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ABSTRACT

The prediction of novel enzymes and their classification into six major classes
remains one of the most important unsolved problems in biological world. Many previous
algorithms have been developed to solve this intricacy. But, none of them has been able to
provide a reliable method. The previous methods used a much complex method for
prediction t.e from its 3-dimensional structure. It proved out to be a time consuming and a
costly method with lot of limitation. A large number of data are constantly being generated
thanks to several genome-sequencing projects throughout the world. However, the gap
between the growth rate of biological sequences and the capability to characterize
experimentally the roles and functions associated with these new sequences is constantly
increasing. This results in an accumulation of raw data that can lead to an increase in our
biological knowledge only if computational characterization tools are developed. Enzymes
are a subclass of protein that are specialized in catalytic activity. They are large and
complex molecules, present in all living beings, and play an essential role in biochemical
reactions. They control several vital functions, including many metabolic processes that
convert nutrients into energy and into other products necessary to cell functioning. We
focus here on the annotation of novel protein as enzymes/non-enzymes and if it is an

enzyme its classification into six measure classes.

In this study we have developed an automated tool (EnzymePred) that attempt to
algorithmically predict enzymes from the primary sequence only. A generic approach to
this problem consists of transferring the annotation from sequences of known enzymes to
uncharacterised proteins. These approaches seemed initially to hold quite a bit of promise,
that sequence derived features and position specific scoring matrix directly dictate the
protein function. Classes of newly found enzyme sequences are usually determined either
by biochemical analysis of eukaryotic and prokaryotic genomes or by microarray chips.
However, with the explosion of protein sequences entering into databanks, it is highly
desirable to explore the feasibility of selectively classifying newly found enzyme
sequences into their respective enzyme classes by means of an automated method. This is
indeed important because knowing which family or subfamily an enzyme belongs to may
help deduce its catalytic mechanism and specificity, giving clues to the relevant biological
function. Sequence similarity metrics are a useful approach to provide functional
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annotation, but its use is sometimes limited, prompting the development and use of
machine learning methods (MLMs). MLMs also have a certain degree of flexibility
regarding data inputs, allowing them to expand progressively to meet the requirements of
rapidly accumulating mountain of data generated from genomics research. Hence, in this
study we have developed a two layer artificial neural network; the first layer is for binary
prediction of enzymes/non-enzymes from the protein sequence only using sequence
derived features and PSSM matrix. If it is predicted as enzyme than in the second layer it is
classify into its specific class out of six major classes of enzymes. The tool is perfectly
trained and validated and 1s predicting the result with more than 80% accuracy. It has been
validated with five organisms also. Finally it is uploaded into the university web serverr;

bup://www.juit.ac.in/enzyme/tool.htm} for the public uses.




Chapter 1

Introduction

Enzymes are proteins that catalyze chemical reactions [Smith AD (Ed) et. al.
(1997)].In enzymatic reactions, the molecules at the beginning of the process are called
substrates, and the enzyme converts them into different molecules, the products. Enzymes
are biological catalysts or assistants. Enzymes consist of various types of proteins that
work to drive the chemical reaction required for a specific action or nutrient. Enzymes can

either launch a reaction or speed it up.

Enzymes are mostly proteins, and range from just 62 amino acid residues in size for
the monomer of 4-Oxalocrotonate tautomerase, to over 2,500 residues in the animal fatty
acid synthase[Chen LH, Kenyon GL, Curtin F, Harayama S, Bembenek ME, Hajipour G,
Whitman CP (1992)].The activities of enzymes are determined by their three-dimensional
structure[ Anfinsen C.B. (1973)]. Most enzymes are much larger than the substrates they
act on, and only a very small portion of the enzyme (around 3—4 amino acids) is directly

involved in catalysis[The Catalytic Site Atlas at The European Bioinformatics Institute].

The region that contains these catalytic residues, binds the substrate, and then carries out
the reaction is known as the active site. Enzymes can also contain sites that bind cofactors,
which are needed for catalysis. Some enzymes also have binding sites for small molecules,

which are often direct or indirect products or substrates of the reaction catalyzed.

Like all proteins, enzymes are made as long, linear chains of amino acids that fold
to produce a three-dimensional product. Each unique amino acid sequence produces a
unique structure, which has unique properties. Individual protein chains may sometimes
group together to form a protein complex. Most enzymes can be denatured—that is,
unfolded and inactivated—by heating, which destroys the three-dimensional structure of

the protein.

Generally, enzymes work on substrates in one of three ways: substrate orientation,
physical stress, and changes in substrate reactivity. Substrate orientation occurs when an

enzyme causes substrate molecules to align with each other and form a bond. When an
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enzyme uses physical stress on a substrate, it in effect grips the substrate and forces the
molecule to break apart. An enzyme that causes changes in substrate reactivity alters the
placement of the molecule’s electrons, which influences the molecule’s ability to bond
with other molecules. Enzymes have active sites where they come into contact with
particular substrates. The catalytic properties of enzymes are a cyclic process. Once a
substrate has come into contact with the active site of an enzyme, it is modified by the
enzyme to form the end product. Once the process is complete, the enzyme releases the
product and is ready to begin the process with new substrates. Enzymes are never wasted

and always recycled.

Function and structure

Enzymes are very efficient catalysts for biochemical reactions. They speed up

reactions by providing an alternative reaction pathway of lower activation energy. Like all
catalysts, enzymes take part in the reaction - that is how they provide an alternative reaction
pathway. But they do not undergo permanent changes and so remain unchanged at the end of the
reaction. They can only alter the rate of reaction, not the position of the equilibrium. Most chemical
catalysts catalyse a wide range of reactions. They are not usually very selective. In contrast
enzymes are usually highly selective, catalysing specific reactions only, This specificity is due to
the shapes of the enzyme molecules. Many enzymes consist of a protein and a non-protein (called
the cofactor) [http://www.chemsoc.org/networks/LearnNet/cfb/index.htm]. The proteins in enzymes
are usually globular. The intra- and intermolecular bonds that hold proteins in their secondary and
tertiary structures are disrupted by changes in temperature and pH. This affects shapes and so'the

catalytic activity of an enzyme is pH and temperature sensitive.
How enzymes work

For two molecules to react they must collide with one another. They must collide in
the right direction (orientation) and with sufficient energy. Sufficient energy means that
" between them they have enough energy to overcome the energy barrier to reaction. This is

called the activation energy. Enzymes have an active site

[http:/iwww.chemsoc.org/networks/LearnNet/cfb/index.htm]. This is part of the molecule that has
just the right shape and functional groups to bind to one of the reacting molecules.
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Lock and key hypothesis

This 1s the simplest model to represent how an enzyme works. The substrate simply fits
into the active site to form a reaction intermediate [Fischer E. (1894). "Einfluss der

Configuration auf dic Wirkung der Enzyme". Ber. Dt. Chem. Ges. 27: 2985-2993.].

subsirate

enzyme

anzymna-substrate
complex

Fig 1.b. Lock and key hypothesis
Induced fit hypothesis

In this model the enzyme molecule changes shape as the substrate molecules gets close.
The change in shape is 'induced' by the approaching substrate molecule [Koshland D. E.
(1958)]. This more sophisticated model relies on the fact that molecules are flexible

because single covalent bonds are free to rotate [Vasella A, Davies GJ, Bohm M. (2002)].

Different classes of enzymes
Basically all the enzymes available in the nature are classified into six major classes based

on their mechanism of action. They are discussed below.

Class 1. Oxidoreductases.

To this class belong all enzymes catalysing oxidoreduction reactions. The substrate
that is oxidized is regarded as hydrogen donor. The systematic name is based on
donor:acceptor oxidoreductase. The common name will be dehydrogenase, wherever this is
possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2
is the acceptor. The second figure in the EC-Number of the oxidoreductases, it is 11, 13,
14 or 15, indicates the group in the hydrogen (or electron) donor that undergoes oxidation:

1 denotes a -CHOH- group, 2 a -CHO or -CO-COOH group or carbon monoxide, and so
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on, as listed in the key. The third figure, except in subclasses EC 1.11, EC 1.13, EC 1.14
and EC 1.15, indicates the type of acceptor involved: 1 denotes NAD(P)+, 2 a cytochrome,
3 molecular oxygen, 4 a disulfide, 5 a quinone or similar compound, 6 a nitrogenous
group, 7 an 1ron-sulfur protein and 8 a flavin. In subclasses EC 1.13 and EC 1.14 a
different classification scheme is used and subclasses are numbered from 11 onwards. It
should be noted that in reactions with a nicotinamide coenzyme this is always regarded as
acceptor, even if this direction of the reaction is not readily demonstrated. The only
exception is the subclass EC 1.6, in which NAD(P)H is the donor; some other redox
catalyst is the acceptor. Although not used as a criterion for classification, the two
hydrogen atoms at carbon-4 of the dihydropyridine ring of nicotinamide nucleotides aré

not equivalent in that the hydrogen is transferred stereospecifically.

Class 2. Transferases.

Transferases are enzymes transferring a group, e.g. a methyl group or a glycosy!l
group, from one compound (generally regarded as donor) to another compound (generally
regarded as acceptor). The systematic names are formed according to the scheme donor:
acceptor group transferase. The common names are normally formed according to acceptor
groupiransferase or donor grouptransferase. In many cases, the donor is a cofactor
{coenzyme) charged with the group to be transferred. A special case is that of the
transaminases. Some transferase reactions can be viewed in different ways. For example,
the enzyme-catalysed reaction :X-Y + Z = X + Z-Y; may be regarded either as a transfer of
the group Y from X to Z, or as a breaking of the X-Y bond by the introduction of Z. Where
Z represents phosphate or arsenate, the process is often spoken of as 'phosphorolysis' or
‘arsenolysis', respectively, and a number of enzyme names based on the pattern of
phosphorylase have come into use. These names are not suitable for a systematic
nomenclature, because there is no reason to single out these particular enzymes from the
other transferases, and it is better to regard them simply as Y-transferases. In the above
reaction, the group transferred 1s usually exchanged, at least formally, for hydrogen, so that
the equation could more strictly be written as:

X-Y+Z-H=X-H+ZY. Another problem is posed in enzyme-catalysed transaminations,
where the -NH2 group and -H are transferred to a compound containing a carbonyl group
in exchange for the = O of that group, according to the general equation:
R1-CH(-NH2)-R2 + R3-CO-R4 R1-CO-R2 + R3-CH(-NH2)-R4,
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The reaction can be considered formally as oxidative deamination of the donor (e.g. amino
acid) linked with reductive amination of the acceptor (e.g. oxo acid), and the
transaminating enzymes (pyridoxal-phosphate proteins) might be classified as
oxidoreductases. However, the unique distinctive feature of the reaction is the transfer of
the amino group (by a well-established mechanism involving covalent substrate-coenzyme
intermediates), which justified allocation of these enzymes among the transferases as a
special subclass (EC 2.6.1, transaminases). The second figure in the code number of
transferases indicates the group transferred; a one-carbon group in EC 2.1, an aldehydic or
ketonic group in EC 2.2, an acyl group in EC 2.3 and so on. The third figure gives further
information on the group transferred; e.g. subclass EC 2.1 is subdivided mto’
methyltransferases (EC 2.1.1), hydroxymethyl- and formyltransferases (EC 2.1.2) and so

on; only in subclass EC 2.7, does the third figure indicate the nature of the acceptor group.

Class 3. Hydrolases.

These enzymes catalyse the hydrolytic cleavage of C-O, C-N, C-C and some other
bonds, including phosphoric anhydride bonds. Although the systematic name always
includes hydrolase, the common name is, in many cases, formed by the name of the
substrate with the suffix -ase. It is understood that the name of the substrate with this suffix
means a hydrolytic enzyme. A number of hydrolases acting on ester, glycosyl, peptide,
amide or other bonds are known to catalyse not only hydrolytic removal of a particular
group from their substrates, but likewise the transfer of this group fo suitable acceptor
molecules. In principle, all hydrolytic enzymes might be classified as transferases, since
hydrolysis itself can be regarded as transfer of a specific group to water as the acceptor.
Yet, in most cases, the reaction with water as the acceptor was discovered earlier and is
considered as the main physiological function of the enzyme. This is why such enzymes
are classified as hydrolases rather than as transferases. Some hydrolases (especially some
of the esterases and glycosidases) pose problems because they have a very wide specificity
and it is not easy to decide if two preparations described by different authors (perhaps from
different sources) have the same catalytic properties, or if they should be listed under
separate entries. An example is vitamin A esterase (formerly EC 3.1.1.12, now Believed to
be identical with EC 3.1.1.1). To some extent the choice must be arbitrary; however,
separate entries should be given only when the specificities are sufficiently different.
Another problem is that proteinases have 'esterolytic' action; they usually hydrolyse ester
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bonds in appropriate substrates even more rapidly than natural peptide bonds. In this case,
classification among the peptide hydrolases is based on historical priority and presumed
physiological function. The second figure in the code number of the hydrolases indicates
the nature of the bond hydrolysed; EC 3.1 are the esterases; EC 3.2 the glycosylases, and
so on. The third figure normally specifies the nature of the substrate, e.g. in the esterases
the carboxylic ester hydrolases (EC 3.1.1), thiolester hydrolases (EC 3.1.2), phosphoric
monoester hydrolases (EC 3.1.3); in the glycosylases the O-glycosidases (EC 3.2.1), N-
glycosylases (EC 3.2.2), etc. Exceptionally, in the case of the peptidyl-peptide hydrolases
the third figure is based on the catalytic mechanism as shown by active centre studies or

the effect of pH. '

Class 4. Lyases.

