
REMAP: A Web Server For Regulatory Elements

Mapping And Prediction

Enrollment Number: 151502

Name of Student: Hitesh Thakur

Name of Supervisor: Dr. Tiratha Raj Singh

MAY 2019

Dissertation submitted in partial fulfilment of the requirement for the

degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF BIOTECHNOLOGY AND BIOINFORMATICS

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

WAKNAGHAT, SOLAN

2 | P a g e

CONTENTS

DECLARATION 4

CERTIFICATE 5

ACKNOWLEDGEMENT 6

LIST OF FIGURES 7

LIST OF ABBREVIATIONS 8

ABSTRACT 9

1. Chapter 1: INTRODUCTION 10

1.1 Problem statement 11

1.2 Objective 11

1.3 Purposed web server 12

1.4 Applications 12

2. Chapter 2: MATERIALS AND METHODS 20

2.1 Explanation of the project 20

2.2 Setting up requirements 20

2.3 Software development life cycle model 20

2.4 Tools and programming languages 23

2.4.1 Local server – XAMPP 23

2.4.2 Hypertext Mark-up Language 23

2.4.3 JavaScript 24

2.4.4 Cascading Style Sheets (CSS) 24

2.4.5 Bootstrap 24

2.4.6 Hypertext Preprocessor (PHP) 24

2.4.7 Python 25

2.4.8 Perl 25

2.5 Implementation 25

3 | P a g e

3. Chapter 3: RESULT AND DISCUSSION 27

3.1 GUI of REMAP server 27

3.1.1 Micro RNA module 28

3.1.1.1 Input GUI for miRNA module 29

3.1.1.2 Result obtained from miRNA module 29

3.1.2 Simple sequence repeats module 31

3.1.2.1 Input GUI for SSR module 31

3.1.2.2 Result obtained from SSR module 31

3.1.3 Single nucleotide polymorphism module 32

3.1.3.1 Input GUI for SNP module 33

3.1.3.2 Result obtained from SNP module 34

3.1.4 Sequence analysis module 34

3.1.4.1 Input GUI for sequence analysis module 35

3.1.2.2 Result obtained from sequence analysis module 38

4. Chapter 4: CONCLUSION 41

Appendix – I 42

Appendix – II 44

Appendix – III 49

REFERENCES 51

4 | P a g e

DECLARATION

I thus declare that the work introduced in this report entitled "REMAP: A Web Server for

Regulatory Elements Mapping and Prediction" in partial satisfaction of the requirement for the

award of the degree of Bachelor of Technology in Bioinformatics submitted in the Department

of Biotechnology and Bioinformatics, Jaypee University of Information Technology,

Waknaghat, Solan-173234, Himachal Pradesh is my very own genuine record work did over a

period from July 2018 to May 2019 under the supervision of Dr Tiratha Raj Singh, Associate

Professor (Senior Grade), Department of Biotechnology and Bioinformatics.

The content written in the report has not been submitted for the award of some other degree or

diploma.

Signature of the student

(Hitesh Thakur)

5 | P a g e

CERTIFICATE

This is to affirm that project report entitled "REMAP: A Web Server for Regulatory Elements

Mapping and Prediction", put together by Hitesh Thakur is in its partial satisfaction for the

award of level of Bachelor of Technology in Bioinformatics Engineering to Jaypee University

of Information Technology Waknaghat, Solan has been done under my watch.

This work has not been submitted incompletely or completely to some other college or

institution so as to accomplish any award or some other degree.

Signature

Supervisor Name: Dr. Tiratha Raj Singh

Designation: Associate Professor

Jaypee University of Information Technology,

Waknaghat Solan, Himachal Pradesh

6 | P a g e

ACKNOWLEDGEMENT

I might want to offer my earnest thanks and gratitude to my project guide, Dr. Tiratha Raj

Singh, whose patience, direction, consolation, and devotion had propelled me to do this project

under him.

I might likewise want to express genuine gratitude to Dr. Sudhir Sayal (Head, Department of

Biotechnology and Bioinformatics) for his command and backing to take a shot at this project.

Moreover, I might want to thank the Administration of the Department of Biotechnology and

Bioinformatics for the majority of their specialized expertise and support.

I additionally appreciate the majority of the help my folks, companions and instructors have

given me all through the educational curriculum, I couldn't have done this without the

assistance and support of every one of these individuals.

Thank you

7 | P a g e

LIST OF FIGURES

Description Page No.

Figure 1: Illustration of miRNA function 13

Figure 2: Single Nucleotide Polymorphism 15

Figure 3: Translation of DNA into Protein 16

Figure 4: Consensus sequence in case of E. coli 17

Figure 5: Open reading frame with six-frame translation 18

Figure 6: Process of splitting reads into smaller k-mers 19

Figure 7: Waterfall Model 21

Figure 8: Workflow chart 22

Figure 9: Xampp control panel 23

Figure 10: REMAP webserver graphical user interface 28

Figure 11: miRNA module 29

Figure 12: Results from miRNA module 29

Figure 13: (a) Sequence that contains miRNA target; (b) Start

and end position of the miRNA in the query sequence; (c)

miRNA structure visualization (Dynamic)

30

Figure 14: SSR module 31

Figure 15: Results from SSR module 32

Figure 16: SNP module 33

Figure 17: Results from SNP module 34

Figure 18: Showing GUI of different tools present on the web

server for the analysis of nucleotide sequences (a) Translation;

(b) Consensus; (c) Sequence Summary; (d) ORF Finder; (e) Find

K-mers; (f) CAI – Calculator.

37

Figure 19: Images showing results produced by different tools

present on the web server for the analysis of nucleotide

sequences (a) Translation; (b) Consensus; (c) Sequence

Summary; (d) ORF Finder; (e) Find K-mers; (f) CAI –

Calculator.

40

8 | P a g e

LIST OF ABBREVIATIONS

miRNA Micro Ribonucleic Acid

Bp Base Pairs

RNA Ribonucleic Acid

miRISC Micro RNA-Induced Silencing Complex

UTR Untranslated Region

TFBS Transcription Factor Binding Site

SSRs Simple Sequence Repeats

STRs Short Tandem Repeats

MISA Micrsatellite

FASTA Fast Alignment

DNA Deoxyribonucleic Acid

VNTR Variable Number of Tandem Repeats

SNPs Single Nucleotide Polymorphisms

mRNA Messenger RNA

ORF Open Reading Frame

CAI Codon Adaptive Index

Nc Effective Number of Codons

SDLC Software Development Life Cycle

HTML Hypertext Markup Language

CSS Cascading Style Sheets

PHP Hypertext Preprocessor

XML Extensible Markup Language

GUI Graphical User Interface

VCF Variant Call Format

CROM Chromosome

POS Position

ID Identifier

REF Reference

ALT Alternate

QUAL Quality

REA Regulatory Element Analysis

INFO Information

9 | P a g e

ABSTRACT

Computational methods for regulative elements mapping and prediction are presently

undergoing in depth review and analysis. There's however an implausible demand for

development of these tools and bioinformatics approaches are looking towards high-throughput

tries to approve expectations. The mix of large-scale techniques with computational tools won't

solely give larger credence to computational predictions however conjointly result in the higher

understanding of specific biological queries. Apart from all the individual tools required for

mapping and predicting regulatory elements, there is need or a server that integrate all these

tools and allow to perform analysis on one platform only.

Re-Map is a web server that integrate all the major tools required for analysis of regulatory

elements in genome sequences. Its main applications are (i) miRNA prediction in the genome

sequences, (ii) microsatellites or simple sequence repeats prediction and (iii) predicting

transcription factor binding sites in genome sequences. All these putative regulatory elements

will be analysed to provide meaningful information to the academicians and researchers.

10 | P a g e

Chapter 1 - INTRODUCTION

Knowing the regulative mechanisms responsible for gene expression stays one among the

foremost fundamental difficulties for biomedical investigation. A regulative part can operate

1000 base pairs (bp) away from the template sequence [1], adding one more layer of much

more complexness to transcriptional regulation. However, most genes are successfully

annotated, our information of regulative components that controls such genes in numerous cell

varieties, at varied time periods and in totally different environment conditions remains

restricted. Recent studies show that mutations in several of the already familiar regulative

components are related to health issues [2], pointing towards the vital role that regulative

components may play in identifying disease and drug discovery.

