foran we e

Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. NumSPo3de2) Call Num:
General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy. 4

@ The loss of LRC book(s) must be immediately 4
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

|

MU

SP03021

i

A



IMPLIMENTATION OF MEDIA PLAYER

By

ANURAG SINGH-031228
KARAN SEHGAL-031236
ATUL UNIYAL-031422

forem e e

JAYPEE UNIVERSITY OF
INFORMATION TECHNOLOGY

MAY-2007

Submitted in partial fulfillment of the Degree of Bachelor of
Technology

DEPARTMENT OF COMPUTER SCIENCE
ENGINEERING AND INFORMATION TECHNOLOGY
JAYPEE UNIVERSITY OF INFORMATION
TECHNOLOGY-WAKNAGHAT




CERTIFICATE

This is to certify that the work entitled, “Implementation of Media Player” submitted
by Anurag Singh (031228), Karan Sehgal (031236) and Atul Uniyal (031422) in
partial fulfillment for the award of degree of Bachelor of Technology in Computer
Science Engineering of Jaypee University of Information Technology has been carried
out under my supervision. This work has not been submitted partially or wholly to any

other University or Institute for the award of this or any other degree or diploma.

NV@‘L&OS-OT

Mr. Ajay Kumar Singh

(Senior Lecturer)

Department of Computer Science Engineering and Information Technology,
Jaypee University of Information Tc;chnology,

Waknaghat, Solan — 173215, Himachal Pradesh,

INDIA

II




ACKNOWLEDGEMENT

We wish to express our carnest gratitude to Mr. Ajay Kumar Singh, for providing us
valuable gunidance and timely suggestions by the help of which we successfully
completed our project - IMPLEMENTATION OF MEDIA PLAYER. We'd also like to

thank him for his moral support in times when we were facing difficulties.

We would also like to the thank Brig. (retd.} S. P. Ghrera, (HOD, Department of
Computer Science Engineering and the faculty of the Computer Science Engineering
Department of Jaypee University of Information Technology, Waknaghat for their

valuable suggestions that made us improve our project.

We would like to thank all the staff members of the Computing facilities of Jaypee
University of Information Technology, Waknaghat, for providing us with support and

facilities required for the completion of this project.

Anurag Singh — 031228

MH.

Karan Sehgal — 031236

N

Atul Uniyal —031422

III




ABSTRACT

The implementation of a media player for Windows platform is presented. The player can
play digital video and audio files on the machine.

v




| S
CONTENTS
PAGE
CERTIFICATE II
ACKNOWLEDGEMENT Iil
ABSTRACT v
LIST OF TABLES AND FIGURES VIl
LIST OF ABBREVATIONS VIII
Chapter 1: Introduction to Media Player
Introduction 1
1.1. History of Media Players 2
Chapter 2: Language Used - VB.NET
2.1. VB.NET 4
2.2. Integrated Development Environment (IDE) 5
2.3. Features 6
2.4. Components of NET Framework 8
2.4.1. Common Language Runtime (CLR) 8
2.4.2. Class Libraries 9
2.5. VBNET vs. VB 9
2.6. Relation to Visual Basic 10
2.6.1. Comparative samples 11
2.7. Advantages of QOP 13
2.8. Concept of OOP 13
2.9. VB.INET vs. JAVA | | 15
A%

‘




Chapter 3: Codec \
3.1, Codec 16

3.2. Components 16
3.3. Working 17
3.4. Codec and file formats 17
3.5. Uses of codec 18
3.6. Video Codec 18
3.6.1. Video codec design 19
3.6.2. Commonly used standards and codec 20
3.6.3. Missing codec and video file issue 23
3.7. QuickTime 24
3.7.1. File formats 24
3.7.2. Working 24
3.7.3. Container Benefits 25

Chapter 4: The Project

4.1. Methodology 26
4.2, Road Map 28
4.3, Snapshots 29
4.4, APl used 31
4.5. Sending strings to MCI 32
4.6. Main modules 33

Chapter 5: Conclusion

5.1. Limitations 35

5.2. Future prospects 36

CODE 42

REFRENCES 59
VI




Table 1.1
Table 1.2
Figure 4.1
Figure 4.2
Figure 4.3
Figure 5.1(a)
Figure 5.1(b)
Figure 5.1(c)
Figure 5.1(d)
Figure S.1(e)
Figure 5.1(f)

LIST OF TABLES AND FIGURES

Features of Media Player’s available in the market.
Comparison of features.

Road Map.

An audio file played on the player.
A video file played on the player.
Deployment of project — STEP 1.
Deployment of project — STEP 2.
Deployment of project — STEP 3.
Deployment of project — STEP 4.
Deployment of project — STEP 5.
Deployment of project — STEP 6.

Vi1

28
29
30
36
37
38
39
40
41




e K e a4 e+ e TR, T

MPEG/MPG
MP3

WAV

WMA

WMV

.DAT

API

MCI

LIST OF ABBREVATIONS

Moving Picture Experts Group
MPEG-1, Audio Layer 3
Windows Audio File
Windows Media Audio
Windows Media Video
Digital Audio Tape
Application Program Inferface

Multimedia Control Interface

VIII




PN N

CHAPTER 1
INTRODUCTION TO MEDIA PLAYER

INTRODUCTION

A media player is a piece of application software for playing back multimedia files. Most
media players support an array of media formats, including both audio and video files.
It’s all about playing media with different file extensions. A media player uses codec to

compress and decompress files of different formats and plays it.

We have used the VB.NET to develop our media player. The media player developed by
us supports all file formats and comes with a setup file which can be executed on any
windows platform. The operations supported by the media player are PLAY, PAUSE,
STOP, REPEAT, OPEN and CLOSE file. In addition to these basic features we have
included the feature of separately muting the left and the right speakers. The TEMPO ofa
media file can also be altered as desired by the user. We can play both audio and video
files through this media player. The different file formats supported by the software

include .mp3, .wmv, .avi, .dat and many more. The main advantage of this player as

compared to other players is that it supports all the different file formats.




HISTORY OF MEDIA PLAYER’S

There is an almost endless list of media players currently available in the market, both

audio and video players. The most popular among them being Windows Media Player,

Real Player, QuickTime, VLC and Winamp.

List of few media players in the market:

First public| Stable Software || Proprietary
Name Creator Cost (USD)
release date|| version license format
Apple Lossless
January 9, _
iTunes Apple Computer 2001 7.0.2 Free Proprietary (part of
QuickTime)
Media Center J. River July 2003 || 11.1.090 $40.00 Proprietary None
.mpepl
May 29, {playlists)
Media Player Classic Gabest 6.4.9.0 Free GPL
2003 .dsm
(container)
Free (basic), ’
Musicmatch Jukebox Yahoo! May 1998 10.1 Proprietary None
$19.99 (plus)
William October ]
Napster 3.72.6 || $9.95 and up || Proprietary N.A
Christopher Gorog 2003
7.1.3 .
QuickT Anple C December Free (basic), Proori QuickTi
uickTime pple Computer ' roprietary uickTime
p 1991 (September $29.95
12, 2006)
_ RealAudio,
RealPlayer RealNetworks 1995 10.5 Free (basic) (| Proprietary )
RealVideo
Februar 0.8.
VLC media player VideoLAN YHO8S eyl GPL None
2000 6, 2006
53 Free (basic), )
Winamp Nullsoft June 1997 Proprietary| NSA, NSV
(October'06)|| $19.95 (Pro)
Windows Media ) November Windows
Microsoft [ Proprietary || WMA, WMV
Player 1692 License

Table 1.1: Features of media player’s available in the market.

2




Comparison:
Gapless
Audio Video |[|Outbound Media Remote
Skinnable Audio ||Visualizer
playback||playback||streaming Database Controllable
Decoding
iTunes Yes Yes Yes Yes Yes Yes Yes Yes
jetAundio Yes Yes Yes Yes Yes N.A Yes N.A
Media Center Yes Yes Yes Yes Yes Yes Yes Yes
Media Player
' ¥ Yes Yes No No No N.A No Yes
Classic
MPlayer Yes Yes Yes Yes No No N.A Yes
Musicmatch
Yes No No Yes Yes N.A Yes N.A
Jukebox
QuickTime Yes Yes Yes Partial No No No N.A
RealPlayer Yes Yes No Yes Yes N.A Yes N.A
YLC Yes Yes Yes Yes No No Yes Yes
Winamp Yes Yes Yes Yes Yes Yes Yes Yes
Windows
Yes Yes Yes Yes Yes Yes Yes N.A
Media Player
WMY Player Yes Yes No No No N/A No N.A
. Gapless
Audio Yideo ||Outbound Media Remote
Skinnable MP3/AAC| Visualizer
playback||playbacki|streaming Database Controllable
Decoding

Table 1.2: Comparison of features




CHAPTER 2
LANGUAGE USED - VB.NET

VB.NET

Visual Basic .NET (VB.NET) is an object-ofiented computer language that can be
viewed as an evolution of Microsoft's Visual Basic (VB) implemented on the Microsoft
NET framework. Visual Basic .NET provides the easiest, most productive language and
tool for rapidly building Windows and Web applications. It comes with enhanced visual
designers, increased application performance, and a powerful integrated development
environment (IDE). It also supports creation of applications for wireless, Internet-enabled

hand-held devices.

