerverinpl. java
ICandJavasbin? javae MyClient . java
;indJavasbin2enic MyServerlnpl ‘
Sdavanbindjava - Davalsecuvity.policy=Cinjavasbinsuideopen.policy HyClient 1Y

6,914 4
ooking up = L72.16.9.24

onnection Refused
[Looking wp : 172 106.9.07

onnection Refasedd
Looking up @ 172,10 _.28.142
Machine 172.16.28_ 142 Found and connection estahlished.

Sending query to host @ 172.106.28.1442. ..
neha

Batw File sent successiually.

C:NJavasbin

50

CHAPTER 5
USER INTERFACE

Our interface first takes the login and password of the user. It then matches the password
entered by the user with the password already stored in our database. Once the user logs
in, it may receive some message if the administrator or the authority at the library has left
him some personal message. The administrator can block the account of the user or may
leave any message for the user. If his account has been blocked he can proceed no
further. The user can check the current status of his account ie how many books has he
already issued and their return date. While searching for a book in the distributed library
he may spell the book wrong. The Soundex Algorithm help in correcting such mistakes
and searching for the desired book. Previous three searches of the user are also stored for
future reference of the user. When the user searches for a book the name of the book,
author, its location, number of copies availa_ble are displayed to the user. The user has the
option to add any of the searched book to his favourite list. This will store the details of
the book in his account so that in future he does not have to search for the book again. All
the particulars of his favourite book are instantly available. Our system takes care that the
same user does not get logged in from two different computers since it is a distributed
system. Therefore, if a user is already logged in on any of the computers in the network,
he won’t be allowed to log in from any other computer. It is necessary for the user to
logout his account before leaving.

The administrator can also login in our system. He has all the right to add, remove and
update the details of a book. He can access the account of any of the users, send message
to any of them and logout any of the user if he wants. Provision has been made to add the
book distributedly. That is if the database of the computer he is working on is full, the

book is added to any of the free database on the computers in the network.

51

MODULES

When the user logs in.

swingFrame = new JFrame("LRC");

mainPanel = new JPanel(};
container.setBackground(Color.black);
newacct = new Panel();

mainPanel setOpaque(false);
swingFrame.setSize(600,600);
tabbedPane = new JTabbedPane();

loginPanel = new Panel();

tabbedPane.addTab("Login",null,mainPanel,"Student info™);
tabbedPane.addTab({"New Account",null,newacct,"Create a new Account™);
label = new Label(" Login " Label.CENTER);
fabel.setBackground(Color.black);

label.setForeground(Color.white);

password = new Label(" Password",Label. CENTER);
password.setBackground(Color.black),
password.setForeground(Color.white),

paswd = new TextField(15);

paswd.setEchoChar('*");

rollno = new TextField(15);
bt = new Button("Submit"},

loginPanel.add(label);
loginPanel.add(rolino);
loginPanel.add(h26);
loginPanel.add(password);
loginPanel.add(paswd),
loginPanei.add(h27);
loginPanel.add(bt);

mainPanel.add(loginPanel},
mainPanel.setVisible(true);

}

52

When the user submits his login id and password.

private class ButtonHandler implements ActionListener

{
public void actionPerformed(ActionEvent evt)
{
try
{

Button source=(Button)evt.getSource();

if(source == bt)
{
if(rolino.getText().equals(""))
{
JOptionPane.showMessageDialog(swingFrame,"Enter Username™);

}

else
{
if(paswd.getText().equals(""))
{
JOptionPane showMessageDialog(swingFrame,"Enter Pasword");

¥

else

{

query = "SELECT name FROM login WHERE login =" + rollno.getText()
+ " AND pasword = ""+paswd.getText()+"" ;
abcd = searchhost(i,query,x};
if(abc.equals(" Not Found"))
{
JOptionPane.showMessageDialog(swingFrame,"password and username
do not match");

¥

else

{

loginPanel.setVisible(false);
tabbedPane.setVisible(false);
swingFrame.setVisible(false);

if(Integer.parselnt(rollno.getText())==12000)

{
adminpage();

else

{
query = "SELECT status FROM Jogin WHERE login=""+

rollno.getText() + ",

53

b = searchhost(i,query,x);
if(b.equals("1™))
JOptionPane showMessageDialog(swingFrame,"Multiple login not
allowed");
else

