OF INFORy,,
7o,

e we Sefire.

Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num.S PG369Y Call Num:
General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

& Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

¢ The loss of LRC book(s) must be immediately

brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

MAAEHMDIY

SP03094

STUDY & IMPLEMENTATION OF
STEGANOGRAPHIC METHODS IN IMAGE FILES

BY
MAYANK AGARWAL (031225)
NAKUL JINDAL (031205)

May 2007

Submitted in partial fulfillment of the Degree of Bachelor of
Technology
Department of Computer Science Engineering and
' Information Technology,
Jaypee University of Information
Technology -Waknaghat

CERTIFICATE

This is to certify that the work entitled, “Study & Implementation of Steganographic
Methods in Image Files” submitted by Mayank Agarwal & Nakul Jindal in partial
fulfillment for the award of degree of Bachelor of Technology in Computer Science of
Jaypee University of Information Technology has been carried out under my supervision.
This work has not been submitted partially or wholly to any other University or Institute

for the award of this or any other degree or diploma.

Supervisor:

Mr. S.P.Ghrera
HOD
Department of Computer Science Engineering and Information Technology,
Jaypee University of Information Technology,

Waknaghat, Solan — 173215, Himachal Pradesh,

INDIA

I

P et

ACKNOWLEDGEMENT

We wish to express our earnest gratitude to Mr. S. P. Ghrera, for providing us
invaluable guidance and timely suggestions by the help of which we successfully
completed our project. We’d also like to thank him for his morat support in times when

the project was losing pace.

We would like to the thank the faculty of the Computer Science and Engineering
Department of Jaypee University of Information Technology, Waknaghat for their

valuable suggestions that made helped us improve our project.

We would like to thank all the staff members of the Computing facilities of Jaypee
University of Information Technology, Waknaghat, for providing us with support and

facilities required for the completion of this project.

I

ABSTRACT

A study of the various Steganographic Methods for image files has
been done by us. Report of this study is presented. One of the studied

techniques was implemented, the details of which are presented.

v

TABLE OF CONTENTS
€141 J L LEL 5 4 TR P s e I O T I
ACKNOWLEDGEMENTcoieunrmiesasmisssestiessesssssenesesseessssssesss s esseeees e os oo 111
ABSTRACT i viveomsiysipresveonsyssississosisiss5ipsiie e ik asassrsssss vesssomeesorsissssss SR v
IR T OB IO URER. bt st el asimen oS VI
Section A: Study
CHAPTER 1 Steganography
Introduction to Information Hiding............coevvevvevvevvmeoen, T —— 1
1.1 A Brief History of Information Hiding (Steganography).......................ovvoviiii. 1
1.2 Wisdom from Cryptography.............cuevvreiieeeeemmneiisoeseeeeooeeeeoeo 3
1.3 Principles of Steganography...........ccooveeeriieiiieieeeeeeiniieee 4
1.4 Frameworks for Secret CommUniCation.ccoevveeereesveeeeeeosoooeeseee 6
1.5 Types of Steganographic Protocols...................ovurevemiereesis e 7
Lol PURE Be QAORIAPIN <o us wusumnsnsiniss dsi 65 A b rmeromom e s s e mis] T
1.52 Secret Key Steganographyceeerveeeeeeeeneeeeeeeeees oo 8
1.5.3 Public Key Steganography..............couveeeeereeeineeeeeeiseeese oo, 8
1.6 Security of Steganography SyStems.ccorevuuneeeeemeeeessees e 9
16,1 Perfect SECULILYvuuuerereeeieeieie e ee e ee e e e e 10
1.6.2 Detecting Secret Messages.uuuuureriieiueereneeeeeesneness oo, 11
1.7 Information Hiding in Noisy Data...........eeuvreeivreenneeeeeeeessessneese oo 11
1.8 Active and Malicious Attackers........uuuveeeriiiemiimniinieeerreeeesieeseneeesessesssssen 12
1.8.1 Active Attackers: Robust Steganography...............ccooeeevvieiiiiise, 13
1.8.2 Supraliminal Channels.........cceevvvveeeeeeeeneiiiiieeeeeieeeeee e, 14
1.8.3 Malicious Attackers: Secure Steganography.........oveeeeuneveeeeee oo 15
RefTENCES......ivviiiiiiiie e 17

