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Abstract 

 

Words have different meanings based on the context of the word usage in a sentence. Word sense 

is one of the meanings of a word. Human language is ambiguous, so that many words can be 

interpreted in multiple ways depending on the context in which they occur.  

Word sense disambiguation (WSD) is the ability to identify the meaning of words in context in 

a computational manner. WSD is considered an AI complete problem, that is, a task whose 

solution is at least as hard as the most difficult problems in artificial intelligence. 

 

WSD can be viewed as a classification task: word senses are the classes, and an automatic 

classification method is used to assign each occurrence of a word to one or more classes based 

on the evidence from the context and from external knowledge sources. WSD heavily relies on 

knowledge. Knowledge sources provide data which are essential to associate senses with words. 

The assessment of WSD systems is discussed in the context of the Senseval/Semeval campaigns, 

aiming at the objective evaluation of systems participating in several different disambiguation 

tasks. Here, some of the knowledge sources used in WSD, different approaches for WSD 

(supervised, unsupervised and Knowledge-based ) and evaluation of WSD systems are discussed. 

The applications of WSD are also seen. 

 

In our project, we shall use Human Computation (HCOMP) to achieve the desired 

disambiguation for a word. Using HCOMP will decrease the processing overhead in our project 

as compared to that of WSD using AI algorithms. Also, the HCOMP component of our project 

will be achieved by a fun multiplayer game which will urge players to choose alternate words 

for certain words in a phrase or a sentence. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Word Sense Disambiguation 

 

In computational linguistics, word sense disambiguation, more commonly known by its 

abbreviation WSD, is an open problem of natural language processing and ontology [1].  

One of the first problems that any natural language processing (NLP) system encounters is 

lexical ambiguity, syntactic or semantic. The resolution of a word’s syntactic ambiguity has been 

solved in language processing by part-of-speech taggers with high levels of accuracy. The 

problem of resolving semantic ambiguity is generally known as word sense disambiguation 

(WSD) and has been proved to be more difficult than syntactic disambiguation. Human language 

is ambiguous, so that many words can be interpreted in multiple ways depending on the context 

in which they occur the identification of the specific meaning that a word assumes in context is 

only apparently simple. Unfortunately, the identification of the specific meaning that a word 

assumes in context is only apparently simple. 

Consider the following two sentences, 

 (a) I can hear bass sounds. 

 (b) They like grilled bass. 

The occurrences of the word bass in the two sentences clearly denote different meanings: low 

frequency tones and a type of fish, respectively. Here, the process WSD assigns correct meaning 

to the word bass in the above two sentences as 

 (a) I can hear bass / low frequency tone sounds. 

 (b) They like grilled bass / fish. 

WSD is one of the central challenges in Natural Language Processing (NLP). Many tasks in NLP 

require disambiguation. Word Sense Disambiguation is needed in Machine Translation, 

Information Retrieval, Information Extraction etc. WSD is typically configured as an 

intermediate task, either as a stand-alone module or properly integrated into an application.  
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WSD can be easily understood via the following figure: 

 

                                                        Fig. 1.1.1: WSD in a Nutshell 

 

1.2     Human Computation 

Human Computation (HCOMP) is a technique in which a computer performs its function by 

outsourcing certain steps to humans, usually to enhance a program’s heuristics [2]. 

This approach uses differences in abilities and alternative costs between humans and 

computers to achieve symbiotic human-computer interaction. HCOMP reverses the roles of a 

human and a computer to some extent as the computer asks a person to solve a problem, and 

then collects and interprets their solutions. Manual creation of data set for WSD is an arduous 

and monotonous job. And also it will be difficult for a small number of programmers to create 

a strong and reliable data set. 

The following figure explains the overwhelming advantage that the human brain has over its 

digital counterpart: 
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                           Fig 1.2.1: Text Readable By Humans But Not By Computers 

 

A computer in no way imaginable can read and understand the paragraph, but a human brain 

can, and the reasons are still debatable. This explains the clear advantage that the human brain 

has over a computer – a computer has to be programmed and trained for it to be able to 

understand the human language, but our brains are automatically programmed to do so. 

Therefore to make this process easy and fun, HCOMP is the best way to create the data set for 

WSD. 

There are four types of HCOMP systems: 

 Voluntary 

 Incentive By Money 

 Incentive By Fun 

 Mandatory 
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We have chosen to go ahead with Incentive by Fun HCOMP for our project because it serves 

our purpose in the best possible manner out of the four HCOMP options available. 

 

1.3     Problem Description 

In this project, we are going to tackle the problem faced in creation of datasets used for WSD 

algorithms, which is also known as corpora acquisition bottleneck. Manual creation of data 

set for WSD is an arduous and monotonous job since it is very difficult for a small number of 

programmers to create a strong and reliable data set manually or through NLP programs. 

 

Therefore to make this process easy, efficient and fun, human computation is the best way to 

create the dataset for WSD. 

   

1.4     Objective and Methodology 

Our main objective is to create a reliable dataset for feeding various WSD algorithms via 

human computation through a fun game designed to produce valuable output by engaging 

human players in what they perceive to be a cooperative task of guessing the same word as 

another player. 

 

We are going to create a two player game in which players will be given a sentence or 

paragraph and a highlighted word within that context. The players will be given a certain 

amount of time to provide as many alternate suggestions as they can for the highlighted word 

within the given context. The main aim of the players would be to provide alternate suggestions 

such that they match those provided by their opponent, which will earn them points. Therefore, 

the players will involuntarily provide us with a dataset just by playing a fun word guessing 

game. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Title: Word Sense Disambiguation via Human Computation 

[3] 

One formidable problem in language technology is the word sense disambiguation (WSD) 

problem: disambiguating the true sense of a word as it occurs in a sentence (e.g., recognizing 

whether the word "bank" refers to a river bank or to a financial institution). This paper explores 

a strategy for harnessing the linguistic abilities of human beings to develop datasets that can 

be used to train machine learning algorithms for WSD. To create such datasets, we introduce 

a new interactive system: a fun game designed to produce valuable output by engaging human 

players in what they perceive to be a cooperative task of guessing the same word as another 

player. Our system makes a valuable contribution by tackling the knowledge acquisition 

bottleneck [8] in the WSD problem domain. Rather than using conventional and costly 

techniques of paying lexicographers to generate training data for machine learning algorithms, 

we delegate the work to people who are looking to be entertained. 

