|

Y N St Ay e e

3
5
3

£

WIPEE U

Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. NumS PO 3k Call Num:

General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

¢ The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

MM

SP03116

! NBS-LRRpred: NBS-LRR GENE PREDICTION
ALGORITHM

UPENDRA CHAUDHARY-031504
VIKAS RAJPUT-031517

Submitted in partial fulfillment of the Degree of Bachelor of
' ‘Technology |

DEPARTMENT OF
BIOTECHNOLOGY & BIOINFORMATICS
JAYPEE UNIVERSITY OF INFORMATION

TECHNOLOGY-WAKNAGHAT
MAY-2007

NBS-LRRpred: NBS-LRR GENE PREDICTION
ALGORITHM /

By

UPENDRA CHAUDHARY-031504 i
VIKAS RAJPUT-031517

o e
Fem = wifTem

MAY-2007 (i

Submitted in partial fulfillment of the Degree of Bachelor of
Technology

DEPARTMENT OF

BIOTECHNOLOGY & BIOINFORMATICS

JAYPEE UNIVERSITY OF INFORMATION
TECHNOLOGY-WAKNAGHAT

CERTIFICATE

RSN

This is to certify that the work entitled, “NBS-LRRpred: NBS-LRR gene prediction

algorithm” submitted by Upendra chaudhary and Vikas Rajput in partial fulfillment
for the award of degree of Bachelor of Technology in Bioinformatics of Jaypee

University of Information Technology has been carried out under my supervision.

s

This work has not been submitted partially or wholly to any other University or

Institute for the award of this or any other degree or diploma. |
|

(Upendra Chaudhary)

\%@/

(Vikas Rajput)

i

AN

Dr Rajinder Singh Chauhan
(Project Supervisor and Head of
Department)

Department of Bioinformatics
Jaypee University —of Iinformation

Technology Waknaghat

ACKNOWLEDGMENT

Many people have contributed to this project in a variety of ways over the past few
months. To the individuals who have helped us, we again express our appreciation. i
We also acknowledge the many helpful comments Received from our teachers of the
bioinformatics department. We are indebted to all those who provided reviews &
suggestions for improving the results and the topics covered in our project, and we |

extend our apologies to anyone we may have failed to mention

e

CONTENTS
P) 18N N e R S R R i) IR I SRR R 2
b A (A EToL e 101 Y o ki F o U B Ao AL A vl 3 1
LIS O RIGURES e s O S R S ST) 5
PR P (8 I LS MRl G ou pe e AP a2 5 ‘1
NBRRAGH o e o i) R ol i s 6 {
;
CHAPTER 1 !
IR R QDGO N o s s iee b oss st exbirei i oo esavssass 7-9 I
MACHINE LEARNING TECHNIQUES: “I
N O N T WORKS. o e o e b ot 9-13
CHAPTER 2
MATERIALS AND METHODS.cvreeeeeeeresessssssesessissssesesssssssses 14 -18
CHAPTER 3 :
RESULTS AND DISCUSSION........coeueriorisesmesesesssserssssssssasessssasins 19-21
CHAPTER 4 :
CONCLUSIONS veteitis. g cinsmia i siad bl sosommssssssmsessions 22
351 B 1)) b5 B o S A e 23-52
APEENDI2 0T divmiiiinen il v bl et R 53 g
APPENDTR 1T ko e e ot o s S i b i L, 54-56 |
RIBETOCRADHY o0t ionseso i i i o vy it o 57-58
4

LIST OF FIGURES

Figure 1: Structure of NBS-LRR Plant resistance gene.

Figure 2: Typical Artificial Neural Network setup. I
Figure 3: Flow chart of NBS-LRR gene prediction algorithm
Figure 4: Distribution of output values of NBS-LRR gene over chromosome of

rice genome.

LIST OF ABBREVIATIONS

ANN: Artificial Neural Network.

NBS: Nucleotide binding site.

LRR: Leucine-rich repeat.

TIR: Toll/Interleukin-1 receptor.

HR: Hypersensitive response. f
R Resistance.

o Coiled-coil.

ARC: Apoptosis, R gene products and CED-4 M

ABSTRACT

In this study a systematic attempt has been develops to integrate various pre-existing
approaches in order to predict NBS-LRR gene with high accuracy. This approach is a
first kind of approach to predict a NBS-LRR gene because there is not any tool at
present which can predict NBS-LRR gene directly. Datasets used for training and
testing purpose consist both nucleotide and protein sequences. In case of nucleotide
dataset we took 173 NBS-LRR and 173 non -NBS-LRR and in case of protein
datasets we took 97 NBS-LRR and 97 non-NBS-LRR obtained from NCBI entrez
protein and nucleotide database (http:/ncbi.nlm.nih.gov/enterz). In this approach we
use artificial neural network using amino acid characteristics, dipeptide and tripeptide
composition of nucleotide sequences and achieve a accuracy of 87 %,78.85% and
85.75% , respectively and hybrid result of this training tells us that given gene is NBS
or not. Thereafter we train TIR (Toll/Interleukin-1 receptor) domain present in NBS
to classify between TIR and non-TIR containing sequences. The performance of this
algorithm has been evaluated by performing BLAST (http://ncbi.nlm.nih.gov/blast)

search against each predicted gene.

CHAPTER 1

INTRODUCTION i

Leucine-rich repeats (LRRs), a nucleotide-binding site (NBS), and a putative
amino-terminal signaling domain are present in most disease resistance proteins.
They are called NBS-LRR proteins. Wide variety of NBS-LRR proteins from
different organism serve as platforms for interaction, and as regulatory modules of
protein activation. The LRRs of plant R proteins are determinants of response
specificity, and their action can lead to plant cell death in the form of the familiar
hypersensitive response (HR). A total of 149 resistant genes are reported in
Arabidopsis thaliana genome and plant cell deal with the task of assembling many of 'i‘:;'
the proteins encoded by NBS-LRR signaling complexes.

First, proteins will interact with their proper partners because they restricted to their
sub-cellular site of function. Second, these interactions are architecturally organized

to avoid inappropriate signaling events and to maintain the fidelity and efficiency of

the response when it is initiated. Recent results provide new insights into how the
signaling potential of R proteins might be created, managed and held in check until
specific stimulation following infect.ion. Nevertheless, the roles of the R protein
partners in these regulatory events that have been defined to date are unclear. Disease
resistance genes (R genes) are crucial components of the hypersensitive response
(HR), a plant defense mechanism that results in localized cell death. The HR is
triggered when pathogen molecules, possibly virulence factors, are detected by plant
receptors; genetic analysis of the HR has lead to the cloning of R genes, many of
which encode receptor-like proteins. Based on their predicted domain structure, R
proteins encoded by the R genes have been classified into four groups: intracellular
kinases, extra cellular receptors, extra cellular receptors coupled to kinases, and |
intracellular receptors.

Most characterized R genes encode putative intracellular receptors, which contain
either a coiled-coil (CC) or a Toll/Interleukin-1 receptor (TIR) domain at their N-
terminal end, followed by a nucleotide binding site (NBS). At the C-terminal end,

these proteins consist of a series of leucine rich repeats (LRRs). The functions of the

CC, TIR, and NBS domains are not known fully, but all similar proteins identified in
animal systems play roles in protein-protein interactions and signal transduction. The
function of LRR domains is clearer because recent data suggest that LRRs in R
proteins mediate direct or indirect interaction with pathogen molecules. The tertiary
structure of LRRs has been experimentally determined for a diverse group of proteins,
most notably porcine ribonuclease inhibitor. Generally, individual LRRs form repeats
of PB-strand-loop and «-helix-loop units with nonleucine residues exposed and
compose a binding surface predicted involved in protein recognition. In R proteins,
putatively solvent-exposed residues in B-sheets may interact with pathogen ligands
and hence determine specificity for pathogen elicitors.