Lyases are enzymes cleaving C-C, C-O, C-N, and other bonds by elimination,
leaving double bonds or rings, or conversely adding groups to double bonds. The
systematic name is formed according to the pattern substrate group-lyase. The hyphen is an
important part of the name, and to avoid confusion should not be omitted, e.g. hydro-lyase
not 'hydrolyase’. In the common names, expressions like decarboxylase, aldolase,
dehydratase (in case of elimination of CO2, aldehyde, or water) are used. In cases where
the reverse reaction is much more important, or the only one demonstrated, synthase (not
synthetase) may be used in the name. Various subclasses of the lyases include pyridoxal-
phosphate enzymes that catalyse the elimination of a b- or g-substituent from an a-amino
acid followed by a replacement of this substituent by some other group. In the overall
replacement reaction, no unsaturated end-product is formed; therefore, these enzymes
might formally be classified as alkyl-transferases (EC 2.5.1...). However, there is ample
evidence that the replacement is a two-step reaction involving the transient formation of
enzyme-bound a,b(or b,g)-unsaturated amino acids. According to the rule that the first
reaction 1s indicative for classification, these enzymes are correctly classified as lyases.
Examples are tryptophan synthase (EC 4.2.1.20) and cystathionine b-synthase (EC
4.2.1.22}). The second figure in the code number indicates the bond broken: EC 4.1 are
carbon-carbon lyases, EC 4.2 carbon-oxygen lyases and so on. The third figure gives

further information on the group eliminated (e.g. CO2 in EC 4.1.1, H20 in EC 4.2.1).

15




Class 5. Isomerases.

These enzymes catalyse geometric or structural changes within one molecule.
According to the type of isomerism, they may be called racemases, epimerases, cis-trans-
isomerases, isomerases, tautomerases, mutases or cycloisomerases. In some cases, the
interconversion in the substrate is brought about by an intramolecular oxidoreduction (EC
5.3); since hydrogen donor and acceptor are the same molecule, and no oxidized product
appears, they are not classified as oxidoreductases, even though they may contain firmly
bound NAD(P)+. The subclasses are formed according to the type of isomerism, the sub-

subclasses to the type of substrates.

Class 6. Ligases.

Ligases are enzymes catalysing the joining together of two molecules coupled with
the hydrolysis of a diphosphate bond in ATP or a similar triphosphate. The systematic
names are formed on the system X:Y ligase (ADP-forming). In earlier editions of the list
the term synthetase has been used for the common names. Many authors have been
confused by the use of the terms synthetase (used only for Group 6) and synthase (used
throughout the list when it is desired to emphasis the synthetic nature of the reaction).
Consequently NC-TUB decided in 1983 to abandon the use of synthetase for common
names, and to replace them with names of the type X-Y ligase. In a few cases in Group 6,
where the reaction is more complex or there is a common name for the product, a synthase
name is used (e.g. EC 6.3.2.11 and EC 6.3.5.1). It is recommended that if the term
synthetase is used by authors, it should continue to be restricted to the ligase group. The
second figure in the code number indicates the bond formed: EC 6.1 for C-O bonds
(enzymes acylating tRNA), EC 6.2 for C-S bonds (acyl-CoA derivatives), etc. Sub-

subclasses are only in use in the C-N ligases.

Classification of Enzymes (EC Number)

Traditionally the enzymes are classified into six major classes based on their EC
Number. The Enzyme Commission number (EC number) is a numerical classification
scheme for enzymes, based on the chemical reactions they catalyze. As a system of
enzyme nomenclature, every EC number is associated with a recommended name for the

respective enzyme [ExPASy].Every enzyme code consists of the letters "EC" followed by
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four numbers separated by periods. Those numbers represent a progressively finer

classification of the enzyme.

For example, the tripeptide aminopeptidases have the code "EC 3.4.11.4", whose

components indicate the following groups of enzymes:

o EC 3 enzymes are hydrolases (enzymes that use water to break up some other

molecule)

e [E(C 3.4 are hydrolases that act on peptide bonds

o FEC 3.4.11 are those hydrolases that cleave off the amino-terminal amino acid from

a polypeptide

T

o FE(C 3.4.11.4 are those that cleave off the amino-terminal end from a tripeptide

Top Level EC numbers [Moss, G.P 2006-03-14]

Enzyme
Class Reaction catalyzed Typical reaction || example(s) with
trivial name
To catalyze oxidation/reduction || AH+B—> A+
EC1 reactions; transfer of H and O BH (reduced) Dehydrogenase,
Oxidoreductases||  atoms or electrons from one A+0~—- AO oxidase
substance to another (oxidized)
Transfer of a functional group
EC2 from one substance to another. AB+C—- A+ Transaminase,
Transferases || The group may be methyl-, acyl-, BC kinase
amino- or phosphate group
EC3 Formation of two products froma| AB+H,O— | Lipase, amylase,
Hydrolases substrate by hydrolysis AOH + BH peptidase
Non-hydrolytic addition or
EC4 removal of groups from substrates.] RCOCOOH —
Lyases C-C,C-N, C-O or C-S bonds may || RCOH + CO;
be cleaved
Intramolecule rearrangement, i.e.
ECS isomerization changes within a AB— BA Isomerase,
Isomerases ) mutase
single molecule
ECo Join together two molecules by || X+ Y+ ATP - Synthetase
Ligases synthesis of new C-0O, C-S, C-N || XY + ADP + Pi yn
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Need of Prediction and classification of Enzymes

Enzymes are substances that occur naturally in all living things, including the
human body. If it's an animal or a plant, it has enzymes. Enzymes are critical for life. At
present, researchers have identified more than 3,000 different enzymes in the human body.
Every second of our lives these enzymes are constantly changing and renewing, sometimes
at an unbelievable rate. Our body's ability to function, to repair when injured, and to ward
off disease is directly related to the strength and numbers of our enzymes. That's why an
enzyme deficiency can be so devastating. All life processes consist of a complex series of
chemical reactions. '

Using the protein engineering techniqﬁes, new enzymes are been created, ranging
from food enzymes to the enzymes used for curing diseases. The large international
genome sequence projects are gaining a great amount of public attention and huge
sequence data bases are created it becomes more and more obvious that we are very
limited in our ability to access functional data for the gene products - the proteins, in
particular for enzymes. It seems quite improbable to experimentally determine function
and structure of each candidate protein. So a revolutionary method is needed to solve this
computation catastrophe. Primary sequence of these proteins are readily available,
therefore a method using the sequence derived features will prove a much valuable and a
cost effective process of determining and classifying these proteins into broader
enzyme/non-enzyme and specifically into 6 major classes as defined by international

enzyme commission.

Machine Learning in Classification

As a broad subfield of artificial intelligence, machine learning is concerned with
the design and development of algorithms and techniques that allow computers to "learn”.
At a general level, there are two types of learning: inductive, and deductive. Inductive
machine learning methods extract rules and patterns out of massive data sets. The major
focus of Machine learning research is to extract information from data automatically by
computational and statistical methods, hence, machine learning is closely related to data
mining and statistics but also theoretical computer science [Christopher M. Bishop (2007)].
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Machine learning has a wide spectrum of applications including natural language
processing, syntactic pattern recognition, search engines, medical diagnosis, bioinformatics
and cheminformatics, detecting credit card fraud, stock market analysis, classifying DNA
sequences, speech and handwriting recognition, object recognition in computer vision,

game playing and robot locomotion.

An artificial neural network (ANN) or commonly just neural network (NN) is
an interconnected group of artificial neurons that uses a mathematical model or
computational model for information processing based on a connectionist approach to
computation. In most cases an ANN is an adaptive system that changes its structure based
on external or internal information that flows through the network. In more practical terms
neural networks are non-linear statistical data modeling tools. They can be used to model

complex relationships between inputs and outputs or to find patterns in data.

Hidden

The original inspiration for the technique was from examination of the central
nervous system and the neurons (and their axons, dendrites and synapses) which constitute
one of its most significant information processing elements (see Neuroscience). In a neural
network model, simple nodes (called variously "neurons", "neurodes", "PEs" ("processing
elements") or "units") are connected together to form a network of nodes — hence the term
"neural network." While a neural network does not have to be adaptive per se, its practical
use comes with algorithms designed to alter the strength (weights) of the connections in
the network to produce a desired signal flow. These networks are also similar to the
biological neural networks in the sense that functions are performed collectively and in
parallel by the units, rather than there being a clear delineation of subtasks to which

various units are assigned (see also connectionism). Currently, the term Artificial Neural
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Network (ANN) tends to refer mostly to neural network models employed in statistics,
cognitive psychology and artificial intelligence. Neural network models designed with
emulation of the central nervous system (CNS) in mind are a subject of theoretical

neuroscience.

In modern software implementations of artificial neural networks the approach
inspired by biology has more or less been abandoned for a more practical approach based
on statistics and signal processing. In some of these systems neural networks, or parts of
neural networks (such as artificial neurons) arc used as components in larger systems that
combine both adaptive and non-adaptive elements. While the more general approach of
such adaptive systems is more suitable for real-world problem solving, it has far less to do
with the traditional artificial intelligence connectionist models. What they do however have
in common is the principle of non-linear, distributed, parallel and local processing and

adaptation.
Application of Neural Networks

The utility of artificial neural network models lies in the fact that they can be used
to infer a function from observations. This is particularly useful in applications where the
complexity of the data or task makes the design of such a function by hand impractical.
The tasks to which artificial neural networks are applied tend to fall within the following

broad categories:

« Function approximation, or regression analysis, including time series prediction
and modeling.

« Classification, including pattern and sequence recognition, novelty detection and
sequential decision making.

« Data processing, including filtering, clustering, blind source separation and

compression.

Application areas include system identification and control (vehicle control, process
control), game-playing and decision making (backgammon, chess, racing), pattern
recognition (radar systems, face identification, object recognition and more), sequence

recognition (gesture, speech, handwritten text recognition), medical diagnosis, financial
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applications, data mining (or knowledge discovery in databases, "KDD"), visualization and

e-mail spam filtering [Neural Computing and Applications, Springer-Verlag].
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Objective:

With the explosion of protein sequences entering info databanks, it is highly
desirable to explore the feasibility of selectively classifying newly found enzyme
sequences into their respective enzyme classes by means of an automated method. This is
indeed important because knowing which family or subfamily an enzyme belongs to, may
help deduce its catalytic mechanism and specificity, giving clues to the relevant biological
function. Sequence similarity metrics are a useful approach to provide functional
annotation, but its use is sometimes limited, prompting the development and use of,
machine learning methods (MLMs). MLMs also have a certain degree of flexibility
regarding data inputs, allowing them to expand progressively to meet the requirements of

rapidly accumulating mountain of data generated from genomics research.

Hence, in this study an attempt has been taken to develop an automated tool using machine

learning technique for annotation of protein sequence with following objectives.

1. To extract sequence derived features and selection of important features from

protein sequence to be used for prediction and classification of enzymes.

2. To develop and optimized the artificial neural network for binary prediction of

enzymes/non-enzymes using sequence derived features and PSSM matrix.

3. To develop a second layer of neural network for classifying the predicted enzymes

into their corresponding classes; out of six major classes.

4. To validate the develop ncural network model for predicting and classification of

enzymes in some organisms.

5. To develop an automated tool for prediction and classification of enzymes from the

protein sequence and to upload in the university web server for public uses.
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Chapter 2

EnzymePredl: A tool for binary prediction of enzymes/non-¢nzymes

from sequence derived features and PSSM matrix using ANN

(The developed tool is uploaded in the university web server and the tool is communicated

for publication in Journal of Computational Biology, Wiley Publisher.)
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ABSTRACT

The problem of predicting the enzymes and non-enzymes from the protein
sequence information is still an open problem in bicinformatics. It is further becoming
more important as the number of sequenced information grows exponentially over time.
Sequence similarity metrics are a useful approach to provide functional annotation, but its
use is sometimes limited, prompting the development and use of machine learning
methods. We describe a novel approach for predicting the enzymes and non-enzymes from
its amino-acid sequence using artificial neural network (ANN). The ANN used in this
study is a feed-forward neural network with a standard back-propagation training'
algorithm. Using 61 sequence derived features alone we have been able to achieve 79 %
correct prediction of proteins into enzymes/non-enzymes (in the set of 660 proteins). For
the complete set of 61 parameters using 5-fold cross-validated classification, ANN model
reveal a superior model (accuracy = 78.79 + 6.86 %, Qpea = 74.734 = 17.08 %, sensitivity
= 84.48 + 6.73 %, specificity - 77.13 £ 13.39 %). The second module of ANN is based on
PSSM matrix. Using the same 5-fold cross-validation set, this ANN model predicts
enzymes/non-enzymes with more accui‘acy (accuracy = 80.37 £ 6.59 %, Qprea = 67.460 %
12.41 %, sensitivity = 0.9070 + 3.37 %, specificity = 74.66 + 7.17 %). The elaborated
ANN model based on the Artificial Neural Networks approach has been extensively
validated and has confidently predicted enzymes/non-enzymes from the protein sequence

to a number of annotated protein sequences from organisms.

Key words: Enzymes, non-enzymes, neural network, sequence derived features, PSSM..
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1. INTRODUCTION

Tt is generally accepted that protein structure is determined by its amino acid
sequence (Anfinsen et al., 1973) and that the knowledge of protein structures plays an
important role in understanding their functions. To understand the rules relating amino acid
sequence to three-dimensional protein structure is one of the major goals of contemporary
molecular biology. A priori knowledge of protein as enzymes and non-enzymes has

become quite useful from both an experimental and theoretical point of view.