Computational techniques for miRNA target expectation are as of presently encountering wide

review and assessment. There's in any case a doubtful interest for improvement of such devices

and bioinformatics approaches are attempting towards high-throughput examinations to

approve expectations. The blend of huge scale system with computational devices won't just

give a great deal of significant conviction to computational desires in any case moreover result

in the higher understanding of specific biological queries. MicroRNAs (miRNAs) are very

little, non-coding ribonucleic acid molecules that manage the expression of protein-coding

genes at the post-transcriptional level. Since various essential formative and physiological

procedures are entirely managed by miRNAs, it is not astounding that deregulation of miRNA

work has been involved within the pathological process of diverse human diseases [3].

Understanding miRNA function has thus been a significant focus of biomedical analysis within

the previous decade.

In the authoritative pathway, miRNAs direct a protein complex, named miRISC, to binding

site that regularly reside in the 3΄ untranslated area (3΄ UTR) of target mRNA molecules. In

this manner, miRISC starts inhibition of translation, deadenylation and rot of the target mRNA

[4]. Learning of target mRNAs is basic to comprehend the job of a specific miRNA in both

typical cell procedures and pathogenesis. Correspondingly, knowing the full complement of

miRNAs controlling a specific mRNA is fundamental to grasp its dynamic direction that is

firmly connected to its function.

Moreover, a main emphasis in cell science is to discover functional Transcription Factor

Binding Sites in charge of the control of a downstream gene and microsatellite or simple

sequence repeats present in the genomic arrangements. As wet-lab procedures are repetitive

and expensive, it isn't reasonable to perceive TFBS for all uncharacterized genes in the genome

11 | P a g e

by basically test implies. Computational systems went for predicting potential regulatory

regions can build the effectiveness of wet-lab analyses meaningfully. Microsatellites arose

around 25 years back [5] and remain an ordinarily utilized genetic marker system in plant

genetics, reproducing and forensics [6], where they are regularly stated as simple sequence

repeats (SSRs) or short tandem repeats (STR), separately. The fundamental structure unit of a

microsatellite is a short grouping theme (more often somewhere in the range of one and six

base-pairs long) that is repeated in tandem. These attributes can be distinguished by the in-

silico examination of nucleotide sequences gotten by conventional Sanger or high-throughput

resequencing information. The MISA microsatellite discoverer is a device for finding

microsatellites in nucleotide sequences. Despite the acknowledgment of flawless

microsatellites, MISA is also prepared to find flawless compound microsatellites that are made

numerous events out of more than one simple sequence motif [7].

1.1 Problem Statement

Regulatory elements prediction and mapping in various organisms is a bottleneck for seeing

how biological procedures are sorted out, how they function, and how they developed in those

species. For the prediction of such regulatory elements, a researcher needs to experience

writing mining, or servers which predict single regulatory element at a time. For prediction of

such regulatory elements, a researcher needs to experience bunches of tools (e.g. to predict or

identify regulatory elements one must go multiple server as each server is specifically for only

one regulatory elements) which takes more endeavours and are time-consuming processes.

1.2 Objective

To reduce such endeavours mentioned above, built up the asset by incorporating major tools

and information, making enhanced forms of famous tools and built up another web server by

conquering the execution of tools that were minimally utilized or worked inadequately keeping

in mind the end goal to streamline the client encounter.

 All major tools for the analysis of regulatory elements at one place.

 Integration of tools for the analysis of genes at sequence level.

 Provide better visualization of important elements using dynamic structures.

12 | P a g e

1.3 Proposed Web Server

Here, we present a new user-friendly web server, called “Re-MAP” – Regulatory Elements

Mapping and Prediction Server that will allow biologists to identify and predict major

regulatory elements at a single platform with less endeavours. Also, facilitating user to run

some small level sequence analysis quickly and providing them option to download their

results.

This web server is freely accessible to each and every one all over the web, universally. The

user can perform regulatory elements and sequence analysis on their uploaded files which

should be in standard and most adequate FASTA file format. There is also a sample dataset

which are available to download. The web server does not ask for any paid services for its

working. The users will most likely get in touch with us through a form gave in the website,

where they can give us feedback and recommendations about the adjustments or the updates

required for the web server.

1.4 Applications

Regulatory Elements Mapping and Prediction:

 MicroRNAs prediction in the genome sequences

MicroRNAs (miRNAs) are very small generally range from 18 – 28 nucleotides in size

and are non-coding ribonucleic molecules. Their main job is in the post-transcription

regulation to control the expression of the protein with specific function and their

participation in traditional and pathological cellular processes has been demonstrated.

miRNAs can be defined as "multivalent," with one miRNA prepared to target multiple

genes, thus controlling the expression of numerous proteins. Many crucial cellular

processes, such as cell differentiation from each other, cell cycle progression

throughout its life span, and cell death [8][9]. Micro RNAs in pituitary differentiation

have been shown to play relevant roles. Missing information about miRNA binding

genes, however, delays full understanding of miRNAs' biological functions. More

studies are therefore required to predict miRNA binding genes in pituitary adenomas

for either down or up regulated miRNAs. Predictive miRNAs are likely to be useful

diagnostic markers, increasing pituitary adenomas arrangement.

13 | P a g e

Figure 1: Illustration of miRNA function

[Image source: Researchgate, https://www.researchgate.net/figure/Simplified-illustration-of-miRNA-biogenesis-

and-function-miRNA-genes-are-first_fig1_221197863, 1 May 2019]

 Micro-satellites (SSRs) prediction

A microsatellite can be a repetitive deoxyribonucleic acid tract within which certain

DNA patterns (ranging from 1 to 6 or additional base pairs) are recurrent, usually 5 to

50 times.[10] [11] Microsatellites occur at thousands of locations inside the genome of

an organism. They have a larger mutation rate than alternative areas of

deoxyribonucleic acid [12] leading in high genetic diversity. Microsatellites are

typically spoken by forensic geneticists and in genealogy as short tandem repeats

(STRs), or by plant geneticists as simple sequence repeats (SSRs) [13].

Microsatellites are classified as VNTR (variable number of tandem repeats)

deoxyribonucleic acid along with their longer cousins, the minisatellites. The name

"satellite" deoxyribonucleic acid refers to the first observation that the centrifugation of

genomic deoxyribonucleic acid in a test tube separates a distinguished layer of bulk

https://www.researchgate.net/figure/Simplified-illustration-of-miRNA-biogenesis-and-function-miRNA-genes-are-first_fig1_221197863
https://www.researchgate.net/figure/Simplified-illustration-of-miRNA-biogenesis-and-function-miRNA-genes-are-first_fig1_221197863

14 | P a g e

deoxyribonucleic acid from related "satellite" layers of repetitive deoxyribonucleic acid

[14].

In cancer diagnosis, kinship analysis (especially paternity testing) and forensic

identification, they are widely used for DNA profiling. In addition, they are utilized in

genetic linkage analysis to find a gene or a mutation that is susceptible for a given trait

or disease. Microsatellites are used in population genetic science to measure levels of

connectivity between subspecies, groups and people.

 Identification of Single Nucleotide Polymorphism (SNPs)

A single-nucleotide polymorphism could be a variation in the DNA sequence that

happens when a single nucleotide adenine [A], thymine [T], cytosine [C], or guanine

[G] within the genome (or alternate shared sequence) varies in associates of a species

or paired chromosomes in a specific person.[15] For instance, there are two DNA

fragments with known sequence from totally diverse people, AAGAGCGTGA to

AAGAGCTTGA, contain a distinction only at one nucleotide position. We can say that

we have 2 alleles in this case: G and T. There are only 2 alleles in the majority of

common SNPs.

Figure 2: Single Nucleotide Polymorphism

[Image source: ISOGG, https://isogg.org/wiki/Single-nucleotide_polymorphism, 1 May 2019]

https://isogg.org/wiki/Single-nucleotide_polymorphism

15 | P a g e

Single nucleotides could also be modified (substitution), removed (deletions) or added

(insertion) to a polynucleotide sequence. Single nucleotide polymorphisms could fall

inside coding sequences of genes, non-coding regions of genes, or within the intergenic

regions between genes. SNPs inside a coding sequence won't essentially change the

amino acid sequence of the protein that's created, thanks to degeneracy of the ordering.

A SNP during which each form causes an equivalent peptide sequence is termed

synonymous (sometimes known as a silent mutation) — if a distinct peptide sequence

is created, they're nonsynonymous. A nonsynonymous amendment could either be

missense or nonsense, wherever a missense amendment leads to a distinct amino acid,

whereas nonsense changes leads to a premature stop codon. [16] SNPs that aren't in

protein-coding regions should still have consequences for gene splicing, transcription

factor binding, or the sequence of non-coding RNA.

Sequence analysis package:

 Translation of nucleotide sequences using multiple genetic code system

The genes in deoxyribonucleic acid encode protein molecules, which are the cell's

"workhorses," ending all the necessary functions forever. As an example, all proteins

are enzymes, along with some that digest nutrients and helps in building new cellular

elements. Additionally, there are some that create copies of deoxyribonucleic acid

throughout cell division such as deoxyribonucleic acid polymerases and various

enzymes [17].