  

The relevance of WSD is becoming clear as advancing information/web technologies are 

catalysts for the production of enormous amounts of textual data, including articles, blogs, 

status messages, digitized books, etc. There is a growing need to introduce structure to this 

data in order to make it consumable and manageable by machines. Current WSD algorithms 

use collections of data and machine learning algorithms to create models that determine the 

sense of the target word in the sentence. Generally supervised algorithms perform better than 

unsupervised algorithms. These facts made human computation an ideal technique for this 

problem – with sufficient knowledge supervised algorithms can be used for almost all 

applications. Currently knowledge acquisition for WSD is very expensive. Manual creation of 

a training dataset for a WSD system involves taking a large set of textual data, isolating words 

to disambiguate, and hand labelling each of these words with their gold label word sense. This 
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process is an arduous and consequently an expensive one. But what if we make this labelling 

process a pleasant one? This paper explores a new system: a game that is designed to capture 

human knowledge in a distributed fashion via an enjoyable game. Our study involves assessing 

the effectiveness of this game in tackling the knowledge acquisition bottleneck [8]. 

 

In this paper we described a game, named Jinx, which is designed to generate word sense 

disambiguation (WSD) datasets. These datasets can be used to train high quality machine 

learning algorithms for the WSD problem. The game accomplishes this task in a low cost, 

distributed, fashion by employing human beings to consider a word in sentence and generate 

guesses for synonyms for the word in the context of the sentence. The game uses a point system 

to provide utility to users and uses a cooperative, paired player, structure to make the game fun 

and to control the quality of the guesses.  We populated the game with ten words and multiple 

sentences from a widely recognized word sense evaluation dataset. We then had people play 

the game for approximately an hour. In postgame interviews, most everyone reported that the 

game was fun.  

 

Thus we are confident that the game is capable of attracting a large, sustainable, audience. 

Preliminary analysis of the guesses of the game indicates that many of the guesses correspond 

directly to synonym sets for words in that context. Thus the game generates a set of synonyms 

to a particular word in a sentence as perceived by the general public. This dataset in itself 

contains interesting linguistic data. With respect to WSD, however, many guesses 

corresponded to more than one word sense or corresponded to incorrect word senses. We are 

currently exploring more sophisticated data analysis methods to extract a high quality WSD 

dataset. 
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2.2 Title: Word Sense Disambiguation Corpora Acquisition via 

Confirmation Code [4] 

  

Word Sense Disambiguation (WSD) is one of the fundamental natural language processing 

tasks. However, lack of training corpora is a bottleneck to construct a high accurate all-words 

WSD system. Annotating a large-scale corpus by experts costs enormous time and financial 

resources. Human Computation is a novel idea for integrating human resources behind the 

Web, which has been wasted, to solve practical problems that are difficult for computers. Based 

on human computation, we design a confirmation code system, which can not only distinguish 

between human beings and computers (the function of normal confirmation code system), but 

also annotate WSD corpora. The preliminary experimental result shows that the proposed 

method can annotate large-scale and high-quality WSD corpora within a short time. To the 

best of our knowledge, this is the first attempt to use confirmation code in natural language 

processing for corpora acquisition. 

 

A WSD confirmation code includes two questions. Each question consists of a sentence and a 

highlighted ambiguous word in the sentence. All senses of the ambiguous word are provided 

as optional answers. The system only knows the answer for one of the two questions, which is 

named as known question and the other is unknown question. A user needs to choose a word 

sense for each ambiguous word. The user can pass the confirmation stage if and only if his 

answer to the known question is correct. Like in reCAPTCHA, users do not know which one 

is known question. They must choose each word sense carefully in order to pass confirmation 

stage. Therefore, they provide the correct sense for the ambiguous word of unknown question. 

If WSD confirmation code system is widely used by lots of Web sites, we can easily collect 

large-scale corpora. 
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Fig. 2.2.1: The data flow chart of WSD confirmation code system 

 

The data flow chart of the WSD confirmation code system is shown in Figure 2.2.1. Two 

questions are randomly selected from known and unknown question databases respectively  

the two questions are asked to a user and the user needs to answer them. Once the user’s answer 

is correct, i.e. it is equal to the answer of known question, he can pass the confirmation stage. 

Then we can know the answer of the unknown question, which becomes a new known question 

and can be added into the known question database. Otherwise, the confirmation stage cannot 

be passed and the user has to answer another pair of questions. 

 

To address the lack of WSD corpora, we propose a human computation based method. When 

users successfully input a confirmation code, they annotate a WSD example incidentally. The 

preliminary experiments show that the novel method can annotate large-scale and high-quality 

WSD corpora within a short time. As far as we know, there is no work done to annotate natural 

language processing corpora with confirmation code. In the future, we plan to improve the 

annotation speed and reduce the complexity of confirmation process by showing two sentences 

with the same ambiguous words. Thus, users can easily compare the two sentences. More 

importantly, they only need to read the options once, which can save confirmation time further. 

We also can use unsupervised clustering method which determines senses that are very similar 

and displays only one of the alternatives. Secondly, we will apply this method to other 

languages. Our method is general enough and can be applied to any languages as long as the 

language has a thesaurus and some initial WSD corpora. Of course, a particular language WSD 
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confirmation code system can only be used in Web sites of the same language because it is 

difficult for a normal user to perform WSD task on the foreign language that they are unfamiliar 

with. Thirdly, we can apply this method to other natural language processing tasks which need 

corpora acquisition such as co-reference resolution, named entity recognition, and parsing. 

Finally, we will use the corpora annotated by the confirmation code method to train a more 

effective WSD model. 

 

2.3 Title: Determining the Difficulty of Word Sense 

Disambiguation [5] 

 

Automatic processing of biomedical documents is made difficult by the fact that many of the 

terms they contain are ambiguous. Word Sense Disambiguation (WSD) systems attempt to 

resolve these ambiguities and identify the correct meaning. However, the published literature 

on WSD systems for biomedical documents report considerable differences in performance for 

different terms. The development of WSD systems is often expensive with respect to acquiring 

the necessary training data. It would therefore be useful to be able to predict in advance which 

terms WSD systems are likely to perform well or badly on. 