The candidate recognition domain of NBS-LRR proteins is the C-terminal LRR. It is
the most variable region in closely related NBS-LRR proteins and is under selection
to diverge. Functional analysis of recombinant R proteins also indicates that
recognition specificity resides in the LRR. However, there is indirect evidence that
the LRR may contribute to signalling as well as recognition.

Most R genes are predicted to encode intracellular proteins with nucleotide-binding
site and leucine-rich repeat (NBS-LRR) domains. The NBS of these proteins has an
N-terminal sub-domain that contains consensus kinase la (P-loop), kinase 2 and
kinase 3a motifs common to a large variety of nucleotide-binding proteins; we refer
to this as the NB subdomain. The C-terminal part of the NBS, referred to as the ARC
(apoptosis, R gene products and CED-4) subdomain, is conserved in plant NBS-LRR
proteins as well as in several NBS-containing proteins involved in animal innate
immunity and apoptosis. In certain animal proteins, the NBS domain mediates
oligomerization that ultimately results in activation of the N-terminal signalling

domains.

NBS LRR

BT

P-loop Kinase 3 Kinase3 GLPLAL-motif
GxGGXGKTTL IVIDD DTE: GLPLAL

Fig.1.
structure of NBS-LRR (Nucleotide Binding Site- Luecine Rich Repeat) plant disease resistance
genes (modified from Hammond-Kosack ,1997). NBS conserved motifs are shown with amino

acld consensus se¢uences.

MACHINE LEARNING TECHNIQUES

NEURAL NETWORKS:

What is a Neural Network?

An Artificial Neural Network (ANN) is an information processing paradigm that
is inspired by the way biological nervous systems, such as the brain, process
information. The key element of this paradigm is the novel structure of the
information processing system. It is composed of a large number of highly
interconnected processing elements (neurons) working in unison to solve specific
problems. ANNS, like people, learn by example. An ANN is configured for a specific
application, such as pattern recognition or data classification, through a learning

process. Learning in biological systems involves adjustments to the synaptic

connections that exist between the neurons.

Why use neural networks?

Neural networks, with their remarkable ability to derive meaning from
complicated or imprecise data, can be used to extract patterns and detect trends that
are too complex to be noticed by either humans or other computer techniques. A
trained neural network can be thought of as an "expert" in the category of information
it has been given to analyze. This expert can then be used to provide projections given
new situation of interest and answer “ what if “ question .Other advantages include:
1. 1. Adaptive learning: An ability to learn how to do tasks based on the data given

for training or initial experience.

2. Self-Organization: An ANN can create its own organization or representation of
the information it receives during learning time.

3. Real Time Operation: ANN computations may be carried out in parallel, and
special hardware devices are being designed and manufactured which take
advantage of this capability.

4. Fault Tolerance via Redundant Information Coding: Partial destruction of a
network leads to the corresponding degradation of performance. However, some

network capabilities may be retained even with major network damage.

Basic Working:
As explained earlier, a neuron is basically a cell which accumulates electrical
signals with different strengths. What it does more is that it compares the

accumulated signal with one predefined value unique to every neuron. This value is

10

called bias. Well, it can be explained with the help of following image.

Inputs

T Outputs l
é‘ Output Layer
= o
8 Weights O
o
<.|": ¥ Middle or g
) Hidden Layer o
$=1 —
< Weights LT
: 5
ﬁ Input Layer g

FIGURE 2. Typical Artificial Neural Network Setup (Caudill and Butler, 1952a).

The circles in the image represent neurons. This network or more appropriately this
network topology is called feed-forward multi layered neural network. It is the most
basic and most widely used network.
The network is called multi layered because it consists of more than two layers. The
neurons are arranged in a number of layers, generally three. They are input,
hidden/middle and output layers. The names signify the function of the layer.
This network is feed-forward, means the values are propagated in one direction only.
There are many other topologies in which values can be looped or move in both
forward and backward direction. But, this network allows the movement of values
only from input layer to output layer. The functions of various layers are explained

below:

11

=

o Input layer: As it says, this layer takes the inputs (the values you pass) and
forwards it to hidden layer. You can just imagine input layer as a group of neurons
whose sole task is to pass the numeric inputs to the next level. Well it depends on the
implementation but, in my implementation the numeric input has to be in range 0 and
1 (both inclusive). The larger the number greater its strength. E.g. 0.51 is stronger
than 0.39 but 0.93412 is stronger still. But, the interpretation of this strength depends
upon the implementation and the problem NN is required to solve. E.g. for an OCR

you connect every pixel with its respective input neuron and darker the pixel, higher

the signal/input strength. In short shades of gray would correspond to input strength.

But at last again, remember: Input layer never processes data, it just hands over it.

e Middle layer: This layer is the real thing behind the network. Without this layer,
network would not be capable of solving complex problems. There can be any
number or middle or hidden layers. But, for most of the tasks, one is sufficient. The
number of neurons in this layer is crucial. There is no formula for calculating the
number, just hit and trial works.
This layer takes the input from input layer, does some calculations and forwards to

the next layer, in most cases it is the output layer.

o Output layer: This layer consists of neurons which output the result to you. This
layer takes the value from the previous layer, does calculations and gives the final
result. Basically, this layer is just like hidden layer but instead of passing values to the

next layer, the values are treated as output.

o Dendrites: No! it is not some creature from X-Files, but a name given to straight
lines joining two neurons of consecutive layers, which you can see in the image. They j
are just-a passage (or method) through which values are passed from one layer to the j

next. There is a value attached with dendrite called weight. The weight associated

with dendrites basically determines the importance of incoming value. A weight with

12

larger value determines that the value from that particular neuron is of higher
significance. To achieve this we do is multiply the incoming value with weight. So no
matter how high the value is, if the weight is low the multiplication yields the final

low value.

Training:

Training is the most important part of a neural network and the one consisting of
the most mathematics. We’d used Back propagation method for training the NN. Here
is the basic idea how it is done .The best example illustrating this principle is Charles
Darwin (what?). Yes, at the time when he wrote 'On the Origin of Species', DNA was
not known. So, he propounded the evolution without even knowing the method of
how it is done i.e. how traits are passed on from parents to offspring.

Training a neural network model essentially means selecting one model from
the set of allowed models (or, in a Bayesian framework, determining a distribution
over the set of allowed models) that minimizes the cost criterion. There are numerous
algorithms available for training neural network models; most of them can be viewed
as a straightforward application of optimization theory and statistical estimation.

Most of the algorithms used in training artificial neural networks are
employing some form of gradient descent. This is done by simply taking the
derivative of the cost function with respect to the network parameters and then
changing those parameters in a gradient-related direction.

Evolutionary methods simulated annealing, and Expectation-maximization
and non-parametric methods are among other commonly used methods for training
neural networks.

This training procedure must be repeated for larger number of samples so that our

NN can produce accurate results for untrained input samples.

