
REDIS DATABASE VISUALIZER
 FOR ReJSON AND REDISGRAPH MODULE

(RDBVIZ)

Project report submitted in partial fulfilment of the requirement for the degree of

BACHELOR OF TECHNOLOGY

IN

COMPUTER SCIENCE AND ENGINEERING

By

HIMANK JOG (151212)

UNDER THE GUIDANCE OF

Mr. BOPAIAH MEKERIRA

Department of Computer Science & Engineering and Information
Technology

Jaypee University of Information Technology Waknaghat,

Solan-173234, Himachal Pradesh

TABLE OF CONTENTS

TITLE PAGE

DECLARATION BY THE SCHOLAR iii

LIST OF ABBREVIATIONS AND ACRONYMS iv

ACKNOWLEDGEMENT v

LIST OF ABBREVIATIONS AND ACRONYMS vi

LIST OF FIGURES vii

LIST OF TABLES viii

ABSTRACT ix

1. CHAPTER - 1: INTRODUCTION 1-23

 1.1 About the Company 1

 1.2 Understanding Redis 1

 1.2.1 Introduction to Redis 1

 1.2.1.1 Data structures in Redis 1

 1.2.1.2 Inbuilt tools in Redis 8

 1.2.1.3 ReJSON and RedisGraph 17

 1.2 Introduction to ReactJS 21

 1.2 Introduction to Django 22

 1.2 Introduction to Heroku 23

2. CHAPTER - 2: LITERATURE SURVEY 24-25

 2.1 Redis Documentation 24

 2.2 ReactJS Documentation 24
i

 2.3 Django Documentation 25

 2.4 Heroku Documentation 25

3. CHAPTER - 3: SYSTEM DEVELOPMENT 26-31

 3.1 System Design 26

 3.2 Front End 28

 3.3 Back End 31

4. CHAPTER - 4: PERFORMANCE ANALYSIS 32-34

 4.1 RDBTools 32

 4.1.1 Establishing connection 32

 4.1.2 ReJSON Module Support 32

 4.1.3 RedisGraph Module Support 33

5. CHAPTER - 5: CONCLUSIONS 35

6. CHAPTER - 6: REFERENCES 36

ii

 DECLARATION BY THE SCHOLAR

We hereby declare that the work reported in the B-Tech thesis entitled “REDIS DATABASE

VISUALIZER FOR ReJSON AND REDISGRAPH MODULE” submitted at Jaypee

University of Information Technology, Waknaghat, India, is an authentic record of my work

carried out under the supervision of MR. BOPAIAH MEKERIRA. We have not submitted this

work elsewhere for any other degree or diploma.

Himank Jog, 151212

Department of Computer Science and Engineering

Jaypee University of Information Technology

Waknaghat, India

Dated:

iii

CERTIFICATE

I hereby declare that the work presented in this report entitled “REDIS DATABASE

VIZUALIZER FOR ReJSON AND REDISGRAPH MODULE” in partial fulfilment of the

requirements for the award of the degree of Bachelor of Technology in Computer Science and

Engineering submitted in the department of Computer Science & Engineering and Information

Technology, Jaypee University of Information Technology, Waknaghat, is an authentic record of

my own work carried out over a period from February 2019 to May 2019 under the supervision

of Mr. Bopaiah Mekerira, Technical Delivery Owner, HashedIn Technologies. The matter

embodied in the report has not been submitted for the award of any other degree or

diploma.

Himank Jog, 151212

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Mr. Bopaiah Mekerira

Technical Delivery Owner

HashedIn Technologies

Bangalore

Dated:

iv

ACKNOWLEDGEMENT

It is a pleasure to express my deep appreciation and gratitude to my mentor and to guide Mr.

BOPAIAH MEKERIRA, Technical DELIVERY OWNER, HashedIn Technologies, Bangalore,

Karnataka. His dedication and keen interest, and primarily, his overwhelming attitude to help his

team had been solely and mainly responsible for the completion of my work. Timely advice,

meticulous review and scholarly advice have helped me a lot.

I owe a deep sense of gratitude to all my team, respectful and supportive, who helped me to

participate in the very early stages of project development and I expect them to continue to guide

me constantly. Their prompt inspirations, timely suggestions with kindness, enthusiasm and

dynamism allowed us to complete my thesis.

I thank very much MR. SRIPATHI KRISHNAN, Chief Technical Officer, HashedIn

Technologies, Bangalore, Karnataka, for his help and cooperation throughout my development

period.