 

This paper explores various methods for estimating the performance of WSD systems on a 

wide range of ambiguous biomedical terms (including ambiguous words/phrases and 

abbreviations). The methods include both supervised and unsupervised approaches. The 

supervised approaches make use of information from labelled training data while the 

unsupervised ones rely on the UMLS Metathesaurus. The approaches are evaluated by 

comparing their predictions about how difficult disambiguation will be for ambiguous terms 

against the output of two WSD systems. We find the supervised methods are the best predictors 

of WSD difficulty, but are limited by their dependence on labelled training data. The 

unsupervised methods all perform well in some situations and can be applied more widely. 
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Fig. 2.3.1: WSD Difficulty Flowchart 

 

Word Sense Disambiguation (WSD) is the task of automatically identifying the appropriate 

sense of an ambiguous word based on the context in which the word is used. For example, the 

term cold could refer to the temperature or the common cold, depending on how the word is 

used in the sentence. Automatically identifying the intended sense of ambiguous words 

improves the performance of biomedical and clinical applications such as medical coding and 

indexing; applications that are becoming essential tasks due to the growing amount of 

information available to researchers. This paper explores approaches to estimating the 

difficulty of performing WSD on ambiguities found in biomedical documents. By difficulty 

we mean the WSD performance that can be obtained for the ambiguity since, in practise, 

performance is the most important factor in determining whether applying WSD to a particular 

ambiguity is likely to be useful. Ambiguities for which low WSD performance is obtained are 

considered to be difficult to disambiguate while those for which the performance is high are 

considered to be easy to disambiguate. 

 

A wide range of approaches have been applied to the problem of WSD in biomedical and 

clinical documents. Accurate WSD can improve the performance of biomedical text processing 

applications, such as summarization, but inaccurate WSD has been shown to reduce an 

application’s overall performance. The disambiguation of individual terms is important since 

some of those terms are more important than others when determining whether there is any 



11 

 

overall improvement of the system. The importance of WSD is likely to depend on the 

application and research question. For example, Weeber et al. found that it was necessary to 

resolve the ambiguity in the abbreviation “MG” (which can mean “magnesium” or 

“milligram”) in order to replicate the connection between migraine and magnesium identified 

by Swanson. 

 

Some of the methods applied in this paper are supervised since they are based on information 

derived from a corpus containing examples of the ambiguous term labelled with the correct 

sense. Other methods do not require this resource and only require information about the 

number of possible senses for each ambiguous term which is normally obtained from a 

knowledge source, such as the UMLS Metathesaurus. 

 

The accuracy of WSD systems for biomedical documents varies enormously across ambiguous 

terms. It would be useful to be able to predict the difficulty of a particular term for WSD 

systems in order to determine whether applying WSD would be useful. In this paper, we 

explore a range of approaches to estimating WSD difficulty. Some of these are based on 

information extracted from sense-labelled corpora while others make use of information from 

knowledge sources. Evaluation was carried out by comparing the predictions made by these 

measures with the actual accuracy of two different WSD systems on three data sets. 

 

Results show that the supervised methods are good predictors of WSD difficulty in some cases, 

but that their results are not consistent across different data sets. These methods also require 

labelled training data, limiting their usefulness. The unsupervised approaches do not have this 

limitation and can be applied to a wider range of ambiguities. Our experiments showed that 

these approaches were also good predictors of WSD difficulty. The best performance was 

obtained using the relatedness measure proposed by Lesk and aggregating the scores using the 

mean similarity metric. This method obtained a statistically significantly higher negative 

correlation than the other measures when compared to both the supervised and unsupervised 
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WSD systems. The performance of this measure was also reasonably consistent across 

different data sets and types of ambiguity (terms and abbreviations). The methods explored in 

this paper are useful tools for estimating the performance of a WSD system that can be 

computed without the need for labelled data. 

 

In the future, we plan to explore other relatedness measures that use contextual information 

about the senses rather than (or in conjunction with) their placement within a taxonomy. We 

would also like to explore semantic groups of the terms to determine if some types are easier 

to disambiguate than others. 

 

2.4 Early Work in Human Computation [9] 

 

Human-based computation (apart from the historical meaning of "computer") research has its 

origins in the early work on interactive evolutionary computation. The idea behind interactive 

evolutionary algorithms is due to Richard Dawkins. In the Biomorphs software accompanying 

his book The Blind Watchmaker (Dawkins, 1986) the preference of a human experimenter is 

used to guide the evolution of two-dimensional sets of line segments. In essence, this program 

asks a human to be the fitness function of an evolutionary algorithm, so that the algorithm can 

use human visual perception and aesthetic judgment to do something that a normal 

evolutionary algorithm cannot do. However, it is difficult to get enough evaluations from a 

single human if we want to evolve more complex shapes. Victor Johnston and Karl Sims 

extended this concept by harnessing the power of many people for fitness evaluation (Caldwell 

and Johnston, 1991; Sims, 1991). As a result, their programs could evolve beautiful faces and 

pieces of art appealing to public. These programs effectively reversed the common interaction 

between computers and humans. In these programs, the computer is no longer an agent of its 

user, but instead, a coordinator aggregating efforts of many human evaluators. These and other 

similar research efforts became the topic of research in aesthetic selection or interactive 

evolutionary computation (Takagi, 2001), however the scope of this research was limited to 
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outsourcing evaluation and, as a result, and it was not fully exploring the full potential of the 

outsourcing. 

 

A concept of the automatic Turing test pioneered by Moni Naor (1996) is another precursor of 

human-based computation. In Naor's test, the machine can control the access of humans and 

computers to a service by challenging them with a natural language processing (NLP) or 

computer vision (CV) problem to identify humans among them. The set of problems is chosen 

in a way that they have no algorithmic solution that is both effective and efficient at the 

moment. If it existed, such an algorithm could be easily performed by a computer, thus 

defeating the test. In fact, Moni Naor was modest by calling this an automated Turing test. The 

Imitation Game described by Alan Turing (1950) didn't propose using CV problems. It was 

only proposing a specific NLP task, while the Naor test identifies and explores a large class of 

problems, not necessarily from the domain of NLP that could be used for the same purpose in 

both automated and non-automated versions of the test. 