13

CHAPTER 2

MATERIALS AND METHODS:

Modules and layers

In this study along with the machine learning techniques, we used one kind of
protein sequence encoding methods i.e. “pepstats”, and another kind of nucleotide
encoding method used for calculating dinucleotide and trinucleotide properties i.e.
“compseq”. Using a combination of these methods, and the techniques three modules
were created namely; ANNpepstats, ANNdinucleotide, ANNtrinucleotide. The
nomenclature of these modules is according to the rule that first word in the name
indicates the machine learning technique say ANN and the second subscripted word
signifies the encoding method; “pepstats”, “dinucleotide” or “trinucleotide encoding”.
In first layer of NBS-LRRpred tool is GENEID which gives a total number of genes
present in the input sequence. The modules associated with “pepstats”,
“dinucleotide”, “trinucleotide” encoding method constitute the second layer of NBS-
LRRpred tool. The “pepstats” and” compseq” is an application from EMBOSS suite.
“Pepstats” calculates physicochemical properties of a protein sequence which used in
“ANNpepstats” and “compseq” calculates properties of nucleotide sequences which
is used in “dinucleotide” and “trinucleotide encoding” as a whole and thus it is used
to predicts the nature of a nucleotide sequence whether it’s a NBS-LRR or non- NBS-
LRR. All the sequences which pass through this layer come to next layer which
predict on basis of conserved motifs present in NBS and LRR domains We trained
four conserved motifs of NBS through ANN (P-Loop, Kinase-2, GLPL motif)
obtained from BLOCKS database. The resulting NBS-LRR sequence which comes
through this layer is predicted as NBS-LRR. In third layer we trained ANN for
classification of predicted NBS-LRR sequences in to TIR and non-TIR classes.

14

i
— e
G ANN_NBS i
>[Protein H ANN_pepstat]’ N ';‘:if
E

B]
N p TIR and NON-TIR | |}
Genome by
E r Classification i
x it
i
I L G
I
D Nucleoti f

de R

ANN_LRR
ANN tri R
 T——

Figure 3: Flow chart of NBS-LRR gene prediction algorithm..

Datasets

1. The initial dataset for proteins consisted of 173 NBS-LRR and 173 non- NBS-

LRR sequences were obtained from Entrez database (http://ncbi.nlm.nih.gov). The
protein datasets used in the training-testing cycles of the “pepstats” modules were
checked for sequence similarity to remove redundancy. Representative sequence from

each datasets was taken to form the final datasets. We prepared a five datasets by

mixing data from each datasets in equal number.

2. This procedure is repeated for nucleotide sequences in which we took 96 NBS- ‘
LRR and 96 non-NBS-LRR sequences were obtained from Entrez database
(http://ncbi.nlm.nih.gov). The nucleotide datasets used in the training-testing cycles |
of the “compseq” modules were checked for sequence similarity to remove

redundancy. Representative sequence from each datasets was taken to form the final

datasets.

3. We used a two hidden unit’s neural network trained to distinguish between NBS-

ERR-and non NBS-LRR regions: Protein statistics were used as the input-units of a

neural network to discriminate between the potential NBS-LRR and non-NBS-LRR.

15

Classification of NBS-LRR genes into two subfamilies based on the presence or
absence of an N-terminal TIR domain is also important.

For TIR and non-TIR classification we used 220 TIR and 220 non-TIR nucleotide
sequences obtained from Blocks www server (http://blocks.there.org/blocks-
bin/kidofwais.pl). The net is trained with TIR domain sequences encoded as binary
bits with a window size of 17 residues. We designed a three layer back propagation
neural network using SNNS (Stuttgart Neural Network Simulator, Zell and Mamier,
1997). The Input Layer consisted of 20x17 nodes where 20 binary vectors represent

amino acids.

Five-fold cross validation

A newly developed statistical procedure must be checked for its validity. We
have used five-fold cross validation technique to check the validity of all the modules
that have been developed. For this purpose a dataset partitioning method was used to
create the five sub-datasets. This partitioning method is similar to the previously used
methods (Bentsen et al., 2004). Here five sub datasets of sequences were created by
randomly assigning a sequence to a sub-dataset such that each sub-dataset had
approximately equal number of NBS-LRR and non- NBS-LRR and all five sub
datasets had approximately equal number of sequences. Each of the three methods is
trained and tested five times where, in each instance of training - testing cycle; four
sub-datasets are used for training and the remaining one for testing purpose. The

performance measures given have been averaged over the five testing sub-datasets.

Artificial Neural Networks

This neural network module was implemented using the Stuttgart neural network
simulator (Zell and Mamier, 1997). A feed-forward neural network with standard
back-propagation algorithm is utilized in all cases but the architecture differs as their
function differs
e In ANNpepstats module the neural network used had an architecture as 51-2-1 1.e.
it had 51 nodes in input layer representing the values of physicochemical properties

from the pepstats encoding method, 2 nodes in hidden layer and 1 node in output

16

layer showing whether a given protein is NBS-LRR or non- NBS-LRR. The cut-off
value used for prediction in this module is 0.75, i.e. a query protein is regarded as
belonging to NBS-LRR family if its score is greater than or equal to 0.75.

e This process is repeated for ANNdinucleotide modul.Neural network used in
nucleotide had an architecture as 16-2-1 i.e. it had 16 nodes in input layer
representing the values of physicochemical properties from the dinucleotide and
trinucleotide encoding method, 2 nodes in hidden layer and 1 node in output layer
showing whether a given protein is NBS-LRR or non- NBS-LRR. The cut-off value
used for prediction in this module is 0.8, i.e. a query protein is regarded as belonging
to NBS-LRR family if its score is greater than or equal to 0.8.

e Neural network used in ANNtrinucleotide had an architecture as 64-2-1 i.e. it had
64 nodes in input layer representing the values of physicochemical properties from
the dinucleotide and trinucleotide encoding method, 2 nodes in hidden layer and 1
node in output layer showing whether a given protein is NBS-LRR or non- NBS-
LRR. The cut-off value used for prediction in this module is 0.8, i.e. a query protein
is regarded as belonging to NBS-LRR family if its score is greater than or equal to
0.8.

Encoding methods

In this study of encoding methods are used, these are “pepstats”, “dinucleotide™
and “trinucleotide encoding” methods.
e Using the “pepstats”, “dinucleotide” and”trinucleotide encoding” method, the
protein sequence and nucleotide sequences are encoded into its physicochemical
properties using pepstats and compseq application of EMBOSS suite of programs. In
case of, protein out of all the properties, 51 properties are then used to create an input
vector for training and testing of the machine learning modules and in case of]
nucleotide we use “dinucleotide” and "trinucleotide” frequency . These properties are
normalized, prior to creation of the input vectors. The list of properties used for
training and testing the modules and their associated normalization factors that are

used in this study; are given in the supplementary material.