HIMANK JOG (151212)

v

LIST OF ABBREVIATIONS AND ACRONYMS

ABBREVIATION MEANING

RDBTools Redis DataBase Tools

CLI Command Line Interface

GUI Graphical User Interface

JS JavaScript

Redis REmote DIctionary Service

JSON JavaScript Object Notation

vi

LIST OF FIGURES

Figure No. Caption Page no
1 LRU approximation

compared with true LRU.
14

2 Workflow of React
framework rendering

21

3 Workflow of Django MVT
framework

22

4 Heroku Development
Workflow

23

5 Architectural Diagram of
RDBVIZ

27

6 ReJSON View 33

7 RedisGraph View 34

vii

LIST OF TABLES

Table No. Caption Page no
1 The conversion table from

Redis to Lua

10

2 The conversion table from

Lua to Redis

10

3 Redis Modules along with
their Use cases

16

viii

ABSTRACT

The report covers my work on creating a visualization tool, RDBVIZ, that makes it easier for

the user to interact with the non-native data stored in the Redis Database. Redis is an

in-memory database that is used for majorly for the caching purpose that makes is faster than

all the other databases present in the market. Specific to the ReJSON and RedisGraph

module, the tool allows user to perform not only the basic operations of Create, Read, Update

and Delete, but also allows the user to navigate through the data seamlessly and filter the data

based on the user input. Starting with the ReJSON, it provides the ability to store the data in

the JSON format. Second, RedisGraph allows the user to store the data in the form of a

graph, thus acting as an in-memory Graph Database. As a future prospect, this tool will be

integrated with the company’s product RDBTools.

ix

CHAPTER – 1

INTRODUCTION

1.1 About the Company

HashedIn Technologies is a software development company that focuses on

developing deep tech SAAS products and platforms. It majorly deals in the service

sector, working with companies to develop Intelligent Saas products. Along with the

services team, the company also maintains two of its own products that are

MeetNotes and RDBTools.

1.2 Understanding Redis

Redis, as the name comes from REmote DIctionary Service. It is an open source

database server that is mostly used as a caching service. Started by Salvatore

Sanfilipo, originally written to improve the performance of a real-time web analytics

startup by him. The entire database, as it has come to be known as, is written purely

in C language. It is an in-memory data structure store, therefore all the data is stored

in the RAM. Thereby making it faster to perform CRUD operations on the data. The

only drawback is that the RAM is a volatile memory, therefore all the data is gone

once the machine reboots. Hence, it is used for the caching purposes.

1.2.1 Introduction to Redis

1.2.1.1 Data structures in Redis

An in-memory data structure store, used for various purposes in the software

development cycle. Majorly it is used as database service, cache service or as a

message broker. Natively it supports a variety of data structures that help in storing

data. These help in storing data according to the requirement of the user. It uses the

1

Key Value pair technique to store data where key is a “String” and value is one of the

supported data structures.

Some of the supported data structures are as follows

● STRINGS

○ An array that stores characters.

○ The most basic data structure in Redis.

○ As a result used as a key to store values for the Key-Value Pair.

○ Operations: [GET, SET]

■ Sample Workflow

> SET MYVAL somevalue

 OK

> GET MYVAL

 “Somevalue”

● SETS

○ Collection of strings.

○ Unordered in nature.

○ Used for mathematical set operations such as Intersection, Union and

Difference.

○ Operations: [SADD, SISMEMBER, SMEMBERS, SINTER,

SUNIONSTORE, SPOP, SCARD]

■ Sample Workflow

> SADD TESTSET 5 6 7

 (integer) 3

> SMEMBERS TESTSET

1. 5

2. 6

3. 7

 > SISMEMBER TESTSET 5

2

 (integer) 1

 > SISMEMBER TESTSET 8

 (integer) 0

 > SINTER RANDOMTAG:2:TOPIC

 > SADD DECK A1 A2 A3 B1 B2 B3

 (integer) 6

 > SUNIONSTORE PLAY:1:DECK DECK

 (integer) 6

 > SPOP PLAY:1:DECK

 “A2”

 > SPOP PLAY:1:DECK

 “B1”

 > SCARD PLAY:1:DECK

 (integer) 4

● SORTED SETS

○ Amalgamation of a Set and a Hash.

○ It conceptualizes the idea of score.

○ We provide the value and along with its score.

○ The values are sorted on the basis of their score.

