Jaypee University of Infofmation Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num. S POZ2a< o Call Num:
General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book hy a new copy.

@ The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

AR

SP03050

|

MODELING AND TESTING OF
GUI’S
USING FINITE STATE MACHINES

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree of

BACHELOR OF TECHNOLOGY
in
COMPUTER SCIENCE ENGINEERING

By
SHREY AHUIJA -031230
GEETIKA UPADHYAY-031273
NEHA GULATI -031229

SAYPEE UNIVEREITY OF
INFORMATION TECHROLOGY

Department of Computer Science Engineering and Information Technology,
Jaypee University of Information Technology, Waknaghat, Solan - 173215,
: Himachal Pradesh, INDIA.

MAY 2007

e e S T

CERTIFICATE

This is to certify that the work entitled, “Modeling and Testing of GUD’s using Finite
State Machines” submitted by “Shrey Ahuja(031230), Geetika Upadhyay(031273) and
Neha Gulati(031229)” in partial fulfillment for the award of degree of Bachelor of

e 4 e e

Technology in Computer Science Engineering of Jaypee University of Information
Technology has been carried out under my supervision. This work has not been submitted
partially or wholly to any other University or Institute for the award of this or any other

degree or diploma.
Supervisor:
| M. Nitin

Senior Lecturer

Department of Computer Science Engineering and Information Technology,

Jaypee University of [nformation Technology,
Waknaghat, Solan — 173215, Himachal Pradesh,
INDIA.

ACKNOWLEDGEMENTS

We wish to express our carnest gratitude to Mr. Nitin, for providing us invaluable

guidance and suggestions, which inspired us to submit this project report on time.

We would also like to thank all the staff members of Computer Science and Engineering
Department of Jaypee University of Information Technology, Waknaghat, for providing

us all the facilities required for the completion of this project report.

Last but not least we wish to thank all my classmates and friends for their timely

suggestions and cooperation during the period of our project report.
- s (22]o5]0F)
Shrignys (.)
Shrey Ahuja (031230) t*f&ﬂ\({“ﬂﬂh (22/0¢/0%)
Geetika Upadhyay (031273) {}ceh‘k@ (22708 [oF)
Neha Gulati (031229)

e s o g

ABSTRACT

Most of the Human-Computer-Interfaces will be materialized by Graphical User
Interfaces (GUI). With the growing complexity of the computer-based system, also their
GUIs become more complex, accordingly making the test process more and more costly.
The project introduces a holistic view of fault modeling that can be carried out as a
complementary step to system modeling, enabling a precise scalability of the test process,
revealing many rationalization potential while testing. Appropriate formal notions and
tools enable to design and test the software systematically. Based on a basic black box
test criteria, test case selection can be carried out efficiently. The elements of the
approach will be narrated by a realistic example which will be used also to validate the
approach. In our case the example been considered is that of an Intelligent Automated
Teller Machine owing to its widespread use in today’s world as well as its growing
complexity to make it more user friendly. We will showcase through this example how

formal tools and notions can be used efficiently to design the GUI. Furthermore, we test

the same using the notion of Black Box Testing.

o s e v

Table of Contents

LCERTIFICATE..... ..ot i ittt et st e e st en s b e s sevae e e satesaaseeeaans 2
ACKNOWLEDGEMENTS. ... ittt e stee st ean e e e e e 3
AB ST RAC T .. ottt et ereertertans 4
Table of COntents. ...o.vei e e 5-6
List of Figures and Tables. ... 7-8
CHAPTER 1

INTRODUCTION.......coiiiiiiiiiic ittt s sse s s s b b sessete e ens 9-21
1.1. Project Specifications.. ... e e 10
L2 JAVA. Lot e as e 10-13
1.3. Scripting LangUages........cccuiierinieiiniiiiiiitteies e e sae e sesssaessnesbsessnesanenns 14-17
1.4. Formal Languages and Tools.......cccccviviiiiiiniininini i1 17-21
CHAPTER 2

MODELING AND DESIGN OF GUD S ..ottt 22-35
2.1, Underlying Idea........oooovieiiiinieecc et 22-28
2.2. Demonstration of (IPs) and (FIPS).iiircieseeieresceeces e 28-30
2.3, Project LaYOUL.......oocieieceiiene ettt b b a st 30-35
CHAPTER 3

TESTING OF GUD S .o e e 36-67
3.1. Demonstration of working of an ATM.......c.ccooiiiinicicicnnre e 36-54
3.2, TSt CASES.....cueerrererierre ettt s bbb s a s ass e sa b e s etetanees 54-67
CHAPTER 4

CONCLUSION AND FUTURE SCOPE.......coiiviiii i 68
AL CoNCIUSION. .. eu et e e 68
4.2, FULUIE SCOPR. ... evtiiiitt ettt e et et et e e e e, 68

r"

BIBLIOGRAPHYovie e etttinimitit ettt 69
APPENDIX A\ eoeuuuneeeimasarrstss s ae s ie st s et st st s 70-75
KL T s ettt 70
A.2. Storage and Comparison of coordinate values using XML.....ooooii 71-75
APPENDIX B v oeeviieiaeneeeiinesrsa s ee ettt s st s s 76-89
B.1. PrOJECE LAYOUL. .. cvveeseeemnireess bt st 76-89
APPENDIX oot eiiaeereeesaii s st e st st 90-104
R TN U DY E R RTESTEREL 90-95

G2 ATM DEIIOL .. ieitert e et ettt 95-99
C.3. ATM PIN ...ttt ettt et e bt 99-104

List of Figures and Tables

Fig 1.1: Deterministic AUtOMAta.oovvinmnii 14
Fig 1.2: Non-Deterministic Automata...................................... 14
Fig 2.1: Sub Automata showing Cash Withdrawal............................. 19
Fig 2.2: Sub Automata showing PIN Change.......ccoooooveie 20
Fig 2.3: Sub Automata showing Fast Cash................................ 21
Fig 2.4: Sub Automata showing Transfer... 22
Fig 2.5: Sub Automata showing Deposit........o.ooooiiii 23
Fig 2.6: Snapshot of an FIP in Cash Withdrawal............................... 24
Fig 2.7: Snapshot of an IP in Cash Withdrawal............................. 25
Fig 2.8: Snapshot of Cash Withdrawal........................... 27
Fig 2.9: Snapshot of Fast Cash.....................coo 27
Fig 2.10: Snapshot of Cash Teansfer.....................c.ccooo 28
Fig 2.11: Snapshot of Cash Deposit............cccovovivvceeieoooo 28
Fig 2.12: Snapshot of PIN Change..............coooooveoooee o 29
Fig 2.13: Snapshot of About Page. ... 30
Fig 2.14: Snapshot of ATM Automaton Image.............coooooi 31
Fig 3.1: Snapshot of the login/password window......................... 33
Fig 3.2: Snapshot for entering card no...........c.....co.oooorveee 34
Fig 3.3: Snapshot for entering the PIN number....................................... 36
Fig 3.4: Snapshot of displaying the Menu foran ATM..................._ 37
Fig 3.5: Snapshot for showing Cash Transfer................................... 38
Fig 3.6: Snapshot for showing authentication while Cash Transfer...................__ 39
Fig 3.7: Snapshot for showing the process of Cash Transfer......................... 41
Fig 3.8: Snapshot for showing Card Authentication while Cash Transfer... | 42
Fig 3.9: Snapshot for showing Cash Deposit.......................oc... 44
Fig 3.10: Snapshot for displaying options for Cash Withdrawal.................._ 45
Fig 3.11: Snapshot for showing Cash Withdrawal from a Savings Account............... 46
Fig 3.12: Snapshot for Fast Cash Withdrawal........................ 48
Fig 3.13: Snapshot for facilitating PIN Change..................................... 49
Fig 3.14: Snapshot for details shown in the Mini Statement,................................ 50

7

r

Fig 3.15: Cause Effect Graph for Card Number entry........................_ 52
Fig 3.16: Cause Effect Graph for PIN entry.............................. 54
Fig 3.17: Cause Effect Graph for Bank and Account No. Authentication............. .. 55
Fig 3.18: Cause Effect Graph for Bank and Account No. Authentication. | 57
Fig 3.19: Cause Effect Graph for Cash Transfer Amount Authentication....... . 58
Fig 3.20: Cause Effect Graph for Card Authentication.......................... 60
Fig 3.21: Cause Effect Graph for Card Deposit............................. 6l
Fig 3.22: Causc Effect Graph for PIN Change....................... 62
Table 2.1- IPs and FIPs of Cash Withdrawal.................................... 20
Table 2.2- Regular Expression for Cash Withdrawal............................. . 20
Table 2.3- IPs and FIPs of PIN Change.....................ococooo 21
Table 2.4- Regular Expression for PIN change...........cooooiiiiiinion 21
Table 2.5-IPs and FIPS of Fast Cash.......ccccuuecrrrooosocercrmosmsesssooooooooooooo 22
Table 2.6- Regular Expression for Fast Cash..............c.................. 22
Table 2.7- IPs and FIPs of Cash Transfer.........oo..oooccovovoeomorsosvocoooo 23
Table 2.8- Regular Expression for PIN ChANGE.....vivi e 23
Table 2.9-IPs and FIPs of Cash Deposit. ..o 24
Table 2.10- Regular Expression for PIN change.............oo 24
Table 3.1- Test Cases for Card No. CNLEY. oot 53
Table 3.2- Test Cases for PIN COLEY. e 54
Table 3.3- Test Cases for Bank and Account No. Authentication............................ 56
Table 3.4- Test Cases for Bank and Account No. Authentication......................... ... 57
Table 3.5- Test Cases for Cash Transfer Amount Authentication............................ 59
Table 3.6- Test Cases for Cash Transfer Amount Authentication............................ 60
Table 3.7- Test Cases for Cash Deposit......oooiiiiiiiiiei 61
Table 3.8- Test Cases for PIN Change..........ccoooooeinii 63
] 8

CHAPTER 1
INTRODUCTION

There are two distinct types of construction work while developing software:

- Design, implementation, and test of the programs.

- Design, implementation, and test of the user interface (UI).

We assume that UI might be constructed separately, as it requires different skills, and
different techniques than construction of common software. The design part of the
development job requires a good understanding of user requirements. The
implementation part requires familiarity with the technical equipment, i.e. programming
platform and language. Testing requires both: a good understanding of user requirements
and familiarity with the technical equipment. Our Project is about Ul testing that includes
testing of the programs that materialize the Ul and considering the design aspects.
Testing GUIs is a difficult and challenging task for many reasons: First, the input space
possesses a great, potentially indefinite number of combinations of inputs and events that
occur as system outputs wherein external events may interact with these inputs. Second,
even simple GUIs possess an enormous number of states which are also due to interact
with the inputs. Last but not least, many complex dependencies may hold between
different states of the GUI system, and/or between its states and inputs.