 

Finally, Human-based genetic algorithm (HBGA) encourages human participation in multiple 

different roles. Humans are not limited to the role of evaluator or some other predefined role, 

but can choose to perform a more diverse set of tasks. In particular, they can contribute their 

innovative solutions into the evolutionary process, make incremental changes to existing 

solutions, and perform intelligent recombination. In short, HBGA allows humans to participate 

in all operations of a typical genetic algorithm. As a result of this, HBGA can process solutions 

for which there are no computational innovation operators available, for example, natural 

languages. Thus, HBGA obviated the need for a fixed representational scheme that was a 

limiting factor of both standard and interactive EC. These algorithms can also be viewed as 

novel forms of social organization coordinated by a computer. 
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2.5 Luis von Ahn [10] 

 

 

Fig. 2.5.1 Luis Von Ahn 

 

Luis von Ahn (born 1979) is a Guatemalan entrepreneur and an associate professor in the 

Computer Science Department at Carnegie Mellon University. He is known as one of the 

pioneers of crowd sourcing. He is the founder of the company reCAPTCHA, which was sold 

to Google in 2009, and the co-founder and CEO of Duolingo, a popular language learning 

platform. As a professor, his research includes CAPTCHAs and human computation, which 

has earned him international recognition and numerous honours. Von Ahn's early research was 

in the field of cryptography. With Nicholas J. Hopper and John Langford, he was the first to 

provide rigorous definitions of steganography and to prove that private-key steganography is 

possible. In 2000, he did early pioneering work with Manuel Blum on CAPTCHAs, computer 

generated tests that humans are routinely able to pass but that computers have not yet mastered. 

These devices are used by web sites to prevent automated programs, or bots, from perpetrating 

large-scale abuse, such as automatically registering for large numbers of accounts or 

purchasing huge number of tickets for resale by scalpers.  
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Von Ahn's Ph.D. thesis, completed in 2005, was the first publication to use the term "human 

computation" that he had coined for methods that combine human brainpower with computers 

to solve problems that neither could solve alone. Von Ahn's Ph.D. thesis is also the first work 

on Games with a Purpose, or GWAPs, which are games played by humans that produce useful 

computation as a side-effect. The most famous example is the ESP Game, an online game in 

which two randomly paired people are simultaneously shown the same picture, with no way to 

communicate. Each then lists a number of words or phrases that describe the picture within a 

time limit, and are rewarded with points for a match. This match turns out to be an accurate 

description of the picture, and can be successfully used in a database for more accurate image 

search technology. The ESP Game was licensed by Google in the form of the Google Image 

Labeller, and is used to improve the accuracy of the Google Image Search. Von Ahn's games 

brought him further coverage in the mainstream media. His thesis won the Best Doctoral 

Dissertation 2010.  

 

In 2007, von Ahn invented reCAPTCHA, a new form of CAPTCHA that also helps digitize 

books. In reCAPTCHA, the images of words displayed to the user come directly from old 

books that are being digitized; they are words that optical character recognition could not 

identify and are sent to people throughout the web to be identified. ReCAPTCHA is currently 

in use by over 100,000 websites and is transcribing over 40 million words per day. As of 2014, 

von Ahn is working on Duolingo, a company that aims to coordinate millions of people to 

translate the Web into every major language. 

 

2.6 Title: Human Computation by Luis von Ahn [6] 

 

Tasks like image recognition are trivial for humans, but continue to challenge even the most 

sophisticated computer programs. This thesis introduces a paradigm for utilizing human 

processing power to solve problems that computers cannot yet solve. Traditional approaches 
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to solving such problems focus on improving software. I advocate a novel approach: 

constructively channel human brainpower using computer games. For example, the ESP Game, 

introduced in this thesis, is an enjoyable online game —many people play over 40 hours a 

week — and when people play, they help label images on the Web with descriptive keywords. 

These keywords can be used to significantly improve the accuracy of image search.  

 

People play the game not because they want to help, but because they enjoy it. I introduce three 

other examples of “games with a purpose”: Peekaboom, which helps determine the location of 

objects in images, Phetch, which collects paragraph descriptions of arbitrary images to help 

accessibility of the Web, and Verbosity, which collects “common-sense” knowledge. In 

addition, I introduce CAPTCHAs, automated tests that humans can pass but computer 

programs cannot. CAPTCHAs take advantage of human processing power in order to 

differentiate humans from computers, an ability that has important applications in practice. 

The results of this thesis are currently in use by hundreds of Web sites and companies around 

the world, and some of the games presented here have been played by over 100,000 people. 

Practical applications of this work include improvements in problems such as: image search, 

adult-content filtering, spam, common sense reasoning, computer vision, accessibility, and 

security in general. 

 

Construction of the Empire State Building: 7 million human hours. The Panama Canal: 20 

million human hours. Estimated number of human-hours spent playing solitaire around the 

world in one year: billions. A problem with today’s computer society? No, an opportunity. 

What if this time and energy could be channelled into useful work? This thesis presents a 

general paradigm for doing exactly that: utilizing human processing power. We focus on 

harnessing human time and energy for addressing problems that computers cannot yet tackle 

on their own. Although computers have advanced significantly in many respects over the last 

50 years, they still do not possess the basic conceptual intelligence or perceptual capabilities 

that most humans take for granted. By leveraging human skills and abilities in a novel way, we 
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hope to solve large-scale computational problems that computers cannot yet solve and begin 

to teach computers many of these human talents. In this paradigm, we treat human brains as 

processors in a distributed system, each performing a small part of a massive computation. 

Unlike computer processors, however, humans require an incentive in order to become part of 

a collective computation. We propose online games as a means to encourage participation in 

the process.      

 

We argue that games constitute a general mechanism for using brain power to solve open 

computational problems. Each problem requires the careful design of a game developed to be 

enjoyable and, at the same time, guarantee that game-play correctly solves instances of the 

problem. We argue that designing such games is much like designing computer algorithms: 

the game needs to be proven correct and enjoyable; its efficiency can be analysed; more 

efficient games can supersede less efficient ones, etc. Instead of using a silicon processor, these 

“algorithms” run on a processor consisting of ordinary humans interacting with computers over 

the Internet. We refer to these games as “human algorithm games.” 