○ Operations: [ZADD, ZRANGE, ZREVRANGE,

ZRANGEBYSCORES, ZREMRANGEBYSCORE, ZRANK]

■ Sample Workflow

 > ZADD HACKERSLIST 1 “ALAN KAY”

 (integer) 1

 > ZADD HACKERSLIST 2 “SOPHIE WILSON”

 (integer) 1

 > ZADD HACKERSLIST 3 “RICHARD STALL”

 (integer) 1

 > ZADD HACKERSLIST 4 “ANITA BORG”

3

 (integer) 1

 > ZADD HACKERSLIST 5 “YUKIHIRO”

 (integer) 1

 > ZADD HACKERSLIST 6 “HEDY LAMARR”

 (integer) 1

 > ZADD HACKERSLIST 7 “CALUDE SANNON”

 (integer) 1

 > ZRANGE HACKERSLIST 0 2

1) “ALAN KAY”

2) “SOPHIE WILSON”

 > ZREVRANGE 0 2

1) “CALUDE SANNON”

2) “HEDY LAMARR”

 > ZRANGEBYSCORE HACKERSLIST 0 3

1) “ALLAN KAY”

2) “SOPHIE WILSON”

3) “RICHARD STALL”

 > ZREMRANGEBYSCORE HACKERSLIST 0 7

 (integer) 7

 > ZRANK HACKERSLIST YUKIHIRO

 (integer) 5

● HASHES

○ It is the usual collection of field-value pairs.

○ There’s a unique key that maps to a value that is stored as a string.

○ Operations: [HMSET, HGET, HMGET, HINCRYBY,

HGETALL]

■ Sample Workflow

 > HMSET CLIENT:10 NAME TEST YEAR 1997

 OK

4

 > HGET CLIENT:10 NAME

 “TEST”

 > HGETALL CLIENT:10

1) “Name”

2) “TEST”

3) “YEAR”

4) “1997”

 > HMGET CLIENT:10 NAME YEAR RANDOM

1) “TEST”

2) “1997”

3) (nil)

 > HINCRBY CLIENT:10 YEAR 20

 (integer) 2017

● LISTS

○ Implemented as linked lists within Redis.

○ Insertion is constant time.

○ Access is linear time.

○ Operations: [RPUSH, LPUSH, RPOP, LRANGE]

■ Sample Workflow

 > RPUSH TEST A

 (integer) 1

 > RPUSH TEST RANDOM

 (integer) 1

 > LPUSH TEST B

 (integer) 1

 > LRANGE TEST 0 -1

1) “B”

2) “A”

5

3) “RANDOM”

 > RPOP TEST

 “RANDOM”

● BITMAPS

○ Bit-oriented operations in disguise of n actual data type.

○ Helpful in saving space when storing certain type of information.

○ By default the value on a position is not set i.e 0.

○ Operations: [SETBIT, GETBIT, BITCOUNT, BITOP,

BITCOUNT, BITPOS]

■ Sample Workflow

 > SETBIT BITS 11 1

 (integer) 1

 > SETBIT BITS 13 1

 (integer) 1

 > GETBIT BITS 11

 (integer) 1

 > BITCOUNT BITS

 (integer) 2

● HYPERLOGLOGS

○ This is a special kind of data structure specific to a single task of

counting unique elements.

○ It is based on Memory-Precision Trade off.

○ The Redis implementation takes an approximation based approach.

○ The standard error in Redis implementation is less than 1%.

○ In the worst case, as calculated, constant amount of memory i. 12KB is

needed.

○ This is a lot less if there are few elements.

○ Operations: [PFADD, PFCOUNT]

■ Sample Workflow

6

 > PFADD HLL P Q R S T P

 (integer) 1

 > PFCOUNT HLL

 (integer) 5

● GEOSPATIAL INDEXES

○ It is used to add the specified geospatial items that includes latitude,

longitude and name to the declared key.

○ It provides with the functionality to query for the radius or geo radius

by number.

○ It provides the functionality to identify the distance between two

places.

○ Operations: [GEOADD, GEODIST, GEORADIUS]

■ Sample Workflow

> GEOADD Bangalore 56.787655 76.345443

”Chennai” 74.987389 12.253647 “Pune”

 (integer) 2

> GEODIST Bangalore Chennai Pune

 “1662.8767”

> GEORADIUS Bangalore 15 87 400 km

1) “Chennai”

● STREAMS

○ It is a new data type that models a LOG DATA STRUCTURE in a

way that is supposed to be more abstract in nature.

○ The continuous streaming data is stored and analyzed in real time with

this data structure

○ Operations: [XADD, XLEN, XRANGE]

■ Sample Workflow

7

 > XADD thisstream * sensor-id 4321 temperature

31.8

 1572930283738-0

> XLEN thisstream

 (integer) 1

> XRANGE thisstream - +

1) 1) 1572930283738-0

2) 1) “sensor-id”

 2) “4321”

 3) “temperature”

 4) “31.8”

1.2.1.2 Inbuilt-Tools in Redis

It provides many in-built tools and services to make the task of the user easier. Some

of these services are

● Replication

○

○ Ability to replicate data from master to slave nodes.