The great majority of VB.NET developers use Visual Studio .NET as their integrated

development environment (IDE). SharpDevelop provides an open-source alternative IDE.

Like all NET languages, programs written in VB.NET require the .NET framework to

execute.

Visual Basic .NET 2003 was released with version 1.1 of the .NET Framework. New
features included support for the NET Compact Framework and a better VB upgrade
wizard. Improvements were also made to the performance and reliability of the NET

IDE (particularly the background compiler) and runtime.

In addition, Visual Basic .NET 2003 was also available in the Visual Studio NET 2003
Academic Edition (VSO3AE). VSO03AE is distributed to a certain number of scholars

from each country for free.




Basic features of VB.NET

3 Full Object-Oriented Constructs.
% Provides the easiest, most productive language and tool for rapidly building windows
and web applications, '
» Easy application deployment and maintenance.
» Comes with enhanced visual designers and increased application performance.
3 Features for building more robust applications easily and quickly:
¢+ Powerful form designer.

# In-place menu editor.

» Powerful Integrated Development Environment (IDE).

Integrated Development Environment (IDE)

» Also known as Integrated design environment and integrated debugging
environment.
» Computer software that assists computer programmers to develop software.

» Consist of’

L
0.0

A source code editor.

L
0.0

A compiler and/or interpreter.

*

Build-automation tools.

-

>
0.0

A debugger.




Some other features:

Powerful Windows-based Applications

Visual Basic NET comes with features such as a powerful new forms designer, an in-
place menu editor, and automatic control anchoring and docking. Visual Basic .NET
delivers new productivity features for building more robust applications easily and
quickly. With an improved integrated development environment (IDE) and a significantly
reduced startup time, Visual Basic .NET offers fast, automatic formatting of code as you

type, improved IntelliSense, an enhanced object browser and XML designer, and much

more.

Building Web-based Applications

With Visual Basic .NET we can create Web applications using the shared Web Forms
Designer and the familiar "drag and drop" feature. You can double-click and write code
to respond to events. Visual Basic NET 2003 comes with an enhanced HTML Editor for
working with complex Web pages. We can also use IntelliSense technology and tag
completion, or choose the WYSIWYG editor for visual authoring of interactive Web

applications.

Simplified Deployment

With Visual Basic .NET we can build applications more rapidly and deploy and maintain
them with efficiency. Visual Basic NET 2003 and .NET Framework 1.1 makes "DLL
Hell" a thing of the past. Side-by-side versioning enables multiple versions of the same
component to live safely on the same machine so that applications can use a specific
version of a component. XCOPY-deployment and Web auto-download of Windows-

based applications combine the simplicity of Web page deployment and maintenance

with the power of rich, responsive Windows-based applications.




s
]
b

Powerful, Flexible, Simplified Data Access

You can tackle any data access scenario easily with ADO.NET and ADO data access.
The flexibility of ADO.NET enables data binding to any database, as well as classes,
collections, and arrays, and provides true XML representation of data. Seamless access to
ADO enables simple data access for connected data binding scenarios. Using ADO.NET,
Visual Basic .NET can gain high-speed access to MS SQL Server, Oracle, DB2,

Microsoft Access, and more.

Improved Coding

You can code faster and more cffectively. A multitude of enhancements to the code
editor, including enhanced IntelliSense, smart listing of code for greater readability and a
background compiler for real-time notification of syntax errors transforms into a rapid

applicétion development (RAD) coding machine.

Direct Access to the Platform

Visual Basic developers can have full access to the capabilities available in .NET
Framework 1.1. Developers can easily program system services including the event log,
performance counters and file system. The new Windows Service project template
enables to build real Microsoft Windows NT Services. Programming against Windows
Services and creating new Windows Services is not available in Visual Basic .NET

Standard, it requires Visual Studio 2003 Professional, or higher.

Full Object-Oriented Constructs

You can create reusable, enterprise-class code using full object-oriented constructs.
Language features include full implementation inheritance, encapsulation, and
polymorphism. Structured exception handling provides a global error handler and

eliminates spaghetti code.

COM Interoperability
You can maintain your existing code without the need to recode. COM interoperability
enables you to leverage your existing code assets and offers seamless bi-directional

communication between Visual Basic 6.0 and Visual Basic .NET applications.

7




Reuse Existing Investments
You can reuse all your existing ActiveX Controls. Windows Forms in Visual Basic NET
2003 provide a robust container for existing ActiveX controls. In addition, full support

for existing ADO code and data binding enable a smooth transition to Visual Basic .NET

2003.

Upgrade Wizard

You upgrade your code to receive all of the benefits of Visual Basic .NET 2003. The
Visual Basic .NET Upgrade Wizard, available in Visual Basic .NET 2003 Standard
Edition, and higher, upgrades up to 95 percent of existing Visual Basic code and forms to

Visual Basic .NET with new support for Web classes and UserControls.

NET Framework consists of two main components:

» Common Language Runtime (CLR).
» Class Libraries.

Common Language Runtime (CLR):

» lItis the “execution engine” of .NET.

» It manages the execution of programs.

» Provides the environment within the program run.

» When the program is compiled the output of the compiler is not an executable file
but a file that contains a special type of code: the Microsoft Intermediate
Language (MSIL). This defines a set of portable instructions that are independent
of any specific CPU.

» It’s the job of the CLR to translate the intermediate code into an executable code
when the program is executed making the program (o run in any environment for

which the CLR is implemented.

‘;7

That’s how the NET framework achieves portability.

» This MSIL is turned into executable code using the just in time (JIT) compiler.

N

This makes the program to run fast.




Class Libraries:
[t is the second major entity of the NET framework.

> It gives the program access to runtime environment.
% It consists of lots of pre-written code.

» Code for all the elements like forms and controls.

VB.NET vs. VB:

The main and the most important difference is that VB.NET is object oriented whereas

VB is object based.

T BT R AT i Tt

» The biggest change from VB to VB NET is that VB .NET is Object-Oriented. VB
NET now supports all the key OOP features like Inheritance, Polymorphism, Data
Abstraction and Encapsulation. We can now create classes and objects, derive
classes from other classes and so on. The major advantage of OOP is code
reusability. VB does not support polymorphism.

» Many new controls have been added to the toolbar to make application development
more efficient

» VB NET now adds Console Applications to it apart from Windows and Web
Applications.

» New keywords are added and old one's are either removed or renamed

» VB.NET now supports structured exception handling using Try...Catch...

» VB NET now supports Multithreading. A threaded application allows to do number
of different things at once, running different execution threads allowing to use

system resources.

{
i
&
-3
2




=, mTl

SRR I AL

v S

PP P

Relation to Visual Basic

Whether Visual Basic .NET should be considered as just another version of Visual Basic
or a completely different language is a topic of debate. This is not obvious, as once the
methods that have been moved around and which can be automatically converted are
accounted for, the basic syntax of the language has not seen many "breaking" changes,
just additions to support new features like structured exception handling and short
circuited expressions. One simple change that can be confusing to previous users is that
of Integer and Long data types, which have each doubled in length; a 16-bit integer is
known as a Short in VB.NET, while Integer and Long are 32 and 64 bits respectively.
Similarly, the Windows Forms GUI editor is very similar in style and function to the

Visual Basic form editor,

The things that have changed significantly are the semantics — from those of an object
based programming language running on a deterministic, reference-counted engine based
on COM to a fully object-oriented language backed by the .NET -Framework, which
consists of a combination of the Common Language Runtime (a virtual machine using
generational garbage collection and a just-in-time compilation engine) and a far larger
class library. The increased breadth of the latter is also a problem that VB developers
have to deal with when coming to the language, although this is somewhat addressed by

the My feature in Visual Studio 2005.

The changes have altered many underlying assumptions about the "right" thing to do with
respect to performance and maintainability. Some functions and libraries no longer exist,
others are available, but not as efficient as the "native” .NET alternatives. Even if they
compile, most converted VB6 applications will require some level of refactoring to take
full advantage of the new language. Extensive documentation is available to cover

changes in the syntax, debugging applications, deployment and terminology.

10




R aa

AT

&
#
%
&

o P LTI T

t

Comparative samples

The following simple example demonstrates similarity in syntax between VB and

VB.NET. Both examples pops a message box saying "Hello, World" with an OK button.

Classic VB example:

private Sub Commandl_ Click()

MsgBox "Hello, World"

End Sub

A VB.NET example:

Private Sub Buttonl Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles Buttonl.Click
MessageBox.Show ("Hello, World")

End Sub

> Note that all procedure calls must be made with parentheses in VB.NET, whereas
these were only required for function calls (however in VBG6 they could be used in
procedure calls as well by using the Call keyword).