Test Cases generally require the determination of meaningful test inputs and expected
system outputs for these inputs. Accordingly, to generate test cases for a GUI, one has to
identify the test objects and test objectives. Robust systems also possess a good exception
handling mechanism, i.e. they are responsive not in terms of behaving properly in case of
correct, legal inputs, but also by behaving good-natured in case of illegal inputs,
generating constructive warnings, or tentative correction trials that help to navigate the
user to move in the right direction. In order to validate such robust behavior, one needs
systematically generated erroncous inputs which would usually entail injection of
undesired events into the Software Under Test (SUT). Such events would usually

transduce the software under test into an illegal state, e.g. system crash, if the program

does not possess an appropriate exception handling mechanism. Test inputs of GUI

|

* represent usually sequences of GUI objects activities and/or selections that will operate
interactively with the objects i.e. Interaction Sequences (IS}, Such an interactive sequence
is complete (CIS), if it eventually invokes the desired system responsibility. Another
tough problem while testing is the decision when to stop. Exercising a set of test cases,
the test results can be satisfactory, but this is limited to these special test cases. Thus, for
the quality judgement of the program under test onc needs further, rather quantitative
arguments, usually materialized by well-defined coverage criteria. The most well known
coverage criteria base either on special, structural issues of the program to be tested
(implementation orientation/white-box testing), or its behavioral, functional description
(specification orientation/black-box testing). The favored methods for modeling
concentrate on finite-state—based techniques, i.e. state transition diagrams and regular
events. For the systematically, scalable generating and selection of test sequences, and
accordingly, for the test termination, the notion Edge Coverage of the state transition

diagram will be introduced.
1.1. Project Specifications

1.1.1. Hardware Specification:

Operating System-Microsoft Windows XP professional 2002, SP2
Primary Memory- 512 MB RAM

Processor-Intel® Pentium® 4 CPU 2.4 GHz

Secondary Memory-80 HDD

L.1.2. Software Specification
Front End- Java (jdk-6-windows-i586), XML, MetaEdit, JCreator

Back End — MS Access (using JDBC driver)

1.2. Java
Java has gained enormous popularity since it first appeared. Its rapid ascension and wide
acceptance can be traced to its design and programming features, particularly in its

promise that you can write a program once, and run it anywhere. Java was chosen as the

10

r

programming language for network computers (NC) and has been perceived as a
universal front end for the enterprise database. As stated in Java language white paper by
Sun Microsystems: "Java is a simple, object-oriented, interpreted, secure, portable, and
dynamic."
(i) Java is simple
Java is considered a much simpler and easy to use programming language when
compared to the other object-oriented programming languages as it provides a lot of ease
to make interfaces and has no use of pointers.

Java is Object-oriented programming models the real world. Everything in the
world can be modeled as an object. Java is centered on creating objects, manipulating

objects, and making objects work together.

(ii} Portability: Program once, Run anywhere (Platform Independence)

One of the most compelling reasons to move to Java is its platform independence. Java
runs on most major hardware and software platforms, including Windows 95 and NT, the
Macintosh, and several varieties of UNIX. Java applets are supported by all Java-
compatible browsers. By moving existing software to Java, you are able to make it
instantly compatible with these software platforms. JAVA programs become more

portable. Any hardware and operating system dependencies are removed.

(iii) Java is interpreted

An interpreter is needed in order to run Java programs. The programs are compiled into
Java Virtual Machine code called bytecode. The bytecode is machine independent and is
able to run on any machine that has a Java interpreter. Normally, a compiler will translate
a high-level language program to machine code and the code is able to only run on the
native machine. If the program is run on other machines, the program has to be

recompiled on the native machine. With Java, the program need only be compiled once,

and the bytecode generated by the Java compiler can run on any platform.

(iv) Security

Java is one of the first programming languages to consider security as part of its design.
The Java language, compiler, interpreter, and runtime environment were each developed
with security in mind. The compiler, interpreter, and Java-compatible browsers all
contain several levels of security measures that are designed to reduce the risk of security
compromise, loss of data and program integrity, and damage to system users.
Considering the enormous security problems associated with executing potentially
untrusted code in a secure manner and across multiple execution environments, Java's

security measures are far ahead of even those developed to secure military systems.

(v) Reliability

Security and reliability go hand in hand. Security measures cannot be implemented with
any degree of assurance without a reliable framework for program execution. Java
provides multiple levels of reliability measures, beginning with the Java language itself.
The Java compiler provides scveral levels of additional checks to identify type
mismatches and other inconsistencies. The Java runtime system duplicates many of the
checks performed by the compiler and performs additional checks to verify that the

executable bytecode form a valid Java program.

(vi} Multimedia: Images, Sounds and Animation
The sizzle of JAVA is MULTIMEDIA - Sounds, Images, Graphics and Video. In this
growing age of multimedia, new computers are known as "multimedia ready” with CD-
Rom drives, sound cards, 31> accelerator cards and other new special sound or graphic
technology capabilitics. Multimedia demands incredible computing power and only
recently - in the past 5 years at least, affordable computers of this kinds are becoming
widespread.

Among the image formats supported by Java is the Graphics Interchange Format
-GIF and Joint Photography Experts Group .JPEG. Among the audio formats are AIFF,
AU and WAV,

12

(vii) The Virtual Machine: Java VM

This VM sits, metaphorically, between the Java program and the machine it is running
on, offering the program an "abstract computer”" that executes the Java code and
guarantees certain behaviors regardless of the underlying hardware or software platform.
Java compilers thus turn Java programs not into assembly language for a particular
machine but into a platform-neutral "byte code" that the machine-specific VM interprets
on the fly.

The Java VM also enforces security policies, providing a sandbox that limits what
the Java program can do, A Java applet cannot, for example, peek into arbitrary files on
the machine it's running on. The most recent version of Java from Sun, known as Java
Development Kit (JDK) 1.6, though, provides no consistent method for an applet to

request restricted system resources.

(viii) Java is Portable

One advantage of Java is that its programs can run on any platform without having to be
recompiled. This is one positive aspect of portability. It goes on even further to ensure
that there are no platform-specific features on the Java language specification. In Java,
the size of the integer is the same on every platforrﬁ, as is the behavior of arithmetic.
Having a fixed size for numbers makes Java programs portable. The Java environment
itself is portable to new hardware and operating systems, and in fact, the Java compiler

itself is written in Java,

(ix) Java is Dynamic

The Java programming language was designed to adapt to an evolving environment. New
methods and properties can be added freely in a class without affecting their clients. Also,
Java is able to load classes as needed at runtime. As an example, you have a class called
'Square’. This class has a property to indicate the color of the square, and a method to
calculafe the area of the square. You can add a new property to the 'Square’ class to
indicate the length and width of the square, and a new method to calculate the perimeter
of the square, and the original client program that uses the 'Square' class remains the

same.

13

1.2.1. Experimental Setup for working on Java Platform

Step 1: Unzip the folder.
Step 2: Run the jdk-6-windows-i586 setup file.

Step 3: Open the console Window.
Step 4: Reach the specified path where all the java files exist (C: /java/bin).

Step 5: Compile all java files using javac <filename>.java.
Step 6: Run the files using java <filename>.

Step 7: Result is obtained.

1.3. Scripting Langnages
There have been two scripting languages used in this project.
- HTML (Hypertext Markup Language)

-XML (Extensible Markup Language)

1.3.1. HTML

This case-insensitive language enables users to present information over the web in a
structured and uniform fashion. It is used to markup documents so that a web browser
can interpret and display them. It refers to the html code that defines the elements in

HTML file like headings, images, lists etc.

(i) The <HTML> tag
It defines the HTML document itself while all the other tags and text are nested in it.

(ii) The <HEAD> tag
It contains information about the HTML file and the title tag is nested in it.

(iii) The <TITLE> tag

It identifies the HTML page being made. It displays the same on the browser’s title bar
and does not appear as part of the HTML page.

(iv) The <BODY> tag

14

It is the compliment of the head tag. It contains all the tags and elements that the browser

displays as the body of the HTML documents.

(v) The
 tag
It is an empty or standalone tag that simply inserts a line break

(vi) The <H2> and < H3> tag
This is used to highlight a given piece of text according to the heading size been specified

wherein the text under the <H2> tag is bigger than the one under the <H3> tag and so on.

(vii) The <MARQUEE> tag
This is used to display text in motion which can be set to move in upward or downward

direction as well as leftwards or rightwards.

(viii} The tag

This is used to display an image of a specified height and width at a certain place in the
HTML document. The only factor to be taken into consideration is that the format of the
image should be explicitly specified (e.g. .gif, .Jpg etc.) and the image should lie in the
same folder as the HTML document.

Usage

The HTML page been created in our project basically is used to pictorially display the
whereabouts of the project. A brief introduction of the example of this project, that is, the
Intelligent Automatic Teller Machine is shown on the document in the heading tag <H2>
followed by the MARQUEE tag.

1.3.2. XML
XML is a markup language used to define data much like HTML except that in XML the

tags are not predefined but defined by the user according to the usage. XML was

designed to describe data and to focus on what data is. Where on one hand, HTML is

15

about displaying information, on the other, XML is about describing information. XML

can be used to store data in files or in databases and also as a format for exchange of

information.

(i) XML declaration
Value version- Indicates the XML version to which the document conforms.

(ii) Root element

It is the element that encompasses every other element.

(iii) Container element

It refers to any element that contains other elements.

(iv) Child elements

The elements inside a container element are called child elements.

Usage

In our project XML has been used to dynamically store 2 latest mouse clicks on 2 states
of the Finite State Automata for a particular transaction of the ATM. Incase the
combination between them is possible a message is generated to notify a VALID

transaction else it warns of an INVALID transacticn.

The XML Parser function in Java

public static String Value(String file) throws Exception {
IXMLParser parser = XMLParserFactory.createDefaultXMLParser();
IXMLReader reader = StdXMLReader.fileReader(file);
parser.setReader(reader);
XMLElement xml = (XMLElement) parser.parse();

return xmi.getContent();

16

This Parser is used to read values from a particular XML document. In our project the
values are read from two files MouseClickl . xml and MouseClick2.xml respectively and
then the coordinates stored in them after two mouse clicks are compared. Incase they
make a valid combination they are termed as Interaction Pairs else they make Faulty
Interaction pairs. An object xml is created which parses through a file reading its content

and thereby returning the content back through xml.getContent().

Format of the XML document

<7 xml version="1.0" encoding="1S0-8859-1"7>

<Click>coordinatel, coordinate2</Click>

Here the tag <Click> is a vser specified XML tag and not a predefined one suited for the

purpose of storing mouse clicks.

1.4. Formal Languages and Tools

1.4.1. Automata

An Automaton is an abstract model of a digital computer. As such, every automaton
every automaton includes some essential features. It has a mechanism for reading input.
It will be assumed that the input is a string over a given alphabet written on an input file
which the automaton can read but, not change. The input file mechanism can also detect
the end of the input string (by sensing end of file condition) and can produce out put of
some form. It may have a temporary storage device, capable of holding a single symbol
from an alphabet. The automaton also has a control unit which can be in any one of the
finite number of internal states and which can change state in some defined manner.

Two types of Automata

(i) Deterministic Automata

(ii) Non Deterministic Automata

17

(i) Deterministic Automata:
A Deterministic Automata is one in which each move is uniquely determined by the
current configuration. If we know the internal state, the input and the contents of

temporary storage, we can predict the future behavior of the automata exactly.

Fig 1.1 — Deterministic Automata

(ii) Non Deterministic Automata:
In a Non Deterministic Automaton at a single point there may be several possible moves

so, we can only predict a set of possible actions. . ‘
a
\ a ﬂ a /fm:b’i\ ‘
pro——— 2 : 3 } ,
~—-’(b K‘z«_/’/

Fig 1.2 —Non-Deterministic Automata

(iii) Finite State Automata

This type of an automaton is characterized by having no temporary storage. Since an
input file cannot be re written, a finite automaton is severely limited in its capacity to '
remember things during the computation. A finite amount of information can be retained

in-the control unit but, since the number of such states is finite a finite state automaton

can only deal with situations in which information to be stored at any time is strictly
bounded.

Two types of Finite State Automata

1. Deterministic Finite Acceptors

2. Non Deterministic Finite Acceptors
Deterministic Finite Acceptors

A Deterministic Finite Acceptor of DFA is defined by the quintuple
M= (Q!E: 5: QD} F)

Q is a set of states.

Y. is a finite set of symbols that we will call the alphabet of the language the automaton

accepts.
& is the transition function, that is
5:0x % —Q.
(For non-deterministic automata, the empty string is an allowed input).
q0 is the start state, that is, the state in which the automaton is when no input has been
processed yet (Obviously, q00 Q).
F is a set of states of Q (i.e. FOIQ), called accept states.
At the initial time, it is assumed to be in the initial state with its input mechanism on the
leftmost symbol of the input string. During each move of the automaton, the input
mechanism advances one position to the right so, each move consumes one input symbol.
When the end of the string is reached, the string is accepted if the automaton is one of the
final states otherwise the string is rejected.
The transitions are governed by the transition symbol 8. For example if,
6 {q0, a)=ql

then if the DFA is in state q0 and the current input symbol is a the DFA will go into state
q1.To visualize and represent the finite state automata, we use transition graphs, in which
the vertices represent states and the edges represent transitions. The labels on the vertices
are the states while the labels on the edges are the current values of the input string.