{

query = "SELECT notice FROM notice WHERE login =" +

rollno.getText() + """,
b = searchhost(i,query,x);

query = "SELECT disp FROM notice WHERE login =" +
rollno.getText() + "";
e = searchhost(i,query,x);

if(b.equals(""))
{
query = "UPDATE login SET status = '1' WHERE login =" +
rollno.getText() + "";
h = searchhost(i,query,x);
page2();
}
else
{
if(e.equals("1™))
{
query = "UPDATE login SET status = '1' WHERE login ="'+
rolino.getText() + "";
h = searchhost(i,query,x);

page2();

query = "SELECT counter FROM notice WHERE login =" +
rollno.getText() + ™";

ctrl = searchhost(i,query,x);

if(Integer.parselnt(ctr])<3)

{

JOptionPane.showMessageDialog(swingFrame,"MESSAGE FROM

ADMINISTRATOR" + b);
int s = Integer.parselnt(ctrl) + 1;

query = "UPDATE notice SET counter ="+ s + "™ WHERE login=""+

rollno.getText() + "";
ctrl = searchhost(i,query,x);

1

clse

54

JOptionPane.showMessageDialog(swingFrame,"MESSAGE FROM
ADMINISTRATOR" + b);

1}

To check the current status of user’s account

public void chkaccount()

{

frame8 = new JFrame("Check account");
frame8.setSize(400,200);

sub = new Panel();
rnumber = new TextField(30);

enter = new Label("Enter login to check account",Label. CENTER); 0
go = new Button("Submit"), h

=,.-3:: > A:_ =

sub.add(enter);
sub.add(rnumber);
sub.add(go);
sub.setVisible(true);

ButtonHandler g = new ButtonHandler();
-\ go.addActionListener(g);

frame8.getContentPane().add(sub);
! frame8.show();
frame8.setVisible(true);

!
if(rnumber.getText().equals(""))
{
JOptionPane.showMessageDialog(swingFrame,"Enter login");
}
% else

55

-\

{
query = "SELECT doil FROM acct WHERE login =" +

Integer.parselnt(rnumber.getText()) + " ";
doil = searchhost(i,query,x);
JOptionPane.showMessageDialog(swingFrame,doil),

query = "SELECT dor{ FROM acct WHERE login="+
Integer.parselnt(rnumber.getText()) + " ";
dorl = searchhost(i,query,x);

JOptionPane.showMessageDialog(swingFrame,dor1);

query = "SELECT book2 FROM acct WHERE login =" +
Integer.parselnt(rnumber.getText()) + " ";

book2 = searchhost(i,query,x);

JOptionPane.showMessageDialog(swingFrame,book2);

query = "SELECT doi2 FROM acct WHERE login="+
Integer.parselnt(rnumber.getText()) + " ";

doi2 = searchhost(i,query,x);

JOptionPane.showMessageDialog(swingFrame,doi2);

query = "SELECT dor2 FROM acct WHERE login =" +
Integer.parselnt(rnumber.getText()) + " "}

dor2 = searchhost(i,query,x);

JOptionPane.showMessageDialog(swingFrame,dor2);

checkstatus(bookt,doil,dor1,book2,doi2,dor2);

}
}

if(source == status)

{

JOptionPane.showMessageDialog(frame,"This is status button");

query = "SELECT booki FROM acct WHERE login ="+
Integer.parselnt(rollno.getText()) + " ",

book1 = searchhost(i,query,x);

JOptionPane.showMessageDialog(swingFrame,book1);

56

)

query = "SELECT doil FROM acct WHERE login =" +
Integer.parselnt(rollno.getText()) + " ";

doil = searchhost(i,query,x);

JOptionPane.showMessageDialog(swingFrame,doil);

query = "SELECT dorl FROM acct WHERE login =" +
Integer.parselnt(rollno.getText()) +" ";

dorl = searchhost(i,query,x);

JOptionPane.showMessageDialog(swingFrame,dor1);

query = "SELECT book2 FROM acct WHERE login =" +
Integer.parselnt(rollno.getText()) + " ";

book2 = searchhost(i,query,x);

JOptionPane.showMessageDialog(swingFrame,book2);

query = "SELECT doi2 FROM acct WHERE login =" +
Integer.parselnt(rollno.getText()) + " ";

doi2 = searchhost(i,query,x);

JOptionPane.showMessageDialog(swingFrame,doi2);

query = "SELECT dor2 FROM acct WHERE login="+
Integer.parselnt(rollno.getText()) + " ";

dor2 = searchhost(i,query,x);

JOptionPane.showMessageDialog(swingFrame,dor2);

checkstatus(book1,doil,dorl,book2,doi2,dor2);

}

When the user wants to search a book

{
JOptionPane.showMessageDialog(frame,"find button");

if(listl.getSelectedIndex() == 0)

{
query = "SELECT bookname FROM book WHERE authorname ="' + soundx +

bname = searchhost(i,query,x);
if(bname.length()>=2)
{

JOptionPane.showMessageDialog(frame,"no array only result");

o

b}

l
[0] = new String(bname);

