Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER
Acc. Num. SPOZ 0|l Call Num:
General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

¢ The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

MM

I

SP03014

IPv4-IPv6 INTEROPERABILITY

Akhil Bhardwaj 031226
Bhaskar Vijay Singh 031408
) Shashank Shah 031201

May-2007

Submitted in partial fulfillment of the Degree of Bachelor of
Technology

DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

CERTIFICATE

This is to certify that the work entitled, “IPv4 — IPv6 Interoperability” submitted by Akhil
Bhardwaj, Bhaskar Vijay Singh and Shashank Shah in partial fulfillment for the award of
degree of Bachelor of Technology in Computer Science and Engineering of Jaypee
University of Information Technology has been carried out under my supervision. This
work has not been submitted partially or wholly to any other University or Institute for

the award of this or any other degree or diploma.

S.P. Ghr

er Science and Engineering.

ACKNOWLEDGEMENT

In Accordance with our final project submission of §®
& Engg.),

Semester(B.Tech Computer Science
we were assigned to study and research on ongoing transition mechanisms of IPv4

to IPv6 protocol and making an application for same.

-We would like to express our extreme gratitude to

Retd. (Blfig). S.P. Ghrera
Head Of Department
- Computer Science & Engg.
Jaypee University Of Information Technology

For guiding us, being extremely helpful, patient and always being there whenever we were in

doubt. Without his help, support and constant supervision, we would have never been able to

complete our final project assignment successfully.

CONTENTS
I Certificate 2
Il Acknowledgement 3
II List of figures 5
IV List of tables 6
V Synonyms 7
V1 Abstract 9
I Study And Research
1.1 Introduction 10
[.I.1 Internet Protocol 10
1.1.2 Internet Protocol Version 4 12
1.1.3 Internet Protocol Version 6 16
1.2 Interoperability
1.2.1 Introduction 23
1.2.2 Dual Stack Techniques 25
1.2.3 Tunneling _ 26
1.2.4 Translation 35
I.3 Selection of transition technique 43
2 Design Of Application :
2.1 Statement of purpose 44
2.2 Context of the application 44
23 Data flow diagram 44
2.4 Class and Structure specification 46
2.5 Flow Charts 51
2.6 Test Application - 58
2.6.1 Class and Structure specification 58
2.6.2 Flow Chart 60
3 Implementation
3. Main Application Source Code : 62
3.2 Test Application Source Code 75
4 Experimental setup and testing
4.1 Setup , test procedure & Results 80
5 Deployment 82
5.1 Screen Shots 83
5.1.1 Tunnel Application . 83
5.1.2 Test Application 86
5.2 Directories and file structure 87
5.2.1 Tunnel Application 87
5.22 Test Application 88
5.3 Environment for compilation & linking 88
5.3.1 Tunnel Application 88 |
5.3.2 Test Application 88 i
6 Conclusion 89]
7 Bibliography : 90 F
-4 -

LIST OF FIGURES

1. Internet protocols span the complete range of OSI model layers
2. Fourteen fields comprise an IPv4 packet.

3. An [P address consists of 32 bits, grouped into four octets.
4, IP address formats A, B, and C are available for commercial use,
5. [Pv6 Header Structure

0. IPv4 vs IPv6 address

7. Different Transition Strategies

8. Dual Stack Model

9. Architecture of Configured Tunnel

10. Typical Use of Configured Tunnel

1. Data stream of Router-to-Router Tunnel

12. Automatic Tunnel Overview

13. Data Stream for Automatic Tunnels

14. 6to4 Tunnel Mechanism Architecture

15. The architecture of Tunnel Broker

16. IPv6 address format of ISATAP node

17. DSTM Architecture and working procedure

18. Translation between IPv4 network and IPv6 network
19. Stateless [P/ICMP Translation Algorithm

20. Operation of NAT-PT

21. Application Layer Gateway

22, Operation of TRT

23. Sock64 Architecture

24, Structure of dual stack host with BIS

25. Structure of Dual Stack host with BIA

26. Data Flow Diagram for tunnel application

27. Flow chart of the constructor function of the class CNetWorkInterface
28, Initialize Function of CNetworkInterface

29, Flow Chart of the MainThreadLoop() Function

30 Flow Chart of the function InitializeBtoSThread

31. Flow Chart of the function BtoSthreadl.oop

32. Flow Chart of the function HtoBThreadLoop

33. Flow Chart of the function Stop '

34. Flow chart of the test application

35. Hardware Setup

36. Deployment of the application in the real world

37. Initial Configuration of the Main Application

38. After the start of the execution of the main application
39. The Status message after the completion of file transfer
40. Both ends of the test application

11

12
15
16
19
21

24
26
28
28
29
30
30
31

32
33
34
36
36
37
38
39
40
4]

42
45
51

52
53
54
55
56
57
60
80
82
83
84
85
86

LIST OF TABLES

| Reference Information About the Five IPv4 Address Classes
2 Classes of IPv4 to IPv6 migration mechanisms -

5
24

SYNONYM

IPv4-compatible address: IPv4-compatible address is identified by an all-zero 96-bit prefix and
an IPv4 address in the low-order 32 bits. It can be written as ::[IPv4] IPv4-mapped address:
IPv4- mapped address is identified as ::FFFF:a.b.c.d, a.b.c.d is [Pv4 address.

Dual Stack: A mechanism that subports both IPv4 and IPv6 on hosts or routers,

Tunneling: A mechanism in which one type of packets (e.g. IPv6) are encapsulated inside
another type of packets (e.g. IPv4).

Translation: A mechanism that establishes the communication between 1Pv4 nodes and IPv6
nodes.

Configured tunnel: A kind of point-to-point tunnel, which is configured manually,

Automatic tunnel. A kind of tunnel which is configured and established automatically when
necessary and broken up automatically when no longer necessary.

6t04: A semj-automatic tunneling mechanism between routers, which uses 2002:V4ADDR::/48
as prefix,

Tunnel broker: A ‘semi-automatic tunneling mechanism which can help user collect necessary
information and interactively set up IPv6 over IPv4 tunnels.

TSP: Tunnel setup protocol.

_ Teredo: A tunneling mechanism that enables nodes behind IPv4 NATs to obtain IPv6
connectivity by tunneling packets over UDP.

BGP-tunnel: A tunneling mechanism that interconnects [Pv6 islands over IPv4 clouds using
BGP.

6overd: A tunneling mechanism that allows isolated IPv6 hosts, located on a physical link which
has no directly connected va6 router, to become fully functional IPv6 hosts by using an Pv4
multicast domain as their virtual local link.

ISATAP: Intra-Site Automatic Tunnel Addressing Protocol, which automatically connects
isolated IPv6 hosts within a site via automatic IPv6- in-IPv4 tunnel,

DSTM: Dual Stack Transition Mechanism, which uses IPvd-over-IPv6 tunnel to carry IPv4
traffic within an IPv6-only network and provides a method to allocate a temporary IPv4 Address
to a [Pv6/[Pv4 node.

SIT: Stateless IP/ICMP Translation Algorithm, which translates between 1Pv4 header and IPv6

header,

NAT-PT: Network Address Translation with Protocol Translation, which translates an 1Pv4
packet into a semantically equivalent IPv6 packet and vice versa.

TRT: Transport Relay Translator, a translator which locates in transport layer.

Socks: A system which accepts enhanced IPv4 socks connections from IPv4 hosts and relays
them to [Pv4 or IPv6 nodes.

ALG: Application Layer Gateway, which allows users behind gateways or firewalls to use
applications that otherwise are not allowed to traverse gateways and firewalls

BIS: Bump in the Stack, which is a translation interface between IPv4 applications and IPv6
network infrastructure,

BIA: Bump- in-the-API, which is a translation interface between socket API and TCP/IP

modules.

ABSTRACT

IPv6 is a new version of the internetworking protocol designed to address the scalability and

service shortcomings of the current standard, IPv4.

Unfortunately, 1Pv4 and [Pv6 are not directly compatible, so programs and systems designed to
one standard can not communicate with those designed to the other. IPv4 systems, however, are

ubiquitous and are not about to go away “over night” as the IPv6

Systems are rolled in. Consequently, it is necessary to develop smooth transition mechanisms
that enable appiications to continue working while the network s being upgraded. In this paper
we have presented the various transition mechanisms and implementation of a transparent

transition service,

As’a result, we are able to demonstrate and measure a working system, and report on the

complexities involved in building and deploying such a system.

1 STUDY AND RESEARCH

1.1 __ INTRODUCTION

111 Internet protocol

Background

The Internet protocols are the world’s most popular open-system (nonproprietary) protocol
suite because they can be used to communicate across any set of interconnected networks and
are equally well suited for LAN and WAN communications. The Internet protocols consist of
a suite of communication protocols, of which the two best known are the Transmission
Control Protocol (TCP) and the Internet Protocol (IP). The Internet protocol suite not only
includes lower-layer pi‘otocols (such as TCP and IP), but it also specifies common
applications such as electronic mail, terminal emulation, and file transfer. This chapter
provides a broad introduction to speciﬁcations that comprise the Internet protocols.
Discussions include IP addressing and key upper-layer protocols used in the Internet.

Specific routing protocols are addressed individually later in this document.

Internet protocols were first developed in the mid-1970s, when the Defense Advanced
Research Projects Agency (DARPA) became interested in establishing a packet-switched
network that would facilitate communication between dissimilar computer systems at
research institutions. With the goal of heterogeneous connectivity in mind, DARPA funded
research by Stanford University and Bolt, Beranek, and Newman (BBN). The result of this

development effort was the Internet protocol suite, completed in the late 1970s.

- TCP/IP later was included with Berkeley Software Distribution (BSD) UNIX and has since
become the foundation on which the Internet and the World Wide Web (WWW) are based.

-10-

CtS|
Reference Mode) Internet Protacol Suite
Application) NF3
FTF Teine:.
Fressntatian IMTP. SN~ XD
Session ' . RPC
Transocrt TCP UOP
Netwark Ruuting Protocols = GNP
ARP RaR=
Link
Mot 3oecified
Shysicai

Figure 1 : Internet protocols span the complete range of OSI model layers.

IP is a data oriented protocol used for communicating data across a packet switched network.
It provides a service of communicable, unique, global addressing among computers. Data to
be transferred is encapsulated in datagrams / packets. No communication link needs to be

established between the two communicating devices therefore it is a connectionless protocol.
IP provides a unreliable service since there are no guarantees about the packet it may lead to ;

* Data corruption
¢ Out of order packets
* Duplicate arrival

* Drop Packets

-11 -

1.1.2_ Internet Protocol Version 4

The Internet Protocol (IP) is a network-layer (Layer 3) protocol that contains addressing
information and some control information that enables packets to be routed. IP is
documented in RFC 791 and is the primary network-layer protocol in the Internet protocol
suite. Along with the Transmission Control Protocol (TCP), IP represents the heart of the
Internet protocols. IP has two primary responsibilities: providing connectionless, best-effort
delivery of datagrams through an internetwork; and providing fragmentation and reassembly

of datagrams to support data links with different maximum-transmission unit (MTU} sizes.

IPv4 Packet Format
|« 32 bite »|
Yerson [HL Fype-of-service Tatal leng:in
Idenrifization Flags | Fragment nffsst
Time-io-ive Pratacal Header checksum

Saurce aadress

Destinaion addiess

Options (- padding)

Diata fvariatla)

Figure 2 : Fourteen fields comprise an {Pvd packet,

I. Version—Indicates the version of [P currently used.

2. IP Header Length (THL)—Indicates the datagram header length in 32-hit words.

-12-

3. 0 ype—of-ServiceﬁSpeciﬁes how an upper-layer protocol would like a current

datagram to be handled, and assigns datagrams various levels of importance.

4. Total Length—Specifies the length, in bytes, of the entite IP packet, including the
data and header.

5. Identification—Contains an integer that identifies the current datagram. This field is
used to help piece together datagram fragments,

6. Flags—Consists of a 3-bit field of which the two low-order (least-significant) bits
control fragmentation. The low-order bit specifies whether the packet can be
fragmented, The middle bit specifies whether the packet is the last fragment in a
series of fragmented packets. The third or hi gh-order bit is not used.

. 7. Fragment Offset—Indicates the position of the fragment’s data relative to the
beginning of the data in the original datagram, which allows the destination IP
process to properly reconstruct the original datagram.

8. Time-to-Live—Maintains a counter that gradually decrements down to zero, at which

point the datagram is discarded. This keeps packets from looping endlessly.

9. Profocol—Indicates which upper-layer protocol receives incoming packets after 1P
processing is complete.

10. Header Checksum—Helps ensure IP header integrity.

I'1. Source Address—Specifies the sending node.

-13-

12. Destination Address—Specifies the receiving node.
13. Options—Allows [P to support various options, such as security.

14. Data—Contains upper-layer information.

IPv4 Addressing

As with any other network-layer protocol, the IP addressing scheme is integral to the process
of routing IP datagrams through an internetwork. Each IP address has specific components
and follows a basic format. These IP addresses can be subdivided and used to create
addresses for subnetworks.