17

Performance Measures

The performance measures used to evaluate the nine modules are listed below.
These measures have been calculated for each module using five test sub-datasets;
and the final measures (Table 1) given have been averaged over these five sub
datasets.

o Accuracy: The accuracy of the modules have been calculated as:

s P+ N
VR EN+O4U

Qace

Where P and N refer to true positives and true negatives say correctly predicted NBS-
LRR and non NBS-LRR proteins respectively; and O and U refer to false positives
and false negatives i.e. incorrectly predicted NBS-LRR and non NBS-LRR proteins.

e Specificity (Qspec) and sensitivity (Qsens) of the modules are defined as:

" N i P
N+0O A PR

Qe

o The Matthews correlation coefficient (MCC) is defined as:

(PXN)—-(O)-:U)
JP+U)x(P+ O (N +U)x(N +0)

MCC =

o QPred (Probability of correct prediction) is defined as:

P
PO

x 100

Qpred e

18

CHAPTER 3

RESULTS AND DISCUSSION

Most of disease resistance genes encode proteins that have N-terminal
nucleotide-binding site (NBS) and C-terminal leucine-rich repeat (LRR) domains
interaction between avirulence (avr) gene product and NBS-LRR gene product give
Pathogen recognition. NBS region of NBS-LRR proteins has many conserved motifs
in which many of them depend upon subclasses of NBS-LRR gene. In contrast LRR
region is highly variable. NBS-LRR genes were divided mainly into two subgroups
which is based on presence of TIR (toll/interleukin-1 receptor) domain. Most of non-
TIR NBS-LRR proteins have a coiled-coil (CC) domain in the N-terminal region.
Prediction of NBS-LRR genes is important because it is crucial components of the

hypersensitive response, despite their importance; there is not a single method till

date for the prediction of NBS-LRR genes in a large segment of DNA sequences. The
only possible method is analysis of individual gene, predicted by a gene prediction
tool. Here, we have attempted to develop a method for predicting NBS-LRR gene and

their classification into subfamilies using ANN. At present, no other method is

available for predicting NBS-LRR genes and their classification, so we cannot
compare the performance level. ANN is adaptive models and very useful for
nonlinear function In addition it can handle large number of variables even there are

nonlinear relationship among variables.

Performance over test dataset

We demonstrated whether this approach can identify NBS-LRR genes with
significant accuracy. We used protein statistics as an input to discriminate between
NBS and non-NBS proteins. Similarly dinucleotide and trinucleotide frequencies
were used todiscriminate NBS-and non=NBS at DNA level. All three methods {
identified NBS-LRR genes on the basis of whole DNA sequence. Results showed that
ANN model trained by protein statistics performed better than ANN model trained by

19

dinucleotide and trinucleotide frequencies. In all three cases, separation between
NBS-LRR and non-NBS-LRR is very clear. But learning ability of artificial neural
network is directly proportional to the size of the dataset used for training and in our
case due to limited size of dataset performance of prediction affected when we use
three models for genome or very large sequences; even we got a high accuracy level
for training dataset. Another limitation in this approach is due to GENEID which is
predicting potential genes and their protein product before ANN models. Prediction
accuracy of genes directly affects overall performance of our model. The performance

of the modules over the test dataset is given in Table 1.

Probability | Matthews

of correct | correlation
Name of the module | Accuracy Specificity Sensitivity

prediction coefficient

(QPred) (MCC)
ANNpepstats 87.00 0.8660 0.8880 85.41 0.7522
ANNdinucleotide 78.85 0.8231 0.7645 84.25 0.5835
ANNIfrinucleotide 85.75 0.6925 0.8727 91.26 0.7452

Table 1. Summary of the prediction results of the three modules used in first and second layers on the

test dataset.

Validation on rice genome sequence

A complete set of candidate disease resistance (R) genes encoding nucleotide-
binding sites (NBSs) was identified in the genome sequence of japonica rice (Oryza
sativa L. var. Nipponbare). These putative R genes were characterized with respect to
structural diversity, phylogenetic relationships and chromosomal distribution, and
compared with those in Arabidopsis thaliana. The number of NBS in rice genome is
535, including 480 non-TIR (Toll/IL-1 receptor) NBS-LRR genes through rice
genome project (Molecular Genetics and Genomics, Volume 271, Number 4, May

2004, pp. 402-415(14)).

In analysis through our tool we tested whole genome (12 chromosomes) and
obtained 362 NBS coding sequences. The number of coding sequences obtained in

each chromosome given in Table 2,

20

T,
et Re sOurc"Z;‘?\..,

e

AT NOuise
S Po2l g

Chromosome no Total prediction No. of NBS-
LRR
1 63 35
2 44 18
3 44 16
4 53 19
5 36 16
6 40 20
7 35 19
8 55 42
9 29 18
10 37 20
11 116 101
12 55 38

Table 2: Summary of the prediction of rice genome.

No of NBS-LRR

4

NBS-LRR

S TR AT s)

Chromosome No

10 1

Figure 4 Distribution of output values of NBS-LRR gene over of chromosome of rice genome.

21

e

CHAPTER 4

CONCLUSIONS

Prediction of NBS-LRR genes from genome sequence data is important in plants
as well as in animals. This approach and tool developed here is vital because at
present not such tool available is which can predict NBS-LRR genes. Intelligent
systems like the ones used in this study, utilize global information of protein sequence
data as well as nucleotide sequence data instead of using simple pattern matching
techniques. Such systems can significantly increase the accuracy of NBS-LRR gene
related studies. This study gives an insight into development of similar tools and
techniques for other important genes.

We can further improve this tool by using SVM (support vector machines)
because support vector machines are a set of related supervised learning methods
used for classification and regression. They belong to a family of generalized linear
classifiers. A special property of SVMs is that they simultaneously minimize the
empirical classification error and maximize the geometric margin; hence they are also

known as maximum margin classifiers.

22

l
!
i
i

APPENDIX-I
PROGRAMS:

1. Batch processing.pl

$/=undef;

$glob="*.seq";
@files=glob($glob);
open(REMAIN,">g.txt");
foreach $file(@files)

{
open(HAND,"index.txt");
(@conindex=<HAND>;
close HAND;

$sequence=";
open(SEQU, $file);
$sequence=<SEQU>;
close SEQU;

$sequence=~ s/">.*\n//gi,
$sequence=~ s/Ms+//mg;
$sequence=~ sN\s+$//mg;

$sequence=~ s/\s+//mg;

foreach(@conindex)

{

my @array=();

@array=split(' ,$ _);

if($array[0] eq "temp_files/".$file)
{

$org name=S$array[1];

}

}

23

my $param="geneid -P ".$org_name." ".$file." > ".$file." res.txt";
print "Running $param....\n";

system($param);

open(HAN, $file." res.txt"); i
$result=<HAN>; '
close HAN;
@ele=split(/#sGene\s\d+/,$result);
shift(@ele);

foreach $temp(@ele)
{

$gene="";

@genes=();

open(TEMP,">temp"); A
print TEMP $temp; ‘
close TEMP;

open(TEM,"temp");

$scalar=<TEM>;

close TEM;

(@genes=split(/First|Internal| Terminal|Single/,$scalar);
#$scalar=~ s/\n//gi;

if($scalar =~ /> *\n([\w\n]*)/gi)
{
push(@proteins,$1);
}
if($genes[0] =~ /(Forward|Reverse)/)
{
$sense=$1; 5
}
shift @genes;
$genename="; | 4
foreach $gene(@genes) |
) {
$gene=~ s/s+/s/gi;

24

$exon="";

@array=split('s',$gene);
if($array[1] =~ Ad/)
{
Soffset=8%array[1]-1;
$count=%$array[2]-$array[1];
$exon=substr($sequence, $offset, $count);

$genename=%genename.$exon;