One of the fundamental problems in bioinformatics is the prediction and
classification of enzymes given only their primary sequence. Eisenberg et al. (2000)
assessed some of the problems that researchers will face in the post-genome era. The
number of proteins that are being made available to public and private databases is
growing exponentially, and new methods must be found to understand and classify that
information. The enormous task of function determination for every entry in GenBank has
prompted the development of more sophisticated methods for protein automatic
classification (Wu et al., 1995; DesJardins 1997; King et al., 2004; Pasquier et al., 2001;
Cai et al., 2003). A computational method allowing for the automatic determination of
protein function from its sequence alone is one of the prevailing problems in
bioinformatics (Bork and Kroonin, 1998). Determination of three-dimensional structure is
the traditional approach to functional classification of proteins that cannot be assigned a
role based on homology to known proteins. This is a very time-consuming process, and the
need for a faster method of classification is obvious (Baker et al., 2003). As structure
determination is still another problem for itself, one of the most common tool for
prediction of protein function has been usually to employ sequence alignment methods as
PSI-BLAST (Altshul et al., 1997). Yet, Tian and Skolnick (2003) demonstrated that the E-
value resulting from PSI-BLAST is weakly correlated to the enzyme function. Even for
very low E-values (below e-100) the average conservation rate of the 4 digits of the EC
claé.siﬁcation is only 68 %. Furthermore these authors argue that to fully transfer the 4
digits of the EC number, to reach 90% accuracy, above 60 % sequence identity is required.
This cautions the use of PSI-BLAST results for functional annotation. Other methods
based on homology detection thorough motifs and conserved domains have been used with

some success (Nagl, 2003), yet in many cases they have limited applicability. Pellegrini
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(1999) provides a good overview of the most used techniques for determination of protein

function.

Several machine-learning methodologies have provided good results without
alignments. DesJardins et al. (1997) tested 3 machine-learning techniques (C4.5, instance
based learning and discretized Naive Bayes) to predict the first 2 levels of enzyme
classification, using only sequence based data or information derived directly from it.
Some of the results reached proved to be on par with sequence alignments. King et al.
(2000) used inductive logic programming clustering and rule learning for functional
classification of ORYs in M. tuberculosis and E. coli genomes. Dobson and Doig (2003)’
addressed the topic of distinguishing enzyme structures from non-enzymes without using
alignments. These authors used support vector machines tested over 36 protein features
that included structural information and ligands. Using the same algorithm, yet focusing on
enzyme classification, Cai et al. (2004) showed that it is possible to get good results even

for distant enzymes and discriminating homologous enzymes of different functions.

Several authors tested neural networks for the same end (Wu et al., 1995).

It.is reported that structural classes of proteins correlate strongly with amino acid
composition marked the onset of algorithm developments aimed at predicting the structural
class of a protein from its amino acid composition alone (Nishikawa & Ooi, 1982;
Nishikawa et al., 1983a; 1983b and Nakashima et al., 1986). There have been a number of
algorithms proposed, such as the least Hamming distance (Chou et al., 1989), the least
Euclidian distance (Nakashima et al., 1986), the discriminate analysis (Klein 1986), the
vector decomposition (Chou and Zhang, 1995), the component-coupled algorithm (Chou et
al., 1998), and fuzzy structural vectors (Boberg et al., 1995). In general, due to the different
datasets used in different studies, the evaluation for existing algorithms is still
controversial. To improve structure prediction significantly, more information is required.
In addition to amino acid composition, it might be expected that taking the sequence order
along the primary structure of a protein into account would result in the improvement of

predictive accuracy (Bu et al., 1999).

Hence, in this study we have develop two different neural networks which extract
valuable information from protein sequence only for prediction into enzymes/non-
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enzymes. The first network used sequence derived features derived from PEPSTAT
(EMBOSS suite) and the second network used PSSM profile obtained from PSI-BLAST,
which would be useful for the systematic analysis of small or medium size protein
sequences. Results are discussed, assessing the benefits of using this methodology in
binary prediction of enzymes / non-enzymes. The preliminary results suggest that sequence

derived feature can be used as a fast and effective classification methodology for proteins.

2. PREDICTION MODEL
2.1. Training data

To discriminate between the enzyme and non-enzymes, a data set of 660 proteins,’
consisting of 330 non redundant enzymes and the same number of non redundant non-
enzymes, were used for training and testing. The enzyme data set used in this study is

obtained from the BRENDA database (http://www.brenda.uni-koeln.de) (Schomburg et al.,

2004). This database is a comprehensive collection of enzyme and metabolic information,
based on primary literature. It includes biochemical and molecular information on
classification and nomenclature, they are more objective and reliable. The enzyme datasets
used in this study consists of almost equal number of enzyme sequences for each of six
major classes (56 classl, 56 class2, 56 class3, 56 class4, 56 class5 and 56 class6). The
pairwise sequence identities in the datasets are less than 54 % for eﬁzyme class and 45 %
for non-enzyme class. Sequences of all the enzymes along with their name and function are

included in the supplementary material.
2.2. Sequence derived parameters calculation and selection
To build a binary ANN model enabling effective prediction of enzymes/non-

enzymes we initially calculated 61 parameters (Table 2.1) from the protein sequence alone

using PEPSTAT (EMBOSS suite) fip://emboss.open-bio.org/pub/EMBOSS (Rice et al.,

2000) for all 660 protein sequences. The average values of these 61 parameters
independently calculated for enzymes and non- enzymes have been plotted onto Figure 2.a.
It showed clear distinction between enzymes and non-enzymes based on 61 parameters.

The normalized values have been then used to generate ANN models for binary prediction.
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2.3. Fivefold cross-validation

A prediction method is often developed by cross-validation or jack-knife method
(Chou and Zhang, 1995). Because of the size of the dataset, the jack-knife method
(individual testing of each enzyme in the data set) was not feasible. So a more limited
cross-validation technique has been used, in which the dataset is randomly divided into
five subsets, each containing equal number of enzyme sequences. Each set is a balanced set
that consist of 50 percent of enzymes and 50 percent non-enzymes. The data set has been
divided into training and testing set. The training set consists of five subsets. The network
is validated for minimum error on testing set to calculate the performance measure for each
fold of validation. This has been done five times to test for each subset. The final

prediction results have been averaged over five testing sets.

2.4. ANN model for prediction of enzyme/non-engyme using sequence derived features

Stuttgart Neural Network Simulator package (SNNS version 4.2) (Zell and
Mamier, 1997) was used to implement the ANN model. In this study we have used the
standard back-propagation ANN configuration consisting of 61 inputs and 1 output node in
order to discriminate between enzymes/non-enzymes from the training sets (Figure 2b).
For each sequence in the training and testing sets, we have transformed 61 network input
parameters into the normalized values varying from 0 to 1. Similarly, the output
parameters from the ANN were normalized to [0:1] range. The number of nodes in the
hidden layer was varied from O to 6 in order to find the optimal network that allows most
accurate separation of enzymes/non-enzymes in the training sets (Table 3.2). During the
leaming phase, a value of 1 was assigned for the enzyme sequence and O for non-enzyme.
For each configuration of the ANN (with 0, 2, 4, and 6 hidden nodes respectively) 100
independent training runs were performed to evaluate the average predictive power of the
network. The corresponding counts of the false/true positive and negative predictions were
estimated using 0.1 and 0.9 cut-off values for non-enzymes and enzymes respectively.
Thus, an enzyme from the testing set was considered correctly predicted by the ANN only

when its output value ranged from 0.9 to 1.0. For each non-enzyme of the testing set the

correct prediction was assumed if the corresponding ANN output lies between 0 and 0.1. |
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Thus, all network output values ranging from 0.2 to 0.9 have been ultimately considered as

incorrect predictions (rather than undetermined or non-defined).

2.5. ANN model for prediction of enzyme/non-enzyme using PSSM matrix

In this module of the developed tool, with multiple alignment profile input, the
position-specific scoring matrix generated by PSI-BLAST has been used as input to the
neural network. The matrix has 20 x M real-number elements, where M is the length of the
sliding window (M = 7). Each element represents the likelihood of that particular residue
substitution at that position. Thus 20 real numbers rather than binary bits encode each
residue. A standard back-propagation ANN configuration consisting of 140 inputs and 1
output node was used in order to discriminate between enzymes/non-enzymes from the
training sets (Figure 2c). The number of nodes in the hidden layer was varied from 0 to 6
in order to find the optimal network that allows most accurate separation of enzymes/non-
enzymes in the training sets (Table 2.2). The training and validation methods is similar as
mentioned above. The corresponding counts of the false/true positive and negative
predictions were estimated using 0.4 and 0.9 cut-off values for non-enzymes and enzymes
respectively. Thus, an enzyme from the testing set was considered correctly predicted by
the ANN only when its output value ranged from 0.9 to 1.0. For each non-enzyme of the
testing set the correct prediction was assumed if the corresponding ANN output lies

between 0.1 and 0.4.

2.6. Performance measures

The prediction results of ANN model developed in the study were evaluated using the
following statistical measures. |

1. Accuracy of the methods: The accuracy of prediction for neural network models were
calculated as follows:

Qicc = P—;Ai, where T = (P+N+0O+U)

Where P and N refer to correctly predicted enzymes and non-enzymes, and O and U refer
to over and under predictions, respectively.
2 The Matthews correlation coefficient (MCC) is defined as:

(PxN )- (oxU)

MCC =
S0P+ O)x (W +U)x (¥ +0)
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3. Sensitivity (Qsens) and specificity (Qgpec) of the prediction methods are defined as:

P
Qsens - P+U
N
Qi = N+O
4. Qpred (Probability of correct prediction) and Qqps (Percentage over coverage) are defined
as:
P
= x 100
pred P + O
P
= x 100
Qobs P+ U

The receiver operating characteristic (ROC) curve is also used to evaluate the prediction

accuracy of our system using both sequence derived features and PSSM matrix.
3. RESULTS

3.1. Predictability of enzymes with sequence derived features

The ANN model (61-4-1) is trained with the sequence derived features (61
parameters) calculated using PEPSTAT. When applying a fivefold cross-validation test
using five data sets, we found that the network reached an overall accuracy of 78.79 + 6.86
%. The prediction resulis are presented in Table 2.3. The net has achieved an MCC of
0.596 + 0.135. The other performance measures are: Qpred = 67.466 £ 17.084 %,
sensitivity = 90.70 + 6.73 % and specificity = 74.66 + 13.39 %. The value of the learning
parameter was set to 0.1. Training was performed for 100 epochs for both the networks,
after which the learning has been terminated when the error reached a stable value;
differences between errors in subsequent steps become sufficiently small. Table 2.4 reveals
the predictability of enzymes and non-enzymes of the network. Out of 67 in each cross
validation set 35-67 enzymes were correctly predicted as enzymes. However, out of 66 in
non-enzyme class; 52-64 were correctly predicted as non-enzymes. Prediction performance

measures were averaged over five sets. Figure 3d features averaged frequencies of the
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output values for the five testing sets used in the study. As it can readily be seen from the
graph, the vast majority of the predictions have been contained within (0.0 — 0.1) for non-
enzymes and (0.9 — 1.0) for enzymes in case of sequence derived module. This illustrates
that 0.1 and 0.9 cut-offs values provide very adequate separation of two bioactive classes
using ANN. All network output values ranging from 0.1 to 0.9 have been ultimately

considered as incorrect predictions (rather than undetermined or non-defined).

3.2. Predictability of enzymes with multiple alignment

To further enhance the prediction performance, the multiple sequence alignment is
implemented for prediction. The network 7(20)-4-1 is trained on PSI-BLAST generated
position-specific matrices (PSSM). The comparative results of network with sequence
derived features are shown in Table 2.3. 1t is clear from the results that the performance is
improved slightly when PSI-BLAST-generated scoring matrices arc used as input,
compared with single sequence. The prediction accuracy is improved from 78.79 % to
80.37%. There is improvement in MCC from 0.5959 with sequence derived features to
0.6299 with PSI-BLAST. However, most dramatic improvement is achieved in other
parameters like Qpred, sensitivity and specificity as evident from Table 2.3. The predicted
value range was 0.2-0.4 for non-enzyme and 0.9-1.0 for enzymes. All network output
values ranging from 0.4 to 0.9 have been ultimately considered as incorrect predictions
(rather than undetermined or non-defined) (Figure 3e). It is evident that using PSSM
profile the prediction accuracy of enzymes/non-enzymes is better than the previous
module. Out of 67 in each cross validation set 35-67 enzymes were correctly predicted as
enzymes. However, out of 66 in non-enzyme class; 52-64 were correctly predicted as non-

CNZYMeEs.

3.3. Evaluation of prediction accuracy

From a practical point of view the most important aspect of a prediction method is
its ability to make correct predictions. As prediction methods are never perfect, one always
faces the dilemma of choosing between making few false-positive predictions and having a
high sensitivity, that is, correctly identifying as many positive examples as possible. This
tradeoff can be visualized as what is known as the receiver output characteristic (ROC)
curve, in which the sensitivity is plotted as a function of the 1-specificity by varying the
score threshold used for making positive predictions. Figure 3.f shows the ROC curves for
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the two predictors included in our method. Performance of both networks has been
evaluated by calculating the area under the ROC curve. The area under the curve is 0.90
for ANN-PSSM; revealing a better.discrimination of network system than that of network

which uses sequence derived features (area under curve is 0.78).