Each host oﬁ a TCP/IP network is assigned a unique 32-bit logical address that is divided into
two main parts: the network number and the host number. The network number identifies a
network and must be assigned by the Internet Network Information Center (InterNIC) if the
network is to be part of the Internet. An Internet Service Provider (ISP) can obtain blocks of
network addresses from the InterNIC and can itself assign address space as necessary. The
host number identifies a host on a network and is assigned by the local network

administrator.,

IPv4 Address Format

The 32-bit IP address is grouped eight bits at a time, separated by dots, and represented in
decimal format (known as dotted decimal notation). Each bit in the octet has a binary weight
(128, 64, 32,16, 8, 4, 2, 1). The minimum valuerfor an octet is 0, and the maximum value for

an octet is 255.

-14 -

- 32 Bits -

Metaorl: Hnst
—— A3z —» “— BB73 —» “— 2815 —u - 2 ES —
Dotted
Cecimal
Notation
‘ 172 . 14 ' 122 . 204

Figure 3 : An IP address consists of 32 bits, grouped into four octets.

IPv4 Address Classes

IP addressing supports five different address classes: A, B,C, D, and E. Only classes A, B,
and C are available for commercial use. The left-most (high-order) bits indicate the network

class. The following table provides reference information about the five IP address classes.

r High-

Address Order No. Bits

Class Format Purpose Bit(s) Address Range Network/Host Max. Hosts

A NHHH Fewlarge 0 1.0.0.0 t0 126.0.0.0 7/24 16777214
organizations 7 (2%-2)

B N.NHH Medium size 1,0 128.1.0.0 to 14/16 65534
organizations 191.254.0.0 : (2'%-2)

C N.MNH Relatively small L 1,0 192.0.1.0 10 21/8 254
organizations 223.255.254.0 (2%-2)

D N/A Multicast groups 1,1, 1,0 224.0.0.0to N/A (not for - N/A

239.255.255.255 comntercial use)
E N/A Experimental L1,1, 1 240.0.0.0 to N/A N/A

254.255,255.255,255

Table 1 : Reference Information About the Five IPv4 Address Classes

-15-

The class of address can be determined easily by examining the first octet of the address and
mapping that value to a class range in the following table. In an IP address of 172.31.1.2, for
example, the first octet is 172. Because 172 falls between 128 and 191, 172.31.1.2 is a Class
B address. The following figure summarizeé the range of possible values for the first octet of

each address class.

No. Bits 7 - 24 »

Class A 4] Network Host Host ’ Host

Class B 110 Nefwork Metwork Host (’ Host

-~ 21 > - g

Class C 11110 Nebwork ' Network Network (Bost l

qum4:]PathshnnMsA,&andCamavﬁhbhﬁwcommemhlmm

1.1.3 | Internet Profocol Version 6

This is the second version to be formally adopted and the main changes from IPv4 are:

* Expanded Addressing capability: The address size of IPv6 has increased from
32bits to 128 bits.

¢ Simplification of header

* Improved support for extensions and headers.

* Extensions for authentication and privacy

¢ Flow labeling Capability

The fields that have been temoved from I1Pv4 header:

* Header Length: Not needed as the header length is fixed.

-16 -

s Identification field, Flags (DF& MF) and offser field were removed because
Fragmentation is handled only in the sending host in IPv6: routers never fragment a
packet, and hosts are expected to use PMTU discovery.

* Header Checksum: To remove the processing speed as every router does not calculate

the checksum. The checksum is calculated at the upper layers of the protocol.

The fields of IPv6 header different from IPv4 are:

» Flow Label: 20 bits field. It distinguishes packets which require similar treatment and

!
|
routers process these packets more efficiently because they need not process the IP
header again and again. All packets belonging to the same flow must have the same
source and destination address.
» Payload length: 16 bits field specifying the length of the data carried .1t limits the
maximum packét pay load size to 64KB and [Pv6 has a jumbogram extension header
" which supports bigger packet sizes.
» Next Header: 8 bits and is same as Protocol field of the [Pv4 header. :
e Hop Limit: 8 bits and is same as the TTL field of IPv4. ;:?,‘
o Source Address: 128 bits. i:'
o Destination Address: 128 bits. ;

Listed below is an overview of several features and benefits IPv6 is intended to provide. ;

o Larger address spacé — 1Pv6 increases the IP address size from 32 bits to 128 bits. i
Increasing the size of the address field increases number of unique IP addresses from I\I
approximately 4,300,000,000 (4.3%10°% to ;
340,282,366,920,938,463,463,374,607,431,768,211,456 (3.4x10°%),

The bigger address space [Pv6 offers is the most obvious enhancement it has over !
[Pv4. While today's Internet architecture is based on 32-bit wide addresses, the new
version has 128-bit technology available for addressing. Thanks to the enlarged
address space, workarounds like NAT don't have to be used anymore. This allows
full, unconstrained 1P connectivity for today's IP-based machines as well as upcoming
mobile devices like PDAs and ceil phones -- all will benefit from full IP access il

} through GPRS and UMTS.

_17- | l

Increasing the address space to 128 bits provides the following additional potential
benefits: |
o Enhanced applications functionality — Simplifies direct peer-to-peer
applications and networking by providing a unique address to each device.
o End-to-end transparency — The increased number of available addresses
reduce the need to use address translation technologies

o Hierarchical addressing — The hierarchical addressing scheme provides for

address summarization and aggregation. These approaches simplify routing
and manage routing table growth.

o Auto-configuration — Clients using IPv4 addresses use the Dynamic Host
Configuration Protocol (DHCP) server to establish an address each time they
log into a network. This address assignment process is called stateful auto-
configuration. IPv6 supports a revised DHCPv6 protocol that supports
stateful auto-configuration, and supports stateless auto-configuration of nodes. '
Stateless - auto-configuration does not require a DHCP server to obtain :
addresses. Stateless auto-configuration uses router advertisements to create a :
unique address. This creates a “plug-and-play” environment, simplifying :
address management and administration. 1Pv6 also allows automatic address
configuration and reconfiguration. This capability allows administrators to re-
number network addresses without accessing all clients.

o Scalability of multicast routing — [Pv6 provides a much larger pool of

multicast addresses with multiple scoping options.

» Mobility - When mentioning mobile devices and IP, it's important to note that a
special protocol is needed to support mobility, and implementing this protocol --
called "Mobile IP" -- is one of the requirements for every IPv6 stack. Thus, if you
have [Pv6 going, you have support for roaming between \different networks, with
global notification when you leave one network and enter the other one. Support for
roaming is possible with IPv4 too, but there are a number of hoops that need to be ‘_!'1
Jumped in order to get things working. With IPv6, there's no need for this, as support E

for mobility was one of the design requirements for IPvé.

-18- | |

* Securify - Besides support for mobility, security was another requirement for the
successor to today's Internet Protocol version. As a result, 1Pv6 protocol stacks are
required to include IPsec. IPsec allows authentication, encryption, and compression
of IP traffic. Except for application-leﬁel protocols like SSL or SSH, all IP traffic
between two nodes can be handled without adjusting any applications. The benefit of
this is that all applications on a machine can benefit from encryption and
authentication, and that policies can be set on a per-host (or even per-network) basis,

not per application/service,

0i1 (2131445167180]10 [11 1201371411516 |17 118119 [20]21[22]23]24 125 [26[27 28129 [30 31

VERSION TRAFFIC CLASS FLOW LABEL
PAYLOAD LENGTH NEXT HEADER HOP LIMIT
:]
TTL PROTOCOL. HEADER CHECKSUM ‘

SOURCE IP ADDRESS ' |

DESTINATION IP ADDRESS

DATA

Figure § : IPv6 Header Structure i

ety

[. Version. 4 bits. IPv6 version number.
2. Traffic Class. 8 bits, Internet traffic priority delivery value. i
3. Flow Label. 20 bits. Used for specifying special router handling from source to

destination(s) for a sequence of packets.
4. Payload Length. 16 bits unsigned. Specifies the length of the data in the packet. il

When cleared to zero, the option is a hop-by-hop Jumbo payload.

-19- ' |

5. Next Header. 8 bits. Specifies the next encapsulated protocol. The values are
compatible with those specified for the [Pv4 protocol field. |

6. Hop Lizhit. 8 bits unsigned. For each router that forwards the packet, the hop limit is
decremented by 1. When the hop limit field reaches zero, the packet is discarded.
This replaces the TTL field in the IPv4 header that was originally intended to be used
as a time based hop limit. _

7. Source address. 16 bytes. The IPv6 address of the sending node.

8. Destination address. 16 bytes. The IPv6 address of the destination node.

1Pv6 Addressing

IPv6 addresses use 128-bit technology, which results in 2'% theoretically addressable hosts.
This allows a really big number of machines to be addressed, and it will fit all today's
requirements plus PDAs, cell phones, and even IP phones in the near future without any
problem. When writing 1Pvé6 addresses, they are usually divided into groups of 16 bits

written as four hex digits, and the groups are separated by colons. An example is:

{e80::2a0:d2{T:feas:e9f5

This shows a special thing -- a number of consecutive zeros can be abbreviated by a single
f1..hn

once in the v6 number. The above address is thus equivalent to

fe80:0:00:000:2a0:d2ff:feas:e9f5 -- leading zeros within groups can be omitted.

To make addresses manageable, they are split in two parts, which are the bits identifying the
network a machine is on, and the bits that identify a machine on a network or subnetwork.
The bits are known as netbits and hostbits, and in both IPv4 and v6, the netbits are the "left,”

or most significant bits of an IP number; and the host bits are the "right," or least significant
bits:

N netbits | 128-n hosthits

-20-

IPva;
[16bit " shit]sbit]

IPv6:

[48hit 16bit | 64bit)

Provider-assigned network-bits
Self-assigned subnet-bits i
Host-hits

Figure 6 : IPv4 vs IPv6 address

IPv6 addresses have a similar structure to class B addresses.

Now while the space for network and subnets is sufficient, using 64 bits for addressing hosts

seems like a waste. It's unlikely that you will want to have several billion hosts on a single

subnet, so what is the idea behind this?

The idea behind having fixed-width, 64-bit wide host identifiers is that they aren't assigned
manually as in IPv4. Instead, v6 host addresses are recommended to be built from so-called
EUI64 addresses. EUI64 addresses are -- as the name says -- 64-bits wide, and derived from
MAC addresses of the underlying network interface. For example, with Ethernet, the 6-byte
(48-bit) MAC address is usually filled with the hex bits "fffe" in the middle -- the MAC

address

01:23:45:67:89:ab

results in the EUI64 address
01:23:45:1f:fe:67:89:ab

which again gives the host bits for the IPv6 address.

::0123:451f:fe67:89ab

These host bits can now be used to automatically assign IPv6 addresses to hosts, which
supports autoconfiguration of v6 hosts -- all that's needed to get a complete v6 IP number is

the first (net/subnet) bits. IPv6 also offers a solution to assign them automatically.

When on a network of machines speaking IP, there's usually one router which acts as the
gateway o outside networks. In IPv6 land, this router will send "router advertisement”
information which clients are expected to either receive during operation or solicit upon "
startup. The router advertisement information includes data on the router's address, and i
which address prefix it routes. With this information and the host-generated EUI64 address, a | |
v6-host can calculate its IP number, and there is no need for manual address assignment, Of '!:i

course, routers still need some configuration.

The advertisement information routers create is part of the Neighbor Discovery Protocol (NDP,
see [RFC2461]), which is the successor to IPvd's ARP protocol. In contrast to ARP, NDP does
not only do lookup of v6 addresses for MAC addresses (the neighbor solicitation/advertisement
part), but also does a similar service for routers and the prefixes they serve, which is used for

‘autoconfiguration of v6 hosts.

-22-

L

1.2 INTEROPERABILITY

1.21 [Introduction

IPv6 is the proposed replacement to 1Pv4 and modifies the unsuitable and redundant parts of the
original and replaces them with more suitable features for its assumed role. Primarily this meant
increasing the address space from 32 to 128 bits, more than enough for any perceived future
usage. Also IPv6 improves the header system, removing the redundant parts and defining
extension headers to make processing more efficient. Unfortunately, due (primarily) to
addressing issues, IPv4 and IPv6 are not compatible. Due to this, and the enormous task of
converting all the IPv4 systems in the world to 1Pv6, deployment of IPv6 will prove to be a
rather complicated affair.

The process of transition between [Pv4 and IPv6 is a major issue in the networking community.
While the deployment of IPv6 would be facilitated by the deployment of IPv6 services and
applications, suppliers are reluctant to fuily support IPv6 waiting first to see if there is sufficient
interest. Unfortunately, users are reluctant to deploy 1Pv6 until they can get a comparable level
of service to that in their IPv4 networks. In an attempt to resolve the situation and increase the
spéed of IPv6 deployment, a number of transition tools have been developed to ease the process

of transition and allow users to deploy IPv6 in a useful way. These can vary from simple

techniques to quite complicated mechanisms.

~IPv6 and 1Pv4 will coexist for many years. A wide range of techniques has therefore been

defined that make the coexistence possible and provide an easy transition. There are three main

categories:

¢ Dual-stack techniques allow IPv4 and IPv6 to coexist in the same devices and networks.
* Tunneling techniques allow the transport of IPv6 traffic over the existing 1Pv4
infrastructure.

* Translation techniques allow IPv6-only nodes to communicate with IPv4-only nodes.

These techniques can and likely will be used in combination with one another. The migration to

IPv6 can be done step by step, starting with a singie host or subnet.