○ Whenever a link is established, the slave will automatically start

replicating the data form the master to itself to become the exact copy

of the master regardless of whatever state the master is in.

○ This replication works using 3 main mechanisms

i. In a well established connection

● Master keeps the slave nodes updated

ii. In a broken connection (Possible Partial Resynchronization)

● Slave tries for partial resynchronization.

● It tries to obtain the commands or part of commands

that were missed by slave due to disconnection.

iii. In a broken connection (Impossible Partial Resynchronization)

8

● Full resynchronization is done.

● Master creates a snapshot of all the data at present and

transfers it to the slave.

● Lua Scripting

○ There is an inbuilt Lua interpreter in Redis.

○ The argument EVAL is the shorthand for the Lua script in Redis.

○ Therefore, there is no need to define Lua function.

○ Arguments can be accessed by Lua using the global variable KEYS.

○ Additional arguments can be accessed by Lua using global variable

ARGV.

○ Sample Workflow

 > eval “return {KEYS[1], ARGV[1]}” 1 key1 firstARG

1) “Key1”

2) “firstARG”

○ Calling Redis commands from a Lua script

i. redis.call()

● Returns the result of the evaluation.

● If an error is raised, it will raise a Lua error.

● This forces EVAL to return an error.

● This error is returned to the command caller.

ii. redis.pcall()

● Similar to redis.call(), returns the result of evaluation.

● If an error is raised, it will trap the error.

● Return Lua table representing the error.

9

○ The conversion table from Redis to Lua

Redis Lua

Redis Integer Lua Number

Redis Bulk Lua String

Redis Multi Bulk Lua Table

Redis Status Lua Table with a single OK field containing

status

Redis Error Lua Table with a single ERR field

containing the error

Redis Nil Bulk and Multi Bulk Lua False Boolean type

○ The conversion table from Lua to Redis

Lua Redis

Lua Number Redis Integer

Lua String Redis Bulk

Lua Table (array) Redis Multi Bulk

Lua Table with a single OK field Redis Status

Lua table with a single ERR field Redis error

Lua Boolean False Redis Nil Bulk

10

○ Atomicity of the scripts

i. Similar Lua Interpreter in used in Redis to run all the

commands.

ii. It is the responsibility of Redis to guarantee that a script is

executed in an atomic way.

iii. No parallel script or a command of Redis will not be in an

execution phase while a script is in the execution phase.

iv. This enforces the script in the running phase to not be slow

cause all the other functions will be halted due to Atomicity.

○ Error Handling

i. If redis.call() function is used, the error will stop the execution

of the currently running script.

ii. This is done in a way that it becomes obvious to the user that

the error was generated by a script.

iii. Similarly if redis.pcall() is used, no error is raised.

iv. Rather an error object is returned.

● LRU Cache

○ The main purpose is to use Redis as an LRU cache.

○ The Least Recently Used eviction policy is the one majorly used, there

are other methods available.

○ The is a memory usage limit to a certain amount that is fixed.

○ Maxmemory Configuration Directive

i. Used to limit the memory usage to a fixed amount.

ii. To set the fixed amount we need to edit redis.conf file.

maxmemory 100mb

iii. Setting maxmemory to 0 describes that there are no memory

limits.

iv. For a 64bit system this is a default behaviour.

11

v. For a 32bit system, implicitly the memory limits to 3GB.

○ Eviction Policies

i. When the Redis reaches the maxmemory limit, then the

behaviour is configured using the maxmemory-policy

configuration directive.

ii. There are following policies available as of now

● Noeviction

○ Lets the user know through an error that

memory limit has been reached and the

command the user is trying to execute may

cause in usage of more memory.

● Allkeys-lru

○ It suggests to remove the Less Recently Used

keys first to make some space for the new data

added

● Volatile-lru

○ Similar to Allkeys-lru, it also evicts to remove

the Less Recently Used (LRU) keys first.

○ The only keys that are in the expire set are

considered for removal.

○ This is done in order to make some space for the

new incoming data.

● Allkeys-random

12

○ The keys are evicted in the random order.

○ It is done in order to make space for the new

data to be added.

● Volatile-random

○ The keys are evicted in the random order.

○ It is done in order to make space for the new

data to be added.

○ The keys to be evicted are from the expire set.

● Volatile-ttl

○ The keys are evicted in using the Shorter Time

to Live First policy.

○ This is done in order to make some space for the

new data to be added.