» Also note that the names Commandl and But tonl are not obligatory. However,
these are default names for a command button in VB6 and VB.NET respectively.

» Actually, there is a function called MsgBox in the Microsoft .VisualBasic
namespace, but the System.Windows.Forms.MessageBox class is a
preferred way of displaying message boxes since it has more features and is less

language-specific.

11




g
%
E
¥
!
i
-
g
i

The following example demonstrates a difference between VB6 and VB.NET. Both

examples unload the active window.

Classic VB Example:

private Sub cmdClose Click ()
Unload Me
End Sub

A VB.NET example:

Private Sub comdClose Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles cmdClose.Click
Me.Close ()

End Sub

Another useful example of the 'Me' namespace; this example shows the differences

between changing opacity in VB6 and VB.net over time.
VB6 Example

Private Sub Timerl Tick()
Forml.QOpacity = Forml.opacity - 0.01
End Sub

VB.NET example:

Private Sub Timerl Tick (ByvVal sender As System.Object,
ByVal e As System.EventArgs) Handles Timerl.Tick

Me.Opacity -= 0.01
End sub

This gives another example of the numerous uses the 'Me' namespace has, as well as how

it can increase workflow by having a lot of useful methods available so quickly.

12




ADVANTAGES OF OOP:

% QOP provides a clear modular structure for programs which make it good for
defining abstract data types where implementation details are hidden and the unit has

a clearly defined interface.

% QOP makes it casy to maintain and modify existing code as new objects can be

LT R MR RERSAE I T LY ST

created with small differences to existing ones.

One of the principal advantages of object-oriented programming techniques over

procedural programming techniques is that they enable programmers to create

T g e TR T

modules that do not need to be changed when a new type of object is added. A

programmer can simply create a new object that inherits many of its features from

AL G

existing objects. This makes object-oriented programs easier to modify.

» OOP provides a good framework for code libraries where supplied software
components can be easily adapted and modified by the programmer. This 1s

particularly useful for developing graphical user interface.

Concepts of OOP:

i » Objects
» Classes ;
|
» Data Abstraction and Encapsulation ‘

> Inheritance

» Polymorphism N




e

I SRy 0 S

B
i
i
1
It

i

s

Lk P
AT .

Objects

Objects are the basic run-time entities in an object-oriented system. Programming
problem is analyzed in terms of objects and nature of communication between them.
When a program is executed, objects interact with each other by sending messages.

Different objects can also interact with each other without knowing the details of their

data or code.

Classes

A class is a collection of objects of similar type. Once a class is defined, any number of

objects can be created which belong to that class.
Data Abstraction and Encapsulation

Abstraction refers to the act of representing essential features without including the
background details or explanations. Classes use the concept of abstraction and are
defined as a list of abstract attributes. Storing data and functions in a single unit (class) is
encapsulation. Data cannot be accessible to the outside world and only those functions

which are stored in the class can access it.
Inheritance

Inheritance is the process by which objects can acquire the properties of objects of other
class. In QOP, inheritance provides reusability, like, adding additional features to an
existing class without modifying it. This is achieved by deriving a new class from the

existing one. The new class will have combined features of both the classes.
Polymorphism

Polymorphism means the ability to take more than one form. An operation may exhibit
different behaviors in different instances. The behavior depends on the data types used in

the operation. Polymorphism is extensively used in implementing Inheritance.

14



VvB.NET vs. JAVA:

i A\ R TYRTMITTRG e -

E % Java does not have a visual interface.

SR G

% Writing of heaps of code to develop applications and on the other hand in VB.NET

has rich visual interface and supports drag and drop.

% You can code faster and more effectively. A multitude of enhancements to the code
editor, including enhanced IntelliSense, smart listing of code for greater readability
and a background compiler for real-time notification of syntax errors transforms into

: a rapid application development (RAD) coding machine.

|
» The NET Framework makes it easy to deploy applications. In the most |
common form, to install an application, all you need to do is copy the application ‘

along with the components it requires into a directory on the target computer.

» The NET Framework handles the details of locating and loading the components an
application needs, even if several versions of the same application exist on the target
computer. The NET Framework ensures that all the components the application

depends on are available on the computer before the application begins to execute.

» VB.NET supports Cross language integration, Cross language Debugging and

Cross language inheritance.

i e




L i et P F "

e L

I

CHAPTER 3
CODEC

CODEC

Codec is a device or program capable of performing encoding and decoding on a digital

data stream or signal.

It’s software that is used to compress or decompress a digital media file, such as an audio
or a video. Content creators use codec because a compressed file takes up less storage
space on your computer and can be transferred across the Internet more quickly and
smoothly. When you play a digital media file, Media Player uses a codec to decompress
the file. Codec are used to create and play nearly all audio or video files on a computer or

on Web sites.

COMPONENTS OF CODEC

» Encoder
> Decoder

The encoder compresses a file during creation, and the decoder decompresses the file so
that it can be played. Some codec include both components, while other codec only

include one.

Example: If you install a DVD playback program on your computer, the program will
likely install a codec that only includes an MPEG-2 decoder, which allows you to play

the DVD on your computer. You would not be able to use the decoder to create your own

DVD, which allows you to play the DVD on your computer.

16




HOW DO CODEC WORK:

The media player is the software on the client computer that decompresses the streaming

video or audio using a codec and plays it back on the computer screen.

% Codec encode a stream or signal for transmission, storage or encryption and decode

it for viewing or editing.

» The raw encoded form of audio and video data is often called essence, to distinguish
it from the metadata information that together make up the information content of the
stream and any "wrapper" data that is then added to aid access to or improve the

robustness of the stream.

An audio compressor converts analog audio signals into digital signals for transmission
or storage. A receiving device then converts the digital signals back to analog using an

audio decompressor, for playback.

DIFFERENCE BETWEEN CODEC AND FILE FORMATS:

Codec and file formats are not the same although it can be confusing because they
sometimes have the same name. You can think of a file format as a type of container.

Inside the container is data that has been compressed by using a particular codec.

Example: A file format such as Media Audio contains data that is compressed by using |
the Media Audio codec. However, a file format such as Audio Video Interleaved (AVI)
can contain data that is compressed by any number of different codec, including the
MPEG-2, DivX, or XVid codec. AVI files can also contain data that is not compressed by
any codec. Consequently, you might be able to play some AVI files and not others,
depending on which codec were used to compress the file and which codec you have
installed on your computer. For the same reason, you also might be able to play the audio

portion of an AVI file, but not the video portion.

17




USES OF CODEC:

% Many codec’s are designed to emphasize certain aspects of the media to be encoded.
For example, a digital video (using a DV codec) of a sports event, such as baseball or
soccer, needs to encode motion well but not necessarily exact colors, while a video

of an art exhibit needs to perform well encoding color and surface texture.

% A file can be compressed by more than one codec. For example, one codec might be
used to compress the audio portion of a file and another codec might be used to
compress the video portion of a file. If you have the right audio codec installed on
your computer but not the right video codec, when you play the file you'll probably

be able to hear the sound but you won't be able to see the picture.

VIDEO CODEC:

A video codec is a device or software that enables video compression and or
decompression for digital video. The compression usually employs lossy data
compression. Historically, video was stored as an analog signal on magnetic tape. Around
the time when the compact disc entered the market as a digital-format replacement for
analog audio, it became feasible to also begin storing and using video in digital form and
a variety of such technologies began to emerge.

There is a complex balance between the video quality, the quantity of the data needed to
represent it, also known as the bit rate, the complexity of the encoding and decoding
algorithms, robustness to data losses and errors, ease of editing, random access, the state
of the art of compression algorithm design, end-to-end delay, and a number of other

factors.

18




s o v H—

i

VIDEO CODEC DESIGN:

A typical digital video codec design starts with conversion of camera-input video from
RGB color format to YCbCr color format, and often also chroma sub sampling to
produce a 4:2:0 (or sometimes 4:2:2 in the case of interlaced video) sampling grid
patiern.  The conversion to YCbCr provides two benefits: first, it improves
compressibility by providing decorrelation of the color signals; and second, it separates
the luma signal, which is perceptually much more important, from the chroma signal,
which is less perceptually important and which can be represented at lower resolution
Some amount of spatial and temporal down sampling may also be used to reduce the raw
data rate before the basic encoding process. The most popular such transform is the 8x8
discrete cosine transform (DCT). The output of the transform is first quantized, and then
entropy encoding is applied to the quantized values. When a DCT has been used, the
coefficients are typically scanned using a zigzag scan order, and the entropy coding
typically combines a number of consecutive zero-valued quantized coefficients with the
value of the next non-zero quantized coefficient into a single symbol, and also has special
ways of indicating when all of the remaining quantized coefficient values are equal to
zero. The entropy coding method typically uses variable-length coding tables. Some
encoders can compress the video in a multiple step process called n-pass encoding (e.g.
2-pass), which performs a slower but potentially better quality compression.