-23-

‘The transition mechanisms can be broadly classified into three categories:

Dual stack Tunnelling ' Translation
e Configured Tunnels e SIT
e Automatic Tunnels e NAT-PT
o Otod o TRT
¢ Tunnel Broker * Socks
e TSP e ALG
e Teredo s BIS
e BGP Tunnel ¢ BIA
s 6overd
e 'ISATAP
e DSTM

Table 2 : Classes of IPv4 to IPv6 migration mechanisms

IPV6 network':

 Address Translation []

N

) A7 IPv6 network
IPv4 intermet A

R, A

¥l
t, :;Eﬁiﬁi B

w |PvE comrmunication

et |Pyd communication

Tunnel

Figure 7 : Different Transition Strategics

-24-

1.2.2 Dual Stack Technigues

A dual-stack node has complete support for both protocol versions. This type of node is often
referred to as an IPv6/IPv4 node. In communication with an [Pv6 node, such a node behaves like
an IPv6-only node, and in communication with an IPv4 node, it behaves like an [Pv4-only node.
Implementations probably have a configuration switch to enable or disable one of the stacks. So

this node type can have three modes of operation.

¢ When the IPv4 stack is enabled and the IPv6 stack is disabled, the node behaves like an
IPv4-only node.

e When the IPv6 stack is.enabled and the IPv4 stack disabled, it behaves like an IPv6-only
node.

¢ When both the IPv4 and [Pv6 stacks are enabled, the node can use both protocols. An
[Pv6/IPv4 node has at least one address for each protocol version. It uses IPv4
mechanisms to be configured for an IPv4 address (static configuration or DHCP) and
uses IPv6 mechanisms to be conﬁgured for an IPv6 address (static configuration or

autoconfiguration).

DNS is used with both protocol versions to resolve names and [P addresses. An IPv6/IPv4 node
needs a DNS resolver that is capable of resolving both types of DNS address records. The DNS
A record is used to resolve IPv4 addresses and the DNS AAAA or A6 record is used to resolve

1Pv6 addresses.

In some cases, DNS returns only an IPv4 or an IPv6 address. If the host that is to be resolved is a
dualstack host, DNS might return both types of addresses. Hopefully, for this case, both the DNS
resolver on the client and an application using DNS will have configuration options that let us
specify orders or filters of how to use the addresses (i.e., preferred protocol settings). Generally,
applications that are written to run .on dual-stack nodes need a mechanism to determine whether
it is communicating with an [Pv6 peer or an 1Pv4 peer. Note that the DNS resolver may run over
an IPv4 or IPv6 network, but the worldwide DNS tree is mainly reachable through an [Pv4

network layet.

- 25_

A dual-stack network is an infrastructure in which both 1Pv4 and IPv6 forwarding is enabled on

routers,

Application Layer

Transport Laver (TCP/UDP)

IPYG IPv4 |

Network Interface Laver

Figure 8 : Dual Stack Model

The disadvantage of this technique is that you must perform a full network software upgrade to
run the two separate protocol stacks. This means all tables (e.g., routing tables) are kept
simultaneously, routing protocols being configured for both protocols. For network management,]
you have separate commands, depending on the protocol (e.g., ping.exe for IPv4 and ping6.exe |

for IPv6 on a host with a Microsoft operating system—both commands with different command

options), and it takes more memory and CPU power.

1.2.3 Tunnelling I

Tunneling is a mechanism that one type of packets is encapsulated inside another type of

packets. In the case of IPv4 to IPv6 migration, we can encapsulate IPv6 packets inside Pvd

packets. This enables the current IPv4 infrastructure to carry IPv6 packets. This mechanism is
especially important for IPv4 to [Pv6 migration, since the existing internet is based upon an IPv4
infrastructure. Many of the transition mechanisms we will talk about later are based on tunneling.

) There are four possible tunnel types that could be established between routers and hosts:

i
-26- '

e Router to router: An IPv6/IPv4 router tunnels IPv6 packets to another [Pv6/1Pv4 router

via IPv4 infrastructure,

e Host to router: An IPv6/IPv4 host tunnels [Pv6 packets to an [Pv6/IPvd4 router via 1Pv4
infrastructure.

¢ Host to host: An [Pv6/IPv4 host tunnels IPv6 packets to another IPv6/IPv4 host vialPv4
infrastructure.

e Router to host: An IPv6/IPv4 router tunnel IPV6 packets to an IPv6/IPv4 host, which is

the final destination.
‘Conﬁgured Tunnels

Configured tunnels are point-to-point and manually configured tunnels, which be used to connect
IPv6 hosts or networks over an IPv4 infrastructure. The IPv4 address of tunnel endpoint is
determined by contiguration information on-the encapsulating node. Therefore, the encapsulating
node must keep the information about the addresses of all the tunnel endpoints.

Configured tunnels are normally used between sites where traffic will be exchanged regularly.
Configured tunnels are advantageous over automatic tunnels for control of the tunnel paths, and
to reduce the possibility of tunnel relay denial-of-service attacks.

We can set up a direct tunnel with each site that we need to access. However, this way we have
to manage a lot of tunnels. An efficient way is that we set up a direct tunnel with an ISP which
can guarantee IPv6 connectivity to [Pv6 world. For example, we set up a tunnel with 6Bone and

thus obtain IPv6 connectivity to other IPV6 sites.

-27 -

N

Site

s IPv4
~ lpvs\ Internet
N

/ —
Site

IPvB over IPvd tunnel

Figure 9 : Architecture of Configured Tunnel

1PvG Routing

Infrastructre
Manually (Coutd Ba Shone or Manually
Configured Gther IPv6 Multiple Configured

End-User IPvBoverIPvg ISP Inlrastructure) (Pull over [Pvd End-User
[PwdfI Py Sile Tunnel """"3 Tunnel |Pv3/1PvE Site
e O T
\ e - o ;)
(S = N
? \ /1‘ L - I S
; IP4/IP [Pvd/IPvi
3 Routers Routers
| Native |PvEi Over IPvd Flow Native o
IPvdnpve IPvE Aow IPVE Flow 1pegiiPve
Host : Hosl

Figure 10 ;: Typical Use of Configured Tunnel

-28-

Source Host A estination Host B

IPv6 only IPv6 only
IPv6 over IPv4 tunnel

)
IPvG B Router R1 / . Router R2 IPv6 B

YT,

e—__”

IPva/vd IPv6/v4

-IPv4 2
\'F-w-\._._f*"-l' ol
netiwork

= | (B2 |

IPv4 R2 [¥

IBYG:B vun [T s *

Data

Figure 11 : Data stream of Router-to-Router Tunnel

Automatic Tunnel

Automatic tunnels are tunnels which are automatically created when needed and broken up when
no longer needed. The IPv6 address of tunnel end point is derived from its IPv4 which is called
IPv4 compatible address, written as ::[IPv4 address]. This allows the host to get the IPv4 address
of tunnel end point from its IPv6 address. Automatic tunnels are normally used between hosts or
between networks where there is incidental traffic exchange. Because automatic tunnels use
[Pv4-compatible addresses, they are bad for the IPv6 address architecture. Therefore, automatic

tunnels are deprecated.

-29-

IPYB/ v
Router
e
% L_QJ ‘E-:h‘:;::b =5 L;;;—_—-_-a-
r LB o -y
IPv6/IPy4 IPvE Host
Host IPv4 Site or IPv6 Sile or
Internet , Internet
= g BT :PE}"% Host
IPVEIPvé [I;L e s L
Host [IPVBHPYA

PG/ IFyv4
Huost

Router

IPvB over IPv4 tunnel
Figure 12 : Automatic Tunnel Overview
Source Host A Destination Host B

IPv6 over IPvVY tunnel
IPva/IPv4 IPva/TPv4

Router B.1 Router B2

prmeg TN TN
IPv4 only 1Py \)) i

IPv4 only }

«g__d_‘--/--—
network
[&l []
R L R NI, | STl LIS |k 4. = o
IPvG B ‘ R Rl " e 5
Data i

Figure 13 : Data Stream for Automatic Tunnels !

i

-30- |

6to4

6to4 is a kind of semi-automatic router-to-router tunneling mechanism, which uses prefix
2002::/16. An isolated 1Pv6 site, which wants to communicate with other IPv6 sites via IPv4
infrastructure, will assign itself a prefix of 2002:V4ADDR::/48, where VAADDR is the global
IPv4 address of the IPv6 site’s router. An [Pv6 over IPv4 tunnel will be established between this
IPv6 site’s router and another IPv6 site’s router. The IPv4 address of tunnel endpoint is
determined by the ‘V4ADDR’ part of the IPv6 destinétion address contained in the 1Pv6 packet
being transmitted. ‘

The requirement for using 6to4 is that you have one globally routable IPv4 address for your site.
Your IPv6 site may consist of several IPv6 machines. The globally routable IPv4 address must
be the IPv4 address of't.he 6to4 router in your IPv6 site. There is a special situation, when 6tod
site wants to communicate with IPv6-only site. In this case, communication between the sites is
achieved via a relay router, which is essentially a router that has at least one logical 6to4
interface and at least one native IPv6 interface. The relay router advertises the 6tod 2002::/16
prefix into the native IPv6 routing domain, and may advertise native IPv6 routes into its 6tod

connection.

»"“‘-va-\.
Alord T s

Internet

Ak

[Rad BERCN Y

LAl

INEIT
P

R TAR RN

e

e onver Pt rieed

Figure 14 : 6tod Tunnel Mechanism Architecture

Tunnel Broker

Tunnel broker is a semi-automatic tunneling mechanism. Configuring tunnels requires ol
? ‘cooperation of the two parties to set up the correct tunnels. Tunnel broker can be used to help

people to implement this. Tunnel broker can be looked as an IPv6 ISP offering IPv6 connectivity

. .) I
through IPv6 over IPv4 tunnels. Current implementations are web-based tools, which allow B

|
interactive setup of an IPv6 over IPv4 tunnel. By requesting a tunnel, the tunnel client gets _ ll
assigned IPv6 addresses out of the address space of the tunnel provider, which can be a single ;j
address or a network prefix. The created tunnel is between the tunnel client and the tunnel server. i

Through the tunnel server, the tunnel client can get connected to IPv6 internet.

Tunnel
Server ;
Tunnel / ol
Dual stack node broker Tunnel _ i G
Wk
(tunnel client) server i
"y
..‘ ﬁ"i_ﬂ} ‘
Tunnel end point ‘ il
Tunnel | i !
| DN server f

I
/\ Tunnel end point l l

IPVG over [Pyt tunnel

Figure 15 : The architecture of Tunnel Broker

TSP: Tunnel Setup Protocol

TSP is Tunnel Setup Protocol. It is a general method designed to simplify the setup of [Pv6 over

IPv4 tunnels. Tunnel broker is an implementation of tunnel setup protocol.

Goverd

6over4 is a tunneling mechanism which allows isolated IPv6 hosts, located on a physical link
? which has no directly connected IPv6 router, to become fully functional IPv6 hosts by using an . !ill
[Pv4 multicast domain as their virtual local link. Thus, at least one IPv6 router using the same i
method must be connected to the same IPv4 domain their for [Pv6 connectivity, 6overd is not .;:’ig

recommended. Al

ISATAP: Intra-Site Automatic Tunnel Addressing Profocol

ISATAP is Intra-Site Automatic Tunnel Addressing Protocol. It is the alternative to 6overd4 and

used inside a site. [SATAP automatically connects isolated IPv6 hosts or routers, which are
called ISATAP nodes, within an IPv4 site via automatic [Pv6- in-IPv4 tunnel, which uses the

site's [Pv4 infrastructure as an NBMA (Non-broadcast multi-access) link layer. It supports both

|
|
address autoconfiguration and manual configuration. The [Pv4 address of ISATAP link need not i l |

be globally unique. . i ‘
e

64 bits 32 bits 32 Dbits i,

9
‘ !
Linl local. site 1ocal IPv4 address of . ')

or global unicast Q000 SEFE ISATAP link

i
il
| |
Figure 16 : IPv6 address format of ISATAP node ; l
il
i

DSTM. Dual Stack Transition Mechanism

DSTM is the Dual Stack Transition Mechanism. Different from the previous tunneling

mechanisms which are based on IPv6-over-IPv4 tunnels, DSTM is based on IPv4-over-IPv6

tunnels to carry [Pv4 traffic within an IPv6—6nly network, and also provides a method to allocate

a temporary IPv4 Address to [Pv6/IPv4 nodes. DSTM can be used in a situation where the i

network infrastruc ture only supports IPv6, but some of the hosts on the network have dual-stack

-capability and IPv4 only applications.

} DSTM consists of three components: '-‘ I

-323-

* DSTM server, which maintains temporary 1Pv4 addresses pool
e DSTM gateway, which is responsible for encapsulating and decapsulating IPv4packets

over IPv6 packets,

* A dual stack host, which is called a DSTM node and wants to communicate using IPv4.