3.4. An application of the model

The reliability of developed model of binary prediction of enzymes and non-
enzymes was tested on the complete annotated protein sequences of three organisms
downloaded form GenBank (Benson et al. 2002). The predicted result is shown in Table
2.5. Prediction on new sequences is done by first running the PEPSTAT (EMBOSS)
program to obtain the sequence-derived features, which are subsequently used as input for
the prediction of enzymes/non-enzymes. Likewise, in the second module the new
sequences are BLAST iteratively using PSIBLAST to obtain the PSSM matrix, which are

subsequently used for the prediction.

3.5. Availability
The program is implemented on the Web server EnzymePred, available at

http://www juit.ac.in/enzyme/tool.html by using CGL/Perl script. The SNNS-generated

network is converted into C program and is used as an interface. Users can enter primary
amino acid sequence in fasta or free format. The protein sequence can be predicted as

enzymnie or non-enzyme.

4, DISCUSSION

The two different ANN models developed in this study are based on sequence
derived features and PSSM matrix method. Enzyme/non-enzyme prediction accuracy has
also been assessed and it has been found that preduiction of enzyme/non-enzyme using
PSSM matrix is more accurate for the same cross-valdated sets used for both the models.
This is because it uses improved searching tool for multiple sequence alignment such as
PSI-BLAST. PSI-BLAST searches the homologs against a larger database such as a
nonredundant database. Typically, more divergent profiles yield better predictions. The
developed ANN based on PSSM matrix uses multiple alignement sequence information in

the form of PSI-BLAST-generated scoring matrices to improve the accuracy of prediction
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of enzymes/non-enzymes. From this study, it is clear that a combination of neural network
and evolutionary information contained in multiple sequence alignment has improved the
performance of prediction method. There could be two possible reasons for this: (1) use of
large and recent data set for learning and (2) use of PSI-BLAST profiles, which finds more

distantly related homologs than pair-wise search methods against a nonredundant database.

The results demonstrate that the developed ANN-based binary prediction of
enzymes/non-enzymes is adequate and can be considered an effective tool for ‘in silico’
screening. The results also demonstrate that the sequence derived parameters as well as
PSSM matrix readily accessible from the protein sequences only, can produce a variety of
useful information to be used ‘in silico’; clearly demonstrates an adequacy and good
predictive power of the developed ANN model. There is strong evidence, that the
introduced sequence features do adequately reflect the structural properties of proteins. The
structure of a protein is an important determinant for the detailed molecular function of
proteins, and would consequently also be useful for prediction of enzymes and non-
enzymes. Based on the analysis of limited sequence features from protein sequences,
differences in the parameters between enzymes and nonénzymes have previously been
shown to exist and used for prediction of enzymes/non-enzymes in archaeal (Jensen et al.,
2002). This agrees well with our result that sequence derived features can be used for
predicting enzymes. This observation is not surprising considering that the calculated
parameters should cover a very broad range of proprieties of bound atoms and molecules
related to their size, polarizability, electronegativity, compactness, mutual inductive and
steric influence and distribution of electronic density, etc. As it can be seen that the
average value for both the classes were clearly separated on the graph and, hence, the
selected 61 parameters should allow building an effective ANN model for binary

prediction (Fig. 2.a).

Considering that one of the most important implications for the “binary
prediction” model is its potential use for identification of novel enzymes from electronic
databases, we have calculated the parameters of the Positive Predictive Values (PPV) for
the networks while varying the number of hidden nodes. Taking into account the PPV
values for the networks with the varying number of the hidden nodes along with the
corresponding values of sensitivity, specificity and general accuracy we have selected
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neural network with four hidden nodes as the most efficient among the studied (Table 2.3).
The ANN with 61 input-, 4 hidden- and 1 output nodes has allowed the recognition of 79
% of enzymes and 79 % of non-enzymes, on average (Table 2.4). For the second module
(PSSM matrix) the ANN with 140 input-, 4 hidden- and 1 output nodes has allowed the
recognition of 80 % of enzymes and 80 % of non-enzymes, on average (Table 4). The
output from this 61-4-1 and 140-4-1 network has also demonstrated very good separation
on positive (enzymes) and negative (non-enzymes) predictions. Further, the reliability of
developed ANN model for prediction of enzyme and non-enzyme were tested on the
complete annotated protein sequences of three organisms downloaded form GenBank

(Benson et al., 2002). The predicted results was shown in Table 2.5.

Presumably, accuracy of the approach operating by the sequence derived features
can be improved even further by expanding the parameters or by applying more powerful
classification techniques such as Support Vector Machines or Bayesian Neural Networks.
Use of merely statistical techniques in conjunction with the sequence parameters would
also be beneficial, as they will allow interpreting individual parameter contributions into

“enzymes/non-enzymes-likeness”.

The results of the present work demonstrate that both the sequence derived features
and PSSM matrix with ANN appear to be a very fast protein classification mechanism
providing good results, comparable to some of the current efforts in the literature. The
developed ANN-based model for enzymes/non-enzymes prediction can be used as a
powerful tool for filtering through the collections of genome sequences to discover novel

enzymes.
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Table 2.1. 61 ‘Pepstat(EMBOSS)’ primary sequence descriptors used in the Study.
Sequence Enzyme Non-Enzyme Sequence Enzyme Non-Enzyme
qsired Max Min Max Min derived Max Min Max Min
parameters parameters
N&’;f;ﬁia" 0.207588 0.00182 0.20947 0.00419 N Mole%  0.7186  0.1200 09091  0.2300
Average
o 0.11811  0.09159 0.1209 0.09186 N DayhoffStat  0.1671  0.0987 02114  0.1078
15‘}’,‘2;":“0 0.104656 0.0427 0.1288 003857 P Mole% 09572 03450 3.6556 05680 |
Bxtinction 459030 0019 033257 0027 P DayhoffStat 0.1841 0.0089 0703 002908 ||
Coefticient ‘
Extinction
Coefficient 0275 0.024 0376 0036  QMole% 0585 00871 15106 0.1098 |
(1 mg/ml) '
Improablity /
Proability 0928 0494 0979 041  Q DayhoffStat  0.15  0.0098 03873  0.0129
inclusion bodies
A Mole%  0.18828 0.02881 021186  0.03 R_Mole%  1.0682 0.0088 2.1256 0.0187
A_DayhoffStat  0.2189  0.0335 02464 0.045 R DayhoffStat 0218 002389 0434  0.0452
B Mole%  0.1989  0.0017 0.0902 0.0011 S Mole%  0.9035 0.1796 22034 0.0012
B_DayhoffStat  0.0292  0.001  0.0109 0.0009 S DayhoffStat 0.1291  0.0257 03148  0.0389
C_Mole % 1 0.00659 2.0339  0.0089 T Mole%  1.0497 03091 14352 0.1203 «{l{ |||
C DayhoffStat ~ 0.3448  0.02154 07013 00154 T DayhoffStat 0.1721  0.0507 0.2353  0.0092 g#!
D Mole% 08147 00154 1206 0.0015  V Mole % 0.15  0.04484 0.17647 0.0289 gL\ |
D_DayhoffStat  0.1481  0.0152 02193  0.0652 V DayhoffStat 0.2273 00679 02674  0.0546
E_Mole % 1.018  0.0147 1.8615 0.0254 : ;
E DayhoffStat  0.1697  0.0215 03102 00145  "-Mole% 04598 000245 04839  0.0254 "
F Mole % 0.9195  0.1277  1.0044 0.0596 W DayhoffStat 0.3537  0.0021 03722  0.0215
F_DayhoffStat  0.2554  0.0355 0.279  0.0101 4
G_Mole % 025 000769 036923 000503 ~-Mole% 04562 0.025 03262 0.0254
G_DayhoffStat 02976 0.0092 04396  0.006 X DayhoffStat 0.5263 00562 03215  0.025
H Mole %  0.6513  0.00894 1.0271  0.021 .
H_DayhoffStat 03257  0.0456 05136 00598 ' -Mole% 06135 00159 24615 00521
I Mole % 1 0.2077 10377  0.0089 Y DayhoffStat 0.1804 0.0154 0724  0.00987
I DayhoffStat 02222 0.0462 02306  0.0564 i
K Molo % 018 00591 20455 o0olls ZMole% 02222 00089 03262 0.0154
K_DayhoffStat ~ 0.1542  0.00213  0.3099  0.0002 7 DayhoffStat ~ 0.894  0.1256  0.265 0.03652 ||| |
L_Mole%  0.19444 0.03139 0.19101 0.0321  Tiny Mole % 0.6 0.15569 0.6389 0.16239 |||/
L_DayhoffStat ~ 0.2628  0.0424 02581  0.0021 SmallMole% 075 04012 0.77119 032479 || ||
M Mole% 05169 00456 1.2346  0.0268 A"Phaj/‘c Mole 31481 0.14808 0.32003 0.02542 I
0 1
M_DayhoffStat 03041  0.0154 07262 00158 romateMole oo o1 004918 029231 0.08541
Charged Mole 5 33533 005 0.46986 001389 NI\‘/)I‘:)‘[‘;?,]E‘" 085 045521 086154 031818 ||
Basic Mole % 0.17365  0.05  0.31624 0.00926  Polar Mole %  0.54479  0.15  0.68182 0.13846 |||
~Acidic Mole % 0.16168  0.60897 0.25 0.0154 ) |
* The parameters are scaled down by appropriate scaling values.
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Figure 2.a. Averaged values of 61 sequence derived parameters calculated independently

within studied sets of enzymes and non-enzymes.

40




(b) ANN model based on sequence derived features.
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Table 2.2. Parameters of specificity, sensitivity, accuracy and positive predictive values for

prediction of enzymes and non-enzymes from the protein sequence by the artificial neural

networks with the varying number of hidden nodes. The cut-off values 0.1 and 0.9 for

sequence derived features and 0.4 and 0.9 for PSSM matrix have been used for negative and

positive predictions respectively.

Hidden Accuracy o e
—_— Specificity Sensitivity MCC Q(Pred)

(a) using sequence derived features

0 0.5214 0.5244 0.5245 0.05 37.29

2 0.5589 0.6214 0.5412 0.1177 87.08

4 0.7879 0.7713 0.8448 0.5959 74.734

6 0.5713 0.6648 0.5501 0.1613 84.78
(b) using PSSM matrix

0 0.6313 0.5910 0.7361 0.2932 40.95

2 0.6825 0.5730 0.8438 0.4169 57.30

4 0.8037 0.7466 0.9070 0.6299 67.466

6 0.6920 0.6606 0.7346 0.3907 01.46




Table 2.3. Results of enzymes / non-enzymes prediction methods, using five fold cross validation.

5-fold cross  Accuracy
Specificity Sensitivity MCC Q(Pred)
validation
(a) using sequence derived features
€1 0.8947 1.00 0.8271 0.8072 100
C2 0.7969 0.7671 0.8333 0.5979 74.62
C3 0.7142 0.6794 0.7636 - 0.4364 76.68
C4 0.7443 0.6606 0.9495 0.5490 52.28
S 0.7894 0.7934 0.8545 0.5891 70.14
Mean 0.7879 £ 0.0686 0.7713 +0.1339 0.8448 + 0.0673 0.5959 + 0.1345  74.734 + 17.084

(b) using PSSM matrix

1
G2
3
C4
Cs

Mean

0.8230
0.8717
0.8521
0.7567
0.7153

0.8037 + 0.0659 0.7466 + 0.0717 0.9070 + 0.0337 0.6299 +0.1164 67.466 + 12.411

0.7641
0.8148
0.8072
0.6988
0.6485

0.9158
0.9538

0.9123 .

0.8624
0.8911

0.6628
0.7560
0.7118
0.5368
0.4821

Tlld
78.13
77.91
61.09
49.05
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Table 2.4. Output values from the neural network for the fivefold cross validation set’s of

enzymes/non-enzymnies..

Testing 5 fold  Number of enzymes

cross validation correctly predicted

Number of non-

enzymes correctly

Prediction range Prediction range

( enzymes)

{ non-enzymes)

(out of 67) predicted
{out of 66)

(a) Using sequence features
C1 67 52 0.9626-1.00 0.00-0.5340
C2 50 56 0.9579-1.00 0.00-0.6758
C3 42 53 0.9257-1.00 0.00-0.8786
C4 35 04 0.9692-1.00 0.00-0.8580
Cs 47 58 0.9048-1.00 0.00-0.8236
(b) Using PSSM matrix as input
C1 67 52 0.9237-0.9559  0.2180-0.2205
C2 50 56 0.9357-0.9443  0.3921-0.60006
C3 42 53 0.9061-0.9156  0.1626-0.7521
C4 35 64 0.9255-0.9272  0.3239-0.5133
CS 47 58 0.9123-0.9343  0.3005-0.4183
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Table 2.5. Tha data set size and breakdown on organisms.

Organism Annoted protein  Assigned as enzymes Assigned as enzymes
sequences (using sequence  (using PSSM matrix)

derived features)

Mycobacterium tuberculosis 4189 1659 1667
Mycobacterium leapre 1605 723 710
Methanococcus jannaschii 1770 805 798
Arabidopsis thaliana 66006 2885 2837

(chromosome 1)
6072 6012

Total 14170
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Chapter 3

EnzymePred2: A Tool for prediction and classification of enzymes into

six major classes using ANN from sequence derived features.