○ How the Eviction Process Works

i. When a client runs a new command, it results in adding more

data.

ii. Redis constantly checks the usage of the memory, and as soon

as it exceeds the maxmemory limit, it starts to evict keys

according to the policy.

iii. A new command is executed, so on and so forth.

○ Approximated LRU algorithm

i. Within Redis, it is not an exact implementation of the actual

LRU algorithm.

13

ii. It isn’t able to pick up the best candidate but banks up on the

approximation to pick up the next candidate key to evict.

iii. The main reason why we use the Redis LRU Algorithm for

eviction policies is that we can tune the precision of the

algorithm by changing the quantity of the samples we choose

to check for every eviction.

iv. The reason why the true LRU algorithm is not used is because

it uses comparatively more memory.

 Figure 1.

LRU approximation compared with true LRU

○ The new LFU mode

i. With the new version rolling out, Least Frequently Used

eviction mode will be available.

ii. Its performance is same as LRU, but for certain cases LFU

works more efficiently than the LRU,

iii. Policies for LFU mode are

● volatile-lfu

● Allkeys-lfu

14

iv. The default configuration is as follows

● Saturate the counter at, around, 1,000,000 requests.

● The counter is decayed every minute.

● TRANSACTIONS

○ There are only 4 commands to take care of the Transactions.

i. MULTI

ii. EXEC

iii. DISCARD

iv. WATCH

○ All the above mentioned commands are serialized, that implies that

they are sequentially executed.

○ This implies that no request can be issued when another request is in

the middle of the execution.

○ These commands are run/executed as a single isolated operation.

○ It is made sure that either all the commands are processed or none,

thus making it atomic along with isolation as well.

○ MULTI command is used to make the multiple commands execute in

atomic fashion.

○ The EXEC command is used to execute all the transactions that were

pushed in to the queue of the MULTI.

○ DISCARD is used to discard a current session of commands in

execution or pre-execution phase.

○ WATCH is used to keep a check on a key and track changes, either all

the changes will be applied or none.

○ Error inside a TRANSACTION

i. There could be an error during queuing of the commands, so

this may result in an error when executing the EXEC

command.

15

ii. This could be because of several reasons such as, a

syntactically wrong command or some condition where

memory usage limit is being exceeded.

iii. An error may occur after the EXEC command is executed,

such as accessing or setting wrong values for wrong keys.

● Modules

○ There are only few few data structures native to Redis as discussed in

section 1.2.1.

○ So, in order to provide support for data structures for specific

operations, module of that specific data structure is introduced.

○ It provides the ability to work with non-native data structures in order

to utilize the speed of Redis for other tasks than just the ones that are

natively supported

○ Following tables explains some of the supported modules and their

usage.

MODULE USE CASE

neural-redis Online trainable neural networks as Redis
data types.

RediSearch Full-Text search over Redis.

RedisJSON A JSON data type for Redis.

rediSQL Provides full SQL capabilities embedding
SQLite.

redis-cell Provides rate limiting in Redis as a single
command.

RedisGraph It is an implementation of graph database
with a Cypher-based querying language that
uses sparse adjacency matrices.

RedisML Machine Learning Model Server.

RedisTimeSeries Time-series data structure for redis.

16

RedisBloom Scalable Bloom filters.

cthulhu Extend Redis with JavaScript modules.

redis-cuckoofilter Hashing-function agnostic Cuckoo filters.

RedisAI Provides support to serve tensors and
execute deep learning graphs.

redis-roaring CRoaring library is used to implement
roaring bitmap commands for Redis.

redis-tdigest This is used for accurate online
accumulation of certain statistics that are
usually rank-based.

Session Gate Session management with multiple payloads
achieved using token that were
cryptographically signed tokens.

countminsketch An apporximate frequency counter.

ReDe Low Latancy timed queues (Dehydrators).

topk An almost deterministic top k elements
counter.

commentDis Add comment syntax to your redis-cli
scripts.

1.2.1.3 ReJSON and RedisGraph

ReJSON

This is a module provided by RedisLabs that supports the data structure for a JSON

type object. It implements ECMA-404. ECMA-404 is a standard meant for the JSON

data interchange as a native type. It allows the user to perform the basic operations

such as storing, fetching and updating the values stored in JSON object from the

Redis Key.

17

Primary Features:

● Full support of the JSON standard

● For selecting elements inside documents JSONPath-like syntax is

used.

● In order to allow fast access to sub-elements the documents are stored

as binary data in a tree structure.

● For all JSON values types, there are Typed atomic operation.

Launching the ReJSON module

● Preferred through the Docker Image provided by RedisLabs.

● Following command is used to run the Docker Image

Working with the module.