The decoding process consists of performing, to the extent possible, an inversion of each
stage of the encoding process. The one stage that cannot be exactly inverted is the
quantization stage. There, a best-effort approximation of imversion is performed. This part
of the process is often called “inverse quantization” or “dequantization”, although
quantization is an inherently non-invertible process.

Video codec designs are often standardized or will be in the future. However, only the
decoding process needs to be standardized to enable interoperability. The encoding
process is typically not specified at all in a standard, and implementers are free to design
their encoder however they want, as long as the video can be decoded in the specified
manner. For this reason, the quality of the video produced by decoding the results of
different encoders that use the same video codec standard can vary dramatically from one

encoder implementation to another.

19




e

Commonly used standards and codec

A variety of codec can be implemented with relative ease on PCs and in consumer
clectronics equipment. It is therefore possible for multiple codec to be available in the
same product, avoiding the need to choose a single dominant codec for compatibility
reasons. In the end it seems unlikely that one codec will replace them all. Some widely-
used video codec are listed below, starting with a chronological-order list of the ones

specified in international standards.

H.261: Used primarily in older videoconferencing and video telephony products. H.261,
developed by the ITU-T, was the first practical digital video compression standard.
Essentially all subsequent standard video codec designs are based on it. It included such
well-established concepts as YCbCr color representation, the 4:2:0 sampling format, 8-bit
sample precision, 16x16 macro blocks, block-wise motion compensation, 8x8 block-wise
discrete cosine transformation, zigzag coefficient scanning, scalar quantization,
runtvalue symbol mapping, and variable-length coding. H.261 supported only

progressive scan video.

MPEG-1 Part 2: Used for Video CDs, and also sometimes for online video. The quality
is roughly comparable to that of VHS. If the source video quality is good and the bit rate
is high enough, VCD can look better than VHS, and all in all very good, but VCD
requires high bit rates for this. However, to get a fully compliant VCD file, bit rates
higher than 1150 kbit/s and resolutions higher than 352 x 288 should not be used
(includes the *.mp3 standard). When it comes to compatibility, VCD has the highest
compatibility of any digital video/audio system. Almost every computer in the world can
play this codec, and very few DVD players do not support it. In terms of technical design,
the most significant enhancements in MPEG-1 relative to H.261 were half-pel and bi-
predictive motion compensation support. MPEG-1 supported only progressive scan

video.

20




i

MPEG-2 Part 2 (a common-text standard with H.262): Used on DVD, SVCD, and in
most digital video broadcasting and cable distribution systems. When used on a standard
DVD, it offers good picture quality and supports widescreen. When used on SVCD, it is
not as good as DVD but is certainly better than VCD. In terms of technical design, the
most significant enhancement in MPEG-2 relative to MPEG-1 was the addition of
support for interlaced video. MPEG-2 is now considered an aged codec, but has

tremendous market acceptance and a very large installed base.

H.263: Used primarily for videoconferencing, video telephony, and internet video. H.263
represented a significant step forward in standardized compression capability for
progressive scan video. Especially at low bit rates, it could provide a substantial

improvement in the bit rate needed to reach a given level of fidelity.

MPEG-4 Part 2: An MPEG standard that can be used for internet, broadcast, and on
storage media. It offers improved quality relative to MPEG-2 and the first version of
H.263. Its major technical features beyond prior codec standards consisted of object-
oriented coding features and a variety of other such features not necessarily intended for
improvement of ordinary video coding compression capability. It also included some
enhancements of compression capability, both by embracing capabilities developed in
H.263 and by adding new ones such as quarter-pel motion compensation. Like MPEG-2,

it supports both progressive scan and interlaced video.

MPEG-4 Part 10: (A technically aligned standard with the ITU-T’s H.264 and often also
referred to as AVC). This emerging new standard is the current state of the art of ITU-T
and MPEG standardized compression technology, and is rapidly gaining adoption into a
wide variety of applications. It contains a number of significant advances in compression
capability, and it has recently been adopted into a number of company products,
including for example the PlayStation Portable, iPod, the Nero Digital product suite, Mac
OS X v10.4, as well as HD DVD/Blue-ray Disc.

Sy,

g =t
= aBoOUrce A=
9 ?‘ ~-.....,_"_‘.Cp' T,

Q ™\
o ’U\
¥ { AGC. NOuewssuses 1.2

21 \onSP0 24/

———— i T e S




]
4

Xvid, FFmpeg MPEG-4 and 3ivx: Different implementations of MPEG-4 Part 2.

DiVX,

VP6: A proprietary video codec developed by On2 Technologies.

Sorenson 3: A codec that is popularly used by Apple’s QuickTime, basically the ancestor

of H.264. Many of the QuickTime movie trailers found on the web use this codec.

Theora: Developed by the Xiph.org Foundation as part of their Ogg project, based upon
On2 Technologies® VP3 codec, and christened by On2 as the successor in VP3’s lineage,
Theora is targeted at competing with MPEG-4 video and similar lower-bit rate video

compression schemes.

WMV (Windows Media Video): Microsoft’s family of video codec designs including
WMV 7, WMV 8, and WMV 9. It can do anything from low resolution video for dial up
internet users to HDTV. WMV can be viewed as a version of the MPEG-4 codec design.
The latest generation of WMV is standardized by SMPTE as the VC-1 standard.

Real Video: Developed by Real Networks. A popular codec technology a few years ago,

it is now fading in importance for a variety of reasons.

Cinepak: A very early codec used by Apple’s QuickTime.

X264: A GPL-licensed implementation of H.264 encoding standard.

Huffyuv: Huffyuv (or HuffYUV) is a very fast, lossless Win32 video codec written by
Ben Rudiak-Gould and published under the terms of the GPL as free software, meant to
replace uncompressed YCbCr as a video capture format. See Lagarith as a more up-to-

date codec.,

Lagarith: A more up-to-date fork of Huffyyuv is available as Lagarith.

22




SheerVideo: A family of ultra fast lossless QuickTime and AVI codec, developed by
BitJazz Inc., for RGB[A], Y'CbCr[A] 4:4:4[:4], Y'CbCr[A] and 4:2:2[:4] formats; for
both 10-bit and 8-bit channels; for both progressive and interlaced data; for both Mac and

PC.

All of the codec above have their qualities and drawbacks. Comparisons are frequently
published. The tradeoff between compression power, speed, and fidelity (including

artifacts) is usually considered the most important figure of technical merit.

Missing Codec and Video File Issues

A common problem when an end user wants to watch a video stream encoded with a
specific codec is that if the exact codec is not present and properly installed on the user’s
machine, the video won’t play (or won’t play optimally).

Windows XP SP2 itself only has a very limited number of video and audio codec
installed; other than Microsoft formats, Intel Indeo is the only available .avi Codec that is
installed per default. All other codec, such as DivX, Xvid or Theora, must be installed

manually.

Some video files and codec analysis tools have been made available to provide a user-

friendly way to solve this common problem:

VideoInspector: Analyzes most containers (AVI, Matroska, MPEG, etc.) and gives
direct download links for missing codec.

GSpot: A pioneer in troubleshooting video applications, GSpot remains a useful tool
despite missing some features present in other software.

Medialnfo: Open-source alternative to GSpot.

AVICodec: Another useful application. "

AVI2Clipboard: An extension for the Explorer context menu to easily view and save
information about videos with an AVI container.

Many people find that VLC media player resolves many of these issues because it
contains many popular codec in a portable standalone library, available for many
operating systems, including Windows, Linux, and Mac OS X. This also resolves many

issues within Windows in conflicting and poorly installed codec.

23




QUICKTIME:

QuickTime is a multimedia framework developed by Apple Computer, capable of

handling various formats of digital video, media clips, sound, text, animation, music, and

several types of interactive panoramic images.

QUICKTIME FILE FORMATS:

A QuickTime file (*.mov) functions as a multimedia container file that contains one or

more tracks, each of which store a particular type of data, such as audio, video, effects, or

text.
WORKING:

Each track in turn contains track media, either the digitally-encoded media stream (using
a specific codec such as Cinepak, Sorenson codec, MP3, JPEG, DivX, or PNG) or a data
reference to the media stored in another file or elsewhere on a network. It also has an

"edit list" that indicates what parts of the media to use.

Internally, QuickTime files maintain this format as a tree-structure of "atoms", each of
which uses a 4-byte OSType identifier to determine its structure. An atom can be a parent

to other atoms or it can contain data, but it cannot do both.

The ability to contain abstract data references for the media data, and the separation of
the media data from the media offsets and the track edit lists means that QuickTime is
particularly suited for editing, as it is capable of importing and editing in place (without
data copying) other formats such as AIFF, DV, MP3, MPEG-1, and AVI. Other later-
developed media container formats such as Microsoft's Advanced Streaming Format or
the open source Ogg and Matroska containers lack this abstraction, and require all media

data to be rewritten after editing.