(The tool developed has been uploaded in the university web server and it is

communicated for publication in In Silico Bilogy)




Abstract

Classes of newly foundr enzyme sequences are usually determined either by
biochemical analysis of eukaryotic and prokaryotic genomes or by microarray chips, These
experimental methods are both time-consuming and costly. With the explosion of protein
sequences entering into databanks, it is highly desirable to explore the feasibility of
selectively classifying newly found enzyme sequences into their respective enzyme classes
by means of an automated method. This is indeed important because knowing which
family or subfamily an enzyme belongs to may help deduce its catalytic mechanism and
specificity, giving clues to the relevant biological function. In this study, we have
developed a prediction method for detection and classification of enzymes from sequence

alone (available at hilp://www juit.ac.in‘enzyme/tool2.html). The method does not make

use of sequence similarity; rather, it relies on predicted protein features and simple
physical/chemical properties. The tool has been validated in five different organisms and is

proved to be very useful in prediction of novel enzymes with good accuracy.

Keywords: Function prediction; enzyme classification; sequence derived features.

Introduction

A large number of data are constantly being generated thanks to several genome-
sequencing projects throughout the world. However, the gap between the growth rate of
biological sequences and the capability to characterize experimentally the roles and
functions associated with these new sequences is constantly increasing [1]. This results in
an accumulation of raw data that can lead to an incrcasc in our biological knowledge only
it computational characterization tools are developed. Enzymes are a subclass of protein
that arc specialized in catalytic activity (Lehmnger et al. 1998a). They are large and
complex molecules, present in all living bemes. and play an essential role n biochemical
reactions. They control several vital tunctions. imcluding many metabolic processes that

comert nutiients into eneray and inte other products necessary 1o cell functioning. We
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focus here on the annotation of novel protein as enzymes/non-enzymes and if it is an

enzyme its classification into six measure classes.

A generic approach to this problem consists of transferring the annotation from
sequences of known enzymes to uncharacterized proteins [2]. The transfer mechanism
might be subdivided in two steps: (i) to establish the list of known enzymes with
significant sequence similarity to the uncharacterized sequence; (ii) to select the known
sequence(s) from which the annotation is transferred [3]. The first step is usually
performed with sequence alignment tools such as FASTA [4] or BLAST [5]. When
sensitivity is critical, alternative tools such as PSI-BLAST [6] and hidden Markov models
[7] can be used. Finding homologous proteins can also be accomplished using alignment
independent sequence comparison tools, which have been developed to overcome the
limitation arising from the assumption of contiguity between homologous segments [8,9].
Then, the challenge is the selection of true homologue:s from the list of similar sequences.
Most of the above tools provide a score measuring the degree of similarity between the
sequences compared. A simple criterion to single out a homologue is to choose the most
similar sequence i.e. the highest scoring sequence. More elaborate methods have been

designed to enhance the precision and reliability of the annotation process. These rely on

the combination of the annotations of more than one homologue [10-13] .

However, annotating and assigning as enzymes/non-enzymes and their further
classification into six major classes from their primary sequences requires highly
automated computational methods linking experimental data. These methods must be able
to discriminate the distinct catalytic function encapsulated in the protein’s structure or in

its primary sequences. To this end, the machine learning methods (MLMs) scem to be best
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suited for the task. Compared to the similarity-based methods such as BLAST or FASTA
(Altschul et al., 1990) and phylogeny-based method such as ClustalW, MLMs are widely
applicable, and now frequently used in annotation of biological sequence analysis with
relatively good accuracy. MLMs also have a certain degree of flexibility regarding data
inputs, allowing them to expand progressively to meet the requirements of rapidly
accumulating mountain of data generated from genomics research. The most often used
methods of MLMs are support vector machine (SVM), neural network (NN), hidden
markov model (HMM), decision tree (DT) and so on. Among these, NNs are particularly
attractive due to its ability for pattern recognition (Raghava 2004), to handle large or small
datasets, large input spaces (Narayanan et al. 2002), and its greater accuracy compared to
simple BLAST or HMM methods (Bhasin and Raghava, 2004a; 2004b). Currently, there is
no reliable systematic way for recognizing and classifying enzymes. Jensen et al. (2006)
reported a method which classifies the enzymes into six major classes according to their
sequence derived features, that is the co translational and posttranslational modifications,
secondary structure, and simple physical/chemical properties. The limitation of this
method is that it is confined only to archeal and they have developed six neural networks,
each one for each of the six major classes of enzymes. Other methods make use of the

structural features to classify enzymes into six major classes (Chou and Elrod 2003).

The natural encoding of the primary structure is a string of letters. However, this
encoding is not appropriate for NNs, since it demands numerical (preferably, normalized)
inputs. Therefore, proteins have to be encoded in a more suitable way. Proteins-including
enzymes, in general, are composed by a variable number of amino acids, from tens to

thousands. The encoding process proposed here allows differently sized enzymes (o be
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processed by a predefined, fixed-size NN based on fixed number of sequence derived
features from the protein sequence. The method does not make use of sequence similarity.
Strategically, we have develop a neural network, two-layer, fully automated
computational method capable of recognizing enzymes first, and then classifying them into
their subfamilies based on their protein sequences. A user-friendly program EnzymePred2

(http://www.juit.ac.in/enzyme/tool2.html) has been developed on the basis of this study to

assist readers to distinguish enzymes and to annotate their subfamilies.

MATERIALS AND METHODS
Dataset for prediction of enzymes/non-enzymes

The sequence data on positi\}e examples of enzymes used were obtained from the
BRENDA database (Schomburg et al., 2004). containing 360 protein sequences assigned
to six classes according to their structural features. A non-redundant treatment was applied
to eliminate the sequences which share a high degree of similarity (>90%) with others in
order to avoid overtraining. The treatment was carried out using the program

BLASTCLUST  (http://www.ncbi.nlm.nih.gov/BLAST/), which used the BLAST

algorithm to systematically cluster protein sequences on the basis of pair-wise matches.
The default values were used for all BLAST parameters: matrix BLOSUMG62, gap opening
cost of 11, gap extension cost of |, E-value threshold of 1. These sequences were used
as positive e'xamples for prediction as enzymes. The sequences data on negative examples
were obtammed from the SWISSPROT database (hitp:/sexpasy.orgssprol’). Sequences
related to enzymes were removed from the original dataset. A non-redundant treatment
was applied (same as for positive datasets) such that no sequence had similarity higher
than 25% to any others. Thus, 360 non-enzyme sequences were optimized as negative

examples.

N
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Dataset for classification of enzymes into six major classes

The above mentioned 360 sequences of enzymes were then grouped into six major classes
Class 1 (Oxidoreductase) consist of 60 sequences, Class Il (Transferase) consist of 60
sequences, Class 111 (Hydrolase) having 60 sequences, class TV (Lyase) with 60 sequences,
class V (Transferase) consist of 60 sequences and class VI(Ligase) consist of 060
sequences. They were used for construction of neural networks training and validating the

model for classification of novel enzymes into six classes.

Neural network architecture

The implementation of ANN was realized using the software package SNNS
version 4.2 from Stuttgart University (Zell and Mamier 1997). We have used two feed-
forward back-propagation neural networks with a single hidden layer. First layer of neural
network is used for prediction of enzy1hes/non—enzymes from the protein sequence,
whereas, the second layer is used for classifying the predicted enzyme into out of six major
classes. The architecture of 1° neural network consisting of 61 inputs, 4 hidden nodes and
1 output node, whereas the 2™ peural network consisting of 61 inputs, 32 hidden nodes and
six output nodes (each node 1s specified for each class of enzyme) (Figure 3.a). For each
sequence in the training and testing sets, we have transformed 61 network input parameters
into the normalized values varying from 0 to 1. Similarly, the output parameters from the
ANN were in the range of 0 to 1. During the learning phase, a value of 1 was assigned for
the enzyme sequence and 0 for non-enzyme. For configuration of the ANN, 100
independent training runs were performed to evaluate the average predictive power of the
network. The corresponding counts of the false/true positive and negative predictions were
estimated using 0.1 and 0.9 cut-off values for non-enzymes and enzymes respeetively.

Thus. an ensvime from the testing set was considered correctly predicted by the ANN only
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when its output value ranged from 0.9 to 1.0. For each non-enzyme of the testing set the
correct prediction was assumed if the corresponding ANN output lies between 0 and 0.1.
Thus, all network output values ranging from 0.2 to 0.9 have been ultimately considered as

incorrect predictions (rather than undetermined or non-defined). For classifying the it

predicted enzymes into one |

I

. . |

Sequence derived parameters calculation !h ”
IT

To build a binary ANN model enabling effective prediction of enzymes/non- I

enzymes we initially calculated 61 parameters (Table 3.1 and 3.2) from the protein '1“
sequence alone using PEPSTAT (EMBOSS suite) fip://emboss.open- H.M |
bio.ore/pub/EMBOSS  (Rice et al., 2000) for all 660 protein sequences. The average Ml
values of these 61 parameters independently calculated for enzymes and non- enzymes 'M} -
have been plotted onto Figure 3.a. Similarly all the predicted 61 parameters for each class ‘j .

of enzyme independently is given in Table 3.1 and 3.2 & the average value of the

parameters is given in Figure 3.a. It showed clear distinction between enzymes and non-
enzymes based on 61 parameters. The normalized values have been then used to generate

Il
ANN models for binary prediction. 1]: il

The input to second filtering network is the same input values used for the first

layer and the predicted enzyme is classify into its particular class based on the maximum
i

value obtained from the defined out put node for each class. For example to classify the : “\

predicted enzyme into class 1 the predicted output value is 1, 0, 0, 0, 0, 0 and so on. l,




Fivefold cross-validation

A prediction method is often developed by cross-validation or jack-knife method
(Chou and Zhang, 1995). Because of the size of the dataset, the jack-knife method
(individual testing of each enzyme in the data set) was not feasible. So a more limited
cross-validation technique has been used, in which the dataset is randomly divided into
five subsets, each containing equal number of enzyme sequences. Each set 1s a balanced set
that consist of 50 percent of enzymes and 50 percent non-enzymes. The data set has been
divided into training and testing set. The training set consists of five subsets. The network
is validated for minimum error on testing set to calculate the performance measure for each
fold of validation. This has been done five times to test for each subset. The final

prediction results have been averaged over five testing sets.

Reliability index (RI)

RI is an assessment used to indicate the degree of confidence in the prediction to the user
when using machine-learning techniques (Reinhardt and Hubbard, 1998; Emanuelsson et
al., 2000). RI is determined according to the difference (A) between the highest and the
second highest value the SVMs gave in multi-class classification. The higher the R1 is, the

greater the probability that the prediction is accurate. In this study, RI is determined as

follows:
I HOZA- 00
RI=INT{A)y- 2| iffos= A2 0
| A= 2>
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RESULTS
Predictability of enzymes and enzyme classes

The ANN model develop in this study (61-4-1) is tfained with the sequence derived
features (61 parameters) calculated using PEPSTAT. When applying a fivefold cross-
validation test using five data sets, we found that the network reached an overall accuracy
of 78.79 + 6.86 %. The prediction results are presented in Table 3.3. The net has achieved
an MCC of 0.596 + 0.135. The other performance measures are: Qpred = 67.466 + 17.084
%, sensitivity = 90.70 + 6.73 % and specificity = 74.66 + 13.39 %. The value of the
learning parameter was set to 0.1. Training was performed for 100 epochs for both the
networké, after which the learning has been terminated when the error reached a stable
value; differences between errors in subsequent steps become sufficiently small. Table 3.4
revealed the predictability of enzymes and non-enzymes of the network. Out of 67
enzymes in each cross validation set 35-67 enzymes were correctly predicted as enzymes.
However, out of 66 in non-enzyme class; 52-64 were correctly predicted as non-enzymes.
Prediction performance measures were averaged over five sets. Figure 3.a features
averaged frequencies of the output values for the five testing sets used in the study. As it
can readily be seen from the.graph, the vast majority of the predictions has been contained
within (0.0 — 0.1) for non-enzymes and (0.9 — 1.0) for enzymes in case of sequence derived
module. This illustrates that 0.1 and 0.9 cut-offs values provide very adequate separation
of two bioactive classes using ANN. All network output values ranging from 0.1 to 0.9
have been ultimately considered as incorrect predictions (rather than undetermined or non-

defined).
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An application of the model

The reliability of developed model of binary prediction of enzymes and non-
enzymes and their classification into six major classes was tested on the complete
annotated protein sequences of three organisms downloaded form GenBank (Benson et al.
2002). The predicted results are shown 1n Table 3.7. Prediction on new sequences is done
by first running the PEPSTAT (EMBOSS) program to obtain the sequence-derived
features, which are subsequently used as input for the prediction of enzymes/non-enzymes
and the same values are again used for classification of the enzymes if it is predicted as

enzyme from first layer.

Availability
The program is implemented on the Web server EnzymePred, available at

hitp:/Awww uit.ac.in‘ecnzyme/tool2.html by using CGL/Perl script. The SNNS-generated

network is converted into C program and is used as an interface. Users can enter primary
amino acid sequence in fasta or free format. The protein sequence can be predicted as
enzyme or non-enzyme using first layer neural network and is further classify into its

specific class using second network.