Basic functionalities

Extra functions provided

Working with arrays

18

Working with the JSON style object

RedisGraph

It is the module that provides the support to utilize the Redis as a graph database.

It is the first of its type in the context of queryable Property Graph database that uses

sparse matrices in order to represent the adjacency matrix in graphs as well as linear

algebra to query the graph.

Primary Features

● Based on the Property Graph Model.

19

● Attributes can be assigned to Nodes and Relationships that are

basically vertices and edges respectively.

● Node(vertices) can be labeled.

● A relationship type can be associated with a relationship.

● Sparse adjacency matrices are used to represent the graphs.

● The query language to query the graph database is Cypher.

● The queries in Cypher are translated to linear algebra expressions.

Launching the RedisGraph module

● Preferred through the Docker Image provided by RedisLabs.

● Following command is used to run the Docker Image

Working with the module

Basic working functionalities

Other functionalities

20

1.3 Introduction to ReactJS
ReactJS is a frontend framework that was developed by Facebook. It’s declarative

states that it makes it painless to create the User Interfaces that are interactive in

nature. It provides the developer with the ability to design simple views for each of

the state in the application and React’s framework will efficiently update and render

the required components when the data is updated.

It’s design ensures that the build encapsulated components that are designed to

manage their own states and thereby composing them to make complex User

Interfaces.

The following diagram explains the workflow of a React Framework rendering

Figure 2

21

1.4 Introduction to Django
Django is a Model-View-Template framework that takes care of the backend part of a

server. It is a high-level Python Web Framework that is designed to encourage rapid

development and clean, pragmatic design.

Primary Features

● It provides the tools and services that speed up the process from

concept to completion phase.

● It comes with inbuilt security so that the developer has no overhead for

managing the security part.

● It is highly scalable and hence is supported by many large scale

enterprises in the industry.

Following workflow diagram describes how Django works as an MVT framework.

 Figure 3

22

1.5 Introduction to Heroku
Heroku is a cloud application platform as a service that provides the ability for

deployment of an application online. We can also define Heroku as a container-based

cloud PaaS (Platform as a Service).

Developer can scale, manage and deploy modern apps on this platform. It offers the

developers an elegant, easy to use and a flexible platform to work on.

It supports deployment of applications based on various technologies such as Node.js,

Ruby, Java Go, Scala, Python Clojure.

Following workflow describes the Development Team Workflow

Figure 4

23

CHAPTER – 2

LITERATURE SURVEY

For the development of this tool the basic working and understanding of various frameworks

as in how frontend rendering, backend api creation and working of the Redis was required. In

order to gain an insight in to all of these, All the required knowledge base has been gained

from the following documents

2.1 Redis Documentation

This document/documentation provides all the required knowledge to get started with

Redis not only as a Database but as other services mentioned in the introduction. It

gives the list of all the commands, services, features and APIs provided by the Redis.

All information regarding the programming with Redis, redis modules API, Tutorials,

Frequently Asked Questions, Administration, Embedded, IoT, Troubleshooting,

Redis Cluster, Specifications, Resources and Use Cases were all provided by this

documentation.

2.2 ReactJS Documentation

ReactJS documentation provided with all the in hand tutorials and resources required

to build User Interface and Improved User Experience, i.e UI/UX. Starting with the

concepts of the ReactJS as to how it works and renders the components to all the way

to building the basic first app on react, every information and tutorial was provided

by this document.

24

The introduction and examples for working with Redux in ReactJS are the only

source of truth for Redux as it is a complicated tool/feature to implement and work

around with.

2.2 Django Documentation

Described as the best documentation for any backend framework yet, it provided with

all the knowledge required to develop not only the RESTful APIs for the project but

also provided with the space to deal with the business logic and data source as well.

With the help of this document all the underlying code for the project was developed

that defined how the structure of the project might end up like. With the Domain

Model to work with, it not only provided the required overview to the structure of the

project but also equipped me with the in depth knowledge of the working and hence I

was able to use this to minimize the complexity of the project.

2.3 Heroku Documentation(Python)

The documentation provided with all the necessary steps and knowledge required to

deploy a Python application on the platform. All the workflow and procedure

required for an application to be deployed and run online with a domain name

attached to it, this all was gathered from this documentation.

25

CHAPTER – 3

SYSTEM DEVELOPMENT

3.1 System Design

The model is highly inspired from the Domain Model. It is a 3-Tier structure that has

a front end framework ReactJS to deal with the User Interface and User Experience

parts of the project followed by the backend framework Django that provided the

suitable environment for development of the RESTful APIs for the project followed

by the Redis as database that was the backbone of the entire project as its interaction

had to transformed from CLI to GUI.