In the simplest sense, gene expression suggests that synthesizing its corresponding

protein, and this process consist of basically two important steps. In the first step, the

information which is present inside the deoxyribonucleic acid is passed to a messenger

RNA (mRNA) fragment by the method which is commonly known as transcription.

During the process when transcription is taking place, the deoxyribonucleic acid of a

gene assists as a template for complementary base pairing, and a protein which is widely

known as polymer enzyme II catalyze the construction of a pre-mRNA molecule, that

is then further undergo some processes to create mature messenger RNA (Figure 3). At

last, the mRNA that has been formed is only a single-stranded copy of the gene, that

further need to be translated into a protein molecule.

16 | P a g e

Figure 3: Translation of DNA into Protein

[Image source: Nature, https://www.nature.com/scitable/topicpage/translation-dna-to-mrna-to-protein-393, 1

May 2019]

The messenger RNA is "read" in accordance with the triplet formed by the three

nucleotides where each triplet codes for particular amino acid, on the basis of which

polypeptide chain is synthesized, which is the second major or last step in gene

expression or translation. The sequence of ribonucleic acid is thus used as a base for

generating a long chain of amino acid that forms a protein. Once the stop codon is

recognized the chain synthesis stops.

 Determining the consensus sequence for the given multiple nucleotide sequences:

A consensus sequence is a perfect promoter sequence in deoxyribonucleic acid [18] -

in E. coli, for instance, two are found, a -35 sequence and a -10 sequence. The best

https://www.nature.com/scitable/topicpage/translation-dna-to-mrna-to-protein-393

17 | P a g e

promoter sequence - the consensus sequence - isn't truly found in deoxyribonucleic

acid, and a promoter's strength is judged by its similarity to the consensus sequence.

The nearer a promoter is to the best sequence, the stronger it'll be and thus a lot of

messenger RNA are made, which can result in a bigger yield of proteins. The -35

consensus sequence is TTGACA, and also the -10 consensus sequence is TATAAT.

Figure 4: Consensus sequence in case of E. coli

[Image source: Biomedical Sciences, https://teaching.ncl.ac.uk/bms/wiki/index.php/Consensus_sequence, 1

May 2019]

Originally, the consensus sequence was determined by comparing already well-known

promoter sequences and selecting the base that was most typical of each position. Any

upstream sequence of the transcription starting site is given a negative sign in front of

it as the starting site is + 1.

 Open Reading Frame (ORF) Finder:

Open reading frame (ORF) in genetic science is the part of a nucleotide sequence which

has initiation codon and has the ability to translate into a protein. An ORF may be a

nonstop stretch of codons starting with a beginning nucleotide triplet (generally AUG)

and ending with a stop codon (usually UAA, UAG or UGA) that do not code for any

amino acid.[19] The ATG sequence (RNA AUG) inside the ORF may indicate

wherever the translation starts. After the ORF, after the transcription stop codon, the

transcription termination site is found. If transcription were to stop before the stop

sequence, the entire translation would create an incomplete protein. [20] The introns

https://teaching.ncl.ac.uk/bms/wiki/index.php/Consensus_sequence

18 | P a g e

are removed in eukaryotic genes with the help of splicing and this is a post transcription

process. Then the spliced exons are joined along after transcription step is completed

to form the final protein translation RNA. Within the context of finding a gene, the

start-stop explanation of an ORF thus solely applies to spliced mRNAs and this does

not imply to genomic DNA as there may be a chance of appearing stop codon within

the introns and/or shifts in reading frame. So, we do not consider start and stop codons

while discussing genomic DNA.

Figure 5: Open reading frame with six-frame translation

[Image source: Wikipedia, https://en.wikipedia.org/wiki/Open_reading_frame, 1 May 2019]

 Summary of the nucleotide sequences:

To obtain the count of A/T/G/C/N, total length, AT and GC content percentage in a

given nucleotide sequences.

 To find K-mers of desired length for a sequence:

In computational genetics, k-mers consult with all the potential sub sequences (with

length as k) from scanning deoxyribonucleic acid sequencing. The quantity of k-mers

potential given a string of size “L” is “L-k+1”, while the amount of potential k-mers

https://en.wikipedia.org/wiki/Open_reading_frame

19 | P a g e

given “n” possibilities (4 in case of dealing with deoxyribonucleic acid e.g. ACTG) is

“n^k”.

Figure 6: Process of splitting reads into smaller k-mers

[Image source: Wikipedia, https://en.wikipedia.org/wiki/K-mer, 1 May 2019]

K-mers are usually used while doing the assembly of the sequences, [21] however may

be utilized in sequence alignment. Within the context of the human genome, k-mers of

varied lengths are used to justify variability in mutation rates.

 Calculating the Codon Adaptation Index (CAI):

The Codon Adaptation Index (CAI) [22] is the most common technique used to analyse

bias in the use of codon. Unlike various codon-use bias measures, such as the “effective

number of codons” (Nc), which measures direct change from a consistent bias (null

hypothesis). CAI is used to measures the change of a given nucleotide sequence which

codes for a protein from the already provided reference set of nucleotide sequences i.e.

basically genes. CAI is used to predict the amount of expression of a gene based on its

codon sequence as a quantitative technique.

https://en.wikipedia.org/wiki/K-mer

20 | P a g e

Chapter 2 - MATERIALS AND METHODS

2.1 Explanation of the Project

Requirement: A web server for regulatory elements mapping and prediction that allow

biologists to identify and predict major regulatory elements at a single platform.

Input: Nucleotide sequences either single or multiple in FASTA file format (.fa).

Output: Identify or predict regulatory elements in the given sequence(s) uploaded by

client/operator.

2.2 Setting up Requirements

Machine that holds server: Installation of XAMPP or any other APACHE server for creating

local server.

Machine required by the client: Working PC with internet connection to connect to the server.

Software: Perl and python needs to install on the server with necessary packages/modules

installed (as required for the written scripts which runs in the background).

2.3 Software Development Life Cycle Model:

A Software Development Life Cycle (SDLC) relates to the indispensable stages that engineers

need while making any new programming bundle, for example, planning, breaking down,

structuring and actualizing. A life cycle of programming improvement covers all phases of

programming bundle advancement from the earliest starting point, holding the need to keep up

the product package.[23] Multiple SDLC models are out there like falls, iterative, V-shaped,

coordinated, and so on. Every one of these models was considered, their properties, benefits,

drawbacks were studied, and it was presumed that the waterfall model was the most suitable

model for REMAP web server to hold the project.

There are certain qualities of Waterfall Model:

 It's an orderly model of development.

 The desires must be clear in this model before reaching the next section.

 Testing is permitted if the whole code is created.

 Improvement stages need to happen at the following stage and there is no intersection

between two phases.

 Work advancement ought to be reported once each area has been finished.

21 | P a g e

 Testing takes place at the end of each section as well. This practice assists in

maintaining the project standard.

 Each step should be made closed before moving to the next step, i.e. the need is

frozen in advance, at that time only the coding and alternative implementation will

take place.

 A time limit should be set for each section to be completed.

Figure 7: Waterfall Model

[Image source: tutorialspoint, https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm, 1 May 2019]

In this task, the means that have been pursued:

 Initially, examined all the data about the regulatory elements, its applications,

previously existing scripts/tools, the usage of these tools and how to coordinate these

instruments on a single platform i.e. web server.

 Next, endeavoured to plan a technique about how the site with server will be actualized,

how the front end will look, how to deal with numerous clients demands, how to execute

PERL/python contents in the backend, which programming languages and tools would

be utilized, and so on.

 Next, in the improvement step we built up a website page utilizing HTML, Bootstrap,

JavaScript, CSS and PHP.

https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm

22 | P a g e

 After the improvement is finished, we tried the server with numerous request and

inputs, and inspect the time required by the server to create outputs.

 The subsequent stage is usage or launching our web server on the web.

 At last, we will continue updating our site. For instance, adding more regulatory

elements prediction tools and providing more choices to the user. In more

straightforward words, will attempt to stay aware of the support of the site.

The work flowchart is shown that indicates the various steps.

Figure 8: Workflow chart

23 | P a g e

2.4 Tools and Programming Languages

Multiple tools and languages will be required to create this tool. The decision of these tools

and languages depended on their ease of use, how agreeable I am with them, and whether they

can create the output we consider.