24




CONTAINER BENIFITS:

Both the MOV and MP4 containers can utilize the same MPEG-4 codec; therefore, they
are mostly interchangeable in a QuickTime-only environment. However, MP4, being an
international standard, has more support. This is especially true on hardware devices,
such as the Sony PSP and various DVD players; on the software side, most DirectShow /

Video for Windows codec packs [4] [5] include an MP4 parser, but not one for MOV,

In QuickTime Pro's MPEG-4 Export dialog, an option called "Passthrough" atlows a
clean export to MP4 without affecting the audio or video streams. One recent discrepancy
ushered in by QuickTime 7 is that the MOV file format now supports multichannel audio
(used, for example, in the high-definition (railers on Apple's site[6]}, while MP4 is

limited to stereo. Therefore multichannel audio must be re-encoded during MP4 export.

25




CHAPTER 4
THE PROJECT

METHODOLOGY: r
|
|

The methodology that would be followed during the completion of this project would be ‘
in accordance with the WATERFALL MODEL. It is also known as the SOFTWARE |
.DEVELOPMENT LIFECYCLE (SDLC). This section deals with the various phases in '

the SDL.C and the way in which this project will proceed, or the phases that would be ;;

encountered in the completion of this project.

other. In this model each phase has well defined starting and ending point, with

i
|
The waterfall model derives its name due to the cascading effect from one phase to the J
identifiable deliveries to the next phase. !

§  The model consists of six distinct stages, namely: . K
» In the Requirements Analysis phase |
% The problem is specified along with the desired service objectives {goals).

%+ The constraints are identified.

» In the Specification phase the system specification is produced from the detailed
definitions of (a) and (b) above. This document should clearly define the product

function. : ;

» In the system and software Design phase, the system specifications are translated

into a software representation. The software engineer at this stage is concerned with:

(7
** Data structure

** Software architecture
%* Algorithmic detail and

¢ Interface representations

26




i
;

The hardware requirements are also determined at this stage along with a picture of the
overall system architecture. By the end of this stage the software engineer should be able
to identify the relationship between the hardware, software and the associated interfaces.

Any faults in the specification should ideally not be passed “down stream’.

% In the Implementation and testing phase stage the designs are translated nto the

software domain

+* Detailed documentation from the design phase can significantly reduce the

coding effort.

+» Testing at this stage focuses on making sure that any errors are identified

and that the software meets its required specification.

» In the integration and system festing phase all the program units are integrated and
tested to ensure that the complete system meets the software requirements. After this

stage the software is delivered to the customer.

» The maintenance phase the usually the longest stage of the software. In this phase

the software is updated to:
%+ Meect the changing customer needs.
% Adapted to accommodate changes in the external environment.
¢ Correct errors and oversights previously undetected in the testing phases.

+ Enhancing the efficiency of the software.

27




Road Map

Basic media player’s features were studied

-

The language and the working platform were decided

(¢

Form design

¢

Implementing the basic features of media player

(—

Integrating the individual feature with the main form and then with the component class

—

The components were tested individually as well as combined with each other

Figure 4.1: Road Map




Ty——

SNAPSHOTS:

Balance !
o A R

Volume

Mute Left
Mute Right

Figure 4.2: An audio file played on the player.

The title bar shows the total time and the time elapsed. Other features (Tempo, volume,

mute, balance, repeat, etc.) of the player can also be seen.

29




Balance
[ R |

Volume =

BT Y A L T R T T |
O R

b

~ Mute Left
Mute Right

Figure 4.3: A video file played on the player.

30

1
lEs




APIL: |

An application program interface (API - and sometimes spelled application programming
interface) is the specific method prescribed by a computer operating system or by an

application program by which a programmer writing an application program can make

requests of the operating system or another application.

An API can be contrasted with a graphical user interface or a command interface (both of

which are direct user interfaces) as interfaces to an operating system or a program,

|
APIs are implemented by writing function calls in the program, which provide the f :
linkage to the required subroutine for execution. Thus, an API implies that some program l
module is available in the computer to perform the operation or that it must be linked into

the existing program to perform the tasks.

MCI:

MCI stands for Multimedia Control Interface, which provides a device-independent way

to use the multimedia features of Windows through code

MCI is responsible for talking to the Windows device drivers, and ultimately the

muitimedia hardware. The programmer, issue commands to the MCI using the API call

meiSendsString(). These commands are then translated into calls to the appropriate

Windows device driver. To put it into .NET terms then, the MCI is a built-in Windows

class.




SENDING STRINGS TO MCI:

meciSendString() function:

error = mciSendString(sCmd , sRetStr, iReturn, hCallback);
sCmd--themci command string (specifies command & device)
sRetStr--return string buffer (NULL if none used)
iReturn--size of return string buffer (0 if none used)

hCallback--Handle to Callback window (NULL if none used)

» Returns 0 if command is successful, error code if not.

Some MCI Command String Commands:

» open -- initializes a multimedia device.

» play — starts playing an open device.

» stop -- stops playing from an open device.

> seek -- move to a specified position on device.
» close -- closes a device and associated resources.
> set -- establish control settings for the device.

32




MAIN MODULES:

OPEN FILE:

Private Sub BtnOpen_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles BtnOpen.Click

Dim AskFile As New OpenFileDialog

AskFile.AddExtension = True
AskFile.CheckFileExists = True
AskFile.CheckPathExists = True
AskFile.Multiselect = False
AskFile.ShowReadOnly = False

If AskFile.ShowDialog(Me) = DialogResult.OK Then
MyApiVideo.Open(AskFile.FileName)

If MyApiVideo.TotalTime >= 0 Then
Labell.Text = Asklile.FileName

TrackOffset.Value = 0

TrackOffset. Minimum = 0

TrackOffset. Maximum = CInt(MyApiVideo.Total Time)

Else

MsgBox("The file can not be opened. Please check the file extension”,
MsgBoxStyle.OKOnly + MsgBoxStyle.Exclamation + MsgBoxStyle.DefaultButtonl +
MsgBoxStyle.SystemModal, "Error")

Labell.Text=""

End If

' Play the file right away.
MyApiVideo.Play()

End If
AskFile.Dispose()

End Sub

This module opens the open file dialogue box and then checks for the file if its a file with
valid file format or not. If the file format is a valid one then it interacts with the open
function in ApiVideo class and then calls the Play() function of the class to play the

media else it displays an error message to the user.

33




PLAY FILE:

Private Function [Play](ByVal WithClipStart As Boolean, ByVal WithClipEnd As
Boolean, ByVal WithPauseState As Boolean) As Boolean

' Start playing the media.
If pOpenSuccess = True Then
If pClipFormat.Length > 0 Then
pLastError = meiSendString("set " & pAlias & " time format " & pClipFormat,
vbNullString, 0, IntPtr.Zero)
End If
pLastError = mciSendString("play " & pAlias & CStr(IIf((pClipStart <> -1) And
WithClipStart = True, " from " & CStr(pClipStart), ")) & CStr(IIf((pClipEnd <> -1) And
WithClipEnd = True, " to " & CStr(pClipEnd), ")) & " notify", vbNullString, 0,
Me.Handle)
If pLastError = MCIERR.MCIERR_NO ERROR Then
pPlaying = True
If WithPauseState = True And pPaused = True Then

Me.Pause()
Else
pPaused = False
End If
End If
Return (pLastError = MCIERR.MCIERR _NO_ERROR)

End If
Return False

End Function

If the file is opened successfully MCI command string “seek” is used to establish control
settings for the device. If no MCIERR error is found then the media is played. After that

the media is checked for pause state, if true then it is paused else played.

34




CHAPTER 5
CONCLUSION

LIMITATIONS

» The media player is unable to play compact file formats like real player format.

» A few .avi video media files are giving the error “Cannot find *vids: x264°

decompressor”.

E%




FUTURE PROSPECTS: |

» A setup or executable file may be provided so that the media player can be installed

on any windows platform for general use.

» The player may also be able to play files directly from the internet.

We need to create an executable (.exe) file for this application. To do that select Build-
> Build from the main menu this builds Deploy.exe. Next, we need to create an installer i
file for Deploy (which is the example) which is a file with .msi extension. For that,

select File->Add Project->New Project which opens the new project dialogue. Select

"Setup and Deployment Projects" icon in the projects type box and Setup Wizard in the

templates box. |

It looks like the image below:

Add New Project

Be
Project Types: Templates: 88 &
(2] Visual Basic Projects 5

{:_I Visual C# Projects A i
{---] Visual C++ Projects Setup Project  Web Setup  Merge Module
43 Setup and Deployment Projects Project Project
[#-{L] Other Projects
s @ |
K 6
Setup Wizard e

Create a Windows Installer project with the aid of a wizard,

Name:! | Setupl

Location: | C:AHELLO WB.NET x|  Browse.. | |

Project will be created at C:\Sandeep\VB.NET}Sstupl i

| OK . I Cancel I Help I

Figure 5.1(a): Deployment of project — STEP 1

36




Click OK to open the Setup Wizard. The Setup wizard looks like the image below: r

setup Wizard (1 of 5) ' s S S |

Wwelcome to the Setup Project
Wizard

This wizard will lead vou through the steps of creating |
a setup projeckt.