The instruction flow

● User clicks provides some input from the frontend.

● User then performs some action on the frontend that triggers some event.

● The event decides if an API call is required for the task or not.

● The API is called.

● The corresponding Transaction Script to the API runs at the back end.

● Transaction Script could have two tasks, either to deal with the data source i.e

Redis database or do some calculations, in the end it returns the requested

response.

● The front end receives the output from the back end and handles it

accordingly

● If the output received from the backend is an error, then front end accordingly

handles the error in a way that it doesn’t affects the User Experience

negatively.

● If the output received is to be displayed to the user then it is rendered

accordingly and sent to the user

26

Following architectural model visualizes the workflow of the system design.

Architectural Diagram

Following diagram describes the architectural overview of the system design.

Figure 5

27

3.2 Front End

To handle the front end flow, ReactJS framework was used. There were other options

available such as AngularJS and VueJS, but due to complexity of AngularJS and

unfamiliarity of VueJS, A light weight familiar framework i.e ReactJS was chosen.

The frontend was divided into two main components, The Search and Create Panel

and The Display Panel.

3.2.1 The Search and Create Panel

Search panel was used for searching and Create Panel for creating new JSON

key-value objects. It provided the user with the search result field that yielded all the

keys present in the Redis database depending upon the search pattern provided by the

user. Whereas the create part included two fields - The Key Field, The Value Field.

The Key Field takes the user input for the Redis Key that is supposed to map to the

JSON object to be provided by the user.

The Value Field takes the user input for the JSON object to any level of indentation.

The search field makes an API call to the backend with the user provided pattern as a

parameter. As the response arrives from the backend, the Search Result Display panel

is populated with all the keys present in the Redis database matching the user

provided pattern.

Whereas, in the creation field, as soon as the user submits the key-value pair, it is first

sanitized by the frontend and then it makes and API call for insertion. Front end waits

for the response from the back end, if the insertion is successful it updates the search

panel, otherwise alerts the user that some defined error has occurred.

28

3.2.2 The Display Panel

Display Panel provided two types of views - [JSON View, Graph View].

The main focus of the entire project was to make it easier for the user to interact with

the data that is being displayed in the Display Panel. The easier interaction implies

that it becomes easier for the user to find the keys or nodes to modify or navigate

through the data i.e cascading from parent key to the child key and it’s values or

moving from one key to another. Whereas in the Graph display, it motive was to

make the node searching easier for the user and view relationships between the nodes

in realtime and get the data of the node as well as modify it on the go.

3.2.2.1 Viewing the data

ReJSON

● The design is highly inspired from the works of compassDB.

● It provides the user with the adequate frontend that doesn’t

overwhelms the user with the entire data displayed at once.

● It moves in a layer-by-layer fashion, when the user first clicks the

main Redis Key, it displays the first 20 keys in the first level of the

object.

● Now user has the option to search for the key and reach directly for it

or navigate to the desired key-value pair by clicking the key on the

current level that reveals the further level keys that were encapsulated

by the outer key.

RedisGraph

● The design is inspired from the design of Neo4j.

● It provides the user with the adequate frontend that results in the

searched node/root node with maximum of 5 relationships at a time.

● User can navigate from node to node by expanding the graph and

exploring other relationships with the current node.

29

3.2.2.2 Creating Data

ReJSON

● The key is provided in the key input field.

● The JSON object string is provided in the value field.

● The ReactJS typecasts the JSON object string into a JSON object.

● If this doesn’t returns any error, the string is passed to along with and

insertion API call, else the user is alerted regarding the same.

RedisGraph

● The user first defines the view in the display panel as the Edit View.

● Then user click to create a node.

● Now user is displayed a modal where user can provide any label and

properties to the node.

● Similarly user can connect various nodes using an edge.

● As soon as n edge connects with exactly two nodes, it displays a

modal that allows the user to input the information regarding the

relationship between the two nodes.

● The input information contains the details about the label and the

properties of the edge or the relationship.

3.2.3 Role of p5JS

● This library was used to successfully implement the concept of the

RedisGraph to make the interaction with the graph data stored in Redis as

seamless and flexible as possible.

● The p5JS component was divided in to two classes mainly the Node class that

deals with the interaction of user with a node in the graph database and an

Edge class that deals with the interaction of an edge or a relationship in the

graph database.

30

3.2.4 System Design Issues

● The primary concern was to embed the p5JS code with the ReactJS.

● The secondary concern was to make the interaction as seamless, interactive

and as flexible as possible.

● The tertiary concerns include, the deployment of the app in an SPA.

3.2.5 Solutions to the System Design Issues

● To embed the p5JS code, a wrapper class was created to embed the p5JS as a

component to the React.