 

We have presented a general paradigm for harnessing human computation power to solve 

problems that computers cannot yet solve. Some open problems that could be solved using this 

technique include:  

• Language Translation. Imagine a game in which two players that do not speak the same 

language work together to translate text from one language to the other.   

• Monitoring of Security Cameras. With cameras becoming less expensive over time, it is now 

feasible to have security cameras everywhere. Imagine a game in which people watch the 

security cameras and alert authorities of illegal activity.   

• Improving Web Search. Different people have different levels of skill at searching for 

information on the Web. Imagine a game in which the players perform searches for other 

people.   
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• Text Summarization. Imagine a game in which people summarize important documents for 

the rest of the world. (The biggest challenge in solving this problem is that it would require an 

intelligent way to break it up into small “bite-size” chunks.) 

 

We believe there is an immense amount of work to be done in the continued development of 

this paradigm. Indeed, we hope researchers will use and improve upon the method and metrics 

presented for development and evaluation of human algorithm games. We believe the 

techniques in this thesis present an opportunity for researchers and game designers to 

contribute to the progress of Artificial Intelligence. 

 

2.7 Title: Programming With Human Computation [7] 

 

Amazon’s Mechanical Turk provides a programmatically accessible micro-task market, 

allowing a program to hire human workers. This has opened the door to a rich field of research 

in human computation where programs orchestrate the efforts of humans to help solve 

problems. This thesis explores challenges that programmers face in this space: both technical 

challenges like managing high-latency, as well as psychological challenges like designing 

effective interfaces for human workers. We offer tools and experiments to overcome these 

challenges in an effort to help future researchers better understand and harness the power of 

human computation. The main tool this thesis offers is the crash-and-rerun programming model 

for managing high-latency tasks on MTurk, along with the TurKit toolkit which implements 

crash-and-rerun. TurKit provides a straightforward imperative programming environment 

where MTurk is abstracted as a function call. Based on our experience using TurKit, we 

propose a simple model of human computation algorithms involving creation and decision 

tasks. These tasks suggest two natural workflows: iterative and parallel, where iterative tasks 

build on each other and parallel tasks do not. We run a series of experiments comparing the 

merits of each workflow, where iteration appears to increase quality, but has limitations like 

reducing the variety of responses and getting stuck in local maxima. Next we build a larger 
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system composed of several iterative and parallel workflows to solve a real world problem that 

of transcribing medical forms, and report our experience. The thesis ends with a discussion of 

the current state-of-the-art of human computation, and suggests directions for future work. 

 

Fig. 2.7.1: A passage of poor handwriting is transcribed using a human computation 

algorithm. Workers put parenthesis around words they are unsure about. 

 

This thesis is about programming with human computation. The sequence in Figure 2.7.1 is an 

example. The example starts with a passage of practically indecipherable handwriting. This 

passage is fed into a program to decipher the text. This program is special — it can hire people. 

That is, it uses human computation. The program hires a series of workers in a human 

computation market, namely Amazon’s Mechanical Turk, to make guesses about the words in 

the passage. The program hires additional workers to vote on the guesses made by other 

workers. This process, an automated collaboration between human and machine, correctly 

deciphers 90% of the words. The human computation algorithm above is just one possible 

algorithm solving one possible problem. Similar algorithms may solve a wide range of 
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problems. In fact, it may be possible to write sophisticated algorithms that can perform 

knowledge work tasks like writing or programming as well as experts working alone. This 

thesis will not go that far, because programming with human computation presents a unique 

set of programming challenges that need to be understood and overcome first. However, given 

MTurk — an on-demand source of small-scale labour — the time is ripe to start building 

systems and running experiments that lay the groundwork for writing complex human 

computation algorithms. 

 

This thesis makes three main contributions. The first contribution is the crash and-rerun 

programming model, along with the TurKit toolkit which uses this model. Crash-and-rerun is 

suited to the unique challenges of programming with human computation. In particular, hiring 

humans introduces latency. A simple process like the one above can take hours to complete. 

This is a problem for developers writing a new algorithm, since they may need to rerun the 

algorithm many times to debug it and figure out how it should work. The crash-and-rerun 

model helps by memorizing the results from human workers so that they can be replayed 

without cost or delay the next time a program runs. We implement the crash-and-rerun 

programming model inside TurKit, and offer an API for programming on Mechanical Turk 

using this programming model. 

 

The second contribution of this thesis is a set of experiments that explore the trade-offs between 

two basic human computation algorithms: iterative and parallel. Fig. 2.7.1 demonstrates the 

iterative algorithm, where a series of workers iteratively improve on each other’s work. In the 

parallel version of this algorithm, we would show each worker a blank slate upon which to 

start transcribing the passage, and we would use the same voting tasks to determine the best 

transcription. This thesis applies each 20 algorithm to several problem domains, including 

describing images, brainstorming company names, and transcribing blurry text. We find that 

iteration increases the average quality of responses from each worker, but also decreases the 
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variance. We also find that iteration can get stuck in a local maxima, similar to a gradient ascent 

algorithm. 

 

The third contribution is a case study of a human computation process designed to solve a real-

world problem, that of digitizing handwritten forms. We present the design of the process 

which involves three phases. Each phase is a simple iterative or parallel algorithm. The first 

phase locates fields on a blank form; the second phase produces labels for each field; and the 

third phase transcribes the handwritten information in each field of each form. We execute the 

process on a sample of real world data, and discuss the results. We also make suggestions for 

researchers or practitioners working on end-to-end systems of this sort. 

 

The contributions above are motivated by a grander vision of where human computation can 

take us. It may be possible to take many knowledge work tasks that are traditionally carried 

out by single experts, and break them down into algorithms which orchestrate the efforts of 

many individuals. These algorithms may perform tasks more efficiently and reliably than 

experts, doing for knowledge work what the industrial revolution did for manufacturing. In a 

sense, each of the contributions of this thesis is a stepping stone toward exploring this 

possibility. This thesis embarked along an ambitious path to create complex human 

computation algorithms capable of writing essays, designing software, and creating 

presentations. I had even hoped that this thesis would be written using such an algorithm — 

alas. Still, this thesis makes several contributions which I hope will help others advance the 

field of human computation. 