) ,

Chapter 2 A Survey of Steganographic Techniques

Types of Steganographic Techniques............vveieuneiiunieeernne oo 18
2.1 SubSttUtion SYSIEMS.cuvuiemrrerieririmrnrrrrereennssesee s sstse e esns 19
2.1.1 Least Significant Bit Substitution..............ocviiivinnnreirneeirioee e 20
2.1.2 Pseudorandom Permutations.........cceeuvuunirerireeereeeeniennseesessessnensn oo, 21
2.1.3 Image Downgrading and Covert ChannelS.............coevvvrenimnneoosoessonsn 21
2.1.4 Cover-Regions and Parity Bits...........oeeveveeeeivueieeeeereiireseoee oo, 22
2.15 Palette-Based IMages...........ccvevrviienieiiimrnieiieeicee e 25
2.1.6 Information Hiding in Binary TMages..........c..coevvrereeeeeeesseevnsse 23
2.2 Transform Domain Techniques.............c.uvuviiiiiuiiiiieiiiniee e eeieeeesseese e, 24
2.3 Spread Spectrum and Information Hiding..............oooeeeeeeevninnneeesseeiiiiin, 25
E 2.4 Statistical Steganography.............vuveriiiiiiinieerreisineeeeeeeeesess oo e 25
2.5 Distortion TechnIqUes.euviiriiiriiniriiiieeeaicrseeeeeeeee e eseee e, 26
2.6 Cover Generation TechniqUES.........vcvvivveinieeror i eearseeeeee e e e eeee, 27
REfEIEICES. .. vttt ittt ettt s e 28

Chapter 3 The Bitmap (.bmp) File Format

INEPOAUCHION. ...ieiiiiiii ittt e e et e e e ar e 29
3.1 BMPFILE........ F et e e e e e et E e e bt e n et en e rh et e bt e e e et enras 29
311 Bitmap Header.cuuiivuiiiirireii ittt ees e e 31
3.1.2 Bitmap information.............cvieiviiiiriiiiciiene e e 31
: 313 ColorPalette.c.urieeneiei e e 33
3.1.4 BitmapData..................... ettty e 33
r Section B: Project
i
;

B e T S —

T

Chapter 4 The Project

A1 THEOTY...oviiiiii ittt e et 35
411 Outline....oieuiiiiiiii e 35
4.1.2 Algorithm used..........ocovuviiiiminniiiiiiii e 35
4,1.3 Embeddings in Bitmap Files..........ccooviiiiiuuniirivieeeeeeoeeeooe e 38
4.2 Implementation Details.......oovvemiiiiniiiiiiiiiirnie e 40
4.3 50aPSHOLS. ..ceeeiii e 43
4.4 FIOWChAITS.cooiiiiiiiiiiiec e e 47
4.5 Class Documentation for Project: BitmapStego......o.ueneeeeeeueenoseeeeoeeeeo 53
4.6 Directory Structure & Files...........vivvueiiriiieeeeas e oo s et 59
4.7 Compilation Environment............o.oeeevuuueeiiiiinineeiirireeeeseeseeeseeooeeees 61
4.8 Experimental Setup..................... OO PP 63
4.8.1 EXPEriment 1......iiiverniiiiiiiiiiini i et 63
A.B2EXPEIMENt 2......uiiineiiiiiiieiiiiieiiiee e vree et e e e e s 66
4.8.3 Conclusion of EXPEriment............uvvriiiivurnereerireeeeeeeeeeeeeseooees e 68
AGCOE. . ciiiiieii i e 69
CONCIMSION.coiiiiiiiiiiii e e .81
Bibliography.........cccooooiiiiiiiriiriiii e ehreirses et enserranans 82

viI

LIST OF FIGURES

CHAPTER 1 Steganography

1-1 The Prisoner’s Problem...........c.oocevvieiiiiiiiiuiniiiiiriseee e 4
g 1-2 Schematic description of Steganography................cccovvveieneeeiiis i 6
1-3 Schematic description of a supraliminal channel...................covovvivniviiiii, 15