A setup project creates an installer for your
application.

The project that is created can be used immediately or
further customized to add extra features not covered
by this wizard.

Click Next to create a new setup project, or Cancel to
exit the wizard,

Cancel J < Back J' Next > I Firish J

Figure 5.1(b): Deployment of project — STEP 2

i




Click next on the above pane to take you to second pane in the Wizard. The new pane
allows us to create deployment projects both for Windows and Web Applications. Here,
select the radio button which says "Create a setup for Windows Application" as this is

deploying a windows application and click next.

setup Wizard (2 of 5)

Choose a project type
The type of project determines where and how files will be installed on a
target computer.

gi;l Do you want to create a setup program to install an application?
(+ Create a setup for a Windows application

{~ Create a setup for a web application

. Do you want to create a redlstrl,putnble package?
 Create a merge module for Windows Installer
¢~ Create a downloadable CAB file

Cancel J < Back J! Next > I Finish |

Figure 5.1(c): Deployment of project — STEP 3

38




Clicking next opens a new pane which has options like Deploying only primary output
from the project or both the project and source code or content files. Check the
checkbox which you want, in this case check the checkbox that says "Primary Output

from Deploy" and click next.

It looks like the image below:

Setup Wizard (3 of 5)

Choose project outputs to include
You can include outputs from other projects in your solution.

Which project output groups do you want to include?

¥ Frimary output From Deplay

[] Localized resources from Deploy
[ 1 Debug Symbaols from Deploy

[] Content Files from Deploy

[] Source Files from Deploy

Description:
Contains the DLL or EXE built by the project. =]

Cancel | < Back Il Next > I Finish I

Figure 5.1(d): Deployment of project — STEP 4

39




Clicking next opens a new pane which asks if you want any additional files to be added.

If you wish, you can include other files, like an icon for the application. In this example

don't include any files and click next.

It looks like the image below:

Setup Wizard (4 of 5)

Choose files to include
You can add files such as ReadMe files or HTML pages to the setup.

Which additional files do you want to include?

- Add...

Remowve

it

Cancel I < Back | Next > I Finish

Figure 5.1(e): Deployment of project — STEP 5

40




Doing that brings up the last pane of the Setup Wizard which looks like the image

below. Click Finish on this pane.

Setup Wizard (5 of 5)

Create Project
The wizard will now create a project based on your choices,

summary:

Project type: Create a setup for a Windows application :_j

Project groups to include:
Prirary output from Deploy

Additional files: {none)
Project Directory: C\HELLG \YB.NET\Setup7\Setup7.vdproj

5
Cancel ' < Back l Mext = | l Finish I

Figure 5.1(f): Deployment of project — STEP 6

Using the above mentioned procedure, we can easily make a setup file of our project, so

that it can be installed on any windows platform for general use.

41




CODE:

Main Form:

Public Class FrmMain
Inherits System. Windows.Forms.Form

#Region " Windows Form Designer generated code "
#End Region

Private Sub TmrDisplay Elapsed(ByVal sender As System.Object, ByVal ¢ As
System.Timers.ElapsedEventArgs) Handles TmrDisplay.Elapsed
' Show the total and the elapsed time in the titlebar of the form

Dim TotalSec As Long = CLng{MyApiVideo.TotalTime() / 1000)
Dim CurrentSec As Long = MyApiVideo.CurrentTime(}

If CurrentSec >= TrackOffset. Minimum And CurrentSec <= TrackOffset. Maximum

Then
' When no media is playing currentsec returns -1
' our trackbar has a minimum value of 0, so that would cause an exception.
TrackOffset.Value = Clnt(CurrentSec)
Else
TrackOffset. Value = TrackOffset.Minimum
End If

CurrentSec = CLng(CurrentSec / 1000)

Me.Text =" Total Time =" & CStr(Int(TotalSec / 60)).PadLeft(2, CChar("0")) &
" & CStr(ClInt(TotalSec Mod 60}).PadLeft(2, CChar("0™)) & "  Time Elapsed =" &
CStr(Int(CurrentSec / 60)).Padleft(2, CChar("0") & ":" & CStr(CInt(CurrentSec Mod
60)).PadLeft(2, CChar("0"))

End Sub

Private Sub TrackOffset Scroll(ByVal sender As Object, ByVal ¢ As System.EventArgs)
Handles TrackOffset.Scroll

' Mute the audio whilst scrolling.
' (audio is muted on first scroll and restored after the scroll

Dim Mute As ApiVideo.Channels = MyApiVideo.Mute

42

:| ﬂ




MyApiVideo.Mute = ApiVideo.Channels.Both
MyAinideo.MoveToTime(TrackOffset.VaIue)
MyApiVideo. Mute = Mute

End Sub

Private Sub ChkMute_CheckedChanged(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles ChkMuteRight.CheckedChanged,
ChkMuteLeft.CheckedChanged

MyApiVideo Mute = (ChkMuteLeft.Checked And ApiVideo.Channels.Left) Or
(ChkMuteRight.Checked And ApiVideo.Channels.Right)

End Sub

Private Sub TrackVolume_Scroll(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles TrackVolume.Scroll

' range between 0 and 1000 where 500 is default
MyApiVideo.Volume = TrackVolume. Value

End Sub

Private Sub TrackBalance Scroll(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles TrackBalance.Scroll

' range between 0 and 1000 where 500 is both sides equal
MyApiVideo.Balance = TrackBalance. Value

End Sub

Private Sub TrackSpeed Scroll(ByVal sender As System.Object, ByVal ¢ As
System.EventArgs) Handles TrackSpeed.Scroll

'range between 1 and 2000 where 1000 is normal
MyApiVideo.Speed = TrackSpeed.Value

End Sub

43




Private Sub BtnClose Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles BtnClose.Click

MyApiVideo.Close()
Labell.Text=""

End Sub
Private  Sub  BtnPlay Click(ByVal sender As System.Object, ByVal ¢ As
System.EventArgs) Handles BtnPlay.Click

MyApiVideo.Play()
End Sub
Private Sub BtnPause Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles BtnPause.Click

MyApiVideo.Pause()
End Sub
Private Sub BtnStop_Click(ByVal sender As System.Object, ByVal ¢ As
System.EventArgs) Handles BtnStop.Click

MyApiVideo.Stop()
End Sub
Private Sub CheckRepeat_CheckedChanged(ByVal sender As System.Object, ByVal ¢
As System.EventArgs) Handles CheckRepeat.CheckedChanged

MyApiVideo.Repeat = CheckRepeat.Checked
End Sub
Privatc  Sub  BinOpen_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles BtnOpen.Click

Dim AskFile As New OpenFileDialog

AskFile. AddExtension = True
AskFile.CheckFileExists = True

44




AskFile.CheckPathExists = True
AskFile.Multiselect = False
AskFile.ShowReadOnly = False

If AskFile.ShowDialog(Me) = DialogResult.OK Then
MyApiVideo.Open(AskFile.FileName)

If MyApiVideo.TotalTime >= 0 Then
Labell.Text = AskFile.FileName |

TrackOffset.Value = 0 !
TrackOffset.Minimum = 0 ;
TrackOffset. Maximum = CInt(MyApiVideo. Total Time)

Else
MsgBox("The file can not be opened. Please check the file extension",

MsgBoxStyle. OKOnly + MsgBoxStyle.Exclamation + MsgBoxStyle.DefaultButton] +
MsgBoxStyle.SystemModal, "Error") t
Labell.Text=""
End If

' Play the file right away. :
MyApiVideo.Play() :

End If
AskFile.Dispose()

End Sub

End Class

45




ApiVideo Class:
Option Strict On

Public Class ApiVideo
Inherits Control

"The ApiVideo class plays media using the mciSendString AP],
'not using the Media Player Component

'"MUTE Channels
Public Enum Channels
None = ()
Left=1
Right =2
Both=3
End Enum

Public Event OnEnd(ByVal sender As Object, ByVal ¢ As System.EventArgs)

#Region "API"
#End Region

#Region "Variables"

Private pFileName As String ' The media file currently open.,

Private pAlias As String ' Each instance of this contro] gets its own unique alias.
Private pLastError As MCIERR ' The etror returned by the last call to mciSendString.
Private pOpenSuccess As Boolean ' Indicates that the Open command was successful,
Private pSpeed As Integer ' Playback speed (normal = 1000).

Private pMute As Channels ' The channels that are muted.