● The secondary issue was taken care of by the efficient UX design.

● The tertiary concern was taken care off by Webpack. Webpack was used to

create a single bundle out of the ReactJS code. Therefore all the components

were crunched into a single file. This helped in maintaining the main aspect of

single deployment for the SPA.

3.3 Back End

To handle the back end flow, Django was chosen as a framework as it provided the

create RESTful APIs comparatively fast. Along with the RESTful API creation, it

was also used to deal with all the business logic and the Redis Database.

The back end was mainly implemented as a Model-View design, where the view was

taking care of all the incoming requests i.e the APIs. To handle the business logic

another layer was introduced that dealt with the Redis interaction part.

All the required unit test cases were created in order to make sure that

adding/updating the functionality or API wouldn’t affect the current workflow.

31

CHAPTER – 4

PERFORMANCE ANALYSIS

It gives an insight in the the breakdown of the entire application into various models that take

care of the various parts and phases of the application independent of the other models in the

design. The aim was to make the application as modular as possible as well as not

compromising with the performance at the same time.

4.1 RDBTools
A product of HashedIn technologies for which the project RDBVIZ was developed to

be used as a plugin to provide support for the non-native data types specifically

ReJSON and RedisGraph module.

4.1.1 Establishing connection

The User Interface of the RDBTools provided the functionality to establish a

connection to an already existing Redis Server/Database. Once this connection is

established user can get a GUI look of the connected Redis Server.

4.1.2 ReJSON Module Support

The developed ReJSON module provided the ability to perform CRUD operations on

the Redis Database in context to a JSON object. Prior to the support of the ReJSON

module, a JSON format data was store in a string format. The issue with the string

format was that, if there was any update, the entire string was required to be replaced

in the database. It is no issue until we are dealing with the Redis Clusters dealing with

Gigabytes of data every minute, then replacing the entire string was not the suitable

operation as it contributed to the overhead to already increasing data.

ReJSON provided the ability to update the specific Key-Value pairs rather than

updating the entire string, so it was a boost to the application and decreased the

computation time significantly.

32

Following image visualizes the ReJSON support for the product.

Figure 6

4.1.2 RedisGraph Module Support

As of now, officially, there is no other data visualization tool for visualizing the graph

data stored in the the Redis. This was the major challenge as it was required to create

something from scratch that hasn’t been already done before.

Earlier there was no support for graph data type, but with the integration of the

visualization tool for the Redis Graph module the RDBTools got the support for the

Graph Data type.

33

Following image visualizes the Redis Graph support for the product.

Figure 7

34

CHAPTER – 5

CONCLUSIONS

Working on a product provided me with an insight to the development and maintenance of a

product on the industrial basis. My learning about the development and lifecycle

management of a product has been of a great use for my other projects within the company.

Initially there was no tool for visualizing the data in the Redis Server/Database or as it may

be described in layman terms that there was no GUI support for the Redis. RDBTools started

with this idea in mind, to provide a tool for the users so that it becomes easier for the

developers to interact with their data that is stored in the Redis Database.

With my work being in the field of non-native Redis data types, I had to deal with the

creation of GUI support for modules provided by the redis, which had been done before. This

was a project of first of its kind therefore it proved to be a challenging project. Moreover I

was made the team lead for the project. WIth three additional team members to manage and

complete the project on time gave me an opportunity to look at the management aspect of the

project as well. Being the team lead I learnt the task estimation and team management as I

had to make sure that everyone was working efficiently individually and as well as a team.

Being at this position I had to keep myself updated with the front end, back end, integration

and deployment aspect of the project.

With nearing deadlines, I learnt the stress management along with the completion of the task

within the delta time window of the deadline. So it was a learning experience not only in

context to the technology but the management as well.

35

REFERENCES

[1] https://rdbtools.com/docs/ [RDBTools Documentation]

[2] https://docs.djangoproject.com/en/2.2/ [Django Documentation]

[3] https://reactjs.org/docs/getting-started.html [ReactJS Documentation]

[4] https://oss.redislabs.com/redisjson/ [ReJSON Documentation]

[5] https://oss.redislabs.com/redisgraph/ [RedisGraph Documentation]

[6] https://p5js.org/get-started/ [p5JS Documentation]

[7] https://webpack.js.org/concepts [Webpack Documentation]

36

https://rdbtools.com/docs/
https://docs.djangoproject.com/en/2.2/
https://reactjs.org/docs/getting-started.html
https://oss.redislabs.com/redisjson/
https://oss.redislabs.com/redisgraph/
https://p5js.org/get-started/
https://webpack.js.org/concepts