The working procedure is:
[. Dual Stack host, which wants to communicate using IPv4, requests a temporary [Pv4
address from DSTM server
2. DSTM server reverses an [Pv4 address for dual stack host from the IPv4 address pool and
sends a reply to dual stack host. DHCPv6, TSP, RPC can be used to perform the task
The following information is included in the reply:
a. The allocated [Pv4 address |
b. Thé period over which the address is allocated -
c. IPv4 and [Pv6 addresses of the tunnel end point
3. The dual stack host configures the IPv4-over-IPv6 tunnel towards DSTM gateway. An
IPv4-over-IPv6 tunnel is then set up between dual stack host and DSTM gateway. From
now on, the 1Pv4 packets from dual stack host will be tunneled to DSTM gateway.
DSTM gateway then decapsulates the ﬁackets from dual stack host and sends them to

[Pv4 internet, or encapsulates the packets from internet and sends them to dual stack host.

v L

)
DSTM
R sever DSIM gat
’ IS5TM gateway
dien,” S e PV
Diual Stack o . E Internet

Fioast

iPvB-only Site
IPyd-cver-tPve tunnel

Figure 17 : DSTM Architectusre and working procedure

234 -

Teredo

Shipworm or Teredo is a technique for the transport of UDP packets across NATs which works
well in the scenario when there is a private 1IPv6 network behind the NAT machine. Teredo
servers and relays are designated machines which allow the overlay of the Teredo network over
the existing IPv4 network. IPv6 packets are encapsulated as UDP payload and are relayed by the
Teredo relay which is available within the local network to the connected Teredo server; from
there it is routed to the appropriate Teredo server nearest to the ultimate destination where the
decapsulation of IPv6 is handled by the Teredo relay. Teredo is defined as a last resort
mechanism to be used where 6 to 4 or other tunneling mechanisms are unavailable since there is

an overhead due to the encapsulation into UDP.

BGP-tunnel

BGP tunnel explains how to interconnect IPv6 islands over an IPv4 cloud, including the

exchange of IPv6 reachability information, using BGP.

1.2.4 Translation

When IPv6 islands are installed and connected together using one ot several of the previous
‘mechanisms, communication between IPv6 hosts is enabled. Communication between an IPv4
host and an 1Pv6 host may also need to be established. Since IPv4 and IPv6 hosts use different
internet protocol, translation methods are deployed where IPv6-only devices wish to
communicate with IPvd-only devices, or vice-versa. For the purpose of translation, translator
must locate between IPv4 network and IPv6 network. Figure 16 illustrates the basic function and

location of translator.

-35.-

IPvE -—_— Transiator ———— IPrvel
network _ network

ot G Hoask

Figure 18 : Translation between 1Pv4 network and IPv6 network

SHT: Stateless IP/ICMP Translation Algorithm

SIIT is Stateless IP/ICMP Translation Algorithm. SIIT describes a method to translate between
IPv6 packet header and [Pv4 packet header. The translation is limited to the IP packet header,
and does not describe a method to assign a temporary [Pv4 address to the IPv6 node. The
- translator is operating in a stateless mode, which means that translation needs to be done for
every packet. It can only translate semantics shared between 1Pv4 and IPv6 protocols. 1t uses an
[Pv4-mapped 1Pv6 address (formatted as ::FFFF:a.b.c.d, a.b.c.d is IPv4 address) to describe the

destination that is not IPv6 capable.

ST Roviter

BT 1 o :“'* o "pvs L

Hﬁ internet e
1Pwd host

Iy hrost TP
20 21 32
T4 018 2000.21.32.43

SA- 10061018 | | SA=100.6.10.18

DA=FFFF-200.21.32 43 i DA=200.21.32.43

Figure 19 : Stateless [P/ICMP Translation Algerithm

NAT-PT: Network Address Translation with Protocol Translation

NAT-PT is Network Address Translation with Protocol Translation, which is a service that can

-36-

be used to translate an IPv4 packet into a semantically equivalent IPv6 packet and vice versa. [t
provides a combination of [Pv4/IPv6 address translation and IP4/1Pv6 protocol translation. By
installing NAT-PT between an [Pv6 network and IPv4 network, all IPv4 users are given access
to the IPv6 network without host modification; equally, all [Pv6 users are given access to the
1Pv4 network without host modification. Because some applications, such as DNS and FTP,
carry network addresses in payloads, and NAT-PT does not snoop the payload, NAT-PT needs to
cooperate with application layer gateway (ALG) to realize the translation.

Application layer gateway is a mechanism to allow hosts behind firewalls or NAT gateways' to

use applications that would otherwise not be allowed to traverse the firewall or NAT gateway.

, DNS ALG _
- ‘.W.‘."?.__............—u- g -‘__.._u....,‘i mmmmmmm QNS']
——— NAT-PT =
1ost g 1Pvd adudress paol

Figure 20 : Operation of NAT-P'T

I. Host 6 (IPv6 host) sends an IPv6 DNS query, asking for the IPv6 address of host 4 (va4
host). '

2. Because tﬁe DNS in IPv6 site has no record of the [Pv4 host, the request is forwarded to the
DNS-ALG '

3. DNS-ALG translates the IPv6 DNS query into [Pv4 DNS query, then sends it to the DNS in
IPv4 site :

4. The DNS in IPv4 site replies the IPv4 address of host 4. The reply is sent to DNSALG

5. DNS-ALG translates the IPv4 DNS reply to IPv6 DNS reply, in which the IPv4 address of
host 4 is transformed to an IPv6 address containing prefix assigned to NAT-PT and [Pv4 address
of .host 4 , then sends the TPv6 address to the DNS in IPv6 site

6. DNS in IPv6 site then sends the IPv6 DNS reply with the transformed IPv6 address of host 4
to host 6.

7. Host 6 sends IPv6 packets to host 4 through NAT-PT, using the transformed IPv6 address of

-37-

host 4 got from DNS in IPv6 site.

8. NAT-PT allocates an {Pv4 address from-its address pool to host 6. Then NAT-PT translates
? the IPv6 packets into IPv4 packets. The destination address for IPv4 packets will be the [Pv4
address of destination Host 4, and the source address for the IPv4 packet is the one selected for

Host 6 by NAT-PT. NAT-PT sends the translated 1Pv4 packets to host 4.

ALG: Application Layer Gateway

An Application Layer Gateway (ALG) is a mechanism to allow users behind firewalls or behind
a NAT gateway to use applications that would otherwise not be allowed to traverse the firewall
or NAT gateway. ' _

In IPv6-only networks, the ALG functionality can be used to enable hosts in IPv6-only subnets
to establish connections to services in the IPv4-only world and in some cases the other way
around as well. This can be achieved by setting up ALGs on dual-stack hosts which have both

1Pv6 and 1Pv4 connectivity.

IPvG-only

AN
—t S
- P
T atack 1 Internet }

: rosler ™, e
{ ‘-..____—-___‘,.-_‘_ ______ o

Lhual stk
A sarvar

Figure 21 : Application Layer Gateway

TRT: Transport Relay Translator

“TRT is Transport Relay Translator, which is a translator located in the transport layer. TRT

~ enables IPv6-only hosts to communicate with IPvd-only hosts through translation of UDP or

-38-

repay of TCP. |

We take client-server mode as example to explain this.

-

If the IPv6 client and the IPv4 server communicate using TCP, TRT locates between the the [Pv6 , 4
client and the 1Pv4 server, terminates the IPv6 TCP session from the IPv6 client, and acts as an .
IPv6 server to the IPv6 client. At the same time, it originates a second 1Pv4 TCP session with the

IPv4 server, and copies received data from each session to the other.

If the IPv6 client and the 1Pv4 server communicate using UDP, TRT locates between the [Pv6
client and the 1Pv4 server, receives IPv6 UDP datagram from the 1Pv6 client, translates them into

[Pv4 UDP datagram, and sends them to the IPv4 server.

To implement TRT, there should be a dedicated router, which is dual stack, at a site to translate

|
|
{UDP, TCP}/1Pv6 to {UDP, TCP}/IPv4 and vice versa. Also, there should be a DNS server with];1
: 1
E

DNS-ALG, which can map IPv4 addresses to IPv6 addresses. No modification is necessary for
IPv6 hosts and IPv4 hosts. The TRT system can work with most of the common internet

applications: HTTP, SMTP, SSH and etc.

[INS-ALEG : ‘j.:
RN TRT ‘Bﬁﬁ
|

2“‘*\.\\‘ s
e S bt el . b PV i
only ~ HostA Home only A

Figure 22 : Operation of TRT i

‘1. Host A in [Pv6 network sends a DNS query asking the IPv6 address of host B

2. DNS-ALG replies to host A with the IPv6 address of host B, which is constructed from the
IPv4 address of host B and the special network prefix associated with the TRT.
3, The TRT then acts as reply or translator between host A and host B. Host A sends IPvo6

packets to TRT.

4. TRT translates the IPv6 packets to IPv4 packets, and sends them to host B.

Sockod ! il

Sock64 is mechanism that sock64 gateway accepts enhanced socks connections from IPv4 hosts

*and relays them to IPv4 or IPv6 hosts and vice verse, and thus enable IPv4 hosts to communicate

-39-

with IPv6 hosts. To use sock64 mechanism, the site must have socks aware client and a socks
server. The mechanism does not request modification of the DNS system, because the DNS

name resolving procedure at the client is delegated to the sock64 gateway.

Pvd
e IPva)

D\ e Internat)
[PuiG Host — < "y
== kel
E

1 Dual Stack ™.
D Socki Seovar
1PvB
Interneat

\'-\

IPyis Host IPv6
site

IPv6
Router

Figure 23 : Sock64 Architecture

BIS : Bump in the Stack

BIS is Bump in the Stack. It is a translation interface between IPv4 application and the
underlying IPv6 network, and it assumes an underlying IPv6 infrastructure. BIS allows [Pv4
applications running on an IPv4 host to communicate with IPv6 only hosts, or allows IPv6 hosts
to communicate with other IPv6 hosts using existing IPv4 applications.

BIS mechanism consists of 3 components:

1. Translator: It receives IPv4 packets from the upper layer, translates the IPv4 packets into IPv6
packets and using the IP conversion mechanism defined in SIIT, and sends them to IPv6
network. Or receives IPV6 packets from IPv6 network, translates the IPv6 packets into IPv4
packets and sends them to the upper layer.

2. Extension name solver: It is responsible for returning a “proper” reply the IPv4 application’s
DNS request. If the IPv4 application sends a DNS request asking the IPv4 address of destination
host, the extension name resolve will intercepts the request and sends a modified request asking
the IPv4 and IPv6 address of the destination host. If IPv4 address is resolved, extension name
solver will send the IPv4 address to IPv4 application; if only IPv6 address is resolved, it will

request Address mapper to assign an [Pv4 address and send the constructed [Pv4 address to IPv4

+

-40 -

application.
3. Address mapper: It is responsible for the assignment of {Pv4 address, according to the request

of translator or extension name server, and maintains the IPv4 address and IPv6 address table.

IPvd applications

UDPTCR! | i
1Pvé Exlension

HEN]
f| resolvor

Network card Driver

dNotwork cards

Figure 24 : Structure of dual stack host with BIS
BIA: Bump in the APl

BIA is Bump- in-the-API. BIA inserts an API translator between the socket API and the TCP/IP
module of the host stack. When IPv4 applications want to communicate with other IPv6 hosts,
" BIA detects the socket API functions from [Pv4 applications and invokes the 1Pv6 socket API
functions to communicate with the IPv6 hosts, and vice versa. In order to support commtlnicatfon
between IPv4 applications and the target IPv6 hosts, pooled 1Pv4 addresses will be assigned
through the extension name resolver in the BIA. Using BIA, both TCP(UDP)YIPv4 and
TCP(UDP)/IPv6 stacks are implemented on the hosts.

BIA consists of 3 components:

|. Extension name resolver: It is responsible for returning a “proper” reply the IPv4 application’s
DNS request. If the [Pv4 a;ﬁplication sends a DNS request asking the [Pv4 address of destination
host, the extension name resolve will intercepts the request and sends a modified request asking
the IPv4 and IPv6 address of the destination host. If IPv4 address is resolved, extension name
solver will send the IPv4 address to IPv4 application; if only IPv6 address is resolved, it will
request Address mapper to assign an [Pv4 address and send the constructed 1Pv4 address to [Pv4

application.

- 41 -

2. Function mapper: 1t is responsible for translating IPv4 socket API functions into IPv6 socket
API functions, and vice versa.
? 3. Address mapper: It is responsible for the assignment of IPv4 address, according to the request

of translator or extension name server, and maintains the IPv4 address and IPv6 address table.

IPv4 applications

Socket AP (IPv4, IPv6)

£xtension Functian Addrass
name resobver Mupper mapper

TCPUDP/IPv4 TCP/UDP/PVS

Network Interface Driver

Figure 25 : Structure of Dual Stack host with BIA

-42-

1.3 SELECTION OF TRANSITION TECHNIQUE

The basic selection comes down to two broad choices- as DUAL STACK router configuration or

TUNNELING.

If presented with a scenario where the router was open to configuration and upgrade, Dual Stack
provides an obvious advantage. With router configuration the transition is seamless and

transparent without any other changes to the existing network infrastructure.

Tunneling is used when changes in the existing network can only be software based and not

hardware (router) changes.

‘We have used “Configured tunneling with payload transfer” to test our transition scheme. The
configured tunnel application handles packets on a specific address and port and suitably strips

data from [Pv4/6 to |Pv6/4 format.

In Payload Transfer tunneling mechanism we simply strip the data from an [Pv4 packet and
enclose it in an IPv6 packet if the packet is sent from an IPv4 network to an IPv6 network.
Likewise, we enclose an [Pv6 packet’s data in an [Pv4 header if the packet is sent to an [Pv4

network from an IPv6 network.