4. DISCUSSION

The tool EnzymePred2 has been developed m this study using two layered neural
network based on sequence derived features. The results demonstrate that the developed
ANN-based model for binary prediction of enzymes/non-enzymes and classification of
enzymes inlo six major classes 1s adequate and can be considered an cffective tool for “in

silico” screening. The results also demonstrate that the sequence derived paramecters readily
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accessible from the protein sequences only, can produce a variety of useful information to
be used ‘in silico’; clearly demonstrates an adequacy and good predictive power of the
developed ANN model. There is strong evidence, that the introduced sequence features do
adequately reflect the structural properties of proteins. The structure of a protein is an
important determinant for the detailed molecular function of proteins, and would
consequently also be useful for prediction of enzymes/non-enzymes and for their
classification. Based on the analysis of limited sequence features from protein sequences,
differences in the parameters between enzymes and non-enzymes have previously been
shown to exist and used for prediction of enzymes/non-enzymes in archaeal (Jensen et al.,
2002). This agrees well with our result that sequence derived features can be used for
predicting enzymes. This observation is not surprising considering that the calculated
parameters should cover a very broad range of proprieties of bound atoms and molecules
related to their size, polarizabilit)l/, clectronegativity, compactness, mutual inductive and
steric influence and distribution of electronic density, etc. As it can be seen that the
average value for both the classes were clearly separated on the graph and, hence, the
selected 61 parameters should allow building an effective ANN model for binary
prediction (Fig.3.b). The average value of all the 61 sequence derived parameters used in
the study for all the six classes of enzymes clearly separated and could be suitable for

classification.

The ANN with 61 input-nodes, 4 hidden-nodes and 1 output nodes has allowed the
recognition of 79 % of enzymes and 79 % of non-enzymes, on average (Table 3.3) and has
also demonstrated very good separation on positive (enzymes) and negative (non-enzymes)
predictions. The second layer of neural network with 61 input-,32 hidden and 6 output

nodes able to correctly classify 67 % of the enzymes (Table 3.5) This result revealed a
y ) Y
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good prediction with accuracy of > 65 %. Further, the reliability of developed ANN model
for prediction of enzyme and non-enzyme and their further classification were tested on the
complete annotated protein sequences of three organisms downloaded form GenBank

{Benson et al., 2002). The predicted results was shown in Table 3.7.

Presumably, accuracy of the approach operating by the sequence derived features
can be improved even further by expanding the parameters or by applying more powerful
classification techniques such as Support Vector Machines or Bayesian Neural Networks.
Use of merely statistical techniques in conjunction with the sequence parameters would
also be beneficial, as they will allow interpreting individual parameter contributions into
“enzymes/non-enzymes-likeness”,

The results of the present work demonstrate that the sequence derived features with
ANN appear to be a very fast protein classification mechanism providing good results,
comparable to some of the current efforts in the literature. The developed ANN-based
model for enzymes/non-enzymes prediction and their classification into different classes
can be used as a powerful tool for filtering through the collections of genome sequences to

discover novel enzymes.
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Table 3.1 61 ‘Pepstat(EMBOSS)’ primary sequence descriptors used in the
Study for class 1,2 and 3

Class 1 Class 2 Class 3
Parameter Max Min Max Min Max Min il
Molecular i
Weight 0.207589 | 0.001823 | 0.176616 | 0.01511 | 0.207012 | 0.006066
Average Residue | 0.118111 | 0.091159 | 0.11967 | 0.100633 | 0.116209 | 0.103872 '!
[soelectric Point | 0.104656 |  0.0427 | 0.109987 | 0.045698 | 0.105404 | 0.040801 I!r
Extinction
Coefficient 0.29032 |  0.0162 | 0.18136 | 0.00128 | 0.22801 | 0.00256 |
Extinction J
Coefficient (1 1
mg/ml) 0275| 0.0165| 0.225 0.006 024| 0.014 i 1
Improablity / |' t ]
Proability ‘ A
inclusion bodies 0.928 0.494 0.881 0.497 0.838 0.5
A Mole % 0.18828 | 0.02881 | 0.24116 | 0.02712 | 0.18182 | 0.01887 I
A DayhoffStat 02189 | 0.0335| 02804 | 0.0315| 02114 | 0.0219 N
B Mole % 0.3125 | 0.0268 | 0.1642 | 0.0343 | 0.9195| 0.0335
B DayhoffStat 0165 | 00095 | 1.1321| 02642 02554 | 0.0268 ;
C Mole % 1] 0.0921| 03448 | 0.01254 | 0.3774| 0.0095 Wil
C DayhoffStat 0.3448 | 0.0215| 0.1189 | 0.00145| 0.1301 | 0.0921 it
D Mole % 0.8147 | 0.0621 | 0.7353 0.197 0.894 | 0.1887 |
D DayhoffStat 0.1481 | 0.0254 | 0.1337 | 0.0358| 0.1626 | 0.0343 I
E_Mole % 1.018 | 001254 | 1.3095| 03167 | 1.3208| 0.2642 “
E DayhoffStat 0.1697 | 0.00145| 02183 | 0.0528 | 0.2201 0.044 |
F Mole % 0.9195 | 01277 | 0.7251 0.098 | 0.7419| 0.1887 l
F DayhoffStat 0.2554 | 0.0355| 0.2014 | 0.0272| 02061 ] 0.0524 |
G Mole % 0.25 | 0.00769 | 0.11189 | 0.02387 | 0.11861 | 0.02273
G DayhoffStat 0.2976 | 0.0092 | 01332 | 00284 | 0.1412] 0.0271 il
H Mole % 0.6513 0.012 | 0.4545| 00489 | 0.5994 | 0.0505 i
H DayhoffStat 0.3257 | 0.0654 | 0.2273 | 0.0169 | 02997 | 0.0253 -
I Mole % 1:|- 202077 1215| 01173 | 1.2453 0.16
I DayhoffStat 0.2222 | 0.0462 0.27 | 00261 | 02767 | 0.0356
K Mole % 1.018 | 0.0315| 1.0894 | 0.1095| 1.1321 0.04
K DayhoffStat 01542 | 0.0654 | 0.1651| 0.0166| 0.1715| 0.0061 f
L Mole % 0.19444 | 0.03139 | 0.16742 | 0.03623 0.152 |  0.0566
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L._DayhoffStat 0.2628 0.0424 0.2262 0.049 0.2054 0.0765
M Mole % 0.5169 0.0154 0.4483 0.0457 0.5415 0.0658
M DayhoffStat 0.3041 0.0805 0.2637 0.0269 0.3185 0.0387
N Mole % 0.7186 0.1031 0.6107 0.045 0.6792 0.0649
N DayhoffStat 0.1671 0.0606 0.142 0.495 0.158 0.0151
P Mole % 0.9572 0.1401 0.8403 0.1639 1.0239 0.2632
P DayhoffStat 0.1841 0.0326 0.1616 0.0315 0.1969 0.0506
Q Mole % 0.585 0.1662 0.8173 0.0683 0.6213 0.1227
Q DayhoffStat 0.15 [ 0.00175 0.2096 0.1359 0.1593 0.0315
R Mole % 1.0682 0.0235 1.5249 0.1934 1.0452 0.1707
R DayhoffStat 0.218 0.0478 0.3112 0.0395 0.2133 0.0348
S Mole % 0.9035 0.1796 1.25 0.2797 1.1024 0.1342
S DayhoffStat 0.1291 0.0257 0.1786 0.04 0.1575 0.0192
T Mole % 1.0497 0.3091 0.8511 0.1173 0.8136 0.2208
T DayhoffStat 0.1721 0.0507 0.1395 0.0192 0.1334 0.0362
V_ Mole % 0.15] 0.04484 | 0.12941 0.03812 | 0.11321 0.03019
V DayhoffStat 0.2273 0.0679 0.1961 0.0578 0.1715 0.0457
W Mole % 0.4598 0.1276 0.3636 | 0.35088 0.4027 | 0.34121
W DayhoffStat 0.3537 0.8673 0.2797 | 0.18644 0.3098 | 0.16848
X Mole % 0.5123 0.1422 0.9572 | 0.09712 0.85 | 0.09021
X_DayhoffStat 0.2654 | 0.10526 0.1841 0.07627 | 0.54479 | 0.07065
Y Mole % 0.6135 0.1595 0.5966 0.0322 0.7143 0.0613
Y DayhoffStat 0.1804 0.2528 0.1755 0.0095 0.2101 0.018
Z Mole % 0.1548 0.1945 | 0.54479 0.0654 0.1291 0.07107
7. DayhoffStat 1.2306 0.0215 | 0.33533 0.2077 1.0497 | 0.51247
Tiny Mole % 0.6 | 0.15569 | 040836 | 0.17288 | 0.37014 | 0.20134
Small Mole % 0.75 0.4012 | 0.51896 0.3871 0.6019 | 0.39245
Aliphatic Mole
%o 0.31481 0.14808 | 0.33163 0.1653 | 0.27925 | 0.16327
Aromatic Mole
% 0.24521 0.04918 | 0.17488 | 0.03939 | 0.17532 | 0.06089
Non-polar Mole
% 0.85 | 0.45521 0.6881 0.46001 0.66 | 0.52101
Polar Mole % 0.54479 0.15 | 0.53999 0.3119 | 0.47899 0.34
Charged Mole % 0.33533 0.05| 0.34409 | 0.16995 | 0.33962 | 0.20601
Basic Mole % 0.17365 0.05 | 0.20235 0.0836 | 0.18868 | 0.08233
Acidic Mole % 0.16168 0| 017262 | 0.05665 (| 0.16429 | 0.04906
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Table 3.2 61 ‘Pepstat(EMBOSS)’ primary sequence descriptors used in the

Study for class 4,5 and 6.

Class 4 Class 5 Class 6
Parameter Max Min Max Min Max Min
Molecular
Weight 0.067056 | 0.004217 | 0.044612 | 0.038203 | 0.075422 | 0.036616
Average Residue | 0.117138 | 0.104423 | 0.115822 | 0.104421 | 0.116345 0.10953
Isoelectric Point | 0.085963 | 0.045253 | 0.101241 0.04488 | 0.100789 | 0.046294
Extinction
Coefficient 0.08506 | 0.00384 [ 0.06657 | 0.02048 | 0.10526 | 0.01664
Extinction
Coefficient (1
mg/ml) 0.172 0.031 0.172 0.048 0.145 0.045
Improablity /
Proability
inclusion bodies 0.871 0.497 0.848 0.503 0.89 0.495
A Mole % 0.16102 | 0.02778 0.1601 0.02151 0.1165 | 0.02358
A DayhoffStat 0.1872 0.0323 0.1862 0.025 0.1355 0.0274
B Mole % 0.1332 0.098 0.9195 | 0.01254 0.258 0.0548
B DayhoffStat 0.4545 0.0272 0.2554 | 0.00145 0.168 | 0.05412
C Mole % 0.4 | 0.02387 0.2989 0.0489 0.1655 0.012
C DayhoffStat 0.1379 0.0284 0.1031 0.0169 0.0571 0.0659
D Mole % 0.9032 0.1754 0.8184 0.2792 0.8134 0.3814
D DayhoffStat 0.1642 0.0319 0.1488 0.0508 0.1479 0.0693
E Mole % 1.1321 0.4159 0.9384 0.2989 1.1224 0.2133
E DayhoffStat 0.1887 0.0693 0.1564 0.0498 0.1871 0.0355
F Mole % 0.5556 | 0.01254 0.5914 0.1662 0.716 0.2477
F DayhoffStat 0.1543 | 0.00145 0.1643 0.0462 0.1989 0.0688
G Mole % 0.0995 | 0.05263 | 0.11811 0.04986 | 0.09832 | 0.04502
GﬁDayhoffStat 0.1185 0.0627 0.1406 0.0594 0.117 0.0536
H Mole % 0.6349 0.1596 0.6094 0.1344 0.3883 0.1185
H DayhoffStat 0.3175 0.0798 0.3047 0.0672 0.1942 0.0592
I Mole % 1.1475 0.1724 1.3172 0.3073 1.2322 0.2913
[ DayhoffStat 0.255 0.0383 0.2927 0.0683 0.2738 0.0647
K Mole % 0.8333 0.08 1.5323 0.1359 1.1575 0.1699
K*DayhoffStat 0.1263 0.0121 0.2322 0.0206 0.1754 0.0257
. Mole % 0.13889 | 0.03448 | 0.13966 | 0.05959 | 0.15291 0.07474
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[._DayhoffStat 0.1877 0.0466 0.1887 0.0805 0.2066 0.101
M Mole % 0.5556 0.2477 0.3652 0.1031 0.5419 0.1193
M_DayhoffStat 0.3268 0.0688 0.2148 0.0606 0.3187 0.0702
N Mole % 0.8621 0.2581 0.8871 0.1401 0.8531 0.2184
N DayhoffStat 0.2005 0.06 0.2063 0.0326 0.1984 0.0508
P Mole % 0.8621 0.16 0.6793 0.1662 0.6616 0.1481
P DayhoffStat 0.1658 0.0308 0.1306 0.032 0.1272 0.0285
Q Mole % 0.8743 | 0.01254 0.8549 0.0587 0.6383 0.2211
Q DayhoffStat 0.2242 | 0.00145| 0.2192 0.015| 0.1637 | 0.0567
R Mole % 0.7742 0.2135 0.8683 0.1344 0.9223 0.2545
R DayhoffStat 0.158 0.0436 0.1772 0.0274 0.1882 0.0519
S Mole % 0.9346 0.2477 0.8929 0.3571 0.963 0.3061
S DayhoffStat 0.1335 0.0688 0.1276 0.051 0.1376 0.0437
T Mole % 0.8743 0.1754 0.8673 0.2241 0.6715 0.2786
T DayhoffStat 0.1433 0.0288 0.1422 0.0367 0.1101 0.0457
V_ Mole % 0.152 | 0.04082 | 0.10526 | 0.04032 | 0.09108 | 0.00948
V DayhoffStat 0.2303 0.0618 0.1595 0.0611 0.138 0.0144
W Mole % 0.2551 0.0702 0.2528 0.0326 0.2188 | 0.38889
W DayhoffStat 0.1962 0.2184 0.1945 0.1662 0.1683 [ 0.17241
X Mole % 0.51896 0.0508 0.8531 0.00175 0.2648 | 0.07627
X DayhoffStat 0.33163 0.1481 0.1984 0.0235 0.6325 | 0.52459
Y Mole % 1.0345 0.2542 0.544 0.2073 0.5687 | 0.35088
Y DayhoffStat 0.3043 0.0748 0.16 0.061 0.1673 0.0357
Z Mole % 0.51896 0.3061 0.51896 0.006 0.8954 0.0251
7, DayhoffStat 0.33163 0.0437 | 0.33163 0.497 0.2478 0.0258
Tiny Mole % 0.36441 0.13889 0.3866 | 0.17473 | 0.32374 | 0.20379
Small Mole % 0.59658 | 0.38889 | 0.59021 0.36828 | 0.52143 | 0.39286
Aliphatic Mole
Y 0.30556 | 0.17241 0.27566 | 0.20716 | 0.26699 | 0.18281
Aromatic Mole
%o 0.16667 | 0.07627 0.1662 | 0.07107 | 0.14692 | 0.08978
Non-polar Mole
%o 0.64912 | 0.52459 | 0.65879 | 0.51247 [ 0.56796 | 0.48104
Polar Mole % 0.47541 0.35088 | 0.48753 | 0.34121 0.51896 | 0.43204
Charged Mole % 027778 | 0.18644 | 0.32258 | 0.16848 [ 0.33163 | 0.23223
Basic Mole % 0.14286 | 0.09712 | 0.18817 0.09021 0.17961 0.11893
Acidic Mole % 0.15094 | 0.07627 | 0.14691 | 0.07065 | 0.16099 | 0.08294
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Figure 3.a. Averaged values of 61 sequence derived parameters calculated independently

within studied sets of enzymes and non-enzymes.
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Table 3.3. Results of enzymes / non-enzymes prediction methods, using five fold cross

validation.