Chapter 3 Image File Formats

3-1 Bitmap Header & Bitmap Information...............ooovuueeeiunoesieee 30

Chapter 4 ¥mplementation Details

4-1 Process of Steganography..........cvvuueiieeeiiiiiieeereeeeee e ee e 35
4-2 Algorithm for Embedding.........occovvuviiiiiiniiieiiiiee e, 36
4-3 Algorithm for EXtraction...........c.ooiuiiiiiiuiir e ceeseeee e, 37
4-4 Bytes in a pixel of a 16-bit uncompressed bitmap image................c.c.vevvven... 38
4-5 Bytes in a pixel of a 24-bit uncompressed bitmap image..................ceeeeeeeeenns. 38
4-6 The Embedding Window in default mode................cooeevviivirivineieeeiiinin, 43
4-7 The Embedding Window after having all fields filled................ooovvvevvvvnii, 44
4-8 The Extracting Window in Default Mode..............coueeeivvneeeiieeeeoeenvoneo 45
4-9 The Extraction Window with all fields filled...................o.oovioerrreeeiniiniiinns 46
4-10 Flow Chart for Extracting Message from Bitmap Image.............ccocooeeeeeen..., 47
4-11 Flow Chart for Extracting Message from 16 -bit Bitmap Image..................... .48

4-12 Flow Chart for Extracting Message from 24- bit Bitmap Image........................ 49
4-13 Flow Chart for Embedding Message in Bitmap Image........................cccovnno 50
4-14 Flow Chart for Embedding Message in 16 -bit Bitmap Image.......................... 51
4-15 Flow Chart for Embedding Message in 24 -bit Bitmap Image.......................... 52
4-16 Node Configuration....................... e e et s et e e 63
4-17 Cover Object: 24-bit bitmap image (1024 X 768)..........uveeeemveeeenerseeniesinn 63

Vil

4-18 Message Object: JPEG Image (800 X 600, 69.5KB).......cooooeevvrvereiinnn, 64

4-19 Output: Stego-Object: 24-bit bitmap image (1024 X 768).....c...ccvvveeeeeevvvnnn 64
4-20 Output: Message Object on eXtraction...............ocvvieuuneeessnsiie s 65
4-21 Cover Object : 16-bit bitmap image (1024 X 768)......oeoveneeeveneeeese . 66
4-22 Message Object: JPEG Image (1024 X 768, 147 KB)...ouveevvneeioneseeoeee, 66
4-23 Output: Stego-Object: 16-bit bitmap image (1024 X 768)...............vvvveevereva, 67
4-24 Output: Message Object on extraction................eervveivusnieeeeeiieeessssoiinn, 68

IX

CHAPTER 1
STEGANOGRAPHY

Introduction to Information Hiding

As andio, video, and other works become available in digital form, the ease with which
perfect copies can be made, may lead to large-scale unauthorized copying which might
undermine the music, film, book, and software publishing industries. These concerns
over protecting copyright have triggered significant research to find ways to hide
copyright messages and serial numbers into digital media; the idea is that the latter can
help to identify copyright violators, and the former to prosecute them. Thus came the
need for Information Hiding. The need to embed information into such data arised and
gave birth to digital watermarking. Watermarking was already in existence at that time.

At the same time, moves by various governments to restrict the availability of encryption
services have motivated people to study methods by which private messages can be
embedded in seemingly innocuous cover messages. Techniques used in digital
watermarking and other techniques were used so that data could be hidden in these cover

messages. The field dealing with these techniques is called steganography.

Steganography is an important sub discipline of information hiding. While cryptography
is about protecting the content of messages, steganography is about concealing their very
existence. This modern adaptation of steganographia (Trithemius, 1462-15 16), assumed

rreyaré I .. ,
from Greek © 751V S, Apadeu literally means "covered writing" [1], and is usually

interpreted to mean hiding information in other information.

1.1 A Brief History of Itformation Hiding (Steganography)

» The first description of the use of steganography dates back to the Greeks.
Herodotus [2] tells how a message was passed to the Greeks about Xerses' hostile

s

‘ ! intentions underneath the wax of a writing tablet, and describes a technique of
dotting successive letters in a cover text with a secret ink, due to Aeneas the
Tactician.