-43 -

2. DESIGN OF APPLICATION

2.1 Statement Of Purpose

‘The application enables data transfer between IPv4 and IPv6 nodes only and handles the
interoperability issue. It acts as a bridge between the two systems implementing different
protocols that is either IPv4 or IPv6. A server and a client is also formulated which transfer

files from the latter to the former in different IP protocols.

2.2 Context of the Application

Environment: User who acts as a controller and inputs the required inputs for the application
to work. The application responds to the user by showing a status report. The other external
terminators are a host machine and a server machine implementing different protocols and
interact with the applicatioﬁ by sending and receiving data in the packets supported by

respective protocols.

2.3 DFD(Data Flow Diagram)

The following data flow diagrams depicts the flow of data across implemented module. The
terminators interacting with the application are user and host/server. Initially the user
requests for an application instance by entering required paraméters, the verify parameters
modules verifies the input data format and all the required inputs if there is any inconsistency
the error information is passed to the status window which is displayed to the user by display
module. The verified data is then passed to the event handler which links the GUI to initialize
module by invoking it and passing the parameters with required input. The initialize modules
initializes the variables and. sockets necessary for communication. Both modules reports any
error message to display module. Main modules start execution with a reference to all the
initialized variables and sockets. It mainly invokes the three modules InitializeBtoSthread,
BtoSthread, HtoBthread which are the parallel threads of execution. Btosthread interact with
the server to send the data while HtoBthread interacts with host side to receive the data
sending. All the protocol conversions are done in the respective modules. The main thread
servers one more purpose that is purging old threads who have finished execution. All these

modules reports to display module in case of any error occurs.

-A4 -

[aremetsgs

. Wedfied :
; Mk !

fializat om data

rals Parzmetars

RIFSrE -

Alispay™,
i’ '.I

' , Stetus b deolay

Dats ety

Figure 26 : Data Flow Diagram for tunnel application

- 45

24 Class and Structure Specification

Class Name: CNetworkInterface

Responsibilty: When the input parameters are received from thé GUI interface they are stored
in the member variable NIPa.rameters. The member functions of this class performs the
tunneling of data from the client to the server. The member functions create sockets for the
both ends and the data is converted from IPv4 to IPv6 and vice versa. 3 threads are created
one to handle the data from client to server other from server to client and another the handle

the main application.

Members F unctions Prototype:

Public:

int Initialize();

int [nitializeBtoSThread(struct TwinSockets *mySocketsChain);
int Stop();

CNetworkInterface(struct Parameters *myParameters=NULL);
virtual ~CNetworkInterface();

private:

static UINT MainThreadLoop(LPVOID pthis);

static UINT HtoBThreadLoop(LPVOID pthis);

static UINT BtoSThreadLoop(LPVOID pthis);

-46 -

Member Variables:

private:

CWinThread* MainThread;
CWinThread* HtoBThread;
CWinThread* BtoSThread;
SOCKET HtoBSock;

struct TwinSockets *SocketsChain;

struct Parameters *NIParameters;

Member Functions Specification:

CNetworkInterface():constructor initializes the variables with input parameters.The structure

Parameters is used to initialize all variables.

~CNetworkInterface():Default destructor which acts as the garbage collector once the

application is exited.

Initialize(): This function is used to create a socket which will listen to incoming connections
on the specified port. It also creates a main thread which is executed by the mainthreadloop()

function. The function returns 0 on proper execution nor a non-zero number.

MainThreadLoop(): It is declared in the manner specified as this is the format a thread handle
function has to be declared. The purpose of this function is to create a new twinsockets object
which handles the later ﬂlnctionalit.y. If the user stops and starts the application then a linked
list is formed because of this function and the earlier nodes of the linked list is purged in this
function. Out here InitializeBtoSThread() function is called and the thread from HtoB(host to

application) is created and the thread from BtoS(Application to server) is created.

AT«

InitializeBtoSThread(): This function is used to create the connection between the application
and the server. The socket is created and connected to the specified address and port of the

server. The local name of the server and the address of the local socket is also retrieved.

HtoBThreadLoop(): This is the handle function which is executed when the thread is created
‘which handles the data flow from the client to the server. Out here the data is taken from the

client accepting socket and send on the connecting socket of application to the server.

BtoSThreadLoop(): This is the handle to the function which handled the data flow from the
server to the application if there is any. Out here as the data is received from a connecting

socket it is blocking.

Stop(): This is a garbage collector function which terminates all threads and the linked list

which is kept hanging.
Variables Specification:
MainThread: Pointer of type CwinThread which is the handle of the main network thread.

HtoBThread: Pointer of type CwinThread which is the Handle of the thread serving

connections between Host and Application.

BtoSThread: Pointer of type CwinThread which is the Handle of the thread serving

connections between Application and Server.

HtoBSock:Object of socket class.It handles the socket which is listening to connections on

the specified port.
SocketsChain:Pointer to a TwinSockets type structure.

NIParameters:Pointer to a parameter type structure used for initializing all the class variables

at once.

o A Qs

Structures used:

struct TwinSockets {
CWinThread* HtoBThread;
CWinThread* BtoSThread;
int HtoBThreadEnded;
int BtoSThreadEhded;
int SocketType;
SOCKET HtoBSock;
SOCKET HtoBConnSocket;
SOCKET BtoSConnSocket;
int ThreadNumber;
struct TwinSockets *next;

+ TwinSockets;

struct Parameters {
CString Receivinglnterface;
CString Sendinglnterface;
CString HtoBPort;
CString ServerAddress;‘

CString BtoSPort;

int i4To6;

int SocketType; | I

-49-

int MaxConn:
} Parameters;

Twinsockets: This structure is used for starting and purging all the threads with the start and
end of application.Every time the application is restarted a new node to the Twinsockets list . ‘

is added, The current node is deleted from the list

and all the input parameters are passed in the new node which initializes the application

again and the main thread starts to execute.

Parameters: This structure is used mainly to take all the inputs specified in the GUI of the -

application,

{
1
.

-50-

2.5 Flow Charts

Constructor of the CNetworkInterface Class

constructor

Initialize i
Niparameter
s A

STOP

Figure 27 : Flow chart of the constructor function of the class CNetWorklnterface

'-initialize{)

Is

SOCK_STRE NO—f SEBWUS

AM _w_i_ndow .

w

initialize
socket address
structure ‘

initializing
object
addrinfo

TATUS
ERROR YES——— VS\;';INDgw —_—

=}
=

v

HtoB Sccket
initialized
V|

I -IHEOB Socketm
* binded with
address

Hto8 Socket
made in
listening mode 4

ADDRINFO
object freed.
lect freed. 4

mainthread|))
oop{) — - STOP
started

Figure 28 : Initialize Function of CNetworklnterface

-52-

STOP

5TOP

Function MainThreadLoop()

4 MainThreadL
oop()

Init
tempsocketschai
n as last sockets

chain node .

mysocketsch
ain new twin
. sockets

tempsockets
chain==NUL

tempsocketsc
hain->next=m -
ysocketschain g

" Socketschai
YES—I» n=mysockets
chain 4

!

mysocketsch

filled in 4

Created

STOP

HtoB thread

HtoBconn
purged

ain fields ~—————pp Old thread ——P socket created
a

by accept g

Address of
incoming

connection

InitializeBtos
thread fn
calle_c_[___ A

¢ BtoS thread
: created
4 B Y |

Figure 29 : Flow Chart of the MainThreadLoop() Function

. -53-

Function InitializeBtoSThread()

Initialize BtoS
thread()

initialize

socket addr.
structure

addrinfo
object init. by
getaddrinfo() 4

App. to
server socket
created A

STATUS

Socket
connected with

the server
address -

'

getpeerna
me()_m 4

local name
of the

local pname

...—>
WINDOW

STOP

of the socket

 socket

Figure 30 : Flow Chart of the function InitializeBtoSThread

-54-

>

STOP

Function BtoSthreadloop

BtoSthread|
ocop

YES - STOP

Q
=

A4 '

P bytes received : -
BtoS socket, -]
server 4 Wi

amount
received==
error||0

V..

send bytes
received to HtoB
Socket. Client ‘

ERROR ||
HtoB thread
ended

NC

v . - closesocke BtoS thread
NO t0) ——P ended flag —p» STOP

more bytes

to receive

Figure 31 : Flow Chart of the function BtoSthreadLoop

-55.

Function HtoBth_readloop()

HtoBthread|
oop

YES " sTOP :

O
=

> bytes y

received from . .
HtoB socket

amount
received==
error|]0

-

ﬁ send bytes |
' received to - |

ERROR ||
BtoS Thread
ended

| M > closesocké Htob Thread
MO t() —P ended flag - —P STOP
4 init. 4

more bytes
to receive

Figure 32 : Flow Chart of the function HteBThreadLoop()

-56 - !

Function stop()

Mainthrea

d not init. YES— sToP

Init. Thread as
Mainthread->m
_hthread ‘

thread
termrnated_‘

HtoB Socket
closed ‘
‘ A

Socketsch
ain exist

f NO P STOP

terminate
both threads
A

delete this
hode - 4

Figure 33 : Flow Chart of the function Stop()

-57-

2.6 Test Application

2.6.1 _Class and Structure Specification

Class Name: Wcomm

Responsibilty: This class is used to initiate a instance of a server and a client. The server and
the client can be of IPv6/IPv4. This application is used to send files from the client in one

protocol and receive the file on the server in another protocol.

Members Functions Prototype:

Public:

Weomm(int i);

void ConnectServer(string ipadd, int port);

void startServer(int port,int y); Ll
void waitForClient(); b
void closeconnection();

void fileSend(string fpath):

void fileRecieve();

Member Functions Specification:

Weomm(int i): Constructor which creates a socket of IPv4 or IPv6 according to the choice

indicated by the flag which is the variable i.

void connectServer(string ipadd, int port): This function is used by the client to connect to the
server whose address is entered by the user at the console. The port of the server is pre-

written in the program as 27000.

-58-

void startServer(int port, int y): This function is used by the server to make the socket which
is already created a listening socket which can accept connections of IPv6 or IPv4 as

specified by the program.

void waitForClient(): This function calls the blocking protocol accept which enables the
server to accept incoming connections. It also prints out the address and port of the client

which is connected with the server.
void closeConnection(): This function destroys the socket which was created by the program,

void fileSend(string fpath): This function enables the client to send the file in the specified
protocol. The file is denoted by the full path of it in the object fpath. The file is send in
chunks 1024 bytes.

void fileRecieve(): This function enables the server to accept the file in the specified
protocol. The server accepts the file in chunks of 1024 bytes. The file is stored in the place

from where the executable is run,
Class Name: Tester

Responsibility: The class houses the function main() from which the program starts
executing. The main function of this class is to invoke the various functions of the class

wCoImm.

-59.

2.6.2 Test Application Flow chart

tester()

'

Enter choice
for the type of
server/client

v

Socket
made of
IPVG or IPv4 4

IP Address Of
the Server

Connect to
._S_erver 4

SERVER .
STARTED " Full Path
¢ - of the file
Waiting For
the Client, ‘
A File Send
File) l
Rg_;glve 4) .
¢ , ! Close
_ Connectuon‘
Close

Connection

STOP.

Figure 34 : Flow chart of the test application

-60-

3. IMPLEMENTATION

APPLICATION AND TEST APPLICATION SOURCE CODE

-6l -

3.1 Application Source code

//NETWORK INTERFACE .cpp

//Including Self made header files.

#include "stdafx.h'"-

#include "46tunnel.h"

#include "NetworkInterface.h"

// dlgstatus is a object of class Cstatus which is predefined in MFC. It
is used to print

//the status messages.

extern CStatus dlgStatus;

// Code used to print the file name in the error slot. Self produced by
Visual Studic 2005

#ifdef DEBUG

#undef THIS FILE

static char THIS FILE[]=_ FILE ;

#define new DEBUG NEW

#endif

// Constructor which takes a pointer variable of type parameters and

assigns it to

// the private member NIParameters.

CNetworkInterface: :CNetworkInterface (struct Parameters *myParameters)

{ _ ' '
NIParameters= myParameters;

t

//Destructor (optional) i1f NIParameters exist delete.
CNetworkInterface: :~CNetworkInterface ()
{

1f (NIParameters) delete NIParameters:;

1

int CNetworkInterface::Initialize({)
{
// Bddrinfo is a structure used to hold host information.
ADDRINFO Hints, *AddrInfo;
int RetVal:
// Cstring is a predefined class in MFC.
CString ctmp;
SoccketsChain= NULL
. // Only TCP supported. So checklng it.
if (NIParameters->SocketType != SOCK STREAM) {
dlgStatus.Print ("CNetwork Interface: Socket type not
supported”, 0});
return -1;
}
/*memset i1is a function which initializes a structure with the second
argument. And the
third argument spc1f1es the size of the structure.=*/
memset (&Hints, 0, sizeof(Hints)):

-62-

/*the field of Hints which is an object of ADDRINFO is filled
according to the opticns

selected. This cbject will enable the application to make a litening
socket.