5-fold cross  Accuracy _ s
o Specificity Sensitivity MCC Q(Pred) I
validation

(a) using sequence derived features

Cl 0.8947 1.00 0.8271 0.8072 100

C2 0.7969 0.7671 0.8333 0.5979 74.62

C3 0.7142 0.6794 0.7636 0.4364 76.68 '
C4 0.7443 0.6666 0.9495 0.5490 5228 |
5 0.7894 0.7934 0.8545 0.5891 70.14 il
Mean 0.7879 £ 0.0686 0.7713 £0.1339 0.8448 £ 0.0673 0.5959 4+ 0.1345 74.734 + 17.0:1;
Table 3.4. Values for prediction of enzymes and non-enzymes from the protein sequence ):
by the artificial neural networks. i

Testing 5 fold Number of Number of non-  Prediction Prediction |
Cross enzymes correctly enzymes range range |
validation predicted correctly ( enzymes) ( non-

(out of 67) predicted enzymes)

(out of 66)

(a) Using sequence features
Cl 67 52 0.9626-1.00 0.00-0.5340 .
2 50 56 0.9579-1.00  0.00-0.6758 "
C3 42 53 0.9257-1.00 0.00-0.8786
Cc4 35 64 0.9692-1.00 0.00-0.8586
5 47 58 0.9048-1.00 0.00-0.8236
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Table 3.5. Prediction values from the neural network for the fivefold cross validation :
; set’s of enzyme classes. '
i
; 5-Fold cross Total cases taken | Correctly predicted
validation enzymes ; 1;
| Cl 72 48 i
L C2 72 46 J:'I
C3 72 53 i

| c4 72 43
" C5 72 44 .
Total 360 234 I
. . il
Table 3.6. Values for prediction of enzyme classes from the protein sequence by the ‘I
artificial neural networks with the varying number of hidden nodes. “

K
Number of Number enzymes | Correctly predicted “HI
hidden node taken enzymes f{-'
4 360 134 ‘i’
8 360 148
16 360 189 A
24 360 1212 i
32 360 234 A
40 360 219 i
'
i
]

71 o




Table 3.7. The results of enzymepred?2 for the following organisms.

Organism Annoted Assigned | Assigned | Assigned | Assigned | Assigned | Assigned | Assigned
protein as asclass 1 | asclass2 | asclass3 | asclass4 | asclass5 | asclass 6
sequences | enzymes | enzyme enzyme enzyme enzyme enzyme enzyme

(using
sequence
derived
features)

Mycgbac[@riung 4189 1659 444 186 492 155 326 56

tuberculosis

Mycobacterﬁum 1605 723 184 91 185 109 130 24

leapre

Methanococcis 1770 805 80 209 97 251 50 118

Jannaschii

Arabidopsis 6606 2885 515 969 263 316 291 531

thaliana

(chromosome

1)

Total 14170 6072 1223 1455 1037 831 797 729
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Chapter 4

Conclusion

From a practical point of view the most important aspect of a prediction method is
its ability to make correct predictions. Till date most of the available methods use the 3-d
structure of the protein to predict and classify enzymes. This is a very tedious job and
requires much costlier endeavors. The sequence of a protein is an important determinant
for the detailed molecular function of proteins, and would consequently also be useful for
prediction of enzymes and enzyme classes. Additionally much encouraging results have
been predicted using the PSSM technique. Therefore, a much accurate and reliable

method is that which predicts the enzymes and enzyme classes based on both strategies.

This thesis contains detailed work on enzyme prediction and classification. We
achieved an accuracy of ~ 79 % for the prediction of enzyme and non-enzyme based on
non-redundant dataset of over 660 proteins. The neural network architecture used for the
prediction was optimized for maximum accuracy. This was achieved by gradually testing
networks with variable hidden nodes and retaining the one with highest true predictions.
This is at par with best prediction tools available till date, but to the contrary, uses a much
simpler and efficient prediction method based on sequence features and PSSM. This
application not only gives optimum result with the dataset used, but also predicts
enzymes from complex genomes to a very high satisfactory level. A much elaborate
analysis has been done, which is evident from the extracted data, figures and tables

compiled.

[n addition to this tool, we further elaborated on classification of enzymes to their
major classes. The first level of network imitates the binary model, and the second level
uses the predicted result of the former to provide a much detailed and useful
classification. We achieved an accuracy of ~ 67 % for classifying the protein sequences
predicted as enzymes from the first network to their major classes. A similar

methodology was used to optimize the network. The neural network architecture used for

13




the classification was optimized for maximum accuracy. This was achieved by gradually

testing networks with variable hidden nodes and retaining the one with highest true

predictions.
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APPENDIX

Snapshot of Enzymepred1 — tool for prediction of novel enzymes using sequence

derived features and PSSM matrix.

fa EnzymePred - Mitrosn& Internet Explorer

o

j Fig" Edt View Favarites Tooks Help : I o
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Snapshot of Output of
Enzymepredl

’3 Results... - Microsoft Internet Explorer

| Fle Bt Vew Fondss Tois Heb

LR

!') Searth “zf_‘z’Favurites {‘} E .‘

NG

]Addi’ﬂss [@] http {llocalhostferzyme/enzyme.

e

fstar] |  vahool s vk i, | @ o o - Dovroats [ & Resuts.. - Mcrasot. (J enzymes

i Y 3.306-paint

EEEEN T

| F @07 0. 10

77




Snapshot of Enzymepred2 — A tool for prediction of novel enzymes and

classification using sequence derived features.

r‘ﬁ EmzymePred? - Microsoft Internet Explorer
] Fie Edit “View. Favor‘tes Toals Help
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Snapshot of Output of

Enzymepred2

R Results...- Microsoft Internet Explorer
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Code in CGI PERL for the tool to classify the given enzyme into its major class from
sequence derived features.

ENZYMEPREDI1

#lo:/perl/bin/perl.exe
#lc:/perl/lib

use CGI gw(:standard);
use FileHandle;

$ENV{ 'EMBOSSWIN'}="C:/EMBOSSwin";
$ENV{ 'EMBOSS_DATA' }="C:/EMBOSSwin/datar";
$ENV{'Path'}="C:/EMBOSSwin";

$sequence=param{'sequence’') ;
print header(),start html {"Results...");
print '<body link="white" vlink="white" bgcolor="gilver"s';

print hr() ,hr(), '<p align="left"s><font size="5" face="Monotype
Corsiva's><b>EnzymePred</b>: A tool for prediction of enzyme / non-
enzyme

activity in protein sequences.</font></p>',hr(),hr();

#print '<p align="left"s<font gize="an face="Monotype Corsiva"s>The
Protein statistics along with neural network\'s scoreg are as
follows:</font></p>"';

if (!$sequence)

my $write= new FileHandle;
$write--open("»enpred sequence.temp") or
die{ "Could not open to write");
Swrite-»autoflush(1);

Swrite->print {$sequence) ;

"pepstats enpred_sequence.temp enpred_pepstats_outfile.temp -auto 1°;
my $read = new FileHandle;

$read—>open("enpred_pepstats_outfile.temp") or
die ("Could not open pepstats outfile");
my @vector={);
while { my $line = $read->getline{) )
my @array={);
@array=split (' ',k Sline);
chomp {@array) ;
if{$line=~ /Molecular.weight/)
{push(@vector,$array[3]/1000000);} #scaling the features and making

the classification vector

if{$line=~ /Average/)
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{push(@vector,$array[4]/1000);}

if($line=~ /Isoelectric/)
{push(@vector,$array[3]/100);}

if($line=~ /A280.Molar/}
{push (evector, $array (5]/1000000) ; }

if(8line=~ /A280.Extinction/)
{push (@vector, $array (5]/10) ; }
if (($line=- /Improbability/) || ($line=~ /Probability/)) "
{push (@vector, $array[7)}; }

if( ($line=~ /A.=.Ala/)|| ($1line=~ /G.=.Gly/) || ($line=~ /L.=.Leu/) ||
($line=~ /V.=.Val/) )

{push(@vector,$array[4]/100);

push (@vector, $array[5]/10) ; }

if ( ($line=~ /B.=.Asx/) || ($line=-~ /X.=.Xaa/) || ($line=~ /Z.=.@1x/} )
{push (@vector, Sarray [4]};
puSh(@vector,$array[5]);}

if{ ($line=~ /C.=.Cys/) || ($line=~ /Y.=.Tyr/) || ($line=~ /D.=.Asp/}|]| ;
($1line=~ /E.=.Glu/) || ($line=~ /F.=.Phe/) || ($line=~ /H.=.His/) || ?
(4line=~ /T.=.T1le/) || ($line=~ /K.=.Lys/) || ($line=~ /M.=.Met/) |} :
($1ine=~ /N.=.Asn/) || ($line=~ /P.=.Pro/) || ($line=~ /Q.=.Gln/) || f
($1ine=~ /R.=.Arg/) || ($line=~ /S.=.Ser/) || ($line=~ /T.=.Thr/) || E
($1ine=~ /W.=.Trp/) ) ;

{push (@vector, $array [4]/10};
push (@vector, $array[(5]/10) ; }

if($line=~ /Tiny/} E
{push(@vector,$array[3]/100);} é

if ($line=~ /Small/) E
{push (@vector, $array [3]/100};} ;

if(8line=~ /Aliphatic/)
{push (@vector, $array [3]/100) ; }

if($line=~ /Aromatic/}
{push(@vector,$array[3]/100);}

if {$line=~ /Non-polar/)
{push(@vector,$array[3]/100);} il

if{sline=~ /Polar/}
{push (@vector, $array [3}1/100) ; }

if (§line=~ /Charged/)
{push (@vector, Sarray[3]1/100);} .

if(3line=~ /Basic/)
{push(@vector,$array[3]/100);}

if({$line=~ /Acidic/)
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{push(@vector,$array[3]/100);}
t#while
my $write= new FileHandle;

$write->open(">enpred_infile pepstats.temp") or
die( "Could not open to write");

Swrite->autoflush(1);
Swrite->print ("#Input_pattern 1:\n@vector"};

“enzyme”;

“blastpygp -j 3 -d enpred -i enpred_sequence.temp -Q enpred_pssm.temp;
{
my $zero='0 0 0 0 0 0 0 OOO0OO0DOGOO00O0OGOQ 0';

my @array={);
my @pssmarray=(};

foreach{l..3)
{push(@array, $zero) ; }

my $read = new FileHandle;
Sread->open("enpred pssm.temp") or
die ("Could not open enpred pssm.temp") ;
while ( my $line = $read->getline() )
{
@pssmarray=() ;
@pssmarray=split{' ',$line);
my Stwenty = '‘;

if {($pssmarray[0] =~ /\d/)

Stwenty = '';
foreach{(2..21)
{$twenty=%twenty." ".$pssmarray[$ 1;}

if {Stwenty)
{push(@array, $twenty) ; }
Viwhile

foreach(1..3)
{push{@array, $zero) ;)

my $write= new FileHandle:
$write—>open(">enpred_infile%pssm_ann.temp") or
die( "Could not open to write");
$write-»autoflush (1) ;

chomp {@array) ;

my $l=scalar (@array) ;
$1=51-6;

my Scounter=0;

my $lcounter=0;

my $index=1;
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foreach(1..81)

élcounter=$counter+7;

Swrite->print ("\n#Input pattern $index:\n");
foreach (Scounter..$lcounter)
{$write-sprint ("Sarray[$_1 ")};}

Scounter++;

sindex++;

}

my $cmd = 'enpred ann pssm.exe';

my $Sout “Semd”;

my Sread = new FileHandle;

$read->open("enpred_cutfile pssm ann.temp") or
die ("Could not open enpred pssm.temp");

$result _pssm=0;

Scounter pssm=0;

Snines_pssm=0;

$less_nine pssm=0;

while { my $line = $read->getline{) )

chomp ($line} ;
if{$1line>=0.9)
{
gnine pssm++;
}
if{$1line<0.9)
{
$less_nine pssm++;
}
}

if {$nine pssm »= S5less nine pssm)

{

print '<p align="left"»<font size="4" face="Monotype Corsiva"sYour
protein is predicted to be an enzyme by pssm module.</font></p>"';
print hr(),hr(),br{);

}

if ($nine_pssm < $less nine pssm)

{

print '<p align="left'"><font gize="4" face="Monotype Corsiva's>Your
protein is predicted to be an non-enzyme by pssm module.</font></p>';
print hr (},hr{),br{);

}

my Sread = new FileHandle;

$read->open ("enpred result.temp") or
die ("Could not open pepstats_outfile®);




my S$resultsS$read->getline();

if (3$result =>=0.9)

{

print '<p align="left"s<font size="4n" face="Monotype Corsiva"sYour

protein is predicted to be an enzyme by pepstats module. It\'s score is

'.Sresult.'</font></p>;
print hr(),hr(),br();

}

if({§result < 0.9))

{

print '<p align="left"s<font gize="4" face="Monotype Corsiva'"sYour
protein is predicted to be an non-enzyme by pepstats module. It\'s
score is '.Sresult.'</fonts</p>"';

print hr (), hr(),br(};

}

print br{),'<p align="right"s<a style="TEXT-DECORATION: none" href =
"http://www.juit.ac.in/">Click here to go to home<«/as</p>"';

print end html () ;
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Code in CGI PERL for the tool to classify the given enzyme into its major class from
sequence derived features.