For example, if | and 2 are the internal states of some DFA M, then the graph
associated with M will have one vertex labeled | and another 2. An edge (1, 2) labeled a
represents transition

§(1,2)=2

19

The initial state will be identified by an incoming unlabeled arrow not originating at any

vertex. Final States are drawn with a double circle.

Non Deterministic Finite Acceptors

Nondeterminism means a choice of moves for an automaton. Rathe than prescribing a
unique move in each situation, we allow a set of possible moves. Formally, we achieve
this by defining the transition function so that it ranges over a set of possiblie states.

A non deterministic finite acceptor if defined by the quintuple
M= (Q:E: 6: qU’F)

Where Q, ¥, q0, F are defined in a similar way as for deterministic automaton
Here, the transition function if defined as

QXU =2Q
There are three major differences between the definition of a deterministic finite state
automaton and of a non deterministic one. The range of & is in the power set 2Q. Also, we
allow A as the second argument of 8. This means that an NFA can make a transition
without consuming an input symbol. Although we still assume that the transition is
towards right, it is possible that it is stationary on some moves. Finally, in an NFA, the
set 8 (qi, a) may be empty meaning that there is no transition defined for this specific
situation.

Like DFA’s, non deterministic acceptors can be represented by transition graphs.
The vertices are determined by Q, while the edge (qi, qj) with the label a is in the graph if
and only if 3 (qi, a) contains qj. Note that since a may be the empty string, there may be
some edges labeled A.

A string is accepted by an NFA if there is some sequence of possible moves that
will put the machine to its final state at the end of the string. A string is rejected if only if
there is no possible sequence of moves by which the final state can be reached.

Nondeterminism can therefore be viewed as involving “intuitive” insight by
which the best move can be chosen for every state (assuming that the NFA wants to

_accept the string).

20

J—

1.4.2. Languages and DFA

The language accepted by a DFA M= (@,%,6,q0, F) is the set of all strings on ¥,
accepted by M. In formal notation,

LM)={we)*:o* (q0,w)eF}

A DFA will process every string in >°* and either accept it or not accept it.

Non acceptance means that the DFA stops at a non final state, such that

LM)={weX*:5*(q0, w) F}

1.4.3. Regular languages and Regular expressions
Regular language can be obtained from the basic languages using the union,
concatenation and kleene (*) operations. A regular language can be represented by a

simple form called a regular expression.

e
AR B80Urgs
) % b Co,

Y

AcC. NOuemescaas
SPOZo SR

21

CHAPTER 2
MODELING AND DESIGN OF GUI’S

2.1 Underlying Idea
Modeling of a system requires the ability of abstraction, extracting the relevant issues and

information from the irrelevant ones, taking the present stage of the system development
into account. While modeling a GUI, the focus is usually addressed rather to the correct
behavior of the system as desired situations, triggered by legal inputs. Describing the
system behavior in undesired, exceptional situations which will be triggered by illegal
inputs and other undesired events are likely to be neglected, due to time and cost pressure
of the project. The precise description of such undesired situations is, however, of
decisive importance for a user-oriented fault handling, because the user has not only a
clear understanding how his or her system functions properly, but also which situations
are not in compliance with his or her expectations. In other words, we need a
specification to describe the system behavior both in legal and illegal situations, in
accordance with the expectations of the user. Once we have such a complete description,
we can then also precisely specify our hypotheses to detect undesired situations, and
determine the due steps to localize and correct the faults that cause these situations.

Finite State Automata are broadly accepted for the design and specification of
sequential systems for good reason. First, they have excellent recognition capabilities to
effectively distinguish between correct and faulty events/situations. Moreover, efficient
algorithms exist for converting FSA into equivalent regular expressions (RegEx).
RegEx, on the other hand, are traditional means to generate legal and illegal situations
and events systematically.

A FSM can be represented by

- A set of inputs.

- A set of outputs.

- A set of states.

- An output function that maps pairs of inputs and states to outputs.

- A next-state function that maps pairs of inputs and states to next states.

22

Any chain of edges from one vertex to another one, materialized by sequences of user
inputs states- triggered outputs defines an interaction sequence (IS) traversing the FSA
from one vertex to another. '

Once the FSA has been constructed, more information can be gained by means of
its state transition graph. First, we can identify now all legal sequences of user-system
interactions which méy be complete or incomplete, depending on the fact whether they
do or do not lead to a well-defined system response that the user expects the system to
carry out (Please note that the incomplete interaction sequences are sub-sequences of the
complete interaction sequences). Second, we can identify the entire set of the compatible,
i.e. legal interaction pairs (IP) of inputs as the edges of the FSA. This is key issue of the
present approach, as it will enable us to define the edge coverage notion as a test
termination criterion. We start the designing process with the example of an Automatic

Teller Machine automaton including all states. Its sub automatons are shown one by one

(Rgsh viiwleaa
- . -

oy

as under.

/a/ ‘\\‘
// _5 . [d
s .egen
s 4
- C: Cash Withdraw!
l stony l Cl: Current Acc.
. : S: Savings Acc.
. rf//’ 4
‘ _ M: Mernu
E“’"’ *’t‘ﬁ E: Enter amt subject to ¢!
N / El: Enter amt subject io ¢2
\3& o C2: Confirm Amt.

R: Receive cash
A, £l .
‘ : M1: Mini Statement
lms

Fig 2.1: Sub Automata showing Cash Withdrawal

23

Table 2.1- IPs and FIPs of Cash Withdrawal

Faulty Interaction Pairs

Sub Graph Interaction Pairs
CCl, CS, CIE, EM,
Cash Withdrawal. | EC2, C2R, RMI, SEI1,
E1M, EIC2.

CIC, SC, ECI, ME, C2E, RC2, MIR, EIS,
MEIl, C2El, CC2, CR, CM, ME, MEI, MM,
RR, E1El, EE, C2C2, CC, S§, CICI.

Table 2.2- Regular Expression

for Cash Withdrawal

Sub Graph

Regular Expression

Cash Withdrawal.

(CCIE™ + CSE1)M+(CCIE" + CSEI")C2RMI

ini Statepisert

CPRRECT

Enons

Pin Chanfe

Legend
P: Pin Change
O: Enter Old Pin
N: Enter New Pin
E: Menu
C: Confirm New Pin
M: Mini Statement

Fig 2.2: Sub Automata showing PIN Change

Table 2.3- IPs and FIPs of PIN Change

F Sub Graph Interaction Pairs Faulty Interaction Pairs
PO, ON,NC,CM, NE. | PP, 0O, NN, EE, CC, MM, OP, NO, CN,
PIN Change MC, EN, MP, MO, MN, ME, CP, CO, NP,
PM, PN, PC, PE, OC, OM, EP, EO, EC, EM.

Table 2.4- Regular Expression for PIN change

Sub Graph Regular Expression

PIN Change (PO*NCM + PO*NE)

Legend
F: Fast Cash
C: Current Account

. St S: Savings Account
¥ M: Menu

5 R1: Rs. 1000
R2: Rs. 3000

R3: Rs. 5000
R4: Rs. 10,000

A: Confirm Amount
R: Receive Cash
/ I: Mini Statement

NO

——

Rs.3000

Rs,1000

"
(¢

lYES
e

Fig 2.3: Sub Automata showing Fast Cash

25

Table 2.5-1Ps and FIPs of Fast Cash

Sub Graph Interaction Pairs Faulty Interaction Pairs
FC, FS, CRI1, CR2, AR | FF, CC, SS, RIRI1, R2R2, R3R3, R4R4, MM,
CR3, CR4, SRI1, RM, | AA, RR, 1], CF, SF, RI1C, R2C, RA, R3C,
Fast Cash SR2, RI, SR3, SR4, |R4C, RIS, MR, R2S, IR, R3S, R4S, ARI,

RIA, R2A, R3A, R4A .

AR2, AR3, AR4, MF, MC, MS§, MRI1, MR2,

MR3, MR4, RF, RC, RS, RRI, RR2, RR3,
RR4, IR1, IR2, IR3, IR4, IM, IF.

Table 2.6- Regular Expression for Fast Cash

Sub Graph Regular Expression

(FCR1AR + FCR2AR + FCR3AR + FCR4AR
+ FSRIAR + FSR2AR + FSR3AR + FCR4AR)
M +HFCRIAR + FCR2AR + FCR3AR +
FCR4AR + FSRI1AR + FSR2AR + FSR3AR +

Fast Cash

FCR4AR) |

Lo

‘Select Bank) -

Legend
T: Transfer
B: Select Bank
A: Enter amt & acc
M: Menu
C: Confirm Detail
S: Mini Statement

v

Ented amount & acgount

Confirm detal

Yes'

Fig 2.4: Sub Automata showing Transfer

J—

Table 2.7- IPs and FIPs of Cash Transfer

Sub Graph Interaction Pairs Faulty Interaction Pairs
MT, TB, BA, AC, CS. | MM, TT, BB, AA, CC, SS, TM, BT, AB, CA,
Transfer SC, SM, ST, SB, SA, CM, CT, CB, AM, AT,
AS, BM, BC, BS, TA, TC, TS, MS, MC, MA,
MB.

Table 2.8- Regular Expression for Cash Transfer

Sub Graph Regular Expression

Transfer (MTBA'C)S + M (TBA'C) "

henu

l

D: Deposit
l k A: Enter amt & acc
M: Menu

C: Confirm Detail

Enter amcu_ut no.one S: Mini Statement

Yes

Fig 2.5: Sub Automata showing Deposit

27

J—

Table 2.9-1Ps and FIPs of Cash Deposit

Sub Graph [Interaction Pairs Faulty Interaction Pairs
MD, DA, AC, CS. MM, DD, AA, CC, SS, DM, AD, CA, SC,
Deposit SM, SD, SA, CM, CD, AS, AM, DS, DC,
MS, MC, MA.

Table 2.10-Regular Expression for Cash Deposit

Sub Graph Regular Expression

Deposit (MDA'C)S + M (DA'C) "

2.2 Demonstration of Interaction Pairs (IPs) and Faulty Interaction

Pairs (FIPs) |

Azl a Cash \ ‘

Withdrawal

CL[! re—nt G e P
ACC e c‘qvlﬁgﬁ
Ar‘c ;
% Fntar Amt Q“Asni) p (;r;t;:/—\;:\t
’I‘ (—‘1 i
ubje-ct (s} —— i jact Al C‘;
’\;‘) et sl e e
=3
(; Mu-n 2 ——
-»tafaman (f—'?acet\.re
L & (a:h :

Fig 2.6- Snapshot of an FIP in Cash Withdrawal

Valid

“ cash
Wlthd rawaj/

Current
Acc. f:a'—\vmgs
i e ACC‘

SRl LS
Enter Arnt (.Yl.ent",.) e TR e
ub_jec“. to C,;l) o P Enter Amt. "

el ‘Subject to <:
:\3') VALID TRANSACTION. T
Mim S
tatamen {'REL aive

N (ﬁ%h

Fig 2.7- Snapshot of an IP in Cash Withdrawal

2.2.1. Programs being used:

The code for modeling the IP and FIP has been done through three main programs. These
are:

-ImageFrame

-ParseXML

-1

(OImageFrame

In this program we take a static image as shown in Fig 2.6 and Fig 2.7 respectively
showing all the possible states for the particular transaction called Cash Withdrawl. After
this any 2 mouse clicks on the image are dynamically stored in 2 XML documents called

MouseClick1.xml and MouseClick2. xml. Thereby a program called ParseXML is called.

29

(ii) ParseXML
In this program the coordinates in the XML files are compared and are matched against

pre stored coordinate positions. If they made a valid pair then a message calling it a valid
transaction is displayed and a new program called I is called. If the pair is an invalid one

then a message warning an invalid transaction is flashed and also the states which cannot

be connected are notified.

(iii) 1
This program is used to load another image on top of the original static image by calling

a program point whereby a line is drawn between the 2 mouse positions using the

Bresenham’s line drawing algorithm.