» Pirate legends tell of the practice of tattooing secret information, such as a map,
on the head of someone, so that the hair would conceal it,

¢ Kahn tells of a trick used in China of embedding a code ideogram at a
prearranged position in a dispatch; a similar idea led to the grille system used in
medieval Europe, where a wooden template would be placed over a seemingly
innocuous text, highlighting an embedded secret message.

* During WWII the grille method or some variants were used by spies. In the same
period, the Germans developed microdot technology, which prints a clear, good
quality photograph shrinking it to the size of a dot.

* More obscurely, during World War 11, a spy for the Japanese in New York City,
Velvalee Dickinson, sent information to accommodation addresses in neutral
South America. She was a dealer in dol!s, and her letters discussed how many of
this or that doll to ship. The stegotext in this case was the doll orders; the
‘plaintext’ being concealed was itself a codetext giving information about ship
movements, etc. Her case became somewhat famous and she became known as
the Doll Woman.

¢ There are rumors that during the 1980's Margareth Thatcher, then Prime Minister
in UK, became so irritated about press leaks of cabinet documents, that she had
the word processors programmed to encode the identity of the writer in the word
spacing, thus being able to trace the disloyal ministers.

* During the "Cold War" period, US and USSR wanted to hide their sensors in the
enemy's facilities. These devices had to send data to their nations, without being

spotted.
Today, steganography is researched both for legal and ilfegal reasons.

* Among the first ones there is war telecommunications, which use spread spectrum

or meteor scatter radio in order to conceal both the message and its source.

o In the industry market, with the advent of digital communications and storage,
one of the most important issues is copyright enforcement, so digitat
watermarking techniques are being developed to restrict the use of copyrighted
data.

e Another important use is to embed data about medical images, so that there are no
problems with matching patient's records and images,

» Among illegal ones is the practice of hiding strongly-encrypted data to avoid
controls by cryptography export laws.

1.2 Wisdom from Cryptography

Although steganography is different from cryptography, we can borrow many of the
techniques and much practical wisdom from the latter, a more thoroughly researched
discipline.

18 uste Kerckhoffs enunciated the first principle. tographic

engineering, in which he advises that we assume the method used to encipher datqg is
known to the opponent, so security must lie only in the choice of key 3]

Applying this wisdom, we obtain a tentative definition of a secure stego-system: one
where an opponent who understands the system, but does not know the key, can obtain
no evidence (or even grounds for suspicion) that a communication has taken place. It will
remain a central principle that steganographic processes intended for wide use should be

published, just like commercial cryptographic algorithms and protocols.

So one might expect that designers of copyright marking systems would publish the
mechanisms they use, and rely on the secrecy of the keys employed. Sadly, this is not the

case; many purveyors of such systems keep their mechanisms subject to nondisclosure

agreements, sometimes offering the rationale that a patent is pending,

—

That any of these security-by-obscurity systems ever worked was a matter of luck. Yet
many steganographic systems available today just embed the "hidden" data in the least
significant bits of an audio or video file—which is trivial for a capable opponent to detect

and remove.

1.3 Principles of Steganography

The "classic" model for invisible communication was first proposed by Simmons [4] as
the "prisoners' problem." Alice' and Bob are arrested for some crime and are thrown in
two different cells. They want to develop an escape plan, but unfortunately all
communications between each other are arbitrated by a warden named Wendy. She will
not let them communicate through encryption and if she notices any suspicious
communication, she will place them in solitary confinement and thus suppress the
exchange of all messages. So both parties must communicate invisibly in order not to
arouse Wendy's suspicion; they have to set up a subliminal channel. A practical way to
do so is to hide meaningful information in some harmless message: Bob could, for
instance, create a picture of a blue cow lying on a green meadow and send this piece of
modern art to Alice. Wendy has no idea that the colors of the objects in the picture

transmit information.

i

Cover-obicct

jr

sl

_L,jca =

W oW L

R

Embedded
object

[T

Fig.1-1 The Prisoner’s Problem [5]

"n the field of cryptography, communication protocols usually involve two fictional characters

named Alice and Bob. The standard convention is to name the participants in the protocol

alphabetically (Carol and Dave often succeed Alice and Bob in a multiperson protocol), or with a
name whosg first character matches the first letter of their role {¢.g., Wendy the warden).