2.4.1 Local Server - XAMPP:

XAMPP, created by Apache Friends, furnishes a client with every one of the things that a web

server needs to arrange. XAMPP is a cross-stage web server that proposes that it tends to be

utilized similarly well to make a nearby Windows, Mac and UNIX framework. It incorporates

Apache Server, MariaDB database, and scripting language mediators, for example, Perl and

PHP (Figure 9). The progress from changing website currently on local server to later on online

server is smooth as most web servers utilize indistinguishable components from XAMPP [24].

Figure 9: XAMPP control panel

2.4.2 Hypertext Mark-up Language:

HTML is utilized worldwide to make rich site and applications as an increase language. For

instance, labels can be made in HTML tables, content can be styled utilizing labels, text style,

24 | P a g e

records can be created, hyperlinks can be given, pictures, recordings and different articles can

be installed, and considerably more. HTML can be written in two linguistic uses, HTML being

one and XML being the other. In spite of the fact that XML is quicker than HTML, however

XML support for the program is restricted, for this undertaking HTML will be favoured over

XML [25].

2.4.3 JavaScript

JavaScript is a language of scripting used to make dynamic website pages. It works with HTML

and is for the most part used to make responsive pages, for example, moving pictures,

responsive catches, slideshows, and so on [26].

2.4.4 Cascading Style Sheets (CSS)

CSS is a template language that is utilized in our hypertext increase language to set the looks

of an increase language. CSS is the third language used to make site pages separated from

hypertext increase language and JavaScript. CSS is for the most part used to isolate the content

of the website page from its introduction, so the introduction of records is generally set as

opposed to designing it each time some content is included or ever changed [27].

2.4.5 Bootstrap

Bootstrap is a front-end free and open-source library for sites and web applications. It

incorporates increase language and layouts for typography dependent on CSS, catches, route

and alternate interface parts, just as discretionary JavaScript extensions. It is expected to

facilitate the dynamic sites and web applications event [28]. Bootstrap is a front-end web

structure, that is, an easy to use, dislikes the server-side code on the "back end" or server.

Bootstrap is GitHub's second most featured task, with more than 95,000 stars and more than

40,000 forks.

2.4.6 Hypertext Preprocessor (PHP)

PHP is a language of programming that permits web engineers to make dynamic substance that

associates with databases. PHP is mostly used to create web package applications for software.

PHP performs system functions, i.e. generating, opening, reading, writing, and shutting them

from files on a system. PHP handles forms, i.e. collecting file information, saving information

to a file, sending information via email, returning information to the user. Within your

25 | P a g e

information, you add, delete and modify components via PHP. Variables for accessing cookies

and setting cookies. You can limit users to access some of your website's pages using PHP. It

will be able to encode data.

2.4.7 Python

Python is a language of scripting that is high-level, understandable, interactive and object-

oriented. Python is meant to be very clear. It frequently uses English keywords wherever

punctuation is used as alternative languages, and it is less syntactic than alternative languages.

The interpreter processes Python at runtime. You don't have to compile your program before

you run it. This can almost be the same as PERL and PHP.

2.4.8 Perl

Perl is an artificial general-purpose language originally developed for text manipulation and

currently used together with system administration, web development, network programming,

interface development, and more for a wide range of tasks. Because of its content control

capacities and fast improvement cycle, Perl used to be the most well-known web artificial

language. Perl is broadly alluded to as "Internet duct tape". Perl can deal with scrambled web

information, just as web-based business exchanges. Perl can be inserted in web servers to

accelerate forms by up to 2000 percent.

2.5 Implementation

The Re-Map was created in three major steps involving data collection from various sources,

data collection integration, and the development of web portals. Data collection involves gene

and annotation, miRNA dataset, and most appropriate major tools in the form of scripts either

PERL or Python. Dataset collected and its source are listed in the table below (Table1).

Table1: Data source for miRNA module used for creating Re-Map Server.

Dataset Data source Output

miRNA miRbase Predict the miRNA targets.

For the miRNA module, data collected was stored for each species in separate FASTA file and

parsed using custom python program. Once the dataset is created, using some parameters of

26 | P a g e

similarity between query sequences and miRNA dataset, PERL program is used to identify the

target. For the user's convenience, some already known model organism data set is provided to

download them directly and use them as a test sample for analysis.

We have incorporated freely available microsatellite script in simple sequence repeats

prediction module. A microsatellite investigation with PERL content of MISA joined in our

web server requires just a single information document as a setup record ('MISA.ini') with three

information parameters: 'SSR look parameters', 'compound SSR look through parameters' and

'yield document type parameters' are as of now predefined by us. The required information

record is a FASTA document containing the nucleotide arrangement that will be dug for

microsatellites.

Identification parameters used microsatellite prediction:

“definition (unit_size, min_repeats): 1-10 2-6 3-5 4-5 5-5 6-5”

“interruptions(max_difference_between_2_SSRs): 100”

misa.ini

“definition (unit_size, min_repeats): 1-12 2-6 3-5 4-3 5-3 6-2”

“interruptions(max_difference_between_2_SSRs): 100”

Identification parameters

“Monomer minimum 12 bp”

“Dimer minimum 12 bp”

“Trimer 15bp”

In single nucleotide polymorphism module, SNP sites detection python script is integrated

which runs at the background whenever the user input the necessary files in the respected

module and hit the button to identify or detect SNPs in the provided nucleotide sequences. The

results produced by this module has been tested multiple times and confirmed to be correct.

In sequence analysis package, there was no need to have datasets/database. The sequence

analysis package is fully dependent on scripts written in either PERL or python programming

languages. This module only requires FASTA format nucleotide sequence file may be single

or multiple and runs respected scripts in the background and provide instant result in the form

of pop-up modals on the same page. Even download option is provided if user wants to

download his/her results for the given inputs.

27 | P a g e

Chapter 3 - RESULTS AND DISCUSSION

In genetic or genomic studies biologists usually end up with a set of genes involved in different

biological processes. Knowing the transcriptional factors of those genes is a challenging and

time consuming for the researcher due to the vast amount of available data and as well as tools

with different accuracy and complexities. Keeping this in mind we have developed a Re-Map

server using the data integration, reproducible and highly scalable approaches. This tool is

meant only for predicting or identifying the targets of these elements with the help of mapping.

Integration of multiple tools related to regulatory elements has given us the advantage over

other servers, as to our knowledge each server available for regulatory elements is specific to

one regulatory element only. While a few servers for regulatory elements identification in

genomic sequences are already publicly available, but we have added some new features like

incorporating sequence analysis module where user can perform various tasks such as

translation, consensus sequence, ORF finder, sequence summary, find K-mers and CAI-value.

3.1 GUI of REMAP Server

For the making of Graphical User Interface (GUI) the code was written in the HTML with

Bootstrap and the content was styled utilizing CSS. The pages were made powerful utilizing

JavaScript.

In the home page, there is an overview of the web server i.e. what is it all about with the option

to directly go to the particular prediction tool by just one click. Also, a navigation bar is

provided for the direct access to the home page, tools page, basic utility page, about page and

contact page.

28 | P a g e

Figure 10: REMAP webserver graphical user interface

3.1.1 Micro RNA Module

In miRNA module, first user needs to select the database from dropdown menu and also need

to upload or input his query sequence. Then miRNA targets are identified in the query

sequence(s) and for each query sequence having miRNA targets sites, those sites are retrieved

with the organism name and accession id. Moreover, the position of target sites (start and end)

is provided in the results with the dynamic structure of stem loop of the miRNA. For annotation

of the miRNA predicted we provided a direct link to miRBase.

29 | P a g e

3.1.1.1 Input GUI for miRNA module

Figure 11: miRNA module

3.1.1.2 Result obtained from miRNA module

Figure 12: Results from miRNA module

30 | P a g e

(a)

(b)

(c)

Figure 13: (a) Sequence that contains miRNA target; (b) Start and end position of the miRNA

in the query sequence; (c) miRNA structure visualization (Dynamic)

31 | P a g e

3.1.2 Simple Sequence Repeats Module

In SSR module, user needs to upload or input his query sequence FASTA format file (.fa

extension named file). Once that is done user needs to hit upload and run button to fetch results

for their input query. Simple sequence repeats Perl script is run in the background and output

obtained regarding frequency and most abundant repeats present in the query sequence(s).

For mononucleotides, despite the fact that A, T, C and G are conceivable, A and T are

assembled into a single classification, G and C as A reoccur on a strand is equivalent to a T

reoccur on the contrary strand, and a C on a strand is equivalent to a G on the contrary strand,

bringing about two one of a kind classes of mononucleotides, A/T and C/G all dinucleotide

motifs were gathered into the accompanying four special classes I AT/The repeats of

trinucleotides are assembled into 10 interesting AAG/TTC classes containing

AAG/AGA/GAA/CTT/TTC/TCT SSRs.