2.3. Project Layout

2.3.1. Help Menu

Layout

Contents = Cash Withdrawal
Fast Cash
Cash Transfer
Cash Deposit
PIN Change

About

Image

(i) Contents

A transition state diagram view of the automaton for the transactions possible in the ATM
is explained in this part of the software. An explanation for each part is given in this part
where each state is traversed to show the valid transaction possible. Each transaction
begins with the start state as “Ready” and ends up with the state “Mini Statement”. Each
help menu item displays the detail for that transaction and provides a button on clicking

of which the full page view of that transaction if given.

30

! thnl}m! béen mh:r:d and recieve d\e cnsh along - wﬂl] mmntalouunx

Fig 2.8- Snapshot of Cash WithDrawl

(b) Fast Cash

Fig 2.9- Snapshot of Fast .Cash

W?f i
A

i Fig 2.10- Snapshot of Cash Transfer
(d) Cash Deposit
e
Fig 2.11- Snapshot of Cash Deposit
I 32

(e) PIN Change

%’ll r 50 85 to protect the pin from being stolen. The prosedure 5 10 enter old pin.. .then ¢nter the new changed pin
i‘; gnngihc new pin.The User i then able to nge the new changed pin the nest timi¢ he operates the ATM.
B . e 4
y Guroger i
& obaneer [.
! Many thEr
i HCORGELT | Pack o}
o
3 gm Hew Pin
i ‘I”
& @:}»@m—-—{r;n-m n}}mn |
i I |
i |
B
g !
i
#
i
13
%

BT

w

Fig 2.12- Snapshot of PIN Change
(ii) About

This uses a class Browser. Browser’s constructer takes the argument as the URL to be
opened. It opens a URL that is specified on the computer. It sets the height and width of
the HTML document to be opened according the height and width of screen. It displays

the details of the project and the bibliography.

miachine or antomatic teller machine (ATM) 1s a computerd
s customers a method of financdial (ransactions in a public sj
i ;rlded by the customer entering a personal Identification m

Fig 2.13- Snapshot of About Page

(iv) Image

It uses the class MyImage. It shows the complete transition diagram for the ATM
Automaton. This is based on functionality that on click of button, the complete
automaton is displayed for viewing purpose only.

The automaton shows the transitions from one state to another and links only
those states which can be reached in sequential order. A path from one initial state till the
whole path is covered and the final state is reached forms the complete interaction
sequence while only two connecting states form a pair. The states that cannot be linked

are termed as faulty Interaction Pairs.

SREENET B T

ST 1

34

}
s
g
i
¥

BIFICATION CODE

ROPER INSH — //
ENTER CARD
VALID
HEUTHOR ue.m-—~——l’:!:rsk PIN BUEER
4 @chnxsﬂ bt

CPRRECT

HO

i I
™ ezen e 8 s b o e
MWOWT‘“‘ " PROCESING R\E

(ONFIRM D)

NTER OLD) PIN j
et <'~

B

mr@%mcnon

/YES
)

42

NTER NEJ PIN

CONFIRM H

=S e e T e

35

CHAPTER 3
TESTING OF GUI

3.1. Demonstration of working of an ATM
Front End :JAVA
Back End : MS ACCESS (DATABASE)

Connectivity : JDBC
The aim of the ATM Demo was to give a user a GUI outlook of the working of an

ATM before he actually uses the ATM. The entire working of the ATM including
verification of PIN number, updating of balance, withdrawal, transfer, deposit of money,

balance inquiry, PIN Change is shown from a software view where no hardware is

involved.

" 3.1.1. Main Classes for an ATM Demo

1. ATMPassword
ATMDemol
ATMDemo?2
ATMMenu
ATMCash
ATMSave
ATMCurrent
ATMMini
ATMDeposit

. ATMTransfer

I I RO

g

. TransferLogin

. ATMAmt

. CardAuthenticate
. ATMPIN

. ATMFast

e T e S
v B W N

36

(i)A TMPassword
This class authenticates the administrator into usage of the ATM Demo.

(a) Name of Database Accessed:

Password

(b)Attributes of Password:

Login, Password

(c) Input:

Login, Password

s e i

Fig 3.1-Snapshot of the loginfl.).e.tsév\.fc.)rd i

window

(i) ATMDemol
Thi i
d Is class takes the input as the CARD NUMBER which is verified as a VALID CARD
UMB if i
ER from thedatabase and if in case the card is valid, the user is sent to another

page to test the PIN number and so on.

37

T T T T PRI SR T

T

e

ase Accessed:

(a) Name of Datab
BankData, TEMP

(b) Attributes of BankData:
CARDNO(primary key), PIN, ACCOUNT NO, NAME, BALANCE IN CURRENT

ACCOUNT, BALANCE IN SAVINGS ACCOUNT

(c) Attributes of TEMP:
CARDNO (primary key)

(d) Input:
CARDNO

(e) Verified with CARDNO in BankData using query:
SELECT CARDNO from BankData where CARDNO="+Integer.parselnt(res)+"

() Storage of CARDNO in num:
If CARDNO is correct, value stored in TEMP using query:
"INSERT INTO TEMP (CARDNO) values(""+num+"")
And Dialog box is displayed as “Proceed”. The page is linked to ATMDemo?2 to

take input as PIN number,

A CARD NUMBER O START BANKING [E

Fig 3.2- Snapshot for entering card no.

(iii) ATMDemo?

This class takes the input as the PIN which is verified as a VALID PIN from the database
and if in case the PIN is valid, the user is sent 10 another page to access the services
provided by the bank such as withdrawal, transfer, deposit of money, balance inquiry,

PIN Change.

(a) Name of Database Accessed:
BankData, TEMP

(b) Attributes of BankData:
CARDNO(primary key), PIN, ACCOUNT NO, NAME, BALANCE IN CURRENT
ACCOUNT, BALANCE IN SAVINGS ACCOUNT

(c) Attributes of T EMP:
CARDNO (primary key)

(d) Input:
PIN

(e) Input taken (using buttons, no user keyboard input is accepted):

Value Stored in res = text. getText();

(f) Verified with PIN in BankData using query:
SELECT PIN from BankData where CARDNO="+Integer.parselnt(res)+"

(g) Storage of PIN in num?2:

If PIN matches with PIN entered by user which is stored in numl, the Dialog box is
displayed as «“proceed”. The page is linked to ATMMenu to display transactions that user
can do. If PIN doesn’t match with PIN entered by user then, an error message is

displayed. After 3 tries the system is reset.

39

| [caewarisss Enarpio ot [T .‘.’.‘?"‘“21"?“',".9'!?1 ;

Fig 3.3- Snapshot for entering the PIN number

(iv) ATMMenu

This class gives the user the various options that the user can access, that of:
Cash Transfer (to accounts in the two banks accessible by database)

Cash Deposit

Cash Withdrawal

-Savings Account

-Current Account

Fast Cash Transfer

PIN Change

Balance Enquiry

40

1
|

o &

Fig 3.4- Snapshot of displaying the Menu for an ATM

(v) ATMTransfer
This class takes the input as the Bank and the account number to which the amount is to
be transferred which is then verified to the existing database of banks with account

numbers.

(a) Name of Database Accessed:
BankDet, PNB, SBI

(b) Attributes of BankDet:
ACC, Bank

(c) Attributes of PNB, SBI:
ACC, LOGIN, Password, CARDNUM, NAME, Balance

(d) Input:

Bank, Account no

41

ATMTransfer has no. of conditions according to the number of banks that the database

has access to. The system proceeds depending on the BANK that that user plans to

transfer the money to. It ;akes the account no from the user stores it in res, bank in's and

checks it to the existing account numbers for that particular database, PNB and SBI using

query: |

"SELECT ACC from PNB where ACC$"+Integer.parselnt(res)Jr"

If ACC is correct, value is stored in res] and is inserted in BankDet database using query:

"INSERT INTO BANKDET (BANK, ACC) values ("+st" '“+lnteger.parselnt(res1)+“')
The dialog box displays «proceed” and the page is then linked to TransferLOGIN

to authenticate the account number entered by user by taking in a Login name and

password. Else an error message is displayed.

PR

Fig 3.5- Snapshot for showing Cash Transfer

(vi) TransferLOGIN

This class takes the input as the LOGIN and PASSWORD which is PIN for the account

holder to whom the amount is 0 be transferred. User is validated.

(a) Name of Database Accessed:
PNB, SBI

(b) Attributes of PNB, SBI:
ACC, LOGIN, Password, CARDNUM, NAME, Balance

42

(c) Input:
LOGIN, Password

TransferLOGIN takes the LOGIN from the user stores it in res and checks it to the
existing LOGIN for that particular ACC No., PNB and SBLIt gets Account no from
BANKDET using query:
"SELECT ACC from BANKDET”
This ACC value is stored in acc

It gets LOGIN name corresponding to this account no using query:
"SELECT LOGIN from PNB where ACC="+acct+" "

And LOGIN name corresponding to LOGIN entered by user using query:
"SELECT LOGIN from PNB where AGEEYHegt"
If LOGIN names are same then password is extracted from database using query:
"SELECT PASSWORD from PNB where LOGIN=""+res+""
[f LOGIN and Password are authenticated then, Successful Login is displayed in a dialog
box and the page is then linked to ATMAmt to get amount for Transfer. Else an error

message is displayed.

Fig 3.6- Snapshot for showing authentication while Cash Transfer

43

(vii) ATMAmt

This class takes the input as the Amount to be transferred from Bank’s Account holder to

another account in another Bank.

Details such as Name, Balance and Account number for Account holder are displayed

along with Account number, Name, Balance and Bank Details for the account holder of

another bank.

(a) Name of Database Accessed:
BankData , TEMP, PNB, SBI, Mini

(b) Attributes of BankData:
CARDNO(primary key), PIN, ACCOUNT NO, NAME, BALANCE IN CURRENT

ACCOUNT, BALANCE IN SAVINGS ACCOUNT
(c) Attributes of TEMP:
CARDNO

(d) Attributes of PNB, SBI:
ACC, LOGIN, Password, CARDNUM, NAME, Balance

(e) Attributes of Mini:
CARDNO, LASTTrans, Balance

(f) Input:

Amount

ATMAmt takes input as Amount to be transferred from a particular bank to another bank.
d for conditions valid for Savings Account such that, Amount

below Rs.1000. Amount should not be

This amount is checke
should not make the minimum balance reach

greater than existing balance. If Amount entered is valid then the Savings account of user

if updated by deducting that amount from the balance using query:

44

"UPDATE PNB SET BALANCE="+ (num4-num 1) +" where
ACC:"Hnteger.parselnt(resS)-k""

Where existing balance is in num4 and amount entered is in numl.
And the table for mini statement is populated.

[NSERT INTO MINI (CARDNO, LASTTRANS, BALANCE) values ("-num3+", '

puml+", "+ (num2-numl) + 9

sfer

(viii) CardAuthenticate

This class takes the input as any three digits of the CARD Number of the user to whom
the data is to be transferred to. In this case the 4th, 7th and 9th digits of the CARD
Number are taken by the user. The CARD numbet is selected using the Account number
of the user using query:

"SELECT CARDNUM from PNB where ACCi"+1nteger.parselnt(res)+”

Where account number is stored in res.

CARDNNUM is stored in num.

The 4th, 7th and 9th digits are extracted as

4th = (num%100)/10;

Tth = (num%lOOOO)HOOO;

45

9th = (num%10000000)/1000000;
The Digits are entered as text boxes and authenticated using nl, n2, n3. If the
Digits are authentic, the system goes on to display the Mini Statement. Else an error

message is displayed.

o _;ﬂﬁnr@mngmsqﬂmc‘m‘mnm i
g [T 7o [7 moip s [oK

Snapshot for showing Card Authentication while Cash Transfer

Fig 3.8

(ix) ATMDeposit
This class takes the input as the Amount to be deposited into Bank’s savings account.

Details such as Name, Balance and Account number for Account holder are displayed

along minimum balance allowed in that account.