}

if($sense eq "Reverse")
{
$genename=~ tr /ATGCatgc/TACGtacg/;
}

}

push(@allgene,$genename);

}

$y=0;

open(OUT11,">>allgeneshere.txt') or die "file can't be accessable";
foreach $gr(@allgene)

{

print OUT11 ">psdm$y\n";

print OUT11 "$gr\n\n";

Sy++

}

open(SAD,">file proteins.txt");
foreach(0..(scalar(@allgene)-1))

{

Scount=§ +1;

$proteins[$count-1]=~ s/\n//gi;

print SAD ">test".$count."\n$proteins[$count-1]\n";
print "Printing gene and protein for $count\n”;
open(FH,">".$file.".gene™);

print FH ">test".$count."\n".$allgene[$count-1]."\n";
close FH;

25

$proteins[$count-1]=~ s/[XBZU*]//gi;
open(FH,">".$file.".protein");

print FH ">test".$count."\n".$proteins[$count-1]."\n";
close FH;

ditripat($file,$count);

propat($file,$count);

}

close SAD,;

system("dinucleotide.exe");
system("trinucleotide.exe");

system("protein.exe");

open(HAN,"Seq_di_res.txt");
$di=<HAN>;
close HAN;

open(HAND,"Seq tri_res.txt");
$tri=<HAND>;
close HAND;

open(HANDL,"Seq_pro_res.txt");
$pro=<HANDL>;
close HANDL;

@din=split(' ',$di);
@trin=split(" ', $tri);
@pron=split(" ',$pro);

open (BAD,">".$file.".result");

open (BADI11,">rel.txt");
open (BAD12,">re2.txt");

$counter=0;

foreach $in(0..(scalar(@din)-1))

{

if{ (($pron[$in] >=0.75) && ($din[$in] >= 0.8)) || (Spron[$in] >= 0.75) && ($trin[$in] >= 0.8)))
{

26

$ge=8intl;
print BAD

I\ gy e e e sk ot ok o o HOR RO K o o o o R R R R s s sl s s sl st ol o o
AR A o o R R A R g 1
L
print BAD
Vs ook ot ok ok o ok ok s s ook koo o o o o o o KR o s R R SR R R R KRR SRR R R oo

***********************\n“-
’

print BAD "The gene no. $ge is predicted to be an NBS-LRR coding gene. Its details are as
follows:\n";

print BAD $ele[$in]."\n";

print BAD11 "NOTE The gene no. $ge is predicted to be an NBS-LRR coding gene. Its details are as
follows:\n";

print BAD11 $ele[$in]."\n";

$counter++;

}

elsif(($pron[$in] >= 0.5) || ($din[$in] >= 0.6) || ($trin[$in] >= 0.6))

{

$ge=%int+1;

print BAD12 "NOTE The gene no. $ge is predicted to be an NBS-LRR coding gene. Its details are as
follows:\n";

print BAD12 $ele[$in]."\n";

$counter++;

}

else

{

$ge=$in+1;

print REMAIN $ele[$in]."\n";
!

}
print BAD "\nTotal are $counter\n”;
system("profilematch.pl");

$counter=0;
open{EE,"final res.txt");

open(PAD,">finally.txt");
$s=<EE>;

27

close EE;

@nos=split("\n',$s);

foreach((@nos)

{

print PAD:

I\ R R R ok ok sk ok ok ks sk R R kool sl R ok ok ok ke e e ol ksl ok ok ok okl o o
Aok sokokodok soloroskokoR sokosolokosolok\ i

£
print PAD
10355k s sk ok ook ook ok ok sk st ok sk ok ook sk okl sk sk sk sk sk sk sk skok sk stk stk skskololololokokolok skolokokokosiok sk sokolok ok sk skoslololokosiokoskosiokokoskokokolkok

***********************“fg
print PAD "This gene is predicted to be an NBS-LRR coding gene. Its details are as follows:\n";
print PAD $ele[$ -1]."\n";

$counter++;

}

print PAD "\nTotal are $counter\n";

close PAD;
}

sub ditripat

{

$file=@ _[0];

$count=@ _[1];

system(""compseq -sequence ".$file.".gene -word 2 -outfile out_di.txt"),

system("compseq -sequence ".$file.".gene -word 3 -outfile out_tri.txt");

open(HANDLE,"out_di.txt");
my $content=<HANDLE>;
close HANDLE;

open(GOOD,">>Seq di out.txt");
print GOOD "#Input_pattern_$count:\n";

@freq=();
my @freq=split(' ',$content);
foreach(0..(scalar(@freq)-1))

28

{
if($freq[$_ 1=~ /"[ATGC][ATGC]/)
{
print GOOD $freq[$_+4]."\t";
$flag=1; ‘
) |
} |
if($flag == 1) i
{
|
|

print GOOD "\n";

$flag=0;

}

close GOOD; ;

$content=";
open(HANDLE,"out_tri.txt");
my $content=<HANDLE>;
close HANDLE;

open(GOOD,">>Seq_tri_out.txt");

print GOOD "#Input_pattern_$count:\n";

@freq=0);
my @freq=split(' ,$content);
foreach(0..(scalar(@freq)-1))
{
if($freq[$ =~ [ATGC]I[ATGC][ATGC]/)
{
print GOOD $freq[$_+4]."\t";
$flag=1;
}

if($flag == 1)

{ |
print GOOD "\n"; ‘
$flag=0;

20

h
close GOOD;

}

sub propat{

$filename=@_[0];
$count=@_[1];

$filename=8$filename.".protein”;
system("pepstats $filename pepstats_outfile.txt -auto 1");
open(HAN,"pepstats_outfile.txt");
$co=<HAN>;

close HAN;

@con=split(' ,$co);

chomp((@con);
open(GOOD,">>pepstats_infile.txt");
print GOOD "#Input_pattern_$count:\n";
foreach(0..(scalar(@con)-1))

{

if(Scon[$] eq "Molecular")

{

$value=$con[$_+3]/100000;

print GOOD "$value ";

}

if($con[$_Jeq "Average")
{

$value=$con[$ +4)/1000;
print GOOD "S$value ",

}

if($con[$_Jeq "Isoelectric")

| |
print GOOD ($con[$_+31/10)." "; |
}

30

if(Scon[$_] eq "Molar")
{
print GOOD ($con[$_+4]/100000)." ";

}

if(($con[$] eq "Ala") || ($con[$] eq "Cys") || ($con[$] eq "Asp")|| ($con[$] eq "Glu") || ($con[$]
eq "Phe") || ($con[$_] eq "Gly") || ($con[$_] eq "His") || ($con[$_] eq "Ile") || (Scon[$_] eq "Lys") ||
($con[$] eq "Leu") || ($con[$] eq "Met") || ($con[$_] eq "Asn") || ($con[$_] eq "Pro") || ($con[$] eq
"GIn") || (Scon[$_] eq "Arg") || ($con[$_] eq "Ser") || ($con[$_] eq "Thr") || ($con[$_] eq "Val") ||
($con[$]eq"Tyr"))

{

if($con[$_] ne "Property")

{

print GOOD ($con[$ +2]/10)." ".$con[$ +3]."";

}

}

if($con[$_] eq "Tiny")
{
print GOOD ($con[$_+3]/100)." ";

}

if($con[$_] eq "Small")

{

print GOOD ($con[$_+3]/100)." ";
}

if($con[$_] eq "Aliphatic")