Unfortunately there are other problems which may hinder the escape of Alice and Bob,
Wendy may alter the message Bob has sent to Alice. For example, she could change the
color of Bob’s cow to red, and so destroy the information; she then acts as an active
warden. Even worse, if she acts in a malicious way, she could forge messages and send a

message to one of the prisoners through the subliminal channel while pretending to be the

other.

The above model is generally applicable to many situations in which invisible
communication—steganography— takes place. Alice and Bob represent two
communication parties, wanting to exchange secret information invisibly. The warden
Wendy represents an eavesdropper who is able to read and probably alter messages sent

between the communication partners (see figure 1-1).

Whereas cryptographic techniques try to conceal the contents of a message,
steganography goes yet a bit further: it tries to hide the fact that a communication even
exists. Two people can communicate covertly by exchanging unclassified messages

containing confidential information. Both parties have to take the presence of a passive,

active or even malicious attacker into account.

1.4 Frameworks for Secret Communication

Most applications of steganography follow one general principle, illustrated in figure 1-2
Alice, who wants to share a secret message m with Bob, randomly chooses (using the
private random source r) a harmless message ¢, called cover-object, which can be
transmitted to Bob without raising suspicion, and embeds the secret message into

¢, probably by using a key k, called stego-key. Alice therefore changes the cover ¢ to a
stego-object s. This must be done in a very careful way, so that a third party, knowing
only the apparently harmless message s, cannot detect the existence of the secret. In a
“perfect” system, a normal cover should not be distinguishable from a stego-object,
neither by a human nor by a computer looking for statistical pattern. Theoretically, covers

could be any computer-readable data such as image files, digital sound, or written text.

1
Wendy

| r =
| f ™ Leve,
>

P‘-- T --.i - (hlice |

001107 —a

Randomness =

,_.llnu_

Messuge

Alice | fab

| 74 I [3 .
Koy generation {acility

Fig.1-2 Schematic description of Steganography: Alice randomly chooses a cover ¢ using her
private random source r and embeds the message m in ¢ using a key k, creating the stego-object s

which she passes on to Bob. Bob reconstructs m with the key k he shares with Alice.

Alice then transmits s over an insecure channel to Bob and hopes that Wendy will not
notice the embedded message. Bob can reconstruct m since he knows the embedding

method used by Alice and has access to the key k used in the embedding process. This

extraction process should be possible without the original cover c.

Thus, the security of invisible communication lies mainly in the inability to distinguish

cover-objects from stego-objects.

In practice however, not all data can be used as cover for secret communication, since the
modifications employed in the embedding process should not be visible to anyone not
involved in the communication process. This fact requires the cover to contain sufficient
redundant data, which can be replaced by secret information. In facy, it turns out that
noisy data has more advantageous properties in most steganographic applications.
Obviously a cover should never be used twice, since an attacker who has access to two
"versions" of one cover can easily detect and possibly reconstruct the message. To avoid
accidental reuse, both sender and receiver should destroy all covers they have already

used for information transfer.
1.5 Types of Steganographic Protocols

There are basically three types of steganographic protocols: pure steganography, secret

key steganography, and public key steganography; the latter is based on principles of
public key cryptography.,

1.5.1 Pure Steganography

We call a steganographic system which does not require the prior exchange of some
secret information (like a stego-key) pure steganography. Formally, the embedding
process can be described as a mapping E: CxM — C, where C is the set of possible
covers and M the set of possible messages. The extraction process consists of a mapping

D: C — M, extracting the secret message out of a cover. Clearly, it is necessary that |C| >

{M|. Both sender and receiver must have access to the embedding and extraction

algorithm, but the algorithms should not be public.

1.5.2 Secret Key Steganography

With pure steganography, no information (apart from the functions E and D) is required
to start the communication process; the security of the system thus depends entirely on its
secrecy. This is not very secure in practice because this violates Kerckhoffs' principle (as
stated previously). So we must assume that Wendy knows the algorithm Alice and Bob
use for information transfer. In theory, she is able to extract information out of every
cover sent between Alice aﬁd Bob. The security of a steganographic system should thus
rely on some secret information traded by Alice and Bob, the stego-key. Without
knowledge of this key, nobody should be able to extract secret information out of the
cover.