>

Ise

—~— D e ™

if(Integer.parselnt(bname) >0)

{
for(x = 0;x<Integer.parselnt(bname);x++)
{

query ="";
r[x] = searchhost(i,query,x);
JOptionPane.showMessageDialog(frame,tx]);
}
}
}

query = "SELECT location FROM book WHERE authorname ="' + soundx +

nin,

loc = searchhost(i,query,x);
if(loc.length()>2)
{
[[0] = new String(loc);
}
else
{
if(Integer.parselnt(loc) >0)
{
for(x = 0;x<Integer.parselnt(bname);x++)
{
query ="";
I[x] = searchhost(i,query,x);
JOptionPane.showMessageDialog(frame,|[x]);
}
}
}

JOptionPane.showMessageDialog(frame,loc);

query = "SELECT referencecopy FROM book WHERE authorname =" +
soundx + """;

rcopy = searchhost(i,query,x);
JOptionPane.showMessageDialog(frame,"rcpy length:"+rcopy.length());
if(bname.length() >2)

{

rc[0] = new String(rcopy);

a
=~

}

else

{

for(x = 0;x<Integer.parselnt(bname);x++)

{
que[_y o I|";
rc[x] = searchhost(i,query,x);
JOptionPane.showMessageDialog(frame,rc[x]);

}
}

JOptionPane.showMessageDialog(frame,rcopy);

query = "SELECT issuecopy FROM book WHERE authorname ="' + soundx
+ " lll;

icopy = searchhost(i,query,x);
if(bname.length() >2)

{
xe= g
ic[0] = new String(icopy);
}
else
{
if(Integer.parselnt(icopy) >0)
{
for(x = 0;x<Integer.parselnt(bname);x++)
{
query ="";

ic[x] = searchhost(i,query,x);
JOptionPane.showMessageDialog(frame,ic[x]);

}
}
}

JOptionPane.showMessageDialog(frame,icopy);

query = "SELECT isbn FROM book WHERE authorname ="' + soundx + " "";
isbn = searchhost(i,query,x);
if(bname.length() >2)
{
X =l
isb[0] = new String(icopy);

39

}
else
{
if(Integer.parselnt(icopy) >0)
{
for(x = 0;x<[nteger.parselnt(bname);x++)
{
quety = "
isb[x] = searchhost(i,query,x);
JOptionPane.showMessageDialog(frame,ic[x]);
}
}
}

JOptionPane.showMessageDialog(frame,isbn);

display(soundx, x, r, L re, 6, ish):

else
{
if(list!.getSelectedlndex() == 1)
{
JOptionPane.showMessageDialog(frame,”ddddddddddddddddddddd");

query = "SELECT authorname FROM book WHERE bookname =" +
soundx + " ";

aname = searchhost(i,query,x);
if(aname.length()>2)
{

x=1;
JOptionPane.showMessageDialog(frame,"This is the new part");
r[0] = new String(aname);

}

else

{

if(Integer.parselnt(aname) >0)

for(x = 0;x<lnteger.parse[nt(aname);x++)
i
qUery — ll‘l;
r[x] = searchhost(i,query,x);
JOptionPane.showMessageDialog(frame,r[x])
}
}

3

60

-
J

query = "SELECT location FROM book WHERE bookname =" + soundx +

loc = searchhost(i,query,x);
if(loc.length()>2)
{

[1[0] = new String(loc);
}
else
{
if(Integer.parselnt(loc) >0)
{
for(x = 0;x<Integer.parselnt(loc);x++)
{
query = "";
[T[x] = searchhost(i,query,x);

JOptionPane.showMessageDialog(frame,l1[x]);
}

}
}

JOptionPane.showMessageDialog(frame,loc);

query = "SELECT referencecopy FROM book WHERE bookname =" +
soundx +""";

rcopy = searchhost(i,query,x);
if(aname.length()>2)
{
rc1{0] = new String(rcopy);
}
else
{
if(Integer.parselnt(aname) >0)
{
for(x = 0;x<Integer.parselnt(aname);x-++)
{
query ="";
rcl[x] = searchhost(i,query,x);
JOptionPane.showMessageDialog(frame,rc1[x]);
}
!
}

JOptionPane.showMessageDialog(frame,rcopy);

- ' 61

|
|
|

query = "SELECT issuecopy FROM book WHERE bookname = " + soundx
+ ni,

icopy = searchhost(i,query,x);
if(aname.length()>2)
{

ic1[0] = new String(icopy):
}
else

{

if(Integer.parselnt(aname) >0)

for(x = 0;x<Integer.parselnt(aname);x++)
{

query — ll";

icl[x] = searchhost(i,query,x);