ENZYMEPRED?2

#lc:/perl/bin/perl.exe
#lc:/perl/lib

use CGI gw(:standard);
use FileHandle;

$ENV{ 'EMBOSSWIN' }="C:/EMBOSSwin";
SENV{ 'EMBOSS DATA'}="C:/EMBOSSwin/data";
SENV{'Path'}="C:/EMBOSSwin";

Sgequence=param('sequence');
print header(},start_html("Results...");
print '<body link="white" wlink="white" bgcolor="silver"s';

print hr(},hr{),'<p align="left"s>«<font size="5" face="Monotype
Corsiva'><b>EnzymePred2</b>: A tool for prediction of different enzyme
classess.</font></p>",hr () ,hr{);

if {!$sequence)

my $write= new FileHandle;
$write->open("»enpred sequence.temp") or
die{ "Could not open to write"};
Swrite-sautoflush{l};

Swrite->print ($sequence) ;

"pepstats enpred_sequence.temp enpred pepstats outfile.temp -auto 17;
my $read = new FileHandle;

$read->open("enpred pepstats outfile.temp") or
die ("Could not open pepstats outfile"};
my @vector={();

while { my $line = $read-»getline() )
{

my @array={);

@array=split (' ',$line);

chowp {@array)} ;

if ($line=~ /Molecular.weight/)
{push (@vector, $array[3]1/1000000) ;} #scaling the features and making

the classification vector

if($line=~ /Average/)
{push (@vector, $array[4]/1000) ;}

if{$line=~ /Isoelectric/)
{push (@vector, $array [3]/100);}
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if ($1ine=~ /A280.Molar/)
{pusih (@vector, $array [5]1/1000000);}

if{$line=~ /A280.Extinction/)
{push (@vector, Sarray(5]1/10};}

if (($line=~ /Improbability/) || ($line=~ /Probability/))
{push (@vector, $array [7}) ; }

if{ ($line=~ /A.=.Ala/)|| ($line=~ /G.=.Gly/) || ($line=-~
($line=~ /V.=.Val/) )

{push (@vector, $array [4]/100) ;

push {@vector, Sarray [51/10) ; }

if( ($line=~ /B.=.Asx/) || ($line=~ /X.=.Xaa/} || ($line=-
{push {@vector, $array[4]};
push (@vector, $array[5]);}

if( ($line=- /C.=.Cys/} || {$line=~ /Y.=.Tyr/) || {($line=-
($line=~ /E.=.Glu/) || ({($line=~ /F.=.Phe/} || ($line=~ /H.
($line=~ /I.=.Ile/) || {($line=~ /K.=.Lys/} || ($line=~ /M.
($line=~ /N.=.Asn/) || ($line=~ /P.=.Pro/} || ($line=-~ /Q.
($line=~ /R.=.Arg/) || ($line=~ /S.=.Ser/) || ($line=- /T.

($line=~ [W.=.Trp/) )
{push (@vector, Sarray[4]/10};
push {@vector, $array[5]/10) ;}

if($line=~ /Tiny/)
{push (@vector, Sarray [3]/100) ; }

if($1line=~ /Small/)
{push (@vector, Sarray[3]1/100);}

if {$line=~ /Aliphatic/)
{push{@vector, $array[3]/100);}

if ($1line=~ /Aromatic/}
{push (@vector, $array[3]/100};}

if ($line=~ /Non-polar/)
{push (@vector, $array [3]1/100);}

if {($1line=~ /Polar/)
{push (@vector, $array (3]/100) ;)

if($line=~ /Charged/)
{push (@vector, $array [3]/100) ; }

if{4line=~ /Basic/)
{push{@vector, Sarray [3]1/100) ;}

if ($1line=~ fAcidic/)
{push (@vector, $array[3]1/100);}

}#while

/L.=.Leu/) ||

/Z2.=.6G1x/) )

/D.=.Asp/} ||
.Hig/)
Met/) ||
.G1n/) ||
.Thr/} ||

ononon
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my S$write= new FileHandle;

$write->open("»enpred_infile pepstats.temp") or
die( "Could not open to write");

Swrite->autoflush(l);
Swrite-»>print ("#Input pattern 1:\n@vector");

“blastpgp -j 3 -d enpred -i enpred_seguence.temp -Q enpred_pssm.temp”;

{

my$zero='00000000000000000000';
my @array={);
my @pssmarray={();

foreach({1l..3)
{push (@array, $zero) ; }

my S$read = new FileHandle;
S$read->open ("enpred pssm.temp") or

die ("Could not open enpred pssm.temp") ;
while { my $line = $read-»getline() )

@pssmarray=() ;
@pssmarray=split(' ',5line);
my Stwenty = '';

if ($pssmarray [0] =~ /\d/)

Stwenty = '’;

foreach(2..21}

{$twenty=$twenty." ".$pssmarray[s ];)}
if ($twenty)
{push (@array, $twenty) ; }
}iwhile

foreach(1..3)
{push(@array, $zero) ; }

my $write= new FileHandle;
Swrite-»open("-enpred infile pssm ann.temp"} or
die( "Could not open to write");
Swrite-sautoflush(1);

chomp (@array) ;

my $l=scalar(@array);
$1=51-6;

my Scounter=0;

my $lcounter=90;

my $index=1;

foreach(1..51)

{

$lcounter=$counter+7;
Swrite-»print ("\n#Input_pattern $index:\n");
foreach (Scounter. .$lcounter)
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{$write-»print ("$array[$ ] ") ;)
Scounter++;
Sindex++;
}
my $cmd = 'enpred ann pssm.exe’;
my Sout = “Scmd”;

my $read = new FileHandle;
$read->open("enpred_outfile pssm_ann.temp") or
die ("Could not open enpred psswu.temp") ;
$result_pssm=0;
Scounter_pssm=0;
S$nines pssm=0;
$less nine pssm=0;
while ( my $line = S$read-»getline() )
{
chomp {$1ine) ;
if($line»>=0.9)
{
snine pssm++;
}

1f($line<0.9)

{
$less_nine pssmt+;
}

}

#if ($nine_pssm »>= $less nine pssm)

#{

#print '<p align="left"><font size="4" face="Monotype Corsiva'sYour
protein is predicted to be an enzyme by pssm module.</fonts</p>';
#print hr{) ,hr(},br();

#}

#if (Snine_psesm < $less nine pssm)

#{

#print '<p align="left"»><font size="4" face="Monotype Corsiva'sYour
protein is predicted to be an non-enzyme by pssm module. </font></p>"';
#print hr(} ,hc () ,br();

#}

}
“enzyme.exe”;
my Sread = new FileHandle;

Sread->open{"enpred result.temp”) or
die ("Could not open pepstats outfile");

my $result=$read->getline();

my $write= new FileHandle;
Swrite-»open("senpred2 sequence.temp") or
die{ "Could not open to write");
Swrite-sautoflush{l);
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$write—>print($sequence);

“pepstats enpred2_sequence.temp enpred2_pepstats outfile.temp -auto 17;

my $read = new FileHandle;

Sread->open{"enpred2 pepstats outfile.temp") or

die ("Could not open pepstats_outfile");
my @vectors=();

while ( my $line = $read-sgetline() )
{

my @array=();

‘@array=split{' ', $line):

chomp (@array) ;

if{$line=-~ /Molecular.weight/)

{puSh(@vector,$array[3]/1oooooo);} fiscaling the features and making

the classification vector

if ($line=~ /Average/)
{push(@vector,$array[4]/1000);}

if($line=~ /Isoelectric/)
{push(@vector,$array[3]/100);}

if ($line=~ /A280.Molar/)
{push(@vector,Sarray[S}/1000000);}
if{($line=- /A280.Extinction/)
{push(@vector,$array[5]/10);}

if(($line=~ /Improbability/) || ($line=~ /Probability/})
{push(@vector,$array[7]);}

if{ ($line=-~ /A.=.Ala/)|] ($line=~ /G.=.Gly/) || ($line=- /L.=.Leu/) ||

($line=- /V.=.val/) )
{push(@vector,$array[4]/100);
push(@vector,$array[5]/10);}

if( ($line=~ /B.=.Asx/) [| ($line=~ /X.=.Xaa/) || ($line=~ /Z.=.G1x/)

{push(@vector,$array[4]);
push(@vector,$array[5]);}

)

if( ($line=~ /C.=.Cys/) || ($1ine=~ /Y.=.Tyr/) |! ($line=- /D.=.Rsp/) ||
(3line=~ /E.=.Glu/) || ($line=~ /F.=.Phe/} || ($line=~ /H.=.His/) ||
($line=- /I.=.Ile/) || ($line=~ /K.=.Lys/) || ($line=~ /M.=.Met/) ||
($line=~ /N.=.Asn/) [l ($line=~ /P.=.Pro/) |{ {($line=~ /Q.=.G1ln/) |
($line=~ /R.=.Arg/) |{ ($line=~ /S.=.8er/) [| ($line=~ /T.=.Thr/) I
($line=~ /W.=.Trp/) )

{push{@vector,$array[4]/lo);
push{@vector,$array[5]/10);}

if($line=~ /Tiny/)
{push(@vector,$array[3]/100);}

if ($1line=~ /Small/)
{push(@vector,$array[3]/100);}
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if (sline=~ /Aliphatic/}
{push (@vector, $array [3]/100) ; }

if($line=~ /Aromatic/)
{push(evector, $array[3]/100) ;)

if (sline=~ /Non-polar/)
{push (@vector, $array[3}1/100) ;)

if({$line=~ /Polar/)
{push{@vector, $array (3] /100) ;}

if (§line=~ /Charged/)
{push(@vector,$array[3]/100);}

if($line=~ /Basic/)
{push{@vector, $array(3]1/100) ;}

if ($line=- /Acidic/)
{push(@vector,$array[3]/100);}

}#while
my $write= new FileHandle;

Swrite->open{'">enpred2i.txt"} or
die( "Could not open to write'};

Swrite-sautoflush(1);
Swrite-»print ("@evector") ;

1f{ ($nine_pssm >= $less_nine_pssm} || ($result »=0.9))

{

“enpred2.exe”;
my $read = new FileHandle;

$read->open{"enpred2o.txt") or
die ("Could not open pepstats_outfile");

my $result=%read->getline();

if (Sresult ==1)

{

print '<p align="left"><font size="4" face="Monotype Corsiva"sYour
protein is predicted to be from Oxidoreductase class</font></p>!;
print hr(),hr(),br();

}

if ($result ==2)

{

print '<p align="left"><font size="4" face="Monotype Corsiva"sYour
protein is predicted to be from Transferase class</font></p>"';
print hr{),hr(),br();

}

if ($result ==1)

{
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print '<p align="left"s<font size="4r" face="Monotype Corsiva"s>Your
protein is predicted to be from Hydrolase class</fonts></p>"';

print hr{), hr{),br();

}

if {Sresult ==4)

{

print '<p align="left"s<font sige="4" face="Monotype Corsiva">Your
protein is predicted to be from Lyase class</font>«</p>"';

print hr(},hr(},br{);

}

if {result ==5)

{

print '<p align="left"s<font size="4" face="Monotype Corsiva"sYour
protein is predicted to be from Isomerase class</font></p>"';

print hr (), hr{(),br();

}

if (Sresult ==6)

{

print '<p align="left"><font size="4" face="Monotype Corsiva'sYour
protein is predicted to be from Ligase class</font></p>';

print hr(),hr{) ,br(};

}

}

else
print '<p align="left"><font size="4n face="Monotype Corsiva'"s>Your
protein is predicted to be an non-enzyme.</fonts</p>';

}

print br(),'<p align="right"><a style="TEXT-DECORATION: none" href
"http://www.juit.ac.in/"=Click here to go to home</a»</p>';

print end html{);
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