 

First, we presented a toolkit for writing human computation algorithms on MTurk. The high 

latency of human computation presents a unique set of design constraints for human 

computation programming. The TurKit toolkit helps manage this high latency using the crash-

and-rerun programming model, which remembers costly results between runs of a program so 

that they do not need to be redone. In particular, the system remembers the results of HITs 
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posted on MTurk so that they do not need to be re-posted. This allows programmers to maintain 

a relatively fast iterative design cycle as they prototype new algorithms, while still 

programming in a familiar imperative style. We focused on trying to maintain a familiar 

programming style. We wanted to maintain the illusion of introducing a human procedure call 

to a conventional programming paradigm. However, our efforts come with some caveats. For 

instance, the crash-and-rerun programming model differs in some subtle ways from traditional 

programs, which are not always clear to new programmers in this model. Also, the crash-and-

rerun model does not scale to continuously running processes, since it will take longer and 

longer for the program to get back to where it was after rerunning. 

 

Finally, the parallel programming capabilities of the system are difficult to discover and use. 

There are many decent alternatives to crash-and-rerun programming that fix the scalability and 

usability issues. However, the crash-and-rerun programming style introduces some compelling 

advantages difficult to find elsewhere. Most importantly, crash-and-rerun programs can be 

modified between reruns. This allows a programmer to write the first part of an algorithm, 

make sure it works, and then write the next part of the algorithm without needing to wait for 

the first part to execute on MTurk. In fact, it is possible to modify parts of an algorithm which 

have already executed, in order to collect additional information into variables for later use, or 

print debugging information. The purpose of TurKit is to promote exploration in the field of 

human computation, and we site several case studies where people have used it toward that 

end. TurKit is open source, and available at http://turkit-online.appspot.com. 

 

We used TurKit ourselves to implement and compare iterative and parallel human computation 

processes. In the iterative approach, each worker sees the results from previous workers. In the 

parallel process, workers work alone. Our experiments apply each algorithm to a variety of 

problem domains, including writing, brainstorming, and transcription. We use TurKit to run 

several instances of each process in each domain. We discover that iteration increases the 

average quality of responses in the writing and brainstorming domains, but that the best results 
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in the brainstorming and transcription domains may come from the parallel process. This seems 

related to the greater variance of responses generated in the parallel condition. We also see that 

providing guesses for words in the transcription domain can lead workers down the wrong 

path, like a gradient descent toward a local minimum. More experiments like this will need to 

be run in order to really chart the space of low-level human computation algorithms, but this 

is a start. We need a foundation upon which to build larger algorithms, and hopefully these 

experiments contribute to that foundation. 

 

Next, we examine a case study of building a larger human computation system, composed of 

several phases, each of which uses an iterative or parallel algorithm to achieve some goal. The 

system performs transcription on a set of hand-completed forms, with an effort not to reveal 

too much information from the forms to the human workers. We decompose the problem into 

three phases: the first phase identifies information regions on the form, the second phase 

provides labels for each region, and the final phase has humans transcribe what is written in 

each region. We ran this system on a real-world set of forms, and discovered a number of pros 

and cons. For the most part, the system worked well, including the system for dynamically 

partitioning the region selection task between workers. No worker needed to draw all the 

regions, but we also did not need to divide up the form upfront. 

 

On the other hand, we discovered a number of risks related to showing transcription workers 

only a small window of a form, since sometimes the transcription would be aided by seeing 

other parts of the form. After getting our hands dirty building tools, systems and running 

experiments, we come away with an impression of the state-of-the-art of human computation. 

We express our own view of where we are at, what problems we face, and where we think 

human computation is headed. I think the most pressing problem today is getting more people 

to use human computation — the more people use it, the more brains will be motivated to fix 

all the problems. The biggest hurdle to getting more people to help explore human computation 

is getting them to understand what can be done, making it easy for them to do it, and ensuring 
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high quality results. Also, we should not just think about this from a bottom-up approach, 

getting people to use micro tasks on MTurk. We should also consider exploring top-down 

approaches, looking at how modern knowledge workers go about their tasks, and finding 

possible pieces to outsource as part of their workflow. 

 

One thought to leave with is this. Humanity has achieved many great things over the course of 

human existence, even though individual humans only live for 100 years. Hence, a 100 year 

window is enough for a person to learn the current state of-the-art in humanity, at least in some 

narrow domain, and make a contribution in that domain that allows the next person who comes 

along to get even further. We also see companies with achievements surpassing any individual 

worker, where each employee only works perhaps 30 years at the company. Today, many 

people move between companies every 5 years. How small can we make this window? If any 

one person can only contribute to a company for a month, can it achieve arbitrarily great 

things? If we design a human computation algorithm with clever protocols for focusing 

workers on different sub-problems within a system, and present them with just the most 

relevant information, can we make this window as small as a day, or an hour? If so — a big if 

— can we parallelize the algorithm? And if so, what can nearly 7 billion people achieve in a 

day using this algorithm? 
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CHAPTER 3: SYSTEM DEVELOPMENT 

 

3.1 PROJECT DESIGN 

 

In this project, we need to solve the problem of WSD using human computation. The best way 

to incorporate human computation in any problem ethos is through an interactive game. 

Therefore, we are going to base our human computation component on a fun game in which 

players have to provide alternate words for the highlighted word in a phrase or sentence. 

Additionally, they have to suggest the alternate word such that it matches with the alternate 

suggestion of their opponent. The opponent in the game would be more of a team partner than 

an opponent because both players are aiming to guess the same word as the other, and thus will 

contribute to each other’s scores. However, the person who submitted the alternate word first 

will get more points than their opponent. This part is necessary because it will give added 

incentive to players to guess more words in the allotted time. The words provided by the users 

will be stored in the database along with the count of the number of times that the users have 

suggested those words during the game. We shall use that count to determine whether the 

alternate suggestion of the users is valid or not. This will help our corpora increase in volume 

and accuracy automatically, purely based on how the users have played the game. Therefore, 

more the number of users who play the game, the bigger our corpora will be. 