{

print GOOD ($con[$_+3]/100)." ";
}

if($con[$_] eq "Aromatic")

{

print GOOD (Scon[$_+3]/100)." ";
}

if($con[$_] eq "Non-polar")

{

31

print GOOD ($con[$_+31/100)." ",
}

if(Scon[$_] eq "Polar)

{

print GOOD ($con[$ +3]/100)." ",
}

if($con[$] eq "Charged")

{

print GOOD ($con[$_+3]/100)." *;
}

if($con[$_] eq "Basic")

{

print GOOD ($con[$_+3]/100)." ";
}

if($con[$_] eq "Acidic")

{

print GOOD ($con[$_+3)/100)." ";
$flag=1;

}

if($flag==1)

{

print GOOD "\n";

$flag=0;

}

}

close GOOD;

}

32

2.1.pl
$/=undef;

open (HAN, "pepstats outfile.txt");
Sco=<HAN>;

close HAN;

@con=split (' ',S%co);

chomp (@con) ;

open (GOOD, ">>pepstats infile.txt");

print GOOD "Input pattern $count:\n";

foreach(0.. (scalar(@con)-1))
{

if (Scon($)=~ /Molecular/)

{

S$value=S$con[$ +3]1/100000;
print GOOD "$value ";

}

if($con($)=~ /RAverage/)
{

Svalue=$con([$ +4]/1000;
print GOOD "$value ";

}

if ($con([$. 1=~ /Isoelectric/)

()
print 600D (Scon[$_+3]/10)." 17
}

if(Scon[$]=~ /Molar/)

{

print GOOD ($con[$ +4]1/100000)." ";
}

LE{-18con[8 Jm~ /Blaf) || {Sconl$ 1=~ /fCysf}r || (Scon[s |== /Rsp/) |
(Beenls-—J=~ JBLut) - (Seon(s lse. /PHe/) o] |- (Beon[S. =~ /fGlyr) ||
($con($ 1=~ /His/) 1| ($con[$_ 1=~ /Ile/) || ($con[$]1=~ /Lys/) |I
($con[$ 1=~ /Leu/} || (Scon[$_l=~ /Met/) 1| (Scon[$_l=~ /Asn/) ||

33

($con($_)=~ /Pro/) || ($con[$_]l=~ /Gln/) || (Scon[$ l=~ /Arg/) ||

($con[5 -]=~ /Ser/) [| {(Seon[$_J=~ (Thr/) || (Scen[s 1=~ /vVal/y ||
($con([$_1=~ /Tyr/))

{

if($con[$] ne "Property")

{

print GOOD ($con[$ +2]/10)." ".Scon[$_+3]." ";

1

}

if (Scon($ J=~ /Tiny/)

{

print GOOD ($con($ +3]1/100)." ";
}

if($con($ 1=~ /Small/)

{

print GOOD ($con([$ +3]1/100)." ";
}

if(Scon[$ 1=~ /Aliphatic/)

{

print GOOD (Scon[$ +3]1/100)." ";
}

if($con[$]=~ /Aromatic/)

{

print GOOD ($con($ +3]/100)." ";
1

if($con($)=~ /Non-polar/)

{ |
print GOOD ($con[$ +3]1/100)." "; |

! /
if($con[$)=~ /Polar/)

{

print GOOD (Scon[$ +3]/100)." ";
}

if(Scon[$_]=~ /Charged/)

{

34

print GOOD (S$con[$ +3]1/100)." ";

}
if ($con[$ 1=~ /Basic/)
{

print GOOD ($con[$_+3]/100) Lo,

}

if($con($ 1=~ /Acidic/)
{ ¢

print GOOD ($con[$_+3]/100)." ";
$flag=1;

}

if ($flag==1)

{

print GOOD "\n";
$flag=0;

}

}

close GOOD;

35

3. PROG1.PL

#!/usr/bin/perl
$/=undef;

open(IN,"rel.txt") or die "file can't be accessable";

open(SE,"h1.txt") or die "file can't be accessable"; il
open(OUUT,>COUNT.txt') or die "file can't be accessable";
open(MAD,">>RESULT_OF_PREDICTION.txt");

$count=0;

$var=<IN>;

@ele=split(/_AA/,$var);

$ff=<SE>;
@arr=split(/_AA/,$ff);

$count=0;
#tprint OUT @ele;
$i=0;

$y=0;
$yk=0; 4

foreach $templ(@ele) |
{

$temp 1=~ s/Ns+//mg;

$templ=~ s\s+$//mg;

$templ=~ sA\s+//mg;

if($templ=~/(w+)[*]/gi)
{ |
$pregene[$y]=$1;
Sy++;
)
E

36

foreach $ll(@arr)
{

$ll=~ s/M\s+//mg;
$ll=~ sNs+$//mg;
$ll=~ s\s+//mg;

i $ll=~ /(w-+H)[*]/gi)
{
$pr[$yk]=$1;
$ykt++;
}

foreach $p(@pr)
{
print MAD "\n>Predicted Protein:\n$p\n";

}

$geneno=0;
$ik=0;

foreach $var(@pregene)

{

$flag=0;

$h=0;

$genenot++;

Bik++;
open(OUT,>UPENDRA.txt') or die "file can't be accessable";
open(OUT4,>infile.txt') or die "file can't be accessable";
open(OUT44,">infilel.txt") or die "file can't be accessable";
open(OUTS555, >infile_lrrl.txt') or die "file can't be accessable";
open(OUT5552,>infile_lrr.txt') or die "file can't be accessable";

37

$i=0;
@len=split(//,$var);
$leng=S$#len;
$leng=$leng-16;
print OUT ">\n";
print OUT "$len\n";

for($po=0;$i<=$leng;$po++)
{

$varl=$var;

$vard=$var;

$var555=%var,

$tri[$i]=substr($varl,Spo,15);
$trid[$i]=substr($vard,$po,16);
$tri555[$i]=substr($var555,8po, 14);

print OUT ">$i\n";
print OUT "$tri[$i]\n";

@element=split(//,$tri[$i]);
@elementd=split(//,$tri4[$i]);
@element555=split(//,$tri555[$i]);

#Ej++;

$i++,

Sh++;

print OUT4 "\n#Input_pattern_".$h.":";
print OUT4 "\n";

print OUT44 "n#Input_pattern_".$h.":";
print OUT44 "\n";

38

print OUT555 "\n#Input_pattern_".$h.":";
print OUTS555 "\n";

print OUT5552 "\n#Input_pattern_".$h.":";
print OUTS552 "\n";

for($z=0;$z<=$#element;$z++)

{
@line=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

if($element[$z] eq 'A")

{

$line[0]=1;

¥

elsif($element[$z] eq 'Y")
{
$line[1]=1;

}

elsif($element[$z] eq 'C")
{

$line[2]=1;

¥

elsifi$element[$z] eq 'D")
{

$line[3]=1;

}

elsif($element[$z] eq 'E")
{

$line[4]=1;

}

elsif($element[$z] eq 'F')
{

$line[5]=1;

}

elsif($element[$z] eq 'G")

{
$line[6]=1;

39

}

elsif($element[$z] eq 'H')
{

$line[7]=1,

}

elsif($element[$z] eq 'T")
{

$line[8]=1;

}

elsif($element[$z] eq 'K")
{

$line[9]=1;

}

elsif($element[$z] eq 'L")
{

$line[10]=1;