(a) Name of Database Accessed:

BankData, TEMP, PNB, SBI, Mini

(b) Attributes of BankData:
CARDNO(primary key), PIN, ACCOUNT NO, NAME, BALANCE IN CURRENT

ACCOUNT, BALANCE IN SAVINGS ACCOUNT

46

(c) Attributes of TEMP:
CARDNO

(d) Attributes of PNB, SBI:
ACC, LOGIN, Password, CARDNUM, NAME, Balance

(e) Attributes of Mini:
CARDNO, LASTTRANS, BALANCE

(f) Input:
Amount

ATMDeposit takes input as Amount to be deposited into the account. If Amount
entered is valid then the Savings account of user if updated by increasing that amount to
the balance using query:
"UPDATE PNB SET BALANCE="+ (num4-+numl) +" where
ACC:“Hnteger.parseInt(resS)+""

Where existing balance is in num4, amount entered is in num1 and the table for
mini statement is populated.
INSERT INTO MINI (CARDNO, LASTTRANS, BALANCE) values ("+num3+",

Wpuml+", ' (num2-numl) + "

47

£t HESURTELSAsh DEpEEE ﬁf‘A e L-‘_\rh\m_i

U gy touauene |

Fig 3.9- Snapshot for showing Cash Deposit

(x) ATMCash

This class gives the user the option of the two types of accounts that the user can access,

such that:
-Savings Account

-Current Account

The user clicks on either of the two accounts and can access the accounts and can

take out money from the account by entering the amount.

48

My

| sames acconit |{ CInieAT ACCOUNY || Rese

Fig 3.10- Snapshot for displaying options for Cash WithDrawl

(xi) ATMSave
This class takes the input as the Amount to be withdrawn from Savings account. Details
such as Name, Balance and Account number for Account holder are displayed along with

Account number, Name, Balance and Bank Details for the account holder of another

bank.

(a) Name of Database Accessed:
BankData , TEMP, Mini

(b) Attributes of BankData:
CARDNO(primary key), PIN, ACCOUNT NO, NAME, BALANCE IN CURRENT
ACCOUNT, BALANCE IN SAVINGS ACCOUNT

(c) Attributes of TEMP:
CARDNO

49

(d) Attributes of Mini:
CARDNO, LASTTrans, Balance

(e) Input:

Amount

ATMSave takes input as Amount to be withdrawn from that user’s savings account. This

amount is checked for conditions valid for Savings Account such that, Amount should

not make the minimum balance reach below Rs.1000. Amount withdrawn should not

exceed Rs.3000. Amount should not be greater than existing balance.

If Amount entered is valid then the Savings account of user if updated by

deducting that amount from the balance using query:
"UPDATE PNB SET BALANCE="+ (num4-num1)+" where
ACC="+Integer.parseInt(re55)+“"

Where existing balance is in num4 and amount entered is in numl. And the table

for mini statement is populated.

INSERT INTO MINI (CARDNO, LASTTRANS, BALANCE) values ("+num3+",

tpuml+") "+ (num2-numl) +°). Or else an error condition is generated.

Fig 3.11- Snapshot for showing Cash WithDrawl from a Savings Ac

count

50

ses the

(xii) ATMCurrent

ss has a similar functionality to that o
ash withdrawal are such as:

below Rs.0. Amount

1 existing

f Savings account except it acces

This cla
rent account and the conditions for ¢
imum balance reach

mount should not be greater that

user’s cur
Amount should not make the min

withdrawn should not exceed Rs.2000. A

balance.

(xiii) ATMFast
t. Details

takes the input as the Amount to be withdrawn from Savings accoun

This class
ong with

such as Nam

for Account holder are displayed al

e, Balance and Account number
Details for the account holder of another

Account number, Name, Balance and Bank

bank.

(a) Name of Database Accessed:

BankData , TEMP, Mini

(b) Attributes of BankData:
CARDNO(primary key), PIN, ACCOUNT NO, NAME, BALANCE IN CURRENT

ACCOUNT, BALANCE IN SAVINGS ACCOUNT

(c) Attributes of TEMP:
CARDNO

(d) Attributes of Mini:
CARDNO, LASTTrans, Balance

(e) Input:
Amount

ithdrawn from that user’s savings account. This

Amount to be w
0, Rs.3000, and Rs.4000. This

ATMFast takes input as
n brackets of Rs.1000, Rs.200

amount is strictly taken 1

51 |
|

amount is checked for conditions such that, Amount should not make the minimum
balance reach below Rs.100 and amount should not be greater than existing balance. If
Amount entered is valid then the Savings account of user if updated by deducting that
amount from the balance using query:

"UPDATE PNB SET BALANCE="+ (num4-num)+" where

nmn

ACC="+Integer.parselnt(resS)+

Where existing balance is in num4 and amount entered is in num1. And the table

for mini statement is populated.
INSERT INTO MINI (CARDNO, LASTTRANS, BALANCE) values ("+num3+",

"rpuml+",) "+ (num2-numl) +""). Else it generates an error.

-

L @Q:OS_E:'AMQIUNT?QI.{'CASH WITHDRAWAL: o5 & 000 Fs. {1 20 R, 3000 f £ 5000

- Awoukt seLcre: [1ono v || pesen |

Fig 3.12- Snapshot for Fast Cash WithDrawl

(xiv) PINChange
This class takes the input as the old PIN and new PIN authenticates them and changes the

PIN for user accessing the Demo at that time.

52

———r

(a) Name of Database Accessed:

BankData , TEMP

(b) Attributes of BankData:
CARDNO(primary key), PIN, ACCOUNT NO, NAME, BALANCE IN CURRENT

ACCOUNT, BALANCE IN SAVINGS ACCOUNT.

(c) Attributes of TEMP:
CARDNO

It selects the CARDNO for user accessing the System at that time using query:
"SELECT CARDNO from TEMP"
Selects the exisiting PIN using the query:
"SELECT PIN from BankData where CARDNO="+lntcger.parsclnt(res)+" . Where res
has the CARDNO stored.

It takes in input as old PIN and reenters old PIN, authenticates that both are equal.
Then it checks the authenticity of new PIN by checking it against the old PIN. Tlle new
PIN should be a 4 digit PIN. If PIN is valid then the database BankData is updated using
query:
"UPDATE BankData SET PIN="+ Integer.parselnt (str3)+" where CARDNO

="+Integer.parselnt(res)+"

Fig 3.13- Snapshot for facilitating PIN Change

53

(xv) ATMMini

This class displays the details of the last transaction after the transaction is over.

! (a) Name of Database Accessed:
BankData ,TEMP,Mini

(b) Attributes of BankData:
ACCOUNT, BALANCE IN SAVINGS ACCOUNT

(c) Attributes of TEMP:
CARDNO

(d) Attributes of Mini:
CARDNO, LASTTrans, Balance

Fig 3.14- Snapshot for details shown in the Mini Statement

CARDNO(primary key), PIN, ACCOUNT NO, NAME, BALANCE IN CURRENT

. 54

3.2. Test Cases

Black Box Testing is testing without knowledge of the internal workings of the item
being tested. When black box testing is applied to software engineering, the tester would
only know the "legal" inputs and what the expected outputs should be, but not how the

program actually arrives at those outputs.

3.2.1. Advantages of Black Box Testing

_Tester needs no knowledge of implementation.

- Tester and programmer are independent of each other.

- Tests are done from a uset's point of view.

- Will help to expose any ambiguities or inconsistencies in the specifications.

- Test cases can be designed as soon as the specifications are complete.

3.3. ATM Software Testing

3.3.1. Cash Entry

(i) Causes

C1: Enter Card No.

C2: Card No. is not a 5 digit number

C3: Card No. is not a valid one

(ii) Effects

El: The message - Card No. does not exist.

E2: The message - Card No. is INVALID.

E3: The message - Card No. should be of 5-digit
E4: The message - Proceed

!

(2N
(o)

Fig 3.15 - Cause Effect Graph for Card Number entry.

()
(=
(=)
()

The following are the test cases for the above Cause Effect Graph. The symbols followed

in the design of the test cases are as under.

[: input present
S: input absent
X: don’t care

P: output present

A: output absent

56

i e —

Table 3.1- Test Cases for Card No. entry

Test:1 Test 2 Test 3 Test 4
L I [I [
c2 S I S X
c3 S S | X
El A A P A
E2 A A A P
E3 A P A A
E4 P A A A

3.3.2. PIN Authentication

(i) Causes

C1: Enter PIN

C2: PIN is not a 4 digit number
C3: PIN is not a valid one

(ii) Effects
El: The message — PIN Invalid

E2: The message — PIN should be of 4-digits
E3: The message — PIN Invalid, Reset System

E4: The message - Proceed

<4

° —

Fig 3.16 - Cause Effect Graph for PIN entry.

Table 3.2- Test Cases for PIN entry

0Q0.

Test 1 Test 2 Test 3 Test 4
Cl I 1 I |
C2 S 1 S X
€3 S S I X
El A A P A
E2 A 5 A A
i A A P P

58

3.3.3. Bank and Account No. Authentication
(i) Causes

C1: Select Bank

C2: Enter Account No.

C3: Account No. is not a valid one

(ii) Effects
El: The message - Invalid Bank, Account No. combination
E2: The message - Account No. doesn’t exist

E3: The message - Proceed

Y

£ El

Cc2

Fig 3.17- Cause Effect Graph for Bank and Account No. Authentication.

39

Table 3.3- Test Cases for Bank and Account No. Authentication

Test 1 Test 2 Test 3 Test 4 Test 5
Cl I I S I I
i) I S I I X
C3 S S S I X
El A A P A p
E2 A p A p A |
|
|
E3 p A A A A |
{
| | sl |

3.3.4. Login Name and Password Authentication

(i) Causes

C1: Enter LOGIN

C2: Enter Password

C3: LOGIN is not a valid one

C4: Password is not a valid one

(ii) Effects
El: The message- LOGIN is invalid
E2: The message- Password is incorrect

E3: The message - Proceed

60

1

2

OOOE

OO

Fig 3.18-Cause Effect Graph for Bank and Account No. Authentication.

Table 3.4- Test Cases for Bank and Account No. Authentication

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 N
£l I I | I I X
C2 I | 1 | X |
C3 S I S | X X
C4 S S | | X X
El A P A A A P
E2 A A P P P A
E3 P _A A A A A

6l

3.3.5. Cash Transfer Amount Authentication

(i) Causes

C1: Enter Amount

C2: Amount greater than balance in Savings Account

C3: Amount decreases Savings Account balance to less than Rs.1000

(ii) Effects

El: The message: Amount less than zero

E2: The message- Amount greater than balance in Savings Account
E3: The message - Savings Account balance to less than Rs.1000

E4: The message- Proceed

@

Fig 3.19- Cause Effect Graph for Cash Transfer Amount Authentication

62

Table 3.5- Test Cases for Cash Transfer Amount Authentication

Test 1 Test 2 Test 3 Test 4

3.3.6. Card Authentication
(i) Causes
C1: Enter Card Digits

(ii) Effects

E1: The message: Card Digits entered are invalid

E2: The message- Proceed

63

)

Fig 3.20- Cause Effect Graph for Card Authentication

Table 3.6- Test Cases for Cash Transfer Amount Authentication

Test 1 Test 2
Cl [I
El A P
E2 P A

3.3.6. Card Deposit
(i) Causes
C1: Enter Amount

(ii) Effects
E1: The message: Amount less than zero

E2: The message- Proceed

64

Fig 3.21- Cause Effect Graph for Card Deposit

Table 3.7- Test Cases for Cash Deposit

3.3.7. PIN Change
(i) Causes
C1: Enter Old PIN
C2: Reenter Old PIN
C3: Enter New PIN
C4: Confirm New PIN
|

(ii) Effects

El: Message- Proceed
E2: Message- Old PIN is invalid

E3: Message- Reentered Old PIN does not match with the previous one Ilf

E4: Message- Reentered New PIN does not match wit

h the previous one

E5: Message- New PIN is invalid

65

o O
& © W
= ©
. w
O

Fig 3.22- Cause Effect Graph for PIN Change

Table 3.8- Test Cases for PIN Change

=

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6
6 | I S S X X X
C2 S | I X X X
C3 X X X I S S
C4 X X X S I I
El A P A A P A
E2 P A A A A A
E3 A A P A A A
E4 A A A A A F
LES A A A P A A

67

CHAPTER 4
CONCLUSION AND FUTURE SCOPE

4.1. Conclusion

Formal notions and tools have been efficiently used to design the Graphical User
Interface of an Intelligent Automated Teller Machine. The complementary view of the
system has been taken into account. The software not only showcases the good system
behavior but also helps the user learn all the faults in the system behavior so that no
matter how complex the Human-Computer Interface gets the user is aware of the system
“behavior.