A secret key steganography system is similar to a symmetric cipher: the sender chooses a
cover ¢ and embeds the secret message into ¢ using a secret key k. If the key used in the
embedding process is known to the receiver, he can reverse the process and extract the
secret message. Anyone who does not know the secret key should not be able to obtain
evidence of the encoded information. Again, the cover ¢ and the stego-object can be

perceptually similar.
1.5.3 Public Key Steganography

As in public key cryptography, public key steganography does not rely on the exchange
of a secret key. Public key steganography systems require the use of two keys, one
private and one public key; the public key is stored in a public database. Whereas the
public key is used in the embedding process, the secret key is used to reconstruct the

secret message.

One way to build a public key steganography system is the use of a public key
cryptosystem. We will assume that Alice and Bob can exchange public keys of some i
public key cryptography algorithm before imprisonment (this is, however, a more

reasonable assumption). Public key steganography utilizes the fact that the decoding :

function D in a steganography system can be applied to any cover ¢, whether or not it F‘

already contains a secret message (recall that D is a function on the entire set C). In the
latter casé, a random element of M will be the result, we will call it "natural randomness"
of the cover. If one assumes that this natural randomness is statistically indistinguishable
from ciphertext produced by some public key cryptosystem, a secure steganography

system can be built by embedding ciphertext rather than unencrypted secret messages.

A protocol which allows public key steganography has been proposed by Anderson in [6,
7); it relies on the fact that encrypted information is random enough to "hide in plain
sight": Alice encrypts the information with Bob's public key to obtain a random-looking
message and embeds it in a channel known to Bob (and hence also to Wendy), thereby
replacing some of the "natural randomness” with which every communication process is
accompanied. We will assume that both the cryptographic algorithms and the embedding
functions are publicly known. Bob, who cannot decide a priori if secret information is
transmitted in a specific cover, will suspect the arrival of a message and will simply try to
extract and decrypt it using his private key. If the cover actually contained information,

the decrypted information is Alice's message.

Since we assumed that Wendy knows the embedding method used, she can try to extract
the secret message sent from Alice to Bob. However, if the encryption method produces
random-looking ciphertext, Wendy will have no evidence that the extracted information
is more than some random bits. She thus cannot decide if the extracted information is
meaningful or just part of the natural randomness, unless she is able to break the

cryptosystem,

1.6 Security of Steganography Systems

Although breaking a steganography system normally consists of three parts: detecting,
extracting, and disabling embedded information, a system is already insecure if an
attacker is able to prove the existence of a secret message. In developing a formal

security model for steganography we must assume that an attacker has unlimited

computation power and is able and willing to perform a variety of attacks. If he cannot

confirm his hypothesis that a secret message is embedded in a cover, then a system is

theoretically secure.

1.6.1 Perfect Security

Cachin [8] gave a formal information-theoretic definition of the security of
steganographic systems. The main idea is to refer to the selection of a cover as a random
variable C with probability distribution Pc. The embedding of a secret message can be
seen as a function defined in C; let Psbe the probability distribution of Ex(c, m, k), that is
the set of all stego-objects produced by the steganographic system. If a cover ¢ is never
used as a stego-object, then Ps(c) = 0. In order to calculate Ps, probability distributions on
K and M must be imposed. Using the definition of the relative entropy D(P||P;) between
two distributions Pyand P:defined on the set O,

- 10
PP =) P, 7

FEi

Palyi

~—which measures the inefficiency of assuming that the distribution is P> where the true
distribution is Pi—the impact of the embedding process on the distribution Pccan be

measured. Specifically, we define the security of a steganography system in terms of

D(Pc||Ps):

(Perfect security) Let A be a steganography system, Ps the probability distribution of the
Stegocovers sent via the channel, and Pc the probability distribution of C.4 is called ¢ -
secure against passive attackers, if

DUl P

—which measures the inefficiency of assuming that the distribution is P, where the true
distribution is Pr—the impact of the embedding process on the distribution Pecan be

measured.