The game will be programmed in Java because of its great availability of frameworks and 

libraries for client-server based programs, and also because our programming expertise lies in 

this language. Also, database connectivity with Java is relatively simple as compared to other 

programming languages while being sufficiently secure. Another advantage of using Java will 

be the easy portability of our game. We need not program our game differently for different 

platforms. Also our game will be very light on the memory as well as the processor because it 

will be compiled by the JVM which is already present on the user’s machine. 
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3.2 GAME DESIGN 

 

The game will be a client-server program written in Java using the NetBeans IDE. We shall 

use the JFrame container for containing our design elements.  

 

3.2.1 Register 

The register interface looks like this: 

 

Fig. 3.2.1.1: Register Interface 

In this JFrame, the user has to register, so that their stats and login information can be stored 

in the database. Here the various fields that the user has to fill out are represented by JTextField.  
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Fig. 3.2.1.2: Register Interface Flowchart 
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The register interface is shown in the above flowchart. The user needs to provide their name, 

a username and password, and the name of the file which contains their profile picture. Once 

the user hits the register button, the data gets checked against the database for any redundancy 

in username, and if there is no redundancy, the user gets registered. 

 

3.2.2 Login 

Once the user has registered themselves, then they can login using the login interface. Here the 

username and password fields have been represented by JTextField. The user needs to provide 

a username and a password. Once the user hits the login button, the username and password 

are checked against the database. If they are a match, the user is logged in.  

The login interface looks like this: 

 

Fig. 3.2.2.1: Login Interface 
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The login interface can be better understood through the following flowchart: 

 

Fig. 3.2.2.2: Login Interface Flowchart 



30 

 

3.2.3 User Profile 

The user profile interface displays essential user information and is the central pivot point from 

where the user can see how to play the game, can play the game, can logout, or can exit. The 

interface also displays the user’s name at the top left corner using a JLabel and also displays 

the user’s profile picture on the right using ImageIcon.  

 

The user profile interface looks like this: 

 

 

Fig. 3.2.3.1: User Profile Interface 
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The user profile interface can be better understood through the following flowchart: 

 

Fig. 3.2.3.2: User Profile Interface Flowchart 
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3.2.4 Game Interface 

Once the user hits the play button in the user profile interface, the game interface pops up. In 

the game interface, a JTextArea has been used to display the sentence or phrase in which there 

will be a highlighted word for which the player has to suggest an alternative word.  

 

Fig. 3.2.4.1: Game Interface Design 
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The highlighted word for which an alternate word has to be provided is represented below the 

sentence text area using a JLabel. We have provided the player with an editable JTextField for 

them to enter their alternate word. The player can then submit the word using the submit button. 

Just right to the alternate word text field, there are four JLabels, for round number, points for 

current round, net score and time remaining. The player can then see if their alternate word 

suggestion matched that of their opponent in the points label. The player can also check the 

time remaining for the round in the time label. The interface also shows the profile picture of 

the opponent in the top right corner using ImageIcon. 

 

3.2.5 Game Play 

The two players will be anonymous and will be paired randomly to prevent any form of 

cheating between the two players. At any given time, both players view the same round, where 

a round is defined by a context (sentence/paragraph) and a highlighted word within that 

context. 

The players are encouraged to rapidly type replacement words for the highlighted term. They 

are given incentive to type words that their partner is likely to type and are given 30 seconds 

to do so. 

If the players’ guesses are a match then they are awarded points. But both the players are not 

awarded equal points. The player that first entered the matching alternate word gets more 

points than the other player who entered the matching alternate word. In the case where an 

agreement cannot be reached, and the guess of the player matches any word corresponding to 

the highlighted word in the database, then the player is awarded some points, but not as much 

as they would be getting on a perfect match with the other player. But if the players’ guesses 

are altogether incorrect, then they are awarded 0 points for that round. One round lasts for 30 

seconds, and the players are encouraged to provide as many words as they can in that time 

frame. 
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Fig. 3.2.5.1: Flowchart of the Game 
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A game lasts for 7 rounds, with the last round being a bonus round. In the bonus round, the 

amount of points that each player gathers is doubled. At the end of the game, the player with 

the most number of points wins. After the game is completed, both the players’ scores are 

checked against their high scores that are stored in the database. If their score is more than their 

previous high score, then that score is now counted as the high score for that particular player. 

 

3.2.6 Database Manager 

 

The DB Manager JFrame can be used to add words and sentences for the game. The interface 

looks like this: 

 

 

Fig. 3.2.6.1: Database Manager Interface 

 

User has options to add both words and sentences to the database. But if the user wants to add 

a word or a sentence, they will have to provide the admin password to be able to successfully 
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add a word or a sentence, otherwise their request will be denied. The database manager 

interface can be better understood through the following flowchart: 

 

 

Fig. 3.2.6.2: Database Manager Interface Flowchart 
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3.2.7 Corpora Acquisition 

 

Once the players enter their alternate suggestions for a highlighted word, their answers are 

checked. If they are a match, then we store the word in our database and set its count to 1. If 

another set of players suggest the same alternative word for another game, then we increase 

the count of the word to 2, and so on. 

If the count of the word crosses a certain threshold, say 20, which means that 40 people think 

that that word is the correct alternative to the highlighted word in the sentence. So therefore, 

then we treat the word as being a correct alternative to the word that was highlighted in the 

sentence. In this way, we can build a database of words having similar meanings, and words 

whose meanings might be different in different contexts. Thus, the more players play our game, 

the better our corpora will become. 

We store our words and sentences in a database and whenever the application is launched, we 

create a trie from all the words in the database. We also store the alternate words in a separate 

database and upon the application launch, we create hashmaps from all the corresponding 

alternate words in the database. During the game, the alternate word count is changed 

dynamically in the hashmap and it reflects in the database only after the game has been 

completed. Periodically we check the alternate word database, if any alternate word count is 

above 20, we shift the alternate word to the main word database so that it is part of the trie and 

not the hashmap. 

Thus our technique will be a good solution to the corpora acquisition bottleneck, which has 

been an everlasting problem in Natural Language Processing (NLP). 
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CHAPTER 4- PERFORMANCE ANALYSIS 

 

4.1 INTRODUCTION 

 

In computer science, the performance analysis is the determination of the amount of resources 

necessary to execute algorithms. Most algorithms are designed to work with inputs of arbitrary 

length. The efficiency or running time of an algorithm is stated as a function relating the input 

length to the number of steps which is known as time complexity or storage locations which is 

known as space complexity. 