}

elsif($element[$z] eq 'M")
{

$line[11]=1;

}

elsif($element[$z] eq 'N")
{

$line[12]=1;

}

elsif($element[$z] eq 'P")
{

$line[13]=1;

}

elsif($element[$z] eq 'Q")
{

$line[14]=1;

H

elsifi$element[$z] eq 'R")
{

$line[15]=1;

}

40

elsif($element[$z] eq 'S")
{

$line[16]=1;

}

elsif($element[$z] eq 'T")
{

$line[17]=1;

}

elsif(Selement[$z] eq 'V")
{

$line[18]=1,

}

elsif($element[$z] eq 'W")
{

$line[19]=1;

}

else

{

}

print OUT4 "@line ";

¥

for($z=0;$z<=S$#element555;$z++)

{
@line=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

if($element[$z] eq 'A")

{

$line[0]=1;

}

elsif{$element[$z] eq 'Y")
{

$line[1]=1;

}

elsif($element[$z] eq 'C")
{

41

$1ine[2.]=1 ;

}

elsif($element[$z] eq 'D")
{

$line[3]=1;

}

elsif($element[$z] eq 'E)
{

$line[4]=1;

}

elsif($element[$z] eq 'F")
{

$line[5]=1;

}

elsif($element[$z] eq 'G")
{

$line[6]=1;

}

elsif($element[$z] eq 'H")
{

$line[7]=1;

1

elsif($element[$z] eq 'T")

{

$line[8]=1;

}

elsif($element[$z] eq 'K")
£

$line[9]=1;

}

elsif($element[$z] eq 'L")

{
$line[10]=1;

1
J

elsif($element[$z] eq 'M")

{
$line[11]=1;

42

}

elsif($element[$z] eq 'N')
{

$line[12]=1;

1

elsif($element[$z] eq 'P')

{

$line[13]=1;

}

elsif($element[$z] eq 'Q")
{

$line[14]=1;

}

elsif($element[$z] eq 'R")

{

$line[15]=1;

}

elsif($element[$z] eq 'S")

{

$line[16]=1;

}

elsif($element[$z] eq 'T")

{

$line[17]=1;

¥

elsif($element[$z] eq 'V")
{

$line[18]=1;

}

elsif($element[$z] eq 'W")
{

$line[19]=1;

}

else

{

}
print OUTS555 "@line ";

43

print OUT5552 "@line ",
}

for($z=0;$z<=%$#element4;$z++)

{

@line=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

if($element4[$z] eq'A")

{

$line[0]=1;

}

elsif($element4[$z] eq 'Y")
{

$line[11=1;

}

elsif($element4[$z] eq 'C')
{

$line[2]=1;

}

elsif($element4[$z] eq 'D")
{

$line[3]=1;

}

elsif($element4[$z] eq 'E")
{

$line[4]=1;

}

elsif(felementd[$z] eq 'F")
{

$line[5]=1;

}

elsif($elementd[$z] eq 'G")

g

$line[6]=1;

}

elsif($element4[$z] eq 'H')
{

44

$line[7]=1;

}

elsif($element4[$z] eq 'I")
{

$line[8]=1,

}

elsif($element4[$z] eq 'K")
{

$line[9]=1;

}

elsif($elementd[$z] eq 'L")
{

S$line[10]=1;

}

elsif($elementd[$z] eq 'M")
{

$line[11]=1;

}

elsif($elementd[$z] eq N")
{

Sline[12]=1;

}

elsif($element4[$z] eq 'P'")
{

$line[13]=1;

}

elsif($element4[$z] eq 'Q")
{

Sline[14]=1;

}

elsif($element4[$z] eq 'R")
{

$line[15]=1;

}

elsif($element4[$z] eq 'S")

{
Sline[16]=1;

45

}

elsif(Selement4[$z] eq 'T")

{

$line[17]=1;

}

elsif($element4[$z] eq V")

{

$line[18]=1;

}

elsif($element4[$z] eq 'W")

{

: $line[19]=1;

l }
else

’ {

| }

: print OUT44 "@line ";

}

}

H
system("a.exe"); ‘bg
system("domain3.exe");

’ system("domainl.exe");
system("lrr1.exe");

! system("lrr2.exe");

open(INL"outfile2.txt") or die "file can't be accessable";
$varu=<INI>;

@d2=split(As+/,$varu);

open(INI3,"outfile3.txt") or die "file can't be accessable";
Svar3=<INI3>;
* @d3=split(\s+/,$var3);

open(INI4,"outfile1.txt") or die "file can't be accessable";

46

$vard=<INI4>;
‘ @d1=split(A\s+/,$vard);

open(LRR2,"outfile lrr.txt") or die "file can't be accessable";
$Ir2=<LRR2>;
@12=split(/\s+/,$1r2);

open(LRR1,"outfile_lIrr1.txt") or die "file can't be accessable";
$Ir1=<LRR1>;

@!11=split(\s+/,$lr1);

$jk=1;

for($x11=0;8x11<=$#d2;$x 1 1++)
{

if(($d2[$x11] > 0.99) || ($d3[$x11] > 0.99) || (Sd1[$x11] > 0.995) || ($11[Sx11] > 0.997) || ($12[$x11] >
0.9973))

(|

$index[$ik]=$geneno; ‘,, '

$flag=1; o
; }

$jket+;

if($flag==1)
{

print MAD "\n>Predicted Protein:\n$var\n";

}

}
#print OUUT "\n@index";
system("program2.pl");

system("class.pl");

47

close MAD;

4. Class.pl

#!/usr/bin/perl

$/=undef;

open(IN,"RESULT_OF PREDICTION.txt") or die "file can't be accessable";
open(OUT1,>TIR_RESULT.txt") or die "file can't be accessable";
open(OUT2,">NON_TIR_RESULT.txt") or die "file can't be accessable";

$var=<IN>;

@ele=split(/>Predicted Protein:/,$var);
$count=0;

$i=0;

$y=0;

foreach $temp1(@ele)

$temp 1=~ s/Ns+//mg; !
$Stempl=~ s/\s+$//mg;
Stempl=~ s/\s+//mg;

if(Stemp1=~ /(w+)/gi)

{ i !
Spregene[$y]=51;
Sy++;

}

$geneno=0;
$ik=0;

foreach $var(@pregene)

48

{

$flag=0;
$h=0;
$genenot+;
$ik++;

open(OUT4,">tirinfile.txt") or die "file can't be accessable";

$i=0;
@len=split(//,$var);
$leng=$#len;
$leng=$leng-25;

for($po=0;$i<=$leng;Spo++)
{

$varl=$var;

$tri[$i]=substr($varl,$po,18);

print OUT ">§i\n";
print OUT "$tri[$i]\n";

@element=split(//,$tri[$i]);

#$j++;

Sit++;

Sht+;

print OUT4 "\n#Input_pattern_".$h.":";
print OUT4 "\n";

for($z=0;$z<=$#element;$z++)

{
@line=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

if($element[$z] eq 'A")
{

$line[0]=1;

}

49

elsif($element[$z] eq 'Y")
{

$line[1]=1;

}

elsif($element[$z] eq 'C")
{

$line[2]=1;

} :
elsif($element[$z] eq 'D")
{

$line[3]=1;

}

elsif(Selement[$z] eq 'E)
{

$line[4]=1;

}

elsif($element[$z] eq 'F")
{

$line[5]=1;