10

1.6.2 Detecting Secret Messages

A passive attacker (Wendy) has to decide whether a cover ¢ sent from Bob to Alice
contains secret information or not. This task can be formalized as a statistical hypothesis-
testing problem. Therefore, Wendy defines a test function f: C — {0, 1}:

, T oromains » stered HIORSe
fe) 0 otherwise

which Wendy uses to classify covers as they are passed on via the insecure channel. In
some cases Wendy will correctly classify the cover; in other cases she will not detect a
hidden message, making a type-II error. It is also possible that Wendy falsely detects a
hidden message in a cover which does not contain information; she then makes a type-I
error. Practical steganography systems try to maximize the probability B that a passive

attacker makes a type-Il error. An ideal system would have = 1.

1.7 Information Hiding in Noisy Data

As we know, steganography utilizes the existence of redundant information in a
communication process. Images or digital sound naturally contain such redundancies in
the form of a noise component. We will assume without loss of generality that the cover ¢
can be represented by a sequence of binary digits. In the case of a digital sound this
sequence is just the sequence of samples over time; in the case of a digital image, a
sequence can be obtained by vectorizing the image (i.c., by lining up the grayscale or
color values in a left-to-right and top-to-bottom order). Let /(c) be the number of

elements in the sequence, m the secret message, and /(m) its length in bits.

The general principle undetlying most steganographic methods is to place the secret

message in the noise component of a signal. If it is possible to code the information in

1

W

=

,r:‘

such a way that it is indistinguishable from true random noise, an attacker has no chance

in detecting the secret communication.

The simplest way of hiding information in a sequence of binary numbers is replacing the
least significant bit (LSB) of every element with one bit of the secret message m. In
floating point arithmetic, the least significant bit of the mantissa can be used instead.
Since normally the size of the hidden message is much less than the number of bits
available to hide the information (I(m) << I(c)) the rest of the LLSB can be left unchanged.
Since flipping the LSB of a byte (or a word) only means the addition or subtraction of a
small quantity, the sender assumes that the difference will lie within the noise range and
that it will therefore not be generally noticed. Obviously this technique does not provide a
high level of security. An attacker can simply try to "decode" the cover, just as if he were
the receiver. In addition, the algorithm changes the statistical properties of the cover

significantly, even if the message consists of truly random bits.

This technique can be improved. Instead of using every cover-element for information
transfer, it is possible to select only some elements in a rather random manner according
to a secret key and leave the others unchanged. This selection can be done using a
pseudorandom number generator; [9] report a system in which the output of the random
number generator is used to spread the sequence of message bits over the cover by
determining the number of cover-elements which are left unchanged between two

elements used for information transfer.

1.8 Active and Malicious Attackers

Active attackers are able to change a cover during the communication process; It is a
general assumption that an active attacker is not able to change the cover and its
semantics entirely, but only make minor changes so that the original and the modified

cover-object stay perceptually or semantically similar. An attacker is malicious if

12

:

he forges messages or starts steganography protocols under the name of one

communication partner.
1.8.1 Active Attackers: Robust Steganography

Steganographic systems are extremely sensitive to cover modifications, such as image
processing techniques (like smoothing, filtering, and image transformations) in the case
of digital images and filtering in the case of digital sound. But even a lossy compression
can result in total information loss. Lossy compression techniques try to reduce the
amount of information by removing imperceptible signal components and so often

remove the secret information which has previously been added.

An active attacker, who is not able to extract or prove the existence of a secret message,
thus can simply add random noise to the transmitted cover and so try to destroy the
information. In the case of digital images, an attacker could also apply image processing
techniques or convert the image to another file format. All of these techniques can be
harmful to the secret communication. Another practical requirement for a steganography
system therefore is robustness. A system is called robust if the embedded information

cannot be altered without making drastic changes to the stego-object.

It should be clear that there is a trade-off between security and robustness. The more
robust a system will be against modifications of the cover, the less secure it can be, since
robustness can only be achieved by redundant information encoding which will degrade
the cover heavily and possibly alter the probability distribution P.