Private pBalance As Integer ' Left and right balance.

Private pVolume As Integer ' Volume.

Private pRepeat As Boolean Indicates playback is looping,

Private pTotalTinte As Long  'The length of the media in milliseconds.

Private pTotalFrames Ag Long ' The length of the media in frames.

Private pClipStart As Long ' The start frame or milliseconds of the play sequence.
Private pClipEnd As Long ' The end frame or milliseconds of the play sequence.

Private pClipFormat As String ' The time format for clipping, either "frames"” or "msec".

Private pPlaying As Boolean ! Indicates if we are playing or not.
Private pPaused As Boolean Indicates if we are paused or not.

#End Region

46




Pubtic ReadOnly Property FileName() As String
Get
' file passed to the Open function.
Return pFileName
End Get
End Property

Public Function [Open](ByVal File As String) As Boolean

' Close the previous file.
If pOpenSuccess = True Then

Me.Close()
End If
' Get the device type
Dim Device_Type As String = "MPEGVideo"
Dim MciExtension As Microsoft. Win32.RegistryKey =

Microsoft. Win32.Registry.LocalMachine.OpenSubKey("SOFTWAREMicrosoft\Windo
ws NT\CurrentVersion\MCI Extensions", False)
If Not MciExtension Is Nothing Then
Device_Type

CStr(MciExtension.GetValue(Replace(System.1O.Path.GetExtension(File),  ".", ", )

"MPEGVideo"))
End If

"Try to open the file.
pLastError = meiSendString("open ™" & File & " type " & Device_Type & " alias
" & pAlias & " parent " & Me.Handle.ToString & " style child", vbNullString, 0,
IntPtr.Zero)
If pLastError = MCIERR.MCIERR_NO_ERROR Then
pOpenSuccess = True
pPlaying = False
pPaused = False
pFileName = File

SizeMediaWindow()
DoSpeed()
DoMute()
DoBalance()
DoVolume()

pTotalTime = GetTotal Time()
pTotalFrames = GetTotalFrames()
Return True
End If
Return False
End Function

47

—_— e




Public Function [Close]() As Boolean

' Close the media file.
If pOpenSuccess = True Then
pLastError = meiSendString("close " & pAlias, vbNullString, 0, IntPtr.Zero)
If pLastError = MCIERR.MCIERR NO ERROR Then
pOpenSuccess = False
pPlaying = False
pPaused = False
pFileName ="" 'There is no file open.
pTotalTime =-1 'No media.
pTotalFrames =-1 ' No media.
Return True
End If
End If
Return False

End Function

Private Function [Play](ByVal WithClipStart As Boolean, ByVal WithClipEnd As
Boolean, ByVal WithPauseState As Boolean) As Boolean

' Start playing the media.
If pOpenSuccess = True Then
If pClipFormat.Length > 0 Then
pLastError = mciSendString("set " & pAlias & " time format " & pClipFormat,
vbNullString, 0, IntPtr.Zero)
End If
pLastError = meiSendSiring("play " & pAlias & CStr(IIf{((pClipStart <> -1) And
WithClipStart = True, " from " & CStr(pClipStart), "")) & CStr(IIf((pClipEnd <> -1) And
WithClipEnd = True, " to " & CStr(pClipEnd), ")) & " notify", vbNullString, 0,
Me.Handle)
If pLastError = MCIERR.MCIERR NO ERROR Then
pPlaying = True
If WithPauseState = True And pPaused = True Then
Me.Pause()
Else
pPaused = False
End If
End If
Return (pLastError = MCIERR. MCIERR NO ERROR)
End If
Return False

End Function

48




Public Function [Stop]() As Boolean

' Stop the media.
If pOpenSuccess = True Then
pLastError = mciSendString("stop " & pAlias, vbNullString, 0, IntPtr.Zero)
If pLastError = MCIERR.MCIERR_NO_ERROR Then
' After stop we rewind the media and get it to the start

pLastError = mciSendString("seek " & pAlias & " to start", vbNullString, 0,
IntPtr.Zero)

End If
pPlaying = False
pPaused = False

Return (pLastError = MCIERR.MCIERR_NO_ERROR}
End If

Return False

End Function

Public Function [Pause]() As Boolean

' Pause the media.
If pOpenSuccess = True Then

pLastError = mciSendString("pause " & pAlias, vbNullString, 0, IntPtr.Zero)

pPaused = (pLastError = MCIERR.MCIERR_NO_ERROR)
Return pPaused

End If
Return False

End Function

Public Property Repeat() As Boolean
Get
Return pRepeat
End Get
Set(ByVal Value As Boolean)
If pRepeat <> Value Then
pRepeat = Value
End If
End Set
End Property

Public ReadOnly Property OriginalSize() As Size

Get H

' Obtain the original screen size of the media i
If pOpenSuccess = True Then 1

U e

49

1 R th e L s P i e iz s




Dim SizeStr As String = Space(128)
pLastError = mciSendSiring("where " & pAlias & " source”, SizeStr,
Len(SizeStr), IntPtr.Zero)
If pLastError = MCIERR. MCIERR_NO_ERROR Then
Dim Items() As String = Split(Trim(SizeStr), " ")
Return New Size(CInt(Items(2)), CInt(Items(3)})
End If
End If
Return New Size
End Get
End Property

Public ReadOnly Property TotalFrames() As Long
' Returns the number of frames in the media or -1 when no
' media is opened or if the media doesn't support frames
Get ‘
Return pTotalFrames
End Get
End Property

Public ReadOnly Property TotalTime() As Long
' Returns the total time of the media in milliseconds.
Get
Return pTotalTime
End Get
End Property

Public ReadOnly Property CurrentFrame() As Long
' Returns the current frame index in the media.
Get
If pOpenSuccess = True Then
pLastError = mciSendString("set " & pAlias & " time format frames”,
vbNuliString, 0, IntPtr.Zero)
If pLastError = MCIERR. MCIERR_NO_ERROR Then
Dim PosStr As String = Space(128)
pLastError = mciSendString("status " & pAlias & " position”, PosStr,
Len(PosStr), IntPtr.Zero)
Return CLng(Trim(PosStr))
End If
End If
1 Return -1
) End Get
4 End Property

50




Public ReadOnly Property CurrentTime() As Long

'Returns the current time index (milliseconds) in the media,
Get

If pOpenSuccess = True Then

pLastError = meiSendString("set " & pAlias & '
vbNujlString, 0, IntPtr.Zero)

If pLastError = MCIERR.MCIERR_NOHERROR Then

Dim PosStr As String = Space(128)

pLastError = mceiSendString("status " & pAlias & " position", PosSir,
Len(PosStr), IntPtr.Zero)

Return CLng(Trim(PosStr))
End If '
End If
Return -]
End Get
End Property

" time format milIiseconds",

Public Property Speed() As Integer
"Set or return the playback speed
Get
Return pSpeed
End Get
Set(ByVal Value As Integer)
If Value >= 0 And Value <=
pSpeed = Value
DoSpeed()
End If
End Set
End Property

2000 And Valye <> pSpeed Then

Public Property Mute() As Channels
' Mute the specified channels
Get

Return pMute
End Get

Set(ByVal Value Ag Channels)

If Value >= Channels.None Ang Value <= Channels.Both And Value <> pMute
Then

PMute = Vajye
DoMute()
End If
End Set
End Property

51




Public Property Balance() As Integer
' Sets or returns the left-right audio balance
Get
Return pBalance
End Get
Set(ByVal Value As Integer)
If Value >= 0 And Value <= 1000 And Value <> pBalance Then
pBalance = Value
DoBalance()
End If
End Set
End Property

Public Property Volume() As Integer
' Sets or returns the audio volume level
Get
Return pVolume
End Get
Set(ByVal Value As Integer)
If Value >= 0 And Value <= 1000 And Value <> pVolume Then
pVolume = Value
DoVolume()
End If
End Set
End Property

Public Function MoveToStart() As Boolean
' Move the media to its beginning
If pOpenSuccess = True Then
pLastError = mciSendString("seek " & pAlias & " to start", vbNullString, 0,
IntPtr.Zero) .
pPlaying = False
pPaused = False
Return (pLastError = MCIERR.MCIERR_NO_ERROR)
End If
Return False

End Function

Public Function MoveToEnd() As Boolean
' Move the media to its end.
If pOpenSuccess = True Then
pLastError = mciSendString("seek " & pAlias & " to end", vbNullString, 0,
[ntPtr.Zero)
pPlaying = False

52

e

K




pPaused = False

Return (pLastError = MCIERR.MCIERR_NO ERROR)
End If
Return False

{é
1

End Function

Public Function MoveToFrame(ByVal Frame As Long) As Boolean
' Move the media to the desired frame.
Return MoveToPosition{Frame, "frames™)

End Function

Public Function MoveToTime(ByVal Milliseconds As Long) As Boolean
' Move the media to the desired time index.
Return MoveToPosition(Milliseconds, "milliseconds")