So 1f 14To6 is 1 then the family is IPV4 as the application has to
listen to IPv4 packets. */ ’

Hints.al family = (NIParameters->14To6 == 1) ? PF INET : PF_INET6;

Hints.ai socktype = NIParameters->SocketType;

/* The AI NUMERICHOST is initialized then the getaddrinfo attemps name
resolution.
- Setting the AT_PASSIVE flag indicates the caller intends to use the
returned
socket address structure in a call to the bind function.*/
Hints.al flags = AIﬁNUMERICHOST | AT PASSIVE;

//getaddrinfo provides protocol independent translation from host
name to address. :

//The parametrs passed are:

/* NULL TERMINATED STRING CONTAINING THE HOST ADDRESS.

PORT NUMBER.

POINTER TO A ADDRINEFC STRUCTURE THAT PROVIDES HINTS.,

POINTER TO A EMPTY ADDRINFO STRUCTURE CONTAINING RESPCNSE CF THE
STRUCTURE.

RETURN VALUE NON ZERO IF ERROR.*/ -

RetVal = getaddrinfo/ NULL, NTParameters->HtoBPort, &Hints,
&AddriInfo);

//ERROR DETECTION
if {(Retval t= 0) {
ctmp.Format {"getaddrinfo failed with error %d: %s", RetVal,
gai strerror(Retval));:
dlgStatus.Print (ctmp, 0):
return -1;

// This application only supperts PF _INET and PF_INETG.
if ({AddrInfo-»ai_ family !'= PF_INET) && (Addrinfo->ai_family !=
PF_INET6)) {
dlgStatus.Print ("CNetworkInterface: Socket type not
supported™, 0);
return -1;

1

/* The socket(} function is used to create a new socket. The

parameters passed are:

THE FAMILY OF THE CREATED SOCKET (PF_INET OR PF_INETG6)

THE TYPE OF SOCKET (SOCK DGRAM || SOCK_STREAM || SOCK_RAW)

THE TYPE OF PROTCCOL : IPV4 || IPVG

THE RETURN TYPE IS A HANDLE TO THE NEWLY CREATED SOCKET. */

HtoBSock = socket (AddrInfo->ai family, AddrInfo->ail socktype,
AddrInfo-»rai proteocol);

//Error Detection., WSAGetlLastError{) prints the last error occured

in words.,
if (HtoBSock == INVALID_SOCKET) {

-63-

dlgStatus.Error("socket ()", WSAGelLastError(), O0):
return -1;

1

/*The bind() function associates a local address and port combination
with a new socket just created.
This is most useful when the application is a server that has a
well-known port that clients
know about in advance. The paremeters passed are;
THE HANDLE OF THE SCOCKET JUST CREATED.
THE ADDRESS TO WHICH IT HAS TO BIND.
THE LENGTH OF THE ADDRESS.)
RETURN TYPE IS OF TYPE SOCKET ERROR IF THERE IS A ERRCR.*/
if (bind(HtoBScck, AddrInfo->ai addr, AddrInfo->ai addrlen) ==
SOCKET ERROR) { I
dlgStatus.Error{"bind{)", WSAGetLastError(), 0);:
return -1i;

1

/* the listen{) function puts a socket in a state where it can
listen to incoming connections.
The parameters passed are:
THE SOCKET WHICH IS SUPPCSED TO LISTEN
THE NC. OF MAX CONNECTIONS IT SHOULD ALLOW TO BE LISTENED.
*/
if {listen(HtoBSock, NIParameters->MaxConn) == SOCKET_ ERROR} {
dlgStatus.Error("listen()", WSAGetLastErrcr(), 0);
return -1;
}
//5tatus message that the application is listening on the specified
port for the specified proctecol
//for the specified number of connections.
ctmp.Format ("'Listening' on port %s, protocol %s, protocol family %s",
NlParameters—->HtoBPort, "TCP", (AddrInfo->ai family == PF_INET)
? "PF_INET" : "PF_TINET&") ;
dlgStatus.Print (ctmp, 0);
//The freeaddrinfo{) function frees address information that the
‘getaddrinfeo functicn , :
- //dynamically allocates in its addrinfo structures.
freeaddrinfo {AddrInfo);
/* The AfxBeginthread is used to create a new thread.
The parameters are:
The controlling Function for the working thread.
The object of a class derived from CWinthread,
The return value is a pointer to a newly created thread value. */
MainThread = AfxBeginThread(MainThreadLoop, this};

if (!MainThread) {
dlgStatus.Print ("Network Interface error: Error launching the
main thread", 0): :
return -1;
}
//The function initialize returns O upon properly execution.
return 0;

-64-

int CNetworkInterface::InitializeBtoSThread(struct TwinScckets
*mySocketsChain)
{

ADDRINFQO Hints, *AddriInfo;

char AddrName[10247;

CString ctnp’ :

//The sockaddr storage structure stores protocol independent socket
address information.

//sock addr is specific to ipvé and sock addré to ipvé.

struct sockaddr_storage Addri '

int RetVal, AddrLen;

/* By nol setting the sockets flag to AI_PASSIVE we intend to say
. that the returned address will be
used for connect*/
_ memset (&Hints, O, sizeof (Hints}):
Hints.ai family = (NIParameters->i4To6 == 1) 7 PF_INET6 : PF_INET;
Hints.ai socktype = NIParameters->3ocketType;
RetVal = getaddrinfo(NIParameter54>ServerAddress, NIParameters-
>BtoSPort, &Hints, sAddrinfo);

if {Retval 1= 0} {
ctmp.Format("Cannot resolve address [%s] and port [$s], error %d:
&s”,
NIParameters»>ServerAddress, NIParameters—>BtoSPort,
RetVal, gaiﬂstrerror(RetVal));
dlgStatus,. Print (ctmp, mySocketsChain—>ThreadNumber);
return -1; .

if (AddrInfo->ai_next != NULL) {
dlgStatus.Print(“More than one socket requested",
mySocketsChain—>ThreadNumber);
return -1;

}

// Creating the socket which connects the application to the recelving
server, '
mySocketschainﬂ>BtcSConnSocket - socket (AddrInfo->ai_family, Addrinfo-
»al soccktype, AddrInfo—>aiﬁprotocol);
if (mySocketsChain—>BtoSConnSocket == INVALID SOCKET} {
dlgStatus.Error("socket()", WSAGetLastError(), mySocketsChain—
>ThreadNumber) ;
_ return -1;
}
//status message of attempting to connect tc a specified server
ctmp.Format("Attempting to connect to: %s",
NIParameters_>8erverAddress.GetBuffer(Q) ? NIParameters-
>ServorAddress.GetBuffer(O) : "localhost");
dlgStatus.Print(ctmp, mySocketsChain—>ThreadNumber);
//The connect() function establishes a connection with the specified
address to a specified socket.
/* The parameters passed are:
THE SOCKET ON WHICH THE CONNECTON HAS TC BE ESTABLISHED
THE ADDRESS TO WHICH THE CONNECTION AS TO BE ESTABLISHED
THR LENGTH OF THE ADDRESS

-65 -

THE RETURN IS SOCK ERROR IF THERE IS A ERRCR */
if (connect(mySocketsChain—>BtoSConnSocket, AddrInfo->ai addr,
Addrinfo-»ai addrlen) == SOCKET ERROR) { a
ctmp.Format ("connect () to zs", NIParameters->ServerAddress) :
dlgStatus.Error(ctmp.GetBuffer(O), WSAGetLastError(},
mySocketSChain—>ThreadNumber);
return -1;

}

AddrLen = sizeof (Addr);
/* The function getpeername() retrieves the name of the peer to which
the socket is connected to.
The parameters passed are:
THE SOCKET WHICH IS CONNECTED
THE ADDRINFC OBJECT WHICH WILL TAKE THE RETRIEVING VALUES
THE SIL#FE OF THE OBJECT IN BYTES.
THE RETURN VALUE IS ZERO IF NO ERROR.*/
if (getpeername(mySocketsChain—>BtoSConnSocket, {LPSOCKADDR) &Addr,
sAddrien) == SOCKET ERROR)
{
dlgStatus.Error("getpeername()", WSAGetLastError(),
mySocketsChain—>ThreadNumber};
}
else
{/*The getnameinfo() function provides name resclution from an
address to the host name. :
POINTER TO A SOCKET ADDRESS STRUCTURE
LENGTH OF THE SOCKET ADDRESS STRUCTURE
POINTER TO THE HOST NAME
LENGTH OF THE POINTER
POINTER TO THE SERVICE NAME ASSOCTIATED WITH THE PORT NUMBER
LENGTH OF THE POINTER OF THE SERVICE NAME
FLAGS ASSOCIATED WITH THE SOCKET.
RETURNS 0 IF ON SUCCESSFUL COMPLETION. */
if (getnameinfo((LPSOCKADDR)&Addr, AddrlLen, AddrName,
sizeof {AddrName), NULL, O, NI_NUMERICHOST) 1= 0]
strcpy (AddrName, "<unknown>'"};

ctmp. Format ("Connected to %s, port %d, protocol s, protocol
family %s", '
AddrName, ntohs(SSwPORT(&Addr)),
{AddrInfo->ail socktype == SOCK_STREAM) 7 "TCp" : “UDB",
(AddrInfo->ai family == PF_INET) ? "pPE INET" : "PF INET&"};
dlgStatus.Print (ctmp, mySocketsChain->ThreadNumber);

}
freeaddrinfo {AddrInfo};

AddrLen = sizeof (Addr):

/* The getsockname () function is used to retrieve the local name of
the socket or the local address and port

the system picked up for us. The parameters passed are:

THE SOCKET WHICH IS CONNECTED. .

THE ADDR_INFO OBRJECT ON WHICH THE VALUES ARE RETRIEVED

THE LENGTH OF THE OBJECT IN BYTES. */

if (getsockname(mySocketsChain—>BtoSConnSocket, {LPSCCKADDR) &Addr,
sAddrLen) == SOCKET ERROR)

{

-66 -

dlgStatus.Error("getsockname()“, WSAGetLastError (),
mySocketsChain—>ThreadNumber};
}
else
{
if (getnameinfo((LPSOCKADDR)&Addr, AddrLen, AddrName,
sizeof {AddrName), NULL, O, NI NUMERTCHOST) 1= 0)
strcpy (AddrName, "<unknown>") ;
ctmp.Format ("Using local address %$s, port %d\n", AddrName,
ntohs(SS_PORT(&Addr)));
dlgStatus.Print (ctmp, mySccketsChain->ThreadNumber) ;
}

return (0;

int CNetworkInterface::Stop()
{
if (!MainThread} return FALSE;
HANDLE thread=MainThread->m_hThread;
/*The TerminateThread() function is used to terminate the
thread.Parameters. passed are:
THE THREAD TC BE TERMINATED
THE EXIT CODE OF THE THREAD.
ON SUCCESSFUL THE THREAD RETURNS A NONZERO VALUE. */
BOOL res=TerminateThread(thread,0);
//The closesocket () function is used to close a socket.
closesocket (HtoBSock)
dlgStatus.Print ("Closing main thread", 0);

//if no connecticns have been opened, SocketChain is still NULL

// and the other threads are still to be created
if {!SocketsChain) return -1;

struct TwinSockets *mySocketsChain= SocketsChain->next;

while (mySocketsChain= SocketsChain->next) {
thread= SocketsChain->BtoSThread;
res=TerminateThread {thread, G);
thread= SocketsChain->HtoBThread;
res=TerminateThread (thread, 0);

delete SocketsChain;
SocketsChain= mySocketsChain;

}

return res; - //return 1 if everything works correctly

UINT CNetworkInterface::MainThreadLoop (LEVOID pthis) //UINT & LPVOID is

reguired by AfxBeginThread()

{
static int ithread:;

-67-

/* fd set is used to make a set of sockets which is used to variuos
purposes. */
fd set SockSet;
SOCKADDRﬁSTORAGE From;
int FromLen;
char Hostname[1024];
CString ctmp;
CNetworkInterface *myClass= (CNetworkInterface*) pthis;
if (myClass == NULL) return -1; // illegal parameter

//Initializes the sockets in the set to zero.
FD_ZERO(&SOCkSet);

if (myClass—>NIParameters->SocketType = SCCK STREAM) return 0;
while (1) {

//Creates a new TwinSockets struct and inserts it into the
SocketChain tail

struct TwinSockets *mySocketsChain= myClass->SocketsChain;

struct TwinSockets *tempSocketsChain= NULL;

while (mySocketsChain)

{
tempSocketsChain= mySocketsChain;
mySocketsChain= mySocketsChain->next;

}
mySocketsChain= new TwinSockets;

//insert the new SocketTwin as the new tail

if (tempSocketsChain == NULL) myClass->SocketsChain=
mySocketsChain;

else tempSocketsChain->next= mySocketsChain;

ithread++; _

//Fills the remaining SocketTwin fields
mySocketsChain->SocketType= myClaSS4>NIParameters—>SocketType;
mySocketsChain—>HtoBSock= myClass->HtoBSock;
mySocketsChain->next= NULL;

mySocketsChainA>ThreadNumber= ithread;
mySocketsChainn>HtoBThreadEnded= 0;
mySocketsChain—>BtoSThreadEnded: o]

// 0ld threads purging
struct TwinSockets *purgeSocketsChain= myClass->SocketsChain;
tempSocketsChain= NULL;

while (purgeSocketsChain) A
i (purquocketsChain—>HtoBThreadEnded) &&
(purgeSocketsChain—>BtoSThreadEnded))
{
HANDLE thread;
BOOL res;

thread= purgeSocket5Chain—>8toSThread;
res=TerminateThread (thread;0);