Generally, there are two approaches in making steganography robust. First, by foreseeing
possible cover modifications [10, 11] the embedding process itself can be made robust so
that modifications will not entirely destroy secret information. A second approach tries to
reverse the modifications that have been applied by the attacker to the cover, so that the

original stego-object can be restored.

13

1.8.2 Supraliminal Channels

If we assume that an active attacker can only make minor changes to a stego-object, then
every cover contains some sort of perceptually significant information which cannot be
removed without entirely changing the semantics of the cover. By encoding a secret
message in a way that it forms such a perceptually significant part, information can

be transmitted between two communication partners with high integrity. Craver [12] calls
such a channel a supraliminal channel: “information is hidden in plain sight, so
obviously, in fact, that it is impossible to modify without gross modifications to the

transmitted objects.”

The covers used for secret communication can be described by a cover-plot, a formal
description of the perceptually significant parts of the cover. Let S be the set of all cover-
plots and f be a function f: S — {0, 1}", called cover-plot Junction. To embed a bitstring
x€{0,1Nina supraliminal channel, Alice chooses one element s € f-1(x) and sends a
cover conforming to the cover-plot s over the insecure channel. Wendy probably suspects
the use of a subliminal channel and changes the cover slightly in an attempt to remove
secret messages encoded in the noise component, but is not able to change the cover-plot.
Bob reconstructs the cover-plot s out of the cover he received and applies the function f

in order to recover x; see Figure

14

,.’U k.(’ llf?h

11c10L... o Tt o100

! ~
/ \r:l\l.‘;‘!.‘\:;‘.: STE e e v;__-‘f
!(.; cueratoe ll
. IR SRS
A
L B

e o

Fig.1-3 Schematic description of a supraliminal channel.

1.8.3 Malicious Attackers: Secure Steganography

In the presence of a malicious attacker, robustness is not enough. If the embedding
method is not dependent on some secret information shared by sender and receiver, (i.e.,
in the case of pure steganography or public key steganography) an attacker can forge
messages, since the recipient is not able to verify the correctness of the sender's identity.
Thus, to avoid such an attack, the algorithm must be robust and secure. We can define a

secure steganographic algorithm in terms of four requirements:

15

Messages are hidden using a public algorithm and a secret key; the secret key
must identify the sender uniquely;

Only a holder of the correct key can detect, extract, and prove the existence of the
hidden message. Nobody else should be able to find any statistical evidence of a
message's existence;

Even if the enemy knows (or is able to select) the contents of one hidden message,
he should have no chance of detecting others;

It is computationally infeasible to detect hidden messages.

References
[t] Murray, A. H., and R. W. Burchfiled (eds.), The Oxford English dictionary: being a corrected
re-issue, Oxford, England: Clarendon Press, 1933.

[2] Herodotus, The Histories, London, England: J. M. Dent & Sons, Ltd, 1992,

[3] Kerckhoffs, A., "La Cryptographie Militaire," Journal des Sciences Militaires, vol. 9, Jan.
1883, pp. 5-38.

[4] Simmons, G. J., “The Prisoners’ Problem and the Subliminal Channel,” in Advances in
Cryptology, Proceedings of CRYPTO ‘83, Plenum Press, 1984, pp. 51-67.

[5] Craver, S., "On Public-Key Stéganography in the Presence of an Active Warden," Technical
Report RC 20931, IBM, 1997,

[6] Anderson, R. J., "Stretching the Limits of Steganography,” in Information Hiding: First
International Workshop, Proceedings, vol. 1174 of Lecture Notes in Computer Science, Springer,
1996, pp. 3948.

[7] Andersen, R. J., and F. A. P, Petitcolas, "On The Limits of Steganography,” IEEE Journal of
Selected Areas in Communications, vol. 16, no. 4, 1998, pp. 474-481.

[8] Cachin, C., "An Information-Theoretic Model for Steganography," in Proceedings of the
Second International Workshop on Information Hiding, vol. 1525 of Lecture Notes in Computer
Science, Springer, 1998, pp. 306-318.

[9] Mbller, S., A. Pfitzmann, and 1. Stirand, "Computer Based Steganography: How It Works and
Why Therefore Any Restrictions on Cryptography Are Nonsense, At Best," in Information
Hiding: First International Workshop, Proceedings, vol. 1174 of Lecture Notes