JOptionPane.showMessageDialog(frame,ic [x]);
}

}
} 5
JOptionPane.showMessageDialog(frame,icopy);

query = "SELECT ISBN FROM book WHERE bookname =" + soundx + ke
isbn = searchhost(i,query,x);

if(aname.length()>2)

isb[0] = new String(isbn);
}
else
{
if(Integer.parselnt(aname) >0)
{
for(x = 0;x<Integer.parselnt(aname);x++)
{
query ="";
isb[x] = searchhost(i,query,x);
JOptionPane.showMessageDialog(frame,isb[x]);
1
}
b

JOptionPane.showMessageDialog(frame,isbn);

display(soundx,x, r, 11, rcl, icl, isb);

}

, 62 R
-

DATABASE
Table 1: Login
Attributes: login,password,name,status
Login: user id
Password:user password
Name: user name

Status: sets | when the user logs in and 0 when he logs out

Table 2: Account
Attributes: login,book1,book2,date of issue, date of return(for both of them)

Book: name of the book the user has issued

Table 3: Book

Attributes: bookname, authorname, location, reference copy, issue copy, book code,
author code, ISBN

[SBN: ISBN number of the book

Location: floor and the rack the book is kept

Reference copy: Number of reference copies available

Issue copy: Number of issue copies available

Table 4: Notice

Attributes: login,notice,display,counter

Notice: the message the administrator wants to send
Display: Sets the display priority

Counter: The number of times the message is displayed to the user

Table 5: Previous search

Attributes: login,ISBN

Table6: Favourite

Attributes: login,ISBN,counter

63

DIRECTORIES AND STRUCTURES

We have used j2sdk (version 7.5) designed by Sun Microsystems. After installing this
software a folder named “java” is created in our C drive. Inside “java” is the folder
named “bin” where all the files being created is stored. All the files that we have created
are stored with an extension “ java ”,

While compiling and running such code the user first has to move to the directory java
and then to bin. This can be done by providing classpath as shown below in the command
prompt:

c:\cd java

c:\java\ed bin

c:\java\bin javac filename.java (for compiling)

c:\java\bin java filename.java (for running)

All the files should be located in the bin.

We have a “security.policy” file. This file is also located in the bin folder. This file is
runned while running the client in order to get permission to access the remote computers

properly.

Rt

64

CHAPTER 6
FLOW CHARTS

When the user or the administrator enters login and password

start

maszage JI :

no
Matcher Ifeorreet

uzername and
pasmword

A

mesiage

ues

NG

65
o

When the user enters his homepage

Butien Clik

Diplay status

—

Duplay favorita ‘4 j
beeols

66

Con>

Searching for a book

Enter the Author
name or Book name

If . No
found

Yes

Check for simijar
spellings

Display

If match
found

1A

Check user inout

Message

4

Yes

67

Adding a book

Enter the details of the book

if same ISBN Message

110, exists

Enter the book name in database

:—\/

stop <

68

Removing or Updating a book

T

Enter the ISBN no. of the hook

if same ISBN Message

110, 8X15i5

Remove/Update book name o

Stop

69

SNAPSHOTS OF OUR LIBRARY SYSTEM

When the user logs in:

When the user incorrectly spells the bookname (Soundex Implemented)

Search Result

71

Administrator's Homepage

it p i,

‘ath)

X

R

T TS g e S e e

If the book being added already exists

it T R T AT s R Y M S

navathe

8 TEEBENITES E Tt T T ST R T o A LTS S o b B R e R B

o S T L L T e

TR L A e i

G Ll S T e R R

When the number of books in favorite list is full, the user can replace one of the books

SEHD HESSAGE

When the user logs in he gets the message as shown

‘Data file sent successfully.

75

The account of the user can also be blocked by the adminis
message that his account has been blocked

trator giving the user the

76

CONCLUSION

On basis of our study of the java environment we found out that RMI can be a robust and
efficient platform for developing applications in distributed environment. Since RMI

makes use of object based application can be developed and then integrated or can be

developed as stand alone systems.

In our study of the various searching algorithms we found that the soundex algorithm is
the best one in case the user is not sure about the complete and correct information about

the book and the author.

77

BIBLIOGRAPHY

The information was obtained from the following websites and books

* www.devshed.com/c/b/MySOL

" Wwww.arenives.gov/research_room/genealogy/census/soundex. html :

" www.avotaynu.com/soundex. html

* A distributed library information system by Wolfram Schneider

* Computer Algorithms by Coreman

* A complete Reference to Java by Herbert Schield

78