}

elsif(Selement[$z] eq 'G")
{

$line[6]=1;

}

elsif($element[$z] eq 'H")
{

$line[7]=1;

}

elsif($element[$z] eq '1)
{

$line[8]=1;

}

elsif($element[$z] eq 'K")
{

$line[9]=1;

}

elsif($element[$z] eq 'L")

50

{

$line[10]=1;

}

elsif($element[$z] eq 'M")
{

$line[11]=1;

}

elsif($element[$z] eq 'N")
{

$line[12]=1;

}

elsif($element[$z] eq 'P")

{

$line[13]=1;

}

elsifi$element[$z] eq 'Q")
{

$line[14]=1;

}

elsif($element[$z] eq 'R")

{

$line[15]=1;

}

elsif($element[$z] eq 'S")

{

$line[16]=1;

}

elsif($element[$z] eq 'T")

{

$line[17]=1;

¥

elsif($element[$z] eq 'V")
{

$line[18]=1;

}

elsif($element[$z] eq 'W")
{

51

$line[19]=1;
}

else

{
}
print OUT4 "@line ";

}

}

system("tirclass.exe");

open(INI,"tiroutfile.txt") or die "file can't be accessable";
$varu=<INI>,

@d2=split(\s+/,bvaru);
i $ik=1;

for($x11=0;$x11<=$#d2;$x11++)
{

if($d2[$x11] > 0.993)
{
$index[$ik]=$geneno;
$flag=1;

}

$jk-++;

if($flag==1)
{
print OUT1 "\n>Predicted Protein:\n$var\n";

}

else

{
print OUT2 "\n>Predicted Protein:\n$var\n";

}

52

}
APPENDIX-IT

Table for protein properties calculated using PEPSTATS and their associated

normalization factors that were used in the study.

Property name Normalization
Jactor

Molecular weight. 10°

Average Residue Weight. 10°

Isoelectric Point. 10

A280 Extinction Coefficient 1mg/ml. 10°

Mole % of 19 standard amino acids: Alanine, Cysteine, 10

Aspartic Acid, Glutamic Acid, Phenylalanine, Glycine,
Histidine, Isoleucine, Lysine, Leucine, Methionine,
Asparagine, Proline, Glutamine, Arginine, Serine,

Threonine, Valine and Tryptophan.

DayhoffStat of 19 standard amino acids: Alanine, 1
Cysteine, Aspartic Acid, Glutamic Acid, Phenylalanine,

‘:I
Glycine, Histidine, Isoleucine, Lysine, Leucine, f

Methionine, Asparagine, Proline, Glutamine, Arginine, i

Serine, Threonine, Valine and Tryptophan. ;

Mole % of Tiny residues. 10

Mole % of Small residues. 10

Mole % of Aliphatic residues. 10

Mole % of Aromatic residues. 107

Mole % of Non-polar residues. 10

Mole % of Polar residues. 107 '

Mole % of Charged residues. 10 :
i Mole % of Basic residues. 10°

Mole % of Acidic residues. 107

33

APPENDIX-III
SCREENSHOTS

= pic - Windows Picture and Fax Viewer

SCREENSHOT 1(HOMEPAGE)

~ Upendra Chaudh

- S ! '. g
R M A - L B AT

ary (031504)

_ Vikas Rrajput(031517)

Vi

S naR R

SCREENSHOT 2(HELPAGE)

K NBS-LRR - Mozilla Firefox
Fle Edt View History Bookmarks JTools Help

- (8 [| Aestisfwebhelpfindex il | k| @G- o

L Customize Links | | Fres Hotmail | | Windows Media | | Windows

e T R R R T R s A SV e
NBS-LRR Pred...

User Manual

Step for how to run a tool.....
step 1:Take your query sequence i a plane text format 1.¢ (without ~ in front of sequences) and store in a seql.txt file.
step 2:Run a seq_formate. exe and store a output file in to aih. com.

step 3:According to your query sequences select a organism name from plant or animal parameter file and store that parameter in a index
file(second column) .

Parameter for Rice
e.¢ temp_files‘a@h com seq Plant‘rice. param Aug_3 2004

step +:Click on a submit button .

0} REFORT - .,] o fsess & PN ¥ LY

59

SCREENSHOT 3(REQUIREMENTPAGE)

%) NBS LRR - Mozilla Firefox
File Edt View History Bookmarks Tools Help

- @ (8 [L esdsiespwebldownioadiindext b | | Gl o (B

g e R e R
NBS-LRRPred

To run NBS-LRRpred tollowing sottware should be mstalled ...

L. Active perl .

2. Embosswin .

T ® G 7 KDNeswep- R VIKAS By rerorT- . [) Toba M. | @ dowdload 0 Message €., LR, el ss9An

56

BIBLIOGRAPHY
WEB PAGES:

1. http://ncbi.nlm.nih.gov

2. Blocks www server.

RESEARCH PAPER
1. Abdi, H., Valentin, D., Edelman, B.E. (1999). Neural Networks. Thousand Oaks:

Sage.

2. Abdi, H. "A neural network primer. Journal of Biological Systems, 2, 247-281,
1994)".

3. Kretsinger, R. H. (1972) Nat. New Biol. 240, 85-88.

4. Ernesto Carafoli, PNAS 2002; 99; 1115-1122; doi:10.1073/pnas.032427999.

5. Ermak G, Davies KJ. Mol Immunol 2002; 38(10):713-721.

6. Orrenius S, Zhivotovsky B, Nicotera P. Nat Rev Mol Cell Biol 2003; 4(7):552-
565. |
7. Dowd DR. Res 1995; 30:255-280.

8. Means AR, Rasmussen CD. Cell Calcium 1988; 9(5-6):313-319.

9 Greenbefg JT, Vinatzer BA: Identifying type III effectors of plant pathogens and

analyzing their interaction with plant cells.

10. Curr Opin Microbioly 2003, 6:20-28.

11. Nimchuk Z, Eulgem T, Holt BF III, Dangl JL: Recognition and response in the

plant immune system. Annu Rév Genet 2003, 37:579-609.

12. Glaze brook J, Rogers EE, Ausubel FM: Use of Arabidopsis for genetic dissection

of plant defense responses. Annu Rev.

13. Altschul, S.F., Madden, T.L., Alejandro, A.S., Zhang, J., Zheng, Z., Miller, W.,
| and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: A new generation of

protein database search programs. Nucleic Acids Res., 25, 3389-3402. |

i

14. Bendtsen, J.D., Jensen, L.J., Blom, N., Von, H.G. and Brunak, S. (2004) Feature-
based.

15. Prediction of non-classical and leaderless protein secretion. Protein Eng. Des Sel,
349-356.

16. Ding, C.H.Q. and Dubchak, I. (2001) Multi-class protein fold recognition using
support.

17. Vector machines and neural networks. Biéinformatics, 17(4), 349-358.

18. Kesmir, C., Nussbaum, A K., Schild, H., Detours, V., and Brunak, S. (2002)
Prediction Of proteasome cleavage motifs by neural networks. Profein Engineering.
15(4), 287-296.

19. Hua, S. and Sun,Z. (2001) Support vector machine approach for protein
subcellular Localization prediction. Bioinformatics, 17(8), 721-728

BOOKS

1. An introduction to neural computing. Aleksander, I. and Morton, H. 2nd edition.

58