SERS

G R S
L

fl
1

thread= purgeSOcketsChain—>HtoBThread;
res=TerminateThread(thread,O);

if (tempSocketsChain == NULL) | // The
thread at the top of the list ended
nyClass->SocketsChain= purgeSocketsChain-
>next;
delete purgeSocketsChain;
purgeSocketsChain= myClass->SocketsChain;
//otherwise next statement will give protection error
}
else
{
tempSocketsChain->next= purgeSocketsChain-
>next;
delete purgeSocketsChain;
purgeSocketsChain= tempSocketsChain->next;
//otherwise next statement will give protection error

}
}

tempSocketsChain= purgeSccketsChain;
purgeSocketsChain= purgeSocketsChain->next;
}
// End old threads purging

FromLen = sizeof (From);
/*The accept () function permits an incoming connection attempt
on a socket.
THE SOCKET WHICH IS IN THE LISTENING MODE.
POINTER TO AN ADDR_INFO STRUCTURE WHICH RETRIEVES THE ADDRESS
OF THE TINCOMING CONNECTION
THE LENGTH OF THE OBJECT.
RETURN OF THE TYPE SOCKET WHICH 1S CONNECTED AND THE PREVIOUS
SOCKET IS KEPT ON LISTENING */
mySocketsChainf>HtoBConnSocket= accept (myClass->HtcB3ock,
(LPSOCKADDR) &From, &FromLen) ;
if (mySocketsChain—>HtoBConnSocket == INVALID SOCKET) {
dlgStatus.Print ("\n", mySocKetsChain~>ThreadNumber);
dlgStatus.Error("accept()”, WSAGetLastError (),
mySocketsChain—>ThreadNumber);
retdrn i'=1;
}

1 (getnameinfo((LPSOCKADDR)&From, FromLen, Hostname,
sizeof (Hostname), NULL, O, NI_NUMERICHOST) I= 0)
strcpy (Hostnamne, "<unknown>") ;
ctmp.Format(”\nAccepted connection from %s", Hostname):
dlgStatus.Print (ctmp, mySocketsChain—>ThreadNumber);

// The function to application to receiving server is called

1f (myClass—>In1tializeBLoSThread(mySocketsChain) '!= 0) return

//The thread is formed which handle the application to server.

269 =

mySocketsChain->BtoSThread= AfxBeginThread(BtoSThreadLecop,
myScocketsChain) ;

if (!'mySocketsChain->BtoSThread) {
_ dlgStatus.Print ("Network Interface error: Error
launching the BteS thread", mySocketsChain->ThreadNumber) :
return -1;

}

//The thread is formed which handles the client to
application. :
) mySocketsChain~>HtoBThread = AfxBeginThread{HtoBThreadLoop,
nysocketsChain) ;

if (!mySccketsChain->HtoBThread) |
dlgStatus.Print {("Network Interface error: Error
launching the HtoB thread", mySocketsChain->ThreadNumber);
return -1i;

}

return 0;

UINT CNetworkInterface::HtoBThreadLoop{LPVOID pthis)
{)
fd set SockSet;
SOCKADDR_STORAGE'From;
int FromLen, &mountRead, Retval;
char Hostname([1024], Buffer[64000];
CString ctmp;
TwinSockets *SocketTwin= (TwinSockets *)} pthis:
if (SocketTwin == NULL) return -1; // illegal parameter
FD_ZERO(&Sock3et); ‘
while(1l) {
/*The recv{) function recieves bytes of data from a connected

socket which has an incoming connection.

The parameters passed are: :

THE, HANDLE TO THE SOCKET WHICH HAS AN INCOMTNG
CONNECTION

THE BUFFER THE BYTES WILL BE READ

THE SIZE OF THE BUFFER.

The function returns the amount of bytes read. */
AmountRead = recv{SccketTwin->HtoBConnSocket, Buffer,
gsizeof (Buffer), 0};) '
if (AmountRead == SOCKET_ERROR) ({

// client could send a reset in order to close 1its

connection
if (WSAGetLastError(} != WSRARECONNRESET)
. dlgStatus.Errer ("HLOB recv{)",
WSAGetLastError (), SocketTwin->ThreadNumber);
closesocket {SocketTwin->HtoBConnSocket) ;
break:
}
if (AmountRead == 0} {

-70-

dlgStatus.Print ("Client closed connection", SocketTwin-

>ThreadNumber) ;

closesocket (SocketTwin->HtoBConnSocket) ;
break;
1

/*The send{) function sends a stream os bytes in a

connected socket. The parameters passed are:

THE CONNECTED SOCKET.

THE BUFFER WHICH CONTAINS THE BYTES TO BE SENT
THE AMOUNT OF BYTES TO BE SENT.

FLAGS OF HOW THE SENT HAS TC BE MADE. */

‘RetVal = send({SocketTwin->BtoSConnSocket, Buffer, AmountRead,

if (RetVal == SOCKET_ERROR) {
if (SocketTwin->BtoSThreadiEnded == 0}
dlgStatus.Error ("HtoB send(}", WSAGetLastError{),

SocketTwin->ThreadNumbel) ;

ended.

return 0;

t

closesocket (SocketTwin—->BtoSConnSocket) ;
break;
}

closesccket (SocketTwin->HtoBConnSocket); //if not closed yet
//Flag showing that the Client to applicatiocon thread has been

SocketTwin->HtoBThreadEnded= 1;

UINT CNetworkInterface::BtoSThreadLoop(LPVOID pthis)

{
char Buffer!

64000] ;

CString ctmp;

int RetVal,

AmountRead;

TwinSockets *SocketTwin= {[TwinSockets *) pthis;
if (SocketTwin == NULL) return -1: // illegal parameter

while

(1)
memset (Buffer, O; sizeof (Buffer)):

AmountRead = recv(SocketTwin->BtoSConnSocket, Buffer,

sizeof {Buffer), 0);

if {BmountRead == SCCKET ERROR) {
dlgStatus.Error ("Is the server still alive? BtoS

recv{)", WSAGetLastError({), SocketTwin->Threadhumber) ;
closesocket{SocketTwin—>BtoSConnSocket);
break;
}
if (AmountRead == 0} {

>ThreadNumbe

dlgStatus.Print ("Server closed connection”, SocketTwin-
r);

closésocket (SocketTwin->BtoSConnSocket) ;

break;

-71-

-

// Send the message. Since we are using a blocking socket, this
// call shouldn't return until it's abkle to send the entire

amount.
RetVal = send{SocketTwin->HtoBConnSocket, Buffer, AmcuntRead, 0);
if (RetVal == SOCKET_ERROR)' {
if (SocketTwin->HtoBThreadinded == 0)
dlgStatus.Errcr{"Is the host still alive? BtoS
send ()", WSAGetLastError({), SocketTwin->ThreadNumber):
break;

// SD_SEND: subsequent calls to the send function are disallowed.
// For TCP sockets, a FIN will be sent after all data is sent and
// acknowledged by the receiver.

shutdown {SocketTwin->BtoSConnSocket, SO SEND);

closesocket (SocketTwin->BtoSConnSocket) ;
SocketTwinf>BtoSThreadEnded: 1:

return 0;

-72.

//NETWORK INTERFACE. H

//Needed for the pre compiled header file

//self generated from Visual Studio 2005

#if

_!defined(AFX;NETWORKINTERFACE H OBAE7D4A2 B872 43DB 8DD1 1A8BEB842018F INC
LUDED_) - - B o
¥define
AFX_NETWORKINTERFACE H_ OB4E7D42 B872 43DB_8DD1_1A8BE842018F INCLUDED

#include <winsock2.h>
#include <wsZtcpip.h>

#if MSC VER > 1000
#pragma once
#endif

typedef struct TwinSockets {

CWinThread* HtoBThread; // handle of the thread serving
connactions between Host and Application

CWinThread* BtoSThread; /7 handle of the thread serving
connections between Application and Server :

int HtoBThreadEnded; //Flag of whether the thread have
ended or not.

int BtoSThreadEnded;

int SocketType;’

SOCKET HtoBSock;

SOCKET HtoBConnSocket;

SOCKET BtoSConnSocket;

int ThreadNumber;

struct TwinSockets *next;//Required for the linked list
} TwinSockets;

typedef struct Parameters {

CString HtoBPort; // Port the applicaticn is listening
on.

CString ServerAddress; // Server IPv4/IPvé address

CString BtoSPort: // Server port: port whose traffic is
directed to)

int 14Te6; // IPvd4 to IPvé or vice versa

int SocketType; // TCP or UDP?

int MaxConn; // Maximum number of connections

waiting on the accept()
} Parameters;

class CNetworkInterface

{

public:
int Initialize();
int InitializeBtoSThread(struct TwinSockets *mySocketsChain);
int Stop(): ‘
CNetworkInterface(struct Parameters *myParameters= NULL);
virtual ~CNetworkInterface({):

-73-

private; // Thread handlers
static UINT MainThreadLoop (LPVOID pthis):
static UINT HtoBThreadLoop (LPVOID pthis);
static UINT BtoSThreadLoop (LPVOID pthis);

private: // Variables
CWinThread* MainThread; /7 handle of the main network

thread (blocked on the accept() call) - ;
CWinThread* HtoBThread; // handle of the thread serving

connections between Host and Applicaticn
CWinThread* BtoSThread:; /7 handle of the thread serving

connections between Application and Server
SOCKET HtoBSock:
struct TwinScckets *SocketsChain;
- struct Parameters *NIParameters:
)i

dendif // ' f
ldefined (AFXiNETWORKINTERFACEkH“_ﬁOBAIE7D4 2_B872743DB_8 DD1_1A88E84 ZOIBF_INC ‘
LUDED) ‘)

-74-

3.2 Test Application Source Code

/* TEST APPLICATICON SOQURCE CODE
* Following code implements a test application,which servers as an
IPv4/IPve
Client/Server depending on the choice which use makes.*/

/ /Namespaces Used: ‘

using System; //Gives access to all the access to all the classes and
methods that are directly under the System namespace

using System.Cocllections.Generic; //Namespace for using generics class
using System.Text; //Namespace for using

using System.Net;

using System.Net.Sockets; //Namespace for using the socket class

using System.IQ; //Namespace for using Filing operaticns

//Wcomm class definition
public class Wcomm
{
Socket msocket;
Socket acceptSocket;

/*default constructor where i is a flag for creating TPv6 or
TPv4d socket used for starting the client or the server */

public Wcomm{int i)
{
if (i==1 || i==4)
{
//creating an IPvé socket,address family used 1s
InterNetworkVe, socket type is stream
//for tcp connections and protocol used is tep.
nsocket — new Socket (AddressFamily.InterNetworkvé,
SocketType.Stream, ProtocolType.Tcp);
. Console.WritelLine{"ipvé server started"); //starting server
or client
}
else
{
//creating an IPv4 socket,address family used is
TnterNetworkvV4, socket type is stream
//for tcp connections and protocol used 13 tcp
msocket = new Socket (AddressFamily.InterNetwork,
SocketType.Stream, ProtocolType.Tcpi; //starting the
server or client.

}
}

//public method used by client for connecting to the server.
//ipaddress and the port is being passed as arguements.

-75-

public void connectServer(string ipadd, int port)
{
IPAddress ip = IPAddress.Parse(ipadd); //string is keing parsed to
4 lrhddress type cobject
IPEndPoint ipep = new IPEndPoint(ip, peort); //An IPendPoint object

is created which keeps the ip address and the port no

//Exception Handling while trying to connect
try ’

{ .
msocket .Connect (ipep); //The connect method is calied which

takes IPEndPoint object as arguement.
} ‘
catch {SocketException e)
{ .
Console.WriteLine{"Unable to connect to server."}; //Message
te the user _
Console.WriteLine{e.TeString()):
return;

}

//public method for starting the server
public void startServer (int port,int y) //Port on which the server

listens and y is a flag to decide the protocol ie. IPv4 or IPvé

{
if {y == 1)
{ .
IPEndPoint ipep = new IPEndPoint (IPAddress.IPveAny, port):
//IPAddress.IPvéAny has the IPv6 remote address.
msocket.Bind(ipep); //bind{) method is called on the socket.
}
else
{
IPEndPoint ipep = new IPEndPoint (IPAddress.Any, port);
//IPAddress.Any has the IPv4 remote address.
//bind () Associates a Socket with a local endpoint.
msccket.Bind(ipep): //bind{} method is called cn the socket

}

/* Listen causes a connection-oriented Sccket to listen for
incoming connection attempts.
* The bhacklog parameter specifies the number of incoming
connections that
* can be queued for acceptance*/

msocket.Listen(10); //the binded socket can listen up to 10
connections
¥
//Waiting for the client
public veid waltForClient()
{
/* The accept method permits an incoming connection attempt on a
socket.
* If no error occurs, accept returns a value of type SOCKET which
is a handle for the socket on

-76-

* which the actual connection is made.
*/

Socket client = msocket.Accept():

IPEndPoint clientep = (IPEndPcint)client.RemoteEndPoint;
//Fetching the remote ip address and port info

Console.WriteLine ("Connected with {0} at port {1}",
clientep.Address, clientep.Port); //display

msocket = client; //Handle of the conncetion socket is passed to
the original sccket.

1

//Closing the connection
public void closeConnection ()
{
//The Close method closes the remote host corinection and
//releases all managed and unmanaged resources associated with the
Sccket ’ '
nsocket.Close();
}

public void fileSend(string fpath) //path of the file is passed for
sending.
{
//Use the FileInfo class for cperations such as copying, moving,
renaming, .
//creating, opening, deleting, and appending to files.

FileInfo fi=new FileInfo(fpath);

string filename=fi.Name; //file name is being fetched from the
whole path ’

Conscole.WritelLine{filename);

byte(] fname = new byte[1024];

fname=Encoding.ASCITI.GetBytes(filename); //converting the f[ilename

is byte stream
//only byte stream is supported on send method

int temp2=0;
byte[] temp=new byte[1030]; //stream array used as buffer

Stream inputStream=File.OpenRead(fpath); //the file is opened in
read only mode :

//while loop reads the whole file in chunks of 1024 bytes cf data
do

{
//temporary buffer for holding the data from file

tempZ=inputStream.Read (tenp, 0,1024); //reading 1024 bytes from

the file _
if {temp2==1024)
{
/%*send{) method Sends the specified number of bytes of

data to a

-77-

data .

* connected Socket, using the specified SocketFlags*/
. msocket .Send (temp, 1024, SocketFlags.None); //sending the
data in buffer :
} o | |
else) _ :
{ ' !
msocket . Send {temp, temp2, SocketFlags.None); //sending the
data in buffer
} : i
'while (temp2==1024}; //terminating the loop if data left is less !
than 1024 bytes
}

//public method used by the server to receive the file.
public void fileReceivel()
{
byte [] buffer=new bytefl024]; //temporary buffer for holding the i

string filename=Encoding.ASCII.GetString(buffer);

Stream we=File.Create("akhil.txt™); //creating & new file at the
server side to store the received data
int x=0;
do : ‘
{ "
//Receive mthod Receives data from a pound Socket into a
recelve buffer.
x=msocket .Receive(buffer);
we.Write{buffer,0,x);//writing in the newly created file f
}while (x==1024):

}

-//Public tester claés with the main function

public class tester
{ : ;
static void Main(string(] args) i
{
//choices for the application instance it can be a TPvd/vé
server/client

Console.WritelLine{"l. IPv6 Server Application™);

Console.WriteLine ("2. IPv4 Client hpplication”};

Console.WritelLine("3. IPv4d Server Application");

Console.WriteLine("4. IPv6é Client Application®);

string y = Console.ReadLine();

int z = Convert.ToInt32(y); //coverting the input string choice in
to an integer .

Wcomm W = new Wcomm{z);

//starting the server application
if {z == L] z==3)
{

/ /RUNSERVER

-78-

w.startServer {27015,z); //27015 is the default port for the
server and z is the flag
Console.WritelLine({"Server Started"):
if (true) ’
{
w.waitForClient (); //wating for client
w.fileReceive(); //receiving the file
w.closeConnection(); //closing the connections
}
}
//starting the client application
else
{
Console.Writeline ("Enter the ip address of server"); //address
of the server :
string g = Conscle.ReadLine(});
w.connectServer (g, 27000); //connecting to the server of
entered ip address
Console.WritelLine ("connected to server");
byte{] temp = new byte[lC24];
string x = "hELLO";
x = Encoding.ASCII.GetString(temp);
Console.WriteLine(x); .
Console.WriteLine ("Enter the full path of the file™);//path of
the file for sending
string fpath = Console.ReadLine(};
w.fileSend (fpath}; //calling the filesend method
w.clogseConnection(}; //closing the connection from client side

-79-

4, EXPERIMENTAL SETUP AND TESTING

4.1 SETUP, TEST PROCEDURE & RESULTS

IPv4 Server . |
: |

46Tunnel ':

IPv4 ONLY - .. S IPvE ONLY
HOSTS .~ | HOSTS

.
k
| -

e IPv6 Server
o &

aty-—----|Pv6 Packets------i»
- IPv4 Packets

Figure 35 : Hardware Sctup

e Minimally 3 nodes are connected via a network switch.

o 46tunne! software is installed on a node supporting both IPv4 and IPv6 protocols.

-820-

¢ 2nd node supports [Pv4 only.

* 3rd node supports IPv6 only.

o 2" apd 3% nbde are installed with .NET Framework version 2 or above to allow
runningr of test application.

e All 3 nodes are running Microsoft Windows XP SP2,

e Data travels from node 2 to node 3 only through node 1 (with 46tunnel).

o Using the test application an 1Pv4 client is started on node 2.

o IPV6 server is started on node 3 using the test application.

¢ Client is fed the address (in IPv4 format) of the tunnel node 1.

e If client is IPv4 then tunnel type 4to6 is selected in the 46tunnel interface otherwise
{ 6tod tunnel is required.

e Path to a file is given throug-h the client.

o The file is successfully received at the server.

o The test with an IPv4 server - IPv6 client is also successful.

-81-

5. DEPLOYMENT

Our “configured tunnel payload transfer” application — 46tunnel can be especially usefu! in

the following cases:

o Alongside an [Pv4 application so that it can connect to an IPv6 server.
i o Alongside an IPv4 server so that it can accept queries from an IPv4 client.
¢ Alongside both the server and client to let [Pv4 only and IPv6 clients and servers to

interact.

e Asa proxy server to reléy packéts of differing formats to different networks.

IPv4 ' . IPv6
Application | 46tunnel , Server
IPvé ' IPv4
Application | y| 46tunnel Server ‘ ¥
IPva/6 ’ IPv4i6
Application | 46tunnel : 46tunnel Server
IPv4/6 1Pv6/4
Application .| 46tunnel ‘ A Server
IPv4/6->Py6/4

Figure 36: Deployment of the application in the veal world

-82-

5.1 SCREEN SHOTS

_5. 1.1 Tunnel Application

Receives o -

Port:

. Sendto: -

Host: . |iaca!host

-F’nrt: F“EEW#&MA

- Miscellaneous:
" Protocol: * TCP

Tunnel lype: @ {Pyd > IPvE (7 IPvE -» [Pvd

tax connections: i0

Start ' | Show Status !

Reset Ahout l Ewit !

Figure 37:Initial Coﬁﬁguration of the Main Application

The fields in the application are:

Port: The Port on which the client will send data.

Host: The address of the server to which the data has to be transferred
Port: The port on which the server is listening.
Protocol: TCP is the only protocol supported.

Tunnel type: Whether the application wilt convert from IPv6 to IPv4 or vice versa.

-83-

Max Connections: The number of maximum connections it can receive on the listening port.

Start: Button to start the application with all the required fields filled in.

Stop: Button to stop the application from execution.

Show Status: To show the status of the application during execution.

Reset: To reset the fields of the applicaﬁon to the default values.

About: To see the version of the application.

Exit: To close the application.

A e T T

B e

Receive on

Pait:
Send to:
Host:

Poit:

Miscellanenus:

Protocol:

Turing! type:

tan connections,

lieB0 216 ddif a0l

27015

v TCP
FPASIPE TIPS 1P

iTEI

Reset {

Stop | ShowStatusl

About | Exit J

[0 Tistening on pott 27000, pietacel TCP. protacl famiy PF_INET

[1] Accepted connection from 127.0.0.1

[1] Coringeted to 1e8k:216:d41f-fela: 25d1%4, port 27015, protocel TCP, protocel Family
PF_IMETE

[1]Using local address fe@0;:218:ddif:fela:25d1%4, port 1025

Close !

i
f
} Clear Stalus_J

Figure 38 : After the start of the execution of the main application

The status window shows that the connection is accepted on port 27000 from the address

127.0.0.1

-84-

It is connected to server whose IPv6 address is also given with the required protocols.

It also shows the local IPv6 address and the local socket address

fecshs on . ' it Listering on post 27000, protocol TCP, protocal famly FE_INET
Pot: 27000 ’ : [1] Accepted connection fram 127.0.0.1]
: [1] Conrected to feBD:: 216:d4if:fela:25d1%4, port 27015, pratacol TCP, protocol family
PF_INETE
4] Using Yocal address ie80::215:d4f:fe0a:25d1%4, port 1025
Send to: ‘
. [1] Client closed connectioh
Host: |feBIJ::21 B:d4fffear25d1 %4 = [1] Server closed connection
Pait: [“2_?6-1"5_ ’
Miscelanecus:
Protocot: @ TCP
Tunnel type: W IPvd > IPVE T IPYE - HPvd
tast corrections: 3“' . :

Clear Status

Figure 39 : The Status message after the completion of file transfer

Reset

The status message shows that the file transfer has taken place between the client and the

server. And the connection is closed from both the ends.

-85-

3.1.2_ Test Application

. v erver Application
2. IPud Glient Application

. IPv4 Berver Application
4. IPub Client Application

ipub seruer started
IServer Started
Connected with feB@::216:d4ff :fePa:25d1%4 at port 1627

. IPub Server Application
. TPv4 Client Application
. IPv4 Server Application
. é. IPvb Client Application
Enter the ip address of server
172.16.8.112
onnected to servep |

Enter the full path of the file
ciNtest.txE

Figure 40 : Both ends of the test application

The Upper Window has an [Pv6 Server. After the client starts, the server shows that it is
connected to which client and at which port. The lower Window is an [Pv4 Client which asks

for a [Pv4 server address to connect to.

Once the client gets connected it asks for the full path of the file which is to be sent.

- 86 -

5.2 _ Directories and file structure

3.2.1 Tunnel Application

46Tunnel 1.0

46Tunnel.46b: Visual Studio 2005 self generated file
46Tunnel.aps: Visual Studie 2005 self generated file
46.Tunnel.elw: Visual Studio 2005 self generated file
46Tunnel,cpp:Defines t.he class beha-vior and GUI for the application
46Tunnel.dsp: Visual Studio 2005 self generated file
46Tu.nnel.dsw: Visual Studio 2005 self generated file
46 Tunnel.h:Main Header file for the application
46Tunnel.neb: Visual Studio 2005 self generated file
46Tunnel.opt: Visual Studio 2005 self generated file
46tunnel 46b: Visual Studio 2005 self generated file
46tunnel.plg: Visual Studio 2005 self generated file
46tunnel.rc: V.isual Studio 2005 self generated file
46tunnel.sln:Solution file of Visual Studio 2005
46tl11111elDlg.epp:lm.plementation of the main GUI window class
46tunnelDlg.h:Header file with class definition

* NetworklInterface.cpp: Implemeﬁtation of tunnel
NetworkInterface.h: Definition of eiass and structures used

resource.h: Visual Studio 2005 self generated file

-87-

Status.cpp: Implementation of the status window
Status.h: Definition of the class used

Debug: This directory contains all the files generated on build for debugging

purpose.

Release: This directory contains all the files generated after debugging,it also contains

the main executable file named 46tunnel.exe

5.2.2 - Test Application

FileTransfer
Program.cs: Source code for the test application

5.3 Environment for compilation and linking

5.3.1 Tunnel Application

Windows 98 or above, Visual Studio 2005,.Net Framework v 2.0 or above.

5.3.2 Test Application

‘Windows 98 or above, Visual Studio 2005,.Net Framework v 2.0 or above.

-88-

6.

il i

CONCLUSION

The Software is currently a prototype level “proof-of-concept™ application with primitive

optimizations and only basic functionality. The scope and scale of this application can be

extended by future developers. The potential areas of extension are listed below.

1.

The application can be modified to run as a gateway application, which parses each
packet flowing in a network and the IPv4-1Pv6 transition is secamless for the users of

the network.

The application can be heavily optimized to handle thousands of concurrent queries.
The delay in conversion of packet format can be speeded up by using low level

libraries and raw-socket programming.

The application can be suitably changed to listen to some/all popular ports so that no

user faces a transition incompatibility using his/her favorite application.

The application can also be implemented as a service in Microsoft Windows 2003
Server or as a dacmon in UNIX/Linux flavor of operating systems so it becomes less

obtrusive and requires little memory and CPU power,
The GUI can also be redone to increase usability and aesthetics of the application.

The application can also be archived inside an installer for easy installing and 1'unning

of application without the hassles for various requirements.

-89.-

| 7. BIBLIOGRAPHY

Books
* Mickey Williams and David Bennett, Visual C++ 6 Unfeashed. Sams. 2000
* Richard C. Leinecker, Visual C++ 6 Bible, Hungry Minds. 1998

¢ Herbert Schildt, 4 Complete Reference to Visual C++ 6, Osborne/McGraw-Hill.
1998

* lesse Liberty, Programming C#: Building NET Applications with C#, O’Reilly. 2005

~ Research Papers

¢ R. Callon, D. Haskin, "Routing Aspects of IPv6 T) ransition", RFC 2185, September
1997. ' '

e B. Carpenter, C. Jung, "Transmission of IPv6 over IPv4 Domains without Explicit
Tunnels", RFC2529, March 1999,

e R. Rockell, R. Fink, "6Bone Backbone Routing Guidelines", RFC 2772, February
2000,

* Durand, P. Fasano, I. Guardini, D. Lento, "IPv6 Tunnel Broker", RFC3053, February
£ 2001 '

e B. Carpenter, K Moore, "Connection of IPv6 Domains via IPv4 Clouds", RFC3056,
February 2001

¢ J. Hagino, K. Yamamoto, "An IPv6-to-IPv4 transport relay translator”, RFC3142,
June 2001.

-9Q -