Black Box Testing has been efficiently used to test the software developed as the
software is concerned to educate the user about the good and faulty system behavior.
Essentially, Black Box testing deals with just the input and output which is what the user
is interested in. Furthermore, the design process is accomplished using the notion ofa .
Finite State Automata which at a basic level deals with input to and output from a

particular state and this is exactly what the black box testing tests.

4.2. Future Scope

Our major contribution has been to model the desired and undesired events for software.
However, the approach can be improvised by using the notion of Regression testing
which helps provide a better solution and divides the task of testing in two stages thus
reducing the number of test cases available at one go. Moreover, minimization of FSA
helps reduce the complexity of large interfaces, thereby, decreasing the cost of testing
considerably enabling the cumulating costs of testing 1o be in compliance with test

budget.

68

Bibliography

References:

1. F. Belli, “Finite-State Testing and Analysis of Graphical User Interfaces”, Proc.
of 12th ISSRE, IEEE Computer Society Press, 2001, pp. 34-43,
2. F. Belli, B. Giildali, “A Holistic Approach to Test-Driven Model Checking”,

Proc. of the 18th International Conference on Industrial & Engineering

Applications of Artificial Intelligence and Expert Systems (IEA/AIE 2005), ACM
1 Press, 2005 (to appear).
3. F. Belli, Ch. J. Budnik, N. Nissanke, “Finite-State Modeling, Analysis and
\ Testing of System Vulnerabilities”, ARCS Workshops 2004, pp. 19-33.

Books:
1. Deitel and Deitel, “JAVA How to Program”, Pearson Education (Fifth Edition).
9. Herbert Schildt, “The Complete Reference to Java 27, Tata McGrawHill (Fifth

Edition).)
! 3. Peter Linz, “Formal Languages and Automata”, Narosa (Third Edition). J) '

: Websites:

1. www.wikipedia.org.

2. www.google.com. ‘

3. www.w3schools.com.

69

APPENDIX A

A.1 HTML

<html>

<head>

<title>

Automated Teller Machine

</title>

</head>

<body background="3.gif">

<H2> An automated teller machine or automatic teller machine (ATM) is a computerized
telecommunications device that provides a financial institution's customers a method of
financial transactions in a public space without the need for a human clerk or bank teller.
Security is provided by the customer entering a personal identification number (PIN).
</H2>

<h3>

<marquee direction="up" width=100% height=50%>

<pre>

Bibiliography:

Dietel and Dietel

The Complete Reference to Java

Google:Search Engine

Project Guide:

Mr Nitin

Made by:

Shrey Ahuja (031230)

Geetika Upadhyay (031273)

Neha Gulati (031229)

</h3>

</marquee> </body> </html>

70

A.2. Storage and Comparison of coordinate values using XML
import java.awt.™;

import java.awt.event.*;

import java.awt.image.*;

import javax.swing.*;

import java.io.*;

import java.util.*;

class ParseXML3

{

“int[] cor = new int[2];

int[] cor2 = new int[2];

13 i = new 13("deposit2.jpg");

public ParseXML3()

{

try

{

String value =DumeML.Value("MouseClick1 xml");
System.out.println(“Value ="+ value),
StringTokenizer st = new StringTokenizer(value,"," ;
String[] coord = new String[2];

for(int i=0; i<2; i++)

{

if(st.hasMoreTokens())

{

String s = st.nextToken();

coord[i] =s;

cor[i] = Integer.parselnt(coord[i]);
}

System.out.println(cor[i]+ "),

i
String valuel =DumeML.Value("MouseClick2.xml");

71

System.out.println("Value = "+ valuel);

StringTokenizer st = new StringTokenizer(valuel,

String[] coord] = new String[2];
int[] corl = new int[2];

for(int i=0; i<2; i++)

{

if(st1.hasMoreTokens())

{

String s = stl.nextToken();

coord1[i] =s;

cor2[i] = Integer.parseint(coordl s

}

System.out.printin(cor2[il+ "");

¥

String first = Check(cor[0],cor[1]);

String sec = Check(cor2[0],cor2[1]);
if(first.equals("c") && sec.equals("c2"))

{

System.out.println("combination possible");
ImagePanel4. X1 =462;

ImagePaneld. Y1 = 112;

ImagePanel4.X2 = 468;

ImagePanel4.Y2 = 261;
i.setSize(1200,1200);

i.setVisible(true);

}

if(first.equals("c2") && sec.equals("c3"))

{

System,out.println("combination possible");
i.setVisible (false);

ImagePancld. X1 = 468;

72

ImagePanel4. Y1 = 261,

ImagePaneld. X2 = 722;

ImagePanel4.Y2 = 406;
i.setSize(1200,1200);

1 i.setVisible(true);

}

‘ if(first.equals("c3") && sec.equals("c4"))
{ \
System.out.println(""combination possible"); \
i.setVisible(false); |
ImagePanel4. X1 = 722;

ImagePanel4.Y'1 = 406;

ImagePanel4. X2 = 294;

ImagePanel4.Y2 = 397;

i.setSize(1200,1200);

i.setVisible(true);

; \
if(first.equals("c4") && sec.equals("c5")) J

{)

System.out.printIn("combination possible");
i.setVisible(false);

ImagePanel4.X1 = 294;

ImagePaneld. Y1 = 397;

ImagePanel4.X2 = 501;

ImagePanel4.Y2 = 551;
i.setSize(1200,1200);

i.setVisible(true);

}

if(first.equals("c4") && sec.equals("c2"))

{

System.out.printIn("combination possible™);

T

i.setVisible(false);

ImagePanel4. X1 = 294;

ImagePaneld. Y1 = 397;

ImagePanel4.X2 = 468;

ImagePanel4.Y2 = 261;

i.setSize(1200,1200);

i.setVisible(true);

}

if(!((first.equals("c") && sec.equals("c2")|| (first.equals("c2") && sec.equals("c3")) ||
(first.equals("c3") && sec.equals("c4")) || (first.equals("c4") && sec.equals("c5")) ||
(first.equals("c4") && sec.equals("c2"))))

{

System.out.println("combination not possible");
JOptionPane.showMessageDialog(null, "combination not possible");

1}

catch(Exception e) {}

}

public String Check(int x, int y)

{

String st ="c3";

Point center = new Point(462,112);
Circle ¢ = new Circle(center,50.0);
Point center2 = new Point(468,261);
Circle c2 = new Circle(center2,50.0);
Point center3 = new Point(722,406);
Circle ¢3 = new Circle(center3,50.0);
Point center4 = new Point(294,397);
Circle ¢4 = new Circle(center4,50.0);
Point center5 = new Point(501,551);
Circle ¢5 = new Circle(center5,50.0);

Point px = new Point(x,y);

T4

if (c2.contains(px))
st="c2";

if (c.contains(px))
st="c";

if (c3.contains(px))
st="c3";

if (c4.contains(px))

st="c4";

if (c5.contains(px))

st="c5";
return st;
)

public static void main(String args[])

{
ParseXML3 px = new ParseXML3();
}
}

73

APPENDIX B
B.1 Project Layout
import java.awt.*;
import java.awt.event.®;
import javax.swing.*;
import java.lang.String;
import java.awt.* ;
class MyImage extends JFrame
{
private JPanel imagePanel,buttonPanel;
private JLabel imageLabel;
private JButton button;
private Container contentPane; i
public MyImage() ‘
| !
super("My Image"); | |
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

contentPane=getContentPane();

contentPane.setLayout(new BorderLayout());
buildlmagePanel();

buildButtonPanel(); ‘
contentPane.add(imagePanel,BorderLayout. NORTH);
contentPane.add(buttonPanel,BorderLayout.SOUTH);
pack();

setVisible(true);

)
private void buildlmagePanel()

{

imagePanel=new JPanel();

imageLabel=new JLabel("CLick Button To Check Image");
imagePanel.add(imageLabel);

76

}

private void buildButtonPanel()

{

Imagelcon Img;

buttonPanel=new JPanel();

Img=new Imagelcon("TIPS.gif");

button =new JButton("Get Image"); ‘
w

button.setlcon(Img);

button.addActionListener(new ButtonListener());
buttonPanel.add(button); ‘
button= new JButton("EXIT");
button.addActionListener(new ButtonListener1()); ‘
buttonPanel.add(button);
}

private class ButtonListener implements ActionListener

{

public void actionPerformed(ActionEvent ¢)

{

Imagelcon mainlmage=new Imagelcon("ATM.jpg");

imageLabel.setlcon(mainlmage);
imageLabel.setText(null);
pack();

1}

private class ButtonListenerl implements ActionListener

{

public void actionPerformed(ActionEvent €)

{
System.exit(0);

3

public static void main(String args(])

{

78]

Mylmage image=new Mylmage();

)

public class MenuTest extends JFrame {

private final Color colorValues[] = { Color.black, Color.blue, Color.red, Color.green };
private JRadioButtonMenultem colorltems[], fonts[];

private JCheckBoxMenultem styleltems|]; .
private JLabel displayLabel;

private ButtonGroup fontGroup, colorGroup;
private int style;

public MenuTest()

{

super("Using JMenus");

JMenu fileMenu = new JMenu("File");
fileMenu.setMnemonic('F');

JMenultem userMenu = new JMenu("User IPs & FIPs");

userMenu.setMnemonic('U');

fileMenu.add(userMenu);

userMenu.add ActionListener(

new ActionListener() { L‘ ‘ |
public void actionPerformed(ActionEvent event) V‘
{

JOptionPane.showMessageDialog(MenuTest.this,

“This option helps the user to find out the IPs and FIPs for every transaction",

"User IPs & FIPs", JOptionPane.PLAIN_MESSAGE);

1
);
JMenultem cashlSubltem=new JMenultem("CashWithdrawl");

cash1Subltem.setMnemonic('d");
userMenu.add(cash1Subltem);
cashlSubltem.addActionListener(

new ActionListener(){

78

public void actionPerformed(ActionEvent event)

{

JOptionPane.showMessageDialog(MenuTest.this,
"Click on Ok to transact on states of cash withdrawl",
"CashWithdraw!", JOptionPane.PLAIN_MESSAGE);
setVisible(false);

c.add(new ImageFrame(), "Center");

pack();

ImageFrame ifr = new ImageFrame("cash2.jpg");
setSize(1000,1000);

I3

);

JMenultem pinlSubltem= new JMenultem("PinChange");
pinlSubltem.setMnemonic('g");
userMenu.add(pinlSubltem);
pinlSubltem.addActionListener(

new ActionListener(){

public void actionPerformed(ActionEvent event)

{
JOptionPane.showMessageDialog(MenuTest.this,

5 e

"Click Ok to transact on states of pin change",
"PinChange", JOptionPane.PLAIN_MESSAGE);
ImageFramel iftr = new ImageFramel("PIN2.jpg");
setSize(1000,1000);

3

);

JMenultem fastl Subltem= new JMenultem("FastCash");
fast] Subltem.setMnemonic(’h");

userMenu.add(fastl Subltem);

fast] Subltem.addActionListener(

new ActionListener(){

19

public void actionPerformed(ActionEvent event)

{

JOptionPane.showMessageDialog(MenuTest.this,

"Click Ok to transact on states of fast cash",

"FastCash", JOptionPane. PLAIN_MESSAGE);
ImageFrame2 ifr = new ImageFrame2("Fast2.jpg");
setSize(1000,1000);

1

);

JMenultem deposit] Subltem= new JMenultem("Deposit");
depositl Subltem.setMnemonic('t');

userMenu.add(deposit1 Subltem);

deposit] Subltem.addActionListener(

new ActionListener(){

public void actionPerformed(ActionEvent event)