3.1.2.1 Input GUI for SSR module

Figure 14: SSR module

3.1.2.2 Result obtained from SSR module:

(a)

32 | P a g e

(b)

Figure 15 (a) & (b): Results from SSR module

3.1.3 Single Nucleotide Polymorphism Module

In SNP module, user needs to upload or input his query sequence FASTA format file (.fa

extension named file). Once that is done user needs to hit upload and run button to fetch results

for their input query. Single nucleotide polymorphism python script is run in the background

and output obtained in the form of VCF format. VCF is a text file format (the most packed way

that is available). It incorporates meta-data lines, a header line, and in this way information

lines each containing data about a genome position.

The header line names the 8 segments that are fixed and required. These are the following

columns:

1. “CHROM”

2. “POS”

3. “ID”

4. “REF”

5. “ALT”

6. “QUAL”

7. “FILTER”

8. “INFO”

On the off chance that genotype information is available in the record, at that point a self-

assertive number of test IDs is trailed by a FORMAT segment header. There is a tab-delimited

header line.

33 | P a g e

1. CHROM chromosome: a reference genome identifier.

2. POS position: reference position, with position 1 of the a respectable starting point.

Inside each reference arrangement CHROM, positions are arranged numerically, in

expanding request.

3. Semi-colon isolated rundown of exceptional identifiers ID where accessible.

4. REFdatabase(s): Each base must be A, C, G, T, N.

5. Comma isolated ALT rundown of option non-reference alleles approached something

like one of the examples. CHROM chromosome: an identifier from the reference

genome.

6. QUAL phred-scaled quality score for the ALT guarantee. For example give - 10log 10

prob(it's inappropriate to call ALT). On the off chance that ALT is." "(no variation), it

is - 10log 10 p(variant), and if ALT isn't" "- 10log 10 p(no variation). High scores of

QUAL demonstrate high calls of trust.

7. FILTER channel: PASS if all channels have passed this position, for example at this

position a call is made. Something else, a semicolon-isolated rundown of channel codes

will fall flat if the site has not passed all channels. For instance, "q10;s50" could

demonstrate that the quality at this site is underneath 10 and the quantity of information

tests is beneath half of the all out number of tests.

8. INFO Additional Information: INFO fields are encoded as a semi-colon shorter key

arrangement with discretionary configuration esteems: < key>=<data>[,data].

3.1.3.1 Input GUI for SNP module

Figure 16: SNP module

34 | P a g e

3.1.3.2 Result obtained from SNP module:

Figure 17: Results from SNP module

3.1.4 Sequence Analysis Module

In sequence analysis module, we have provided multiple tools for the analysis based on

nucleotide sequence(s). User can select any tool he/she is interested in by clicking on the

respected tool named button. Once it’s done, user needs to upload or input his query sequence

FASTA format file (.fa extension named file) as per the requirement by the tool and needs to

hit upload and run button to fetch results for their input query. Python/Perl scripts are run in

the background and output obtained is rendered on to the web page.

35 | P a g e

3.1.4.1 Input GUI for sequence analysis module

(a)

(b)

36 | P a g e

(c)

(d)

37 | P a g e

(e)

(f)

Figure 18: Showing GUI of different tools present on the web server for the analysis of

nucleotide sequences (a) Translation; (b) Consensus; (c) Sequence Summary; (d) ORF

Finder; (e) Find K-mers; (f) CAI – Calculator.

38 | P a g e

3.1.4.2 Result obtained from sequence analysis module:

(a)

(b)

39 | P a g e

(c)

(d)

40 | P a g e

(e)

(f)

Figure 19: Images showing results produced by different tools present on the web server for

the analysis of nucleotide sequences (a) Translation; (b) Consensus; (c) Sequence Summary;

(d) ORF Finder; (e) Find K-mers; (f) CAI – Calculator.

41 | P a g e

Chapter 4 - CONCLUSION

We have effectively built up a web server named as REMAP – Regulatory Elements Mapping

and Prediction, where a client can upload a FASTA format file containing nucleotide

sequence(s) to carry out Regulatory Elements Analysis (REA). The purposed web server is

easy to use and results are produced in a sensible measure of time. Contrasting REMAP and

other existing servers that perform regulatory element analysis, we reason that REMAP gives

one stop arrangement by incorporating major regulatory elements predicting tools at one place

with an addon sequence analysis package.

The main contributions of this work are as per the following: (i) the gathering of the datasets

for miRNA prediction and mining literatures for additional data concerning regulatory

elements; (ii) the incorporation of multiple regulatory elements identification tools; (iii) giving

instinctive interface to encourage the presentation of abundant information provided within the

proposed REMAP; (iv) giving a helpful response to thoroughly clarifying the nucleotide

sequences with the assistance of sequence analysis module integrated within the purposed web

server REMAP.

As of now there is no choice provided for choosing a particular tool in particular module e.g.

list of multiple tools provided for miRNA prediction, among which user can select one of his

own choice and can proceed further with it.

Thus, the future work may involve:

 Adding more tools in each section.

 Covering more regulatory elements.

 Keep miRNA database up to date as we don’t want our server to get outdated.

42 | P a g e

Appendix - I

Perl script for miRNA identification in query nucleotide sequence(s):

1. #!usr/bin/perl

2.

3. # $f=$ARGV[0]; #Command line argument, give name of transcript file, example : perl sc

.pl PKS-15_transcripts.fasta

4. $f = $ARGV[0];

5. $database = $ARGV[1];

6.

7. @array=split(/\//,$f);

8. open(FH,$database) or die "cannot open file"; #input mirna file, contains mirna from t

he selected plants

9. open(FH1,$f) or die "cannot open file1";

10.

11. open (WH,">scriptoutput/$array[-

1]_results.txt"); #Output file in the format "transcript.fasta results.txt"

12.

13. @arr=<FH>;

14. @art=<FH1>;

15.

16. print "Size of mirna file : ".$#arr."\n";

17. print "Size of transcript file :".$#art."\n";

18. $count=0;

19. foreach $s(@arr)

20. {

21. print "current : ".$count."\n";

22. $count++;

23. #print $s;getc;

24. #if($count%1000==0){print "current=$count\n";}

25. if($s =~ /^>/){chomp($curt=$s);}

26. else

27. {

28. @seq=();

29. chomp($mir=$s);

30. $mir =~ tr/U/T/; #### replacing U with T

31. $mirv= reverse($mir); #### reverse

32. #print $mir;getc;

33. foreach $str(@art)

34. {

35. #print $str;getc;

36. if($str =~ /^>/){$cur=$str;}

37. else

38. {

39. if($str =~ /$mir/) ### Searching for exact match through regex

40. {

41. my @matches;

42. @positionF=();

43. while ($str =~ /$mir/g) {

44. @temp=();

45. push @matches, $1;

46. my $startpositionF = $-[0]+1;

47. my $endpositionF=length($mir)+$startpositionF-1;

48. #print $startpositionF."\n";

49. push @temp,"(";

50. push @temp,$startpositionF;

51. push @temp,",";

52. push @temp,$endpositionF;

53. push @temp,")";

54. #print @temp;

55. print "\n";

56. push @positionF,@temp;

57. }

43 | P a g e

58. print "Found $curt---$cur";

59. #print WH $curt."\t".$cur."\t".$mir."\t"."+1"."\t"."(".$startpositionF.",".$endpo

sitionF.")"."\n";

60. print WH $curt."\t".$cur."\t".$mir."\t"."+1"."\t";

61. print WH @positionF;

62. print WH "\n";

63. }

64. if($str =~ /$mirv/) ### Same search for the reverse string

65. {

66. my @matches;

67. @positionR=();

68. while ($str =~ /$mirv/g) {

69. @temp=();

70. push @matches, $1;

71. my $startpositionR = $-[0]+1;

72. my $endpositionR=length($mirv)+$startpositionR-1;

73. #print $startpositionF."\n";

74. push @temp,"(";

75. push @temp,$startpositionR;

76. push @temp,",";

77. push @temp,$endpositionR;

78. push @temp,")";

79. #print @temp;

80. print "\n";

81. push @positionR,@temp;

82. }

83. my $startpositionR = index($str,$mirv) + 1;

84. my $endpositionR=length($mirv)+$startpositionR-1;

85. print "Found $curt---$cur";

86. #print WH $curt."\t".$cur."\t".$mirv."\t"."-

1"."\t"."(".$startpositionR.",".$endpositionR.")"."\n";

87. print WH $curt."\t".$cur."\t".$mirv."\t"."-1"."\t";

88. print WH @positionR;

89. print WH "\n";

90. }

91. }

92. }

93. }

94. }

44 | P a g e

Appendix - II

Perl script for microsatellite identification in query nucleotide sequence(s):

1. #!/usr/bin/perl -w

2. # Open FASTA file #

3. @new = split(/[\/]/,$ARGV[0]);

4. $last= $new[-1];

5. print $last;

6. open (InputFileHandle,"<$ARGV[0]") || die ("\nError: FASTA file doesn't exist !\n\n");

7. open (OutputFileHandle,">scriptoutput/$last.misa");

8. print OutputFileHandle "ID\tSSR nr.\tSSR type\tSSR\tsize\tbeginning\tterminate\n";

9.

10. # Reading arguments #

11.

12. open (SPECS,"SSR/misa.ini") || die ("\nError: Specifications file doesn't exist !\n\n"

);

13. %typrep;

14. $amb = 0;

15. while (<SPECS>)

16. {

17. %typrep = $1 =~ /(\d+)/gi if (/^def\S*\s+(.*)/i);

18. if (/^int\S*\s+(\d+)/i) {$amb = $1}

19. };

20. @typ = sort { $a <=> $b } keys %typrep;

21.

22.

23. #§§§§§ CORE §§§§§#

24.

25. $/ = ">";

26. $high_occurence = 1; #count frequency

27. $low_occurence = 1000; #count frequency

28. (%count_conserved,%count_class); #count

29. ($number_nuc_sequenceuences,$size_nuc_sequenceuences,%ssr_containing_nuc_sequences);

#stores number and size of all nuc_sequenceuences examined

30. $ssr_in_compound = 0;

31. ($nuc_ident,$nuc_sequence);

32. while (<InputFileHandle>)

33. {

34. next unless (($nuc_ident,$nuc_sequence) = /(.*?)\n(.*)/s);

35. ($nr,%beginning,@order,%terminate,%conserved,%frequency); # store info of all SSRs

from each nuc_sequenceuence

36. $nuc_sequence =~ s/[\d\s>]//g; #remove digits, spaces, line breaks,...

37. $nuc_ident =~ s/^\s*//g; $nuc_ident =~ s/\s*$//g;$nuc_ident =~ s/\s/_/g; #replace wh

itespace with "_"

38. $number_nuc_sequenceuences++;

39. $size_nuc_sequenceuences += length $nuc_sequence;

40. for ($i=0; $i < scalar(@typ); $i++) #check each conserved class

41. {

42. $conservedlen = $typ[$i];

43. $minreps = $typrep{$typ[$i]} - 1;

44. if ($low_occurence > $typrep{$typ[$i]}) {$low_occurence = $typrep{$typ[$i]}}; #cou

nt frequency

45. $search = "(([acgt]{$conservedlen})\\2{$minreps,})";

46. while ($nuc_sequence =~ /$search/ig) #scan whole nuc_sequenceuence for that clas

s

47. {

48. $conserved = uc $2;

49. $copies; #reject false type conserveds [e.g. (TT)6 or (ACAC)5]

50. for ($j = $conservedlen - 1; $j > 0; $j--)

51. {

52. $redconserved = "([ACGT]{$j})\\1{".($conservedlen/$j-1)."}";

53. $copies = 1 if ($conserved =~ /$redconserved/)

45 | P a g e

54. };

55. next if $copies;

56. $conserved{++$nr} = $conserved;

57. $ssr = uc $1;

58. $frequency{$nr} = length($ssr) / $conservedlen;

59. $terminate{$nr} = pos($nuc_sequence);

60. $beginning{$nr} = $terminate{$nr} - length($ssr) + 1;

61. # count frequency

62. $count_conserveds{$conserved{$nr}}++; #counts occurrence of indivnuc_identual co

nserveds

63. $conserved{$nr}-

>{$frequency{$nr}}++; #counts occurrence of specific SSR in its appearing repeat

64. $count_class{$typ[$i]}++; #counts occurrence in each conserved class

65. if ($high_occurence < $frequency{$nr}) {$high_occurence = $frequency{$nr}};

66. };

67. };

68. next if (!$nr); #no SSRs

69. $ssr_containing_nuc_sequences{$nr}++;

70. @order = sort { $beginning{$a} <=> $beginning{$b} } keys %beginning; #put SSRs in ri

ght order

71. $i = 0;

72. $count_nuc_sequence; #counts

73. ($beginning,$terminate,$ssrnuc_sequence,$ssrclasses,$size);

74. while ($i < $nr)

75. {

76. $space = $amb + 1;

77. if (!$order[$i+1]) #last or only SSR

78. {

79. $count_nuc_sequence++;

80. $conservedlen = length ($conserved{$order[$i]});

81. $ssrclasses = "p".$conservedlen;

82. $ssrnuc_sequence = "($conserved{$order[$i]})$frequency{$order[$i]}";

83. $beginning = $beginning{$order[$i]}; $terminate = $terminate{$order[$i++]};

84. next

85. };

86. if (($beginning{$order[$i+1]} - $terminate{$order[$i]}) > $space)

87. {

88. $count_nuc_sequence++;

89. $conservedlen = length ($conserved{$order[$i]});

90. $ssrclasses = "p".$conservedlen;

91. $ssrnuc_sequence = "($conserved{$order[$i]})$frequency{$order[$i]}";

92. $beginning = $beginning{$order[$i]}; $terminate = $terminate{$order[$i++]};

93. next

94. };

95. ($interssr);

96. if (($beginning{$order[$i+1]} - $terminate{$order[$i]}) < 1)

97. {

98. $count_nuc_sequence++; $ssr_in_compound++;

99. $ssrclasses = 'c*';

100. $ssrnuc_sequence = "($conserved{$order[$i]})$frequency{$order[$i]}($conse

rved{$order[$i+1]})$frequency{$order[$i+1]}*";

101. $beginning = $beginning{$order[$i]}; $terminate = $terminate{$order[$i+1]

}

102. }

103. else

104. {

105. $count_nuc_sequence++; $ssr_in_compound++;

106. $interssr = lc substr($nuc_sequence,$terminate{$order[$i]},($beginning{$o

rder[$i+1]} - $terminate{$order[$i]}) - 1);

107. $ssrclasses = 'c';

108. $ssrnuc_sequence = "($conserved{$order[$i]})$frequency{$order[$i]}$inters

sr($conserved{$order[$i+1]})$frequency{$order[$i+1]}";

109. $beginning = $beginning{$order[$i]}; $terminate = $terminate{$order[$i+1

]};

110. #$space -= length $interssr

111. };

46 | P a g e

112. while ($order[++$i + 1] and (($beginning{$order[$i+1]} - $terminate{$order[

$i]}) <= $space))

113. {

114. if (($beginning{$order[$i+1]} - $terminate{$order[$i]}) < 1)

115. {

116. $ssr_in_compound++;

117. $ssrnuc_sequence .= "($conserved{$order[$i+1]})$frequency{$order[$i+1]}

*";

118. $ssrclasses = 'c*';

119. $terminate = $terminate{$order[$i+1]}

120. }

121. else

122. {

123. $ssr_in_compound++;

124. $interssr = lc substr($nuc_sequence,$terminate{$order[$i]},($beginning{

$order[$i+1]} - $terminate{$order[$i]}) - 1);

125. $ssrnuc_sequence .= "$interssr($conserved{$order[$i+1]})$frequency{$ord

er[$i+1]}";

126. $terminate = $terminate{$order[$i+1]};

127. #$space -= length $interssr

128. }

129. };

130. $i++;

131. }

132. continue

133. {

134. print OutputFileHandle "$nuc_ident\t$count_nuc_sequence\t$ssrclasses\t$ssrn

uc_sequence\t",($terminate - $beginning + 1),"\t$beginning\t$terminate\n"

135. };

136. };

137.

138. close (OutputFileHandle);

139. open (OutputFileHandle,">scriptoutput/$last.statistics");

140.

141. #§§§§§ InputFileHandleFO §§§§§#

142.

143. #§§§ Specifications §§§#

144. print OutputFileHandle "Specifications\n==============\n\nSequence source file:

 \"$last\"\n\nDefinement of microsatellites (unit size / minimum number of frequency):

\n";

145. for ($i = 0; $i < scalar (@typ); $i++) {print OutputFileHandle "($typ[$i]/$typr

ep{$typ[$i]}) "};print OutputFileHandle "\n";

146. if ($amb > 0) {print OutputFileHandle "\nMaximal number of bases interrupting 2

 SSRs in a compound microsatellite: $amb\n"};

147. print OutputFileHandle "\n\n\n";

148.

149. #§§§ OCCURRENCE OF SSRs §§§#

150.

151. #small calculations

152. @ssr_containing_nuc_sequences = values %ssr_containing_nuc_sequences;

153. $ssr_containing_nuc_sequences = 0;

154. for ($i = 0; $i < scalar (@ssr_containing_nuc_sequences); $i++) {$ssr_containin

g_nuc_sequences += $ssr_containing_nuc_sequences[$i]};

155. @count_conserveds = sort {length ($a) <=> length ($b) || $a cmp $b } keys %cou

nt_conserveds;

156. @count_class = sort { $a <=> $b } keys %count_class;

157. for ($i = 0; $i < scalar (@count_class); $i++) {$total += $count_class{$count_c

lass[$i]}};

158.

159. #§§§ Overview §§§#

160. print OutputFileHandle "RESULTS OF MICROSATELLITE SEARCH\n=====================

===========\n\n";

161. print OutputFileHandle "Total number of nuc_sequenceuences examined:

 $number_nuc_sequenceuences\n";

162. print OutputFileHandle "Total size of examined nuc_sequenceuences (bp):

 $size_nuc_sequenceuences\n";

47 | P a g e

163. print OutputFileHandle "Total number of nuc_idententified SSRs:

 $total\n";

164. print OutputFileHandle "Number of SSR containing nuc_sequenceuences:

 $ssr_containing_nuc_sequences\n";

165. print OutputFileHandle "Number of nuc_sequenceuences containing more than 1 SSR

: ",$ssr_containing_nuc_sequences - ($ssr_containing_nuc_sequences{1} || 0),"\n";

166. print OutputFileHandle "Number of SSRs present in compound formation: $ssr_i

n_compound\n\n\n";

167.

168. #§§§ Frequency of SSR classes §§§#

169. print OutputFileHandle "Distribution to different repeat type classes\n--------

-------------------------------------\n\n";

170. print OutputFileHandle "Unit size\t\tNumber of SSRs\n";

171. $total = undef;

172. for ($i = 0; $i < scalar (@count_class); $i++) {print OutputFileHandle "$count_

class[$i]\t\t\t$count_class{$count_class[$i]}\n"};

173. print OutputFileHandle "\n";

174.

175. #§§§ Frequency of SSRs: per conserved and number of frequency §§§#

176. $outsnuc_identevar=sprintf "%-17s","Repeats";

177. print OutputFileHandle "Frequency of nuc_idententified SSR conserveds\n--------

--------------------------\n\n$outsnuc_identevar";

178. for ($i = $low_occurence;$i <= $high_occurence; $i++) {print OutputFileHandle "

\t$i"};

179. print OutputFileHandle "\ttotal\n";

180. for ($i = 0; $i < scalar (@count_conserveds); $i++)

181. {

182. $typ = length ($count_conserveds[$i]);

183. $changevar=sprintf "%-17s",$count_conserveds[$i];

184. print OutputFileHandle $changevar;

185. for ($j = $low_occurence; $j <= $high_occurence; $j++)

186. {

187. if ($j < $typrep{$typ}) {print OutputFileHandle "\t-";next};

188. if ($count_conserveds[$i]-

>{$j}) {print OutputFileHandle "\t$count_conserveds[$i]-

>{$j}"} else {print OutputFileHandle "\t"};

189. };

190. print OutputFileHandle "\t$count_conserveds{$count_conserveds[$i]}\n";

191. };

192. print OutputFileHandle "\n";

193.

194. #§§§ Frequency of SSRs: summarizing copies and reverse conserveds §§§#

195. # Eliminates %count_conserveds !

196. print OutputFileHandle "Frequency of classified repeat types (consnuc_identerin

g nuc_sequenceuence complementary)\n--

-----------------------\n\n$outsnuc_identevar";

197. (%red_rev,@red_rev); # groups

198. for ($i = 0; $i < scalar (@count_conserveds); $i++)

199. {

200. next if ($count_conserveds{$count_conserveds[$i]} eq 'X');

201. (%group,@group,$red_rev); # store copies/reverse conserveds

202. $reverse_conserved = $actual_conserved = $actual_conserved_a = $count_conser

veds[$i];

203. $reverse_conserved =~ tr/ACGT/TGCA/;

204. $reverse_conserved = reverse $reverse_conserved;

205. $reverse_conserved_a = $reverse_conserved;

206. for ($j = 0; $j < length ($count_conserveds[$i]); $j++)

207. {

208. if ($count_conserveds{$actual_conserved}) {$group{$actual_conserved} = "1";

 $count_conserveds{$actual_conserved}='X'};

209. if ($count_conserveds{$reverse_conserved}) {$group{$reverse_conserved} = "1

"; $count_conserveds{$reverse_conserved}='X'};

210. $actual_conserved =~ s/(.)(.*)/$2$1/;

211. $reverse_conserved =~ s/(.)(.*)/$2$1/;

212. $actual_conserved_a = $actual_conserved if ($actual_conserved lt $actual_co

nserved_a);

48 | P a g e

213. $reverse_conserved_a = $reverse_conserved if ($reverse_conserved lt $revers

e_conserved_a)

214. };

215. if ($actual_conserved_a lt $reverse_conserved_a) {$red_rev = "$actual_conserv

ed_a/$reverse_conserved_a"}

216. else {$red_rev = "$reverse_conserved_a/$actual_conserved_a"}; # group name

217. $red_rev{$red_rev}++;

218. @group = keys %group;

219. for ($j = 0; $j < scalar (@group); $j++)

220. {

221. for ($k = $low_occurence; $k <= $high_occurence; $k++)

222. {

223. if ($group[$j]->{$k}) {$red_rev->{"total"} += $group[$j]->{$k};$red_rev-

>{$k} += $group[$j]->{$k}}

224. }

225. }

226. };

227. for ($i = $low_occurence; $i <= $high_occurence; $i++) {print OutputFileHandle

"\t$i"};

228. print OutputFileHandle "\ttotal\n";

229. @red_rev = sort {length ($a) <=> length ($b) || $a cmp $b } keys %red_rev;

230. for ($i = 0; $i < scalar (@red_rev); $i++)

231. {

232. $typ = (length ($red_rev[$i])-1)/2;

233. $againchangevar=sprintf "%-17s",$red_rev[$i];

234. print OutputFileHandle $againchangevar;

235. for ($j = $low_occurence; $j <= $high_occurence; $j++)

236. {

237. if ($j < $typrep{$typ}) {print OutputFileHandle "\t-";next};

238. if ($red_rev[$i]->{$j}) {print OutputFileHandle "\t",$red_rev[$i]->{$j}}

239. else {print OutputFileHandle "\t"}

240. };

241. print OutputFileHandle "\t",$red_rev[$i]->{"total"},"\n";

242. };

49 | P a g e

Appendix - III

Python script for SNPs identification in query nucleotide sequence(s):

1. #!/usr/bin/env python

2.

3. import argparse

4. import json

5. import pyximport

6. import unittest

7.

8. from collections import OrderedDict

9. from cStringIO import StringIO

10.

11. pyximport.install()

12.

13. def write_row(row, output_file):

14. output_file.write("\t".join(map(str, row)) + "\n")

15.

16. def write_header(sequence_names, reference_length, output_file):

17. args.output.write("""\

18. File_Format = VCFv4.1

19. Contig = [ID=1,length=%i]

20. FORMAT = [ID=GT,Number=1,Type=String,Description="Genotype"]

21. \n""" % reference_length)

22. header_row = ["CHROM", "POS", "ID", "REF", "ALT", "QUAL", "FILTER", "INFO", "FORMAT"

]

23. header_row += sequence_names

24. write_row(header_row, output_file)

25.

26. def parse_fasta(input_fasta):

27. for line in input_fasta:

28. if line[0] == '>':

29. break

30. sequence_name = line[1:].rstrip()

31. sequence_lines = []

32. for line in input_fasta:

33. if line[0] == '>':

34. yield (sequence_name, "".join(sequence_lines))

35. sequence_name = line[1:].rstrip()

36. sequence_lines = []

37. else:

38. sequence_lines.append(line.rstrip())

39. yield(sequence_name, "".join(sequence_lines))

40.

41. def update_snps(sequence_names, snps, ref_seq, sequence_name, sequence_seq):

42. sequence_names.append(sequence_name)

43. for i in xrange(len(ref_seq)):

44. r,s = ref_seq[i], sequence_seq[i]

45. if r != s:

46. snps.setdefault(i, []).append((len(sequence_names)-1, chr(s)))

47.

48. BUFFER_SIZE = 10*1024*1024

49.

50. if __name__ == '__main__':

51. parser = argparse.ArgumentParser()

52. parser.add_argument('input', type=argparse.FileType('r', BUFFER_SIZE))

53. parser.add_argument('output', type=argparse.FileType('w'),

54. default=open('scriptoutput/random.short.fa.vcf', 'w'))

55. args = parser.parse_args()

56. sequences = parse_fasta(args.input)

57. ref_name,ref_seq = sequences.next()

58. snps = {}

59. sequence_names = []

50 | P a g e

60. sequence_names.append(ref_name)

61. for seq_name,seq_seq in sequences:

62. update_snps(sequence_names, snps, bytearray(ref_seq),

63. seq_name, bytearray(seq_seq))

64. snps = OrderedDict([(posn, snps[posn]) for posn in sorted(snps.keys())])

65.

66. write_header(sequence_names, len(ref_seq), args.output)

67.

68. for row_idx, (posn, snp_in_posn) in enumerate(snps.items()):

69. ref_base = ref_seq[posn]

70. output_row = [1, posn+1, '.', ref_base]

71. alts_set = set([seq_base for _,seq_base in snp_in_posn])

72. alts = {a: i+1 for i,a in enumerate(alts_set)}

73. output_row.append(",".join(alts.keys()))

74. output_row += ['.', '.', '.', 'GT']

75. alts[ref_base] = 0

76. snp_index_in_posn = [(idx, str(alts.get(base, '0'))) for idx,base in snp_in_posn]

77. indices_at_posn = []

78. for (seq_index, snp_base) in snp_index_in_posn:

79. indices_at_posn += ['0'] * (seq_index - len(indices_at_posn)) + [snp_base]

80. indices_at_posn += ['0'] * (len(sequence_names) - len(indices_at_posn))

81. output_row += indices_at_posn

82. write_row(output_row, args.output)

83.

84. class TestParseFasta(unittest.TestCase):

85. def test_parse(self):

86. input_fasta = StringIO("""\

87. >foo

88. AAAAAAAAAAAAAAAAAAA

89. >bar

90. GGGGGGGGGGGGGGGGGGG

91. """)

92. sequences = snp_sites_extensions.parse_fasta(input_fasta)

93. self.assertEqual(sequences.next(), ('foo', 'AAAAAAAAAAAAAAAAAAA'))

94. self.assertEqual(sequences.next(), ('bar', 'GGGGGGGGGGGGGGGGGGG'))

51 | P a g e

REFERENCES

1. G. Khoury and P. Gruss, "Enhancer elements", Cell, vol. 33, no. 2, pp. 313-314, 1983.

Available: 10.1016/0092-8674(83)90410-5.

2. G. Maston, S. Evans and M. Green, "Transcriptional Regulatory Elements in the

Human Genome", Annual Review of Genomics and Human Genetics, vol. 7, no. 1, pp.

29-59, 2006. Available: 10.1146/annurev.genom.7.080505.115623.

3. M. Esteller, "Non-coding RNAs in human disease", Nature Reviews Genetics, vol. 12,

no. 12, pp. 861-874, 2011. Available: 10.1038/nrg3074.

4. E. Huntzinger and E. Izaurralde, "Gene silencing by microRNAs: contributions of

translational repression and mRNA decay", Nature Reviews Genetics, vol. 12, no. 2,

pp. 99-110, 2011. Available: 10.1038/nrg2936.

5. Tautz D and Schlotterer, “Simple sequences”, Nature Reviews Genetics, vol. 4, pp.

832–837, 1994.

6. G. Miah et al., "A Review of Microsatellite Markers and Their Applications in Rice

Breeding Programs to Improve Blast Disease Resistance", International Journal of

Molecular Sciences, vol. 14, no. 11, pp. 22499-22528, 2013. Available:

10.3390/ijms141122499.

7. T. Thiel, W. Michalek, R. Varshney and A. Graner, "Exploiting EST databases for the

development and characterization of gene-derived SSR-markers in barley (Hordeum

vulgare L.)", Theoretical and Applied Genetics, vol. 106, no. 3, pp. 411-422, 2003.

Available: 10.1007/s00122-002-1031-0.

8. F. Amaral et al., "MicroRNAs Differentially Expressed in ACTH-Secreting Pituitary

Tumors", The Journal of Clinical Endocrinology & Metabolism, vol. 94, no. 1, pp. 320-

323, 2009. Available: 10.1210/jc.2008-1451.

9. M. Sivapragasam et al., "MicroRNAs in the Human Pituitary", Endocrine Pathology,

vol. 22, no. 3, pp. 134-143, 2011. Available: 10.1007/s12022-011-9167-6.

10. G. Richard, A. Kerrest and B. Dujon, "Comparative Genomics and Molecular

Dynamics of DNA Repeats in Eukaryotes", Microbiology and Molecular Biology

Reviews, vol. 72, no. 4, pp. 686-727, 2008. Available: 10.1128/mmbr.00011-08.

11. J. Gulcher, "Microsatellite Markers for Linkage and Association Studies", Cold Spring

Harbor Protocols, vol. 2012, no. 4, pp. pdb.top068510-pdb.top068510, 2012.

Available: 10.1101/pdb.top068510.

52 | P a g e

12. B. Brinkmann, M. Klintschar, F. Neuhuber, J. Hühne and B. Rolf, "Mutation Rate in

Human Microsatellites: Influence of the Structure and Length of the Tandem

Repeat", The American Journal of Human Genetics, vol. 62, no. 6, pp. 1408-1415,

1998. Available: 10.1086/301869.

13. "5364759 DNA typing with short tandem repeat polymorphisms and identification of

polymorphic short tandem repeats", Biotechnology Advances, vol. 14, no. 1, p. 81,

1996. Available: 10.1016/0734-9750(96)83416-1.

14. S. Kit, "Equilibrium sedimentation in density gradients of DNA preparations from

animal tissues", Journal of Molecular Biology, vol. 3, no. 6, pp. 711-IN2, 1961.

Available: 10.1016/s0022-2836(61)80075-2.

15. S. Barbaux and F. Cambien, "The single nucleotide polymorphism

story", Pharmacogenetics, vol. 13, no. 8, pp. 443-444, 2003. Available:

10.1097/00008571-200308000-00001.

16. R. Gibbs et al., "A global reference for human genetic variation", Nature, vol. 526, no.

7571, pp. 68-74, 2015. Available: 10.1038/nature15393 [Accessed 1 May 2019].

17. Clancy, S. & Brown, W., “Translation: DNA to mRNA to Protein”, Nature Education,

2008.

18. P. Ferrara, "Identification of protein consensus sequence", Biochimie, vol. 72, no. 12,

pp. 898-899, 1990. Available: 10.1016/0300-9084(90)90014-8.

19. M. Gray, H. Colot, L. Guarente and M. Rosbash, "Open reading frame cloning:

identification, cloning, and expression of open reading frame DNA.", Proceedings of

the National Academy of Sciences, vol. 79, no. 21, pp. 6598-6602, 1982. Available:

10.1073/pnas.79.21.6598.

20. J. Foster, J. Foster and K. Gillen, Microbiology: An Evolving Science. New York: W.W.

Norton & Company, 2017.

21. P. Compeau, P. Pevzner and G. Tesler, "How to apply de Bruijn graphs to genome

assembly", Nature Biotechnology, vol. 29, no. 11, pp. 987-991, 2011. Available:

10.1038/nbt.2023.

22. P. Sharp and W. Li, "The codon adaptation index-a measure of directional synonymous

codon usage bias, and its potential applications", Nucleic Acids Research, vol. 15, no.

3, pp. 1281-1295, 1987. Available: 10.1093/nar/15.3.1281.

23. G. Everett and R. McLeod, Software testing. Hoboken, N.J: Wiley-Interscience, 2007.

24. Dvorski, Dalibor D. "Installing, configuring, and developing with Xampp." Skills

Canada (2007).

53 | P a g e

25. Vaughan-Nichols, Steven J. "Will HTML 5 restandardize the web?" Computer, 2010.

26. K. Howell, "JavaScript Sourcebook: Create Interactive JavaScript Programs for the

World Wide Web", Internet Research, vol. 8, no. 1, 1998. Available:

10.1108/intr.1998.17208aaf.007.

27. S. Baker, "Making It Work for Everyone: HTML5 and CSS Level 3 for Responsive,

Accessible Design on Your Library's Web Site", Journal of Library & Information

Services in Distance Learning, vol. 8, no. 3-4, pp. 118-136, 2014. Available:

10.1080/1533290x.2014.945825.

28. R. STINE, "An Introduction to Bootstrap Methods", Sociological Methods & Research,

vol. 18, no. 2-3, pp. 243-291, 1989. Available: 10.1177/0049124189018002003.

	BACHELOR OF TECHNOLOGY