End Function

Private Function MoveToPosition(ByVal Index As Long, ByVal TimeFormat As String)
As Boolean
' Move the media to its desired index using the specified time format.
If pOpenSuccess = True Then
pLastError = mciSendString("set " & pAlias & " time format " & TimeFormat,
vbNullString, 0, IntPtr.Zero)
If pLastError = MCIERR.MCIERR NO_ERROR Then
pLastError = mciSendString("seek " & pAlias & " to " & CStr(Index),
vbNullString, 0, IntPtr.Zero)
If pLastError = MCIERR.MCIERR NO ERROR Then
If pPlaying = True Then
Me.Play(False, True, True)
End If
End If
Return (pLastError = MCIERR.MCIERR_NO ERROR}
End If
End If
Return False

End Function

53

o




Public Function ClipFrame(ByVal [Start] As Long, ByVal [End] As Long) As Boolean
' Clip the media to only play between the start and end frame.
' Set both values to -1 to undo clipping.
Return Clip([Start], [End], Me.CurrentFrame, "frames")

e S

End Function

Public Function ClipTime(ByVal [Start] As Long, ByVal [End] As Long) As Boolean
' Clip the media to only play between the start and end time.
" Set both values to -1 to undo clipping.
Return Clip([Start], [End}, Me.CurrentTime, "milliseconds")

End Function

Private Function Clip(ByVal [Start] As Long, ByVal [End] As Long, ByVal Current As
Long, ByVal TimeFormat As String) As Boolean

If pOpenSuccess = True Then
If [Start] <> pClipStart Or [End] <> pClipEnd Or TimeFormat <> pClipFormat
Then \

pClipStart = [Start]

pClipEnd = [End]

If pClipStart = -1 And pClipEnd = -1 Then
pClipFormat =""

Else
pClipFormat = TimeFormat

End If

' We are playing so we need to apply the clip now.
If pPlaying = True Then
' If we are currently positioned before the start of the clip, we skip to the start.
' If we are positioned in the clip range, or after it, MCI can handle it by itself.
Me.Play(([Start] > Current And [Start] <> -1), True, True)
End If
Return True
End If
End If
Return False '

End Function

54

‘




Private Function SizeMediaWindow() As Boolean
' Size the media to fit our window, preserving aspect ratio.
If pOpenSuccess = True Then
Dim OptimalSize As Size = Me.OriginalSize
If OptimalSize.IsEmpty = False Then
' Calculate the ratio for width
Dim wRatio As Double = (100 / OptimalSize.Width * Me.Width) / 100

If OptimaiSize.Height * wRatio > Me.Height Then
wRatio = (100 / OptimalSize. Height * Me.Height) / 100

End If

' Calculate the width and height for this ratio and Left and Top to center the
media.

Dim wWidth As Integer = CInt(OptimalSize. Width * wRatio)

Dim wHeight As Integer = CInt(OptimalSize.Height * wRatio)

Dim wLeft As Integer = CInt((Me. Width - wWidth) / 2)

Dim wTop As Integer = CInt((Me.Height - wHeight) / 2)

pLastError = mciSendString("put " & pAlias & " window at " & CStr(wLeft) &
" & CStr(wTop) & " " & CStr(wWidth) & " " & CStr(wHeight), vbNullString, 0,
IntPtr.Zero) A
Return (pLastError = MCIERR.MCIERR_NO_ERROR)
End If '
End If
Return False

End Function

Private Function DoSpeed{) As Boolean
' Set the playback speed.
If pOpenSuccess = True Then
pLastError = mciSendString("set " & pAlias & " speed " & CStr(pSpeed),
vbNullString, 0, IntPtr.Zero)
Return (pLastError = MCIERR.MCIERR_NO_ERROR)
End If
Return False

End Function

Private Function DoMute() As Boolean
' Mute the channels.
If pOpenSuccess = True Then
Select Case pMute
Case Channels.None f
pLastError = mciSendString("set " & pAlias & " audio all on", vbNullString, : ’
0, IntPtr.Zero) :

55




Case Channels.Both
pLastError = mciSendString("set " & pAlias & " audio all off", vbNullString,
0, IniPtr.Zero)
Case Channels.Left
pLastError = mciSendString("set " & pAlias & " audio left off",
vbNullString, 0, IntPtr.Zero)
pLastError = mciSendString("set " & pAlias & " audio right on",
vbNullString, 0, IntPtr.Zero)
Case Channels.Right
pLastError = mciSendString("set " & pAlias & " audio left on",
vbNullString, 0, IntPtr.Zero)
pLastError = mciSendString("set " & pAlias & " audio right off",

vbNullString, 0, IntPtr.Zero) ;
End Select i i
Return (pLastError = MCIERR. MCIERR_NO_ERROR) N
End If ;

Return False

End Function

Private Function DoBalance() As Boolean f
' Set the balance factor.
If pOpenSuccess = True Then
pLastError = mciSendString("setaudio " & pAlias & " left volume to " &
CStr(1000 - pBalance), vbNullString, 0, IntPtr.Zero)
pLastError = mciSendString("setaudio " & pAlias & " right volume to " &
CStr(pBalance), vbNullString, 0, IntPtr.Zero)
Return (pLastError = MCIERR.MCIERR_NO_ERROR)
End If
Return False

End Function

Private Function DoVolume() As Boolean
' Set the volume factor. 1
If pOpenSuccess = True Then
pLastError = mciSendString("setaudio & pAlias & " volume to " & ‘
CStr(pVolume), vbNullString, 0, IntPtr.Zero) |
Return (pLastError = MCIERR.MCIERR_NO_ERROR) i
End If
Return False

End Function

56

—




Private Function GetTotalFrames() As Long
' Return the total number of frames
If pOpenSuccess = True Then
pLastError = mciSendString("set " & pAlias & " time format frames",
vbNullString, 0, IntPtr.Zero)
If pLastError = MCIERR.MCIERR_NO_ ERROR Then
Dim FrameStr As String = Space(128)
pLastError = mciSendString("status " & pAlias & " length", FrameStr,
Len(FrameStr), IntPtr.Zero)
If pLastError = MCIERR.MCIERR_NO_ERROR Then
Return CLng(Trim(FrameStr))
End If
End If
End If
Return -1

End Function

Private Function GetTotalTime() As Long
' Return the total time in milliseconds
If pOpenSuccess = True Then
pLastError = mciSendString("set " & pAlias & " time format milliseconds",
vbNullString, 0, IntPtr.Zero)
If pLastError = MCIERR.MCIERR_NO_ERROR Then
Dim TimeStr As String = Space(128)
pLastError = mciSendString("status " & pAlias & " length", TimeStr,
Len(TimeStr), IntPtr.Zero)
If pLastError = MCIERR. MCIERR_NO_ERROR Then
Return CLng(Trim(TimeStr))
End If
End If
End If
Return -1

End Function

Public Function GetLastError() As Integer
' Return the last MCI error code. l
Return pLastError

End Function

Public Function GetErrorString() As String
' Return a description for the last MCI error.

If pLastError <> MCIERR.MCIERR_NO_ERROR Then
Dim ErrorText As String = Space(128) g
57 g

- | i




If mciGetErrorString(pLastError, ErrorText, Len(ErrorText)) <> 0 Then
Return Trim(ErrorText)
End If
End If

End Function

Public Sub New()
' Init all the variables to a default value jus like a constructor
pFileName ="" 'No file loaded.

pAlias = "ALIAS" & Me.Handle.ToString ' Create an unique alias (each instance of
this control has an unique handle).
pLastError = MCIERR.MCIERR_NO_ERROR 'No error.

pOpenSuccess = False ' Not open.
pSpeed = 1000 ' Normal playback speed.
pMute = Channels.None ' No channels muted.
pBalance = 500 " Normal left and right balance.
pVolume = 500 ' Normal volume.
pRepeat = False ' Default to no playback looping.
pTotalTime = -1 ' No media.
pTotalFrames = -1 ' No media.
pClipStart = -1 ' Start at the beginning.
pClipEnd = -1 ' Play until the end.
pClipFormat =" "No clip format.
pPlaying = False ' We are not playing.
pPaused = False ' We are not paused.

End Sub

Protected Overrides Sub OnResize(ByVal e As System.EventArgs)
' Size the media window to the new size calculated
SizeMediaWindow()

End Sub

Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
Me.Close()
MyBase.Dispose(disposing)

End Sub

End Class

58




REFRENCES:
» Books:

e Visual Basic .NET Programming. By- Steven Holzner
¢ Visual Basic.NET How to Program 2ed. By- Deitel
e Thinking in Microsoft NET

!
|

!
|
!
l > Websites:

|

| ® www.google.com

¢  www.startvbdotnet.com
e  www.wikipedia.com
e www.apple.com

e www.msdn.microsoft.com

¢ www.vbdotnetheaven.com

59