{

JOptionPane.showMessageDialog(MenuTest.this,

"Click Ok to transact on states of deposit money",
"Deposit", JOptionPane.PLAIN_MESSAGE);
ImageFrame3 ifr = new ImageFrame3("deposit2.jpg");
setSize(1000,1000);

1

)i

JMenultem transfer1Subltem= new JMenultem("Transfer");
transfer1 Subltem.setMnemonic('r');
userMenu.add(transfer1 Subltem); transfer Subltem.add ActionListener(
new ActionListener(){

public void actionPerformed(ActionEvent event)

{

JOptionPane.showMessageDialog(MenuTest.this,

"Click Ok to transact on states of transfer money",

30

"Transfer", JOptionPane. PLAIN_MESSAGE);
ImageFramed ifr = new ImageFrame4("Transfer2 jpg");
setSize(1000,1000);

33

)

fileMenu.add(userMenu);

fileMenu.addSeparator();

TMenuitem exitltem = new JMenultem("Exit");
exitltem.setMnemonic('x');

fileMenu.add(exitltem);

exitltem.addActionListener(

new ActionListener() { // anonymous inner class
public void actionPerformed(ActionEvent event)

{

System.exit(0);

3

); // end call to addActionListener

IMenu helpMenu = new JMenu("Help");
helpMenu.setMnemonic('H');

JMenultem contentMenu = new JMenu("Contents...");
contentMenu.setMnemonic{ 'C');

helpMenu.add(contentMenu);
contentMenu.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent event)

{

JOptionPane.showMessageDialog(MenuTest.this,
"This Software helps in Making a Finite Automata and Shows The Faulty Interaction
Pairs", “Contents", JOptionPane. PLAIN_MESSAGE };

3
);

81

IMenultem cashSubltem=new JMenultem("CashWithdrawl™);
cashSubltem.setMnemonic('W');
contentMenu.add(cashSubltem);

cashSubltem.addA ctionListener(

new ActionListener()

{

public void actionPerformed(Actionkvent event)

{
JOptionPane.showMessageDialog(MenuTest.this,

"Click on Ok to see details about cash withdrawl!",
"CashWithdrawl", JOptionPane.PLAIN_MESSAGE);
Container ¢= getContentPane();

setVisible(false);

¢.add(new Cash(), "Center");

pack();

setSize(1000,1000);

3
); .
JMenultem pinSubltem= new JMenultem("PinChange"); 2 f
pinSubltem.setMnemonic('h");

contentMenu.add{pinSubltem);

pinSubltem.addActionListener(

new ActionListener(){

public void actionPerformed(ActionEvent event)

{

JOptionPane showMessageDialog(MenuTest.this,

"Click Ok to check details for changing pin®,

"PinChange", JOptionPane PLAIN_MESSAGE),

Container c=getContentPane();

setVisible(false);

c.add(new Pin(), "Center");

82

pack();

setSize(1000,1000);

11

J5

JMenultem fastSubltem= new JMenultem("FastCash");
fastSubltem.setMnemonic('F'};
contentMenu.add(fastSubltem);

fastSubltem.add ActionListener(

new ActionListener(){

public void actionPerformed(ActionEvent event)
{
JOptionPane.showMessageDialog(MenuTest.this,
"Click Ok to check details for fast cash”,
"FastCash", JOptionPane.PLAIN_MESSAGE);
Container ¢= getContentPane();

setVisible(false);

c.add(new Fast(), "Center");

pack(};

setSize(1000,1000);

1

)

JMenultem depositSubltem= new JMenultem{"Deposit");
depositSubltem.setMnemonic('e');
contentMenu.add(depositSubltem);
depositSubltem.addActionListener(

new ActionListener(){

public void actionPerformed(ActionEvent event)
{
JOptionPane.showMessageDialog(MenuTest.this,
"Click Ok to check details for depositing money",
"Deposit", JOptionPane. PLAIN_MESSAGE);

83

Container c=getContentPane();

setVisible(false);

c.add(new Deposit(), "Center");

pack();

setSize(1000,1000),

1

)

JMenultem transferSubltem= new JMenultem("Transfer");
transferSubltem.setMnemonic("T");
contentMenu.add(transferSubltem);
transferSubltem.addActionListener(

new ActionListener(){

public void actionPerformed(ActionEvent event)

{
JOptionPane.showMessageDialog(MenuTest.this,
"Click Ok to check details for transferring money",
"Transfer", JOptionPane.PLAIN_MESSAGE);
Container c=getContentPane();

setVisible(false);

c.add(new Transfer(), "Center");

pack();

setSize(1000,1000);

3}

)

helpMenu.add(contentMenu);
helpMenu.addSeparator();

JMenultem aboutltem = new JMenultem("About..." };
aboutltem.setMnemonic('A');

helpMenu.add(aboutltem);
aboutItem.addActionListener(

new ActionListener() { // anonymous inner class

84

public void actionPerformed(ActionEvent event)

(
Sample s = new Sample();

s.getContentPane().add(new Browser("file:///C:/java/bin/neha.html"}),"Center");
1

); // end call to addActionListener

JMenultem imageltem=new JMenultem("Image"),
imageftem.setMnemonic('l");

helpMenu.add(imageltem);

imageltem.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent event)

{

Mylmage i=new MyImage();

1}

)

IMenuBar bar = new JMenuBar(); "
set/MenuBar(bar);
bar.add(fileMenu); "1

IMenu viewMenu = new JMenu{ "View"); !
viewMenu.setMnemonic('v');

IMenultem demoMenu = new JMenu("Demos...");
demoMenu.setMnemonic('D' };

helpMenu.add(demoMenu);

setVisible(false);

demoMenu.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent event }

{
JOptionPane.showMessageDialog(MenuTest.this,

85

"This Software heips in Making a Finite Automata and Shows The Faulty Interaction

Pairs","Contents"”, JOptionPane.PLAIN_MESSAGE });

1

);

JMenultem minil Subltem=new JMenultem("Mini Statement");
minilSubltem.setMnemonic('M'");

demoMenu.add(minil Subltem);
minilSubltem.addActionListener(

new ActionListener()

{

public void actionPerformed(ActionEvent event)
{

Container ¢c= getContentPane();
setVisible(false);

c.add(new MainFrame3(), "Center");

pack();

setSize(1000,1000};

setVisible(true),

1}

)i

viewMenu.add(demoMenu);
viewMenu.addSeparator();

String colors[] = { "Black", "Blue", "Red", "Green" };
IMenu colorMenu = new JMenu("Colot");
colorltems = new JRadioButtonMenultem[colors.length];
colorGroup = new ButtonGroup();

ItemHandler itemHandler = new ItemHandler();

for (int count = 0; count < colors.length; count++) {
colorltems[count | =

new JRadioButtonMenultem(colors| count |);

colorMenu.add(coloritems[count]);

86

colorGroup.add(colorltems[count]);
colorltems| count].addActionListener(itemHandler);
}
colorltems[O].setSelected(true);
viewMenu.add(colorMenu);
viewMenu.addSeparator();
String fontNames[] = { "Serif", "Monospaced", "SansSerif" };
JMenu fontMenu = new JMenu("Font");
fontMenu.setMnemonic('n');
fonts = new JRadioButtonMenultem[fontNames.length |;
fontGroup = new ButtonGroup();
for (int count = 0; count < fonts.length; count++) {
fonts[count] = new JRadioButtonMenultem(fontNames[count]);
fontMenu.add(fonts[count |);
fontGroup.add(fonts[count]);
fonts[count].addActionListener(itemHandler);
}
fonts[0].setSelected(true);
fontMenu.addSeparator();
String styleNames{] = { "Bold", "Italic" };
styleltems = new JCheckBoxMenultem| styleNames.length |;
StyleHandler styleHandler = new StyleHandler();
for (int count = 0; count < styleNames.length; count++) {
styleltemsf count] =
new JCheckBoxMenultem(styleNames| count]);
fontMenu.add(styleltems[count]);
styleltems[count J.addltemListener{ styleHandler });
}
viewMenu.add(fontMenu);
bar.add{viewMenu);
bar.add(helpMenu};

87

displayl.abel = new JLabel("Automated Teller Machine", SwingConstants. CENTER);
displayLabel.setForeground(colorValues[0]);
displayLabel.setFont(new Font("Serif”, Font.PLAIN, 72));
getContentPane().setBackground(Color.PINK);
getContentPane().add(displayLabel, BorderLayout. CENTER);
setSize(1000, 800),

setVisible(true);

} // end constructor

public static void main(String args[])

{

MenuTest application = new MenuTest();
application.setDefaultCloseOperation{ JFrame.EXIT ON_CLOSE);
}

private class [temHandler implements ActionListener {

public void actionPerformed(ActionEvent event)

{

for (int count = 0; count < color]tems.length; count++)

if (colorltems[count }.isSelected()) {
displayLabel.setForeground(colorValues[count]);

break;

}

for (int count = 0; count < fonts.length; count++)

if (event.getSZ)urce() == fonts[count }) {
displayLabel.setFont(

new Font(fonts[count].getText(), style, 72));

break;

}

repaint ();

}} // end class ItemHandler

private class StyleHandler implements ItemListener {

public void itemStateChanged(ItemEvent ¢) {

38

style = 0;

if (styleltems[0].isSelected())

style += Font. BOLD;

if (styleltems[1].isSelected(})

style += Font.ITALIC;

displayLabel.setFont(

new Font(displayLabel.getFont().getName(), style, 72 });
repaint();

3}

} // end class MenuTest

89 |

APPENDIX C
C.1 ATM Menu
import java.awt.*;
import java.applet.*;
import java.awt.event.*;
import java.lang.*;
import javax.swing.*;
" import javax.swing.JOptionPane;
import java.io.*;
import java.lang.String;
import java.sql.¥;
import java.util.*;
public class ATMMenu extends JFrame implements ActionListener {
JPanel horizontal2 ;
JPanel horizontal3 ;
JPanel horizontal4 ;
JButton blist2[];
Connection con;
Statement statl;
Statement stat2;

ResultSet result;

ResultSet resultl;

public ATMMenu()

{

setTitle("MENU");

horizontal2 = new JPanel();

horizontal3 = new JPanel();

horizontald = new JPanel();

final int SIZE = 6; // number of buttons on each Box
blist2=new JButton[10];

blist2[1]= new JButton("CASH WITHDRAWAL");

90

blist2[3]=new JButton("FAST CASH");

blist2[4]=new JButton("CASH DEPOSIT");
blist2[5]=new JButton("CASH TRANSFER");
blist2[6]= new JButton("PIN CHANGE");

blist2[7]= new JButton("BALANCE ENQUIRY");
blist2[0]= new JButton("RESET SYSTEM");

blist2[8]= new JButton("RESET SYSTEM");

blist2[9]= new JButton("RESET SYSTEM");
horizontal2.add(blist2[1]);

horizontal2.add(blist2[3});

horizontal2.add(blist2[0]);

horizontal3.add(blist2{4]);

horizontal3.add(blist2[5]);

horizontal3.add(blist2[8]);

horizontal4.add(blist2[6]);

horizontald.add(blist2[7]);

horizontal4.add(blist2[9]);

JTabbedPane tabs = new JTabbedPane(
JTabbedPane. TOP, JTabbedPane. SCROLL_TAB_LAYOUT);
tabs.addTab("Cash Transaction Functions",horizontal3);
tabs.addTab("Cash Withdrawal Functions",horizontal2);
tabs.addTab("Other Functions",horizontal4);
getContentPane().add(tabs); // place tabbed pane on content pane
setSize(1400, 800);

setVisible(true);

blist2[0].addActionListener(this);

blist2[1].addActionListener(this);

blist2[3].add ActionListener(this);
blist2{4].addActionListener(this);
blist2[5].addActionListener(this);
blist2[6].addActionListener(this);

91

blist2[7].addActionListener(this);
blist2{8].addActionListener(this);
blist2[9].addActionListener(this);
try

{
Class.forName("sun.jdbc.odbe.JdbcOdbeDriver”);

con = DriverManager.getConnection("jdbc:odbe:db1");
stat1= con.createStatement();
result=stat].executeQuery("SELECT * from MINI");
if(result.next(}))

{

stat2 = con.createStatement();

stat2.executeUpdate("DELETE FROM MINI"),

}

stat2= con.createStatement();
resultl=stat?.executeQuery("SELECT * from BANKDET");
if(result].next())

{

stat]l = con.createStatement();

statl.executeUpdate("DELETE FROM BANKDET");

1}
catch(ClassNotFoundException cnfex)

{

System.err.printin("Failed to load jdbc odbe driver.");
enfex.printStackTrace();

System.exit(l);

}

catch (SQLException sqlex)

{

JOptionPane.showMessageDialog(null,"sq! exception","database |
error",JOptionPane. ERROR_MESSAGE);

92

System err.printin("Unable to load.");
sqlex.printStackTrace();
System.exit(1);

33

public void actionPerformed(ActionEvent ac)
{

String str = ae.getActionCommand();
if(str.equals("exit"))

{

System.exit(0);

}

else if(str.equals("RESET SYSTEM"))

{

J OptionPane.showMessageDialog(null,"RESETING SYSTEM....