Algorithm analysis is an important part of computational complexity theory, which provides 

theoretical estimates of the resources needed by any program which solves a 

given computational problem. These estimates provide an insight of search for efficient 

algorithms into reasonable directions  

In theoretical analysis it is common to estimate their complexity in the asymptotic sense which 

means to estimate the complexity function for arbitrarily large input.  For this purpose Big O 

notation, Big-omega notation and Big-theta notation are used. Exact (not asymptotic) 

measures of efficiency can sometimes be computed but they usually require certain 

assumptions concerning the particular implementation of the algorithm, called model of 

computation. 

Time efficiency estimates depend on what we define to be a step. For the analysis to correspond 

usefully to the actual execution time, the time which is taken by any program to perform a step 

must be guaranteed to be bounded above by a constant. One must be careful here, for instance, 

some analysis count an addition of two numbers as one step. This assumption in certain 

contexts may not be warranted. For example, if the numbers involved in a computation may 

be arbitrarily large, the time required by a single addition can no longer be assumed to be 

constant. 
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Run-time analysis is a theoretical classification that estimates and anticipates the increase 

in running time of an algorithm as its input size increases. Run-time efficiency is a topic of 

great interest in computer science. A program can take seconds, hours or even years to finish 

executing, depending on which algorithm it implements. 

 

4.2 PERFORMANCE ANALYSIS RESULTS 

 

So, upon performance analysis of the application and its algorithms, following time complexity 

was calculated for the various tasks happening during the application: 

 

S.No Task Time Complexity Remarks 

1 Creating dataset O(n*m) n = number of 

words, m = length of 

longest word 

2 Inserting word into dataset O(k) k = length of word 

3 Inserting hashmap at the leaf node of 

a word 

O(k) k = length of word 

4 Inserting alternate word into 

hashmap 

O(1)  

5 Searching word in dataset O(k) k = length of word 

6 Searching alternate word in hashmap O(k+1) k = length of word 

in whose leaf node 

the particular 

hashmap is stored 

Table 4.2.1: Performance Analysis Results 
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Fig. 4.2.1: Normal Trie 
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Fig. 4.2.2: Modified Trie with Hashmaps 
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The main thing to notice here is the time complexity of the creation of dataset from words 

stored in database. The time complexity here is O(n*m) where n is the number of words and 

m is the length of the longest word. This is because we have used trie data structure (fig. 4.2.1) 

to store the words and the time complexity mentioned is the complexity of creation of trie. 

Furthermore, we have modified the trie data structure to give us the ability to store the ‘word 

sense’, i.e., in which context the word can be used. We have used hashmaps (fig. 4.2.2) to store 

the alternate words to a given word, so that context can be derived from those alternate words 

whenever needed. Now since the time complexity of both insertion and searching in hashmap 

is O(1), the hashmap adds negligible overhead to the already efficient trie dataset, which makes 

our dataset very light and fast. 

 

4.3 OUTPUT 

 

4.3.1 Server Output 

 

The server is the place where the trie and hashmaps are stored, and words are randomly selected 

from the dataset and corresponding sentences are shown to the players. Then the players submit 

alternate suggestions for the given words. The players’ suggestions are matched at the server, 

and if they match then the server updates the corresponding hashmap with the alternate 

suggestion’s count. For a simulation game with 3 rounds, the following sample output was 

recorded on the output console of the NetBeans IDE: 
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Fig. 4.3.1.1: Server Output 

 

In the output, a random number is shown. This random number is responsible for selection of 

word from the dataset. Once a word is selected, a sentence associated with that particular word 

is selected at random. 
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4.3.2 Client Output 

 

The client is the place where the game is played, and all the players see is the front end game 

interface. The players see a sentence and a highlighted word in the sentence for which they 

have to provide an alternate suggestion. 

Here is a screenshot of the front end game interface during game play: 

 

 

Fig. 4.3.2.1: Client Side during Gameplay 
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Here is the output on the NetBeans IDE’s output console when the players provide alternate 

suggestions that do not match: 

 

Fig. 4.3.2.2: Client Output When Suggestions Do Not Match 

 

Although the players’ alternate suggestions do not match, the program still checks whether any 

player’s suggestion is present in the hashmap of the given word. If it is, then the player is 

awarded points, but the count of that particular alternate suggestion is not increased. 

Here is the output on the NetBeans IDE’s output console when the players provide the same 

alternate suggestion: 

 

Fig. 4.3.2.3: Client Output When Suggestions Match 

 

Here Num words: 4 is the number of alternate suggestions present in the word hard’s hashmap. 

Then it is checked whether the word difficult is present in the hashmap, if it is, then its count 

is updated and increased by 1. Otherwise, the word difficult is added to hard’s hashmap with 

count 1. 

The program also prints a trace of all the sentences, the highlighted words and the player’s 

alternate suggestions on the output console, so that the player can keep track of all the previous 

sentences, the highlighted words and their alternate suggestions. Here is a sample output: 
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Fig. 4.3.2.4: Client Output Trace 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

 

5.1 CONCLUSION 

 

An everlasting problem in NLP is the word sense disambiguation (WSD) problem: 

disambiguating the true sense of a word as it occurs in a sentence (e.g., recognizing whether 

the word "bank" refers to a river bank or to a financial institution). This project explores a 

strategy for harnessing the linguistic abilities of human beings to develop a dataset that can be 

used to train machine learning algorithms for WSD. To create such a dataset, we use Human 

Computation through a fun game designed to produce valuable output by engaging human 

players in what they perceive to be a cooperative task of guessing the same word as another 

player. 

 

Players being unaware of the true purpose behind the game, will involuntarily help us in our 

corpora acquisition by trying to score maximum points by guessing as many words as possible 

in 30 seconds. 

 

5.2 FUTURE WORK 
 

Once a large enough data set has been created through human computation, the dataset can be 

fed to any WSD machine learning algorithm which works with the English language. We can 

also create similar types of games which can be used to create data sets for languages other 

than English. There hasn’t been much research on corpora acquisition for Hindi, which is 

definitely an area to explore and will help in corpora acquisition for Asian languages. A similar 

type of game can be created which urges the players to translate the highlighted word to another 

language. This game can help improve machine based language translation. 
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