JFrameBg b=new JFrameBg();
setVisible(false);

¥
else if(str.equals("CASH WITHDRAWAL")

{

ATMCash a=new ATMCash();
setVisible(false);
a.setVisible(true);

¥
else if(str.equals("CASH DEPOSIT"))

{

ATMDeposit a=new ATMDeposit();
setVisible(false);
a.setSize(1400,800);
a.setVisible(true);

3
else if(str.equals("FAST CASH™M)

93

{
setVisible(false);

ATMFast a=new ATMFast();
a.setVisible(true);
a.setSize(1400,800);

}
else if(str.equals("PIN CHANGE"))

{

ATMPIN a=new ATMPIN();
setVisible(false);
a.setVisible(true);
a.setSize(1400,800);

h
else if(str.equals("CASH TRANSFER"))

{

ATMTransferl a=new ATMTransfer!();
setVisible(false);

a.setVisible(true);

a.setSize(1400,800);

h
else if{str.equals("BALANCE ENQUIRY™"))

{

ATMMini6 a=new ATMMIini6();
setVisible(false);
a.setVisible(true);
a.setSize(1400,800);

1

public static void main(String args[])

{

ATMMenu application = new ATMMenu();

application setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);

94

application.setSize(1400,800);

1}

C.2 ATM Demol

import java.awt.*;

import java.applet.*;

import java.awt.event.*;

import java.lang.*;

import javax.swing.*;

import javax.swing.JOptionPane;
import java.io.*;

import java.lang.String;

import java.sql.*;

import java.util.*;

public class ATMDemol extends JFrame implements ActionListener
{

String msg ="";

String res="";

String res1="";

JPanel buttonPanel;

JPanel textPanel,;

JPanel labelPanel;

JPanel labelPanell;

Text.Field text;

JLabel label2 labeld,label3,labell,label5;
JButton blist2[];

Connection con;

Statement stat;

Statement stat2;

ResultSet resultl;

Statement statl;

int j=0;

95

public ATMDemol()

{

setTitle("CARD VERIFICATION™);

Container container=getContentPane();
buttonPanel=new JPanel();

blist2=new JButton[3];

blist2[0] = new JButton("exit");

blist2[1]=new JButton("continue™);

blist2{2]=new JButton("reset");

labeld=new JLabel("Press:");

label3=new JLabel(" 'reset' to start demo again & ‘exit’ to exit the appliction");
buttonPanel.add(label4);

buttonPanel.add(label3);

buttonPanel.add(blist2[0]);
buttonPanel.add(blist2[2]);

labelPancl=new JPanel(};

label2=new JLabel("ENTER CARD NUMBER TO START BANKING: "),
label2.setFont(new Font("Serif",Font. PLAIN,20));
labelPanel.add(label2);

labell=new JLabel(" Press continue to proceed:");
text=new TextField(7);

textPanel=new JPane!();

labelPanel.add(text);

textPanel.add(labell);

textPanel.add(blist2[1]);
container.add(tabelPanel,BorderLayout. NORTH);
container.add(textPanel,BorderLayout. CENTER);
container.add(buttonPanel,BorderLayout. SOUTH);
for(j=0;j<3;j++)

blist2[j].add ActionListener(this);
text.addActionListener(this);

96

try{

Class.forName("sun.jdbec.odbe.JdbcOdbeDriver");

con = DriverManager.getConnection("jdbc:odbe:db1");
stat2= con.createStatement();
resultl=stat2.executeQuery("SELECT * from TEMP");
if(result].next())

{

stat = con.createStatement();

stat.executeUpdate("DELETE CARDNO FROM TEMP");
H

catch{ClassNotFoundException cnfex) {
System.err.printin("Failed to load jdbc odbc driver."),
cnfex.printStackTrace();

System.exit(1);

b

catch (SQLException sqlex) {
JOptionPane.showMessageDialog(null,"sql exception”,"database
error”,JOptionPane. ERROR_MESSAGE),
System.err.printIn("Unable to load."});

sqlex.printStack Trace();

System.exit(1);

1)

public void actionPerformed(ActionEvent ae)

{

String str = ae.getActionCommand();
if(str.equals("exit"))

System.exit(0);

else if(str.cquals("reset")){
JOptionPane.showMessageDialog(null,"RESETING SYSTEM....");
JFrameBg b=new JFrameBg();

setVisible(false); }

97

else if(str.equals("continue")){

msg=text.getText();

if{msg.length(}==0){
JOptionPane.showMessageDialog(null,"Insert Card Properly!!");
JFrameBg b=new JFrameBg();

setVisible(false);

t

if(msg.length()>0)

{

res=text.getText();

try{

stat = con.createStatement();

result1= stat.executeQuery("SELECT CARDNO from BankData where
CARDNO="+Integer.parselnt(res)+"");

resultl.next();

resl = resultl.getString(1);

int num=Integer.parselnt(resl);

System.out.printin(numy);

stat2 = con.createStatement();

stat2.exccuteUpdate("INSERT INTO TEMP(CARDNO) values("+num+") *);
if(res1!="") {
JOptionPane.showMessageDialog(null,"Proceed..");
ATMDemo2 a=new ATMDemo2();

a.setVisible(true);

a.setSize(1400,760);

setVisible(false);

i

catch (SQLException sqglex) {

text.setText(""); |

msg:ﬂﬂ;

98

JOptionPane.showMessageDialog(null,"Card Invalid!!Try Again
Later","ERROR",JOptionPane. ERROR_MESSAGE);
System.err.println("Unable to load.");

JFrameBg b=new JFrameBg();

setVisible(false);

1}

public static void main(String args{1)

{

ATMDemo] app = new ATMDemol(};
app.setDefaultCloscOperation(JFramc.EXIT_ONﬂCLOSE);
app.setVisible(true),

app.setSize(1400,300),

1

C.3 ATM PIN

import java.awt.®;

import java.awt.event.®;

import java.lang.*;

import javax.swing.*;

import javax.swing.JOptionPane;
import java.io.*;

import java.lang.String;

import java.sql.*;

import java.util.*;

public class ATMPIN extends JFrame implements ActionListener
{

JPanel buttonPanel;

JPanel resetPanel;

Label amount;

Label pinl;

Label pin2;

99

Label pin3;

Label pin7,

TextField pin;

TextField pind;

TextField pin5;

TextField pin6;

Button button];

Button button2;

String msg="";

String strl="",;

String str2="";

String str3="";

String strd="";

String res="";

Connection con;

Statement statl;

Statement stat2;

Statement stat;

ResultSet resultl;
ResultSet result;

public ATMPIN()

{

setTitle("PIN Change");
Container container=getContentPane();
buttonPanel=new JPanel();
resetPanel=new JPanel();
Label pinl = new Label("Enter Original PIN: ");
pin = new TextField(4);
buttonPanel.add(pin1);
buttonPanel.add(pin);
Label pin2 = new Label("Enter Original PIN Again: ");

100

pind = new TextField(4);
buttonPanel.add(pin2);
buttonPanel.add(pind);

Label pin3 = new Label("Enter New PIN: ");
pin5= new TextField(4);
buttonPanel.add(pin3);
buttonPanel.add(pin5);

Label pin7 = new Label("Enter New PIN:);
pin6= new Tex(Field(4);
buttonPanel.add(pin7);
buttonPanel.add(pin6);

buttonl=new Button{("Continue"});
button2=new Button("Reset"); |
resetPanel.add(buttonl); ‘
resetPanel.add(button2), _
container.add(buttonPanel,BorderLayout.NORTH); i
container.add(resetPanel,BorderLayout. CENTER);

pin.setEchoChar("*');

pind.setEchoChar("™*"); |
pin5.setEchoChar(**"); '
pin6.setEchoChar("™*");

button1.add ActionListener(this);
button2.addActionListener(this);

try{
Class.forName("sun jdbc.odbe.JdbecOdbeDriver™); ;

con = DriverManager.getConnection("jdbc:odbc:db1 ");

stat = con.createStatement();

result= stat.executeQuery("SELECT CARDNO from TEMP");
result.next();

res = result.getString(1);

stat! = con.createStatement();

101

resultl= statl.executeQuery("SELECT PIN from
CARDNO="+Integer.parselnt(res)+"");
result!l.next();

msg=resultl.getString(1);

}

catch(ClassNotFoundException cnfex) {
System.err.printin("Failed to load jdbe odbe driver.");
cnfex.printStack Trace();

System.exit(1);

}

catch (SQLException sqlex) {
JOptionPane.showMessageDialog(null,"sql exception","database
error”,JOptionPane ERROR_MESSAGE);
System.err.println{"Unable to load.");
sqlex.printStackTrace();

System.exit(1);

3

public void actionPerformed(ActionEvent ae)

{

String str = ae.getActionCommand();
if(str.equals("Continue™))

{

str1=pin.getText();

str2=pind.getText();

str3=pinS.getText();

strd=pin6.getText();
if(Integer.parselnt(str1)!=Integer.parselnt(msg))

{

JOptionPane.showMessageDialog(null,"PIN Entered
Incorrect”,"Error",JOptionPane. ERROR_MESSAGE),
pin.setText("™);

RankData

where

102

pind setText("");

pin5.setText("");

pin6.setText("");}

else if(Integer.parselnt(str1)!=Integer.parselnt(str2))
{

JOptionPane.showMessageDialog(null,"PIN Entered Don't
Match","Error", JOptionPane ERROR_MESSAGE);
pin.setText("");

pind.setText("");

pin5.setText("");

pin6.setText("");

}
else if(Integer.parselnt(str3)!=Integer.parselnt(str4))

{

JOptionPane.showMessageDialog(null,"New PINs Entered Don't
Match","Error",JOptionPane. ERROR_MESSAGE);
pin.setText("");

pind.setText("");

pin5.setText("™);

pin6.setText("");

}

else if(str3.length()!=4)

{

JOptionPane.showMessageDialog(null,"Please enter a 4digit
PIN","Error",JOptionPane. ERROR_MESSAGE);
pin.setText("");

pind.setText("");

pinS.setText("");

pin6.setText("");

}
else if(strl Jength()>0 && str2.length()>0 && str3.length()==4)

103

{
try{

stat=con.createStatement(};

stat.executeUpdate("UPDATE BankData SET PIN="+Integer.parsclnt(str3)}+" where
CARDNO="+Integer.parselnt(res)+"");

h

catch (SQLException sqlex) {
JOptionPane.showMessageDialog(null,"sql exception","database
error”,JOptionPane. ERROR_MESSAGE);
System.err.printin(*Unable to load.");

sqlex.printStackTrace(),

System.exit(1);

}

JOptionPane.showMessageDialog(null,"PIN Changed...");
setVisible(false);

JFrameBg a=new JFrameBg();

1)
if(str.equals("Reset"))

{

JOptionPane.showMessageDialog(null,"Resetting System...");
setVisible(false);

JFrameBg a= new JF'rameBg();

a.setVisible(true);

a.setSize(1400,800);

1

public static void main(String args[})

{

ATMPIN app = new ATMPIN();
app.setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);
app.setVisible(true);

app.setSize(1400,800);} }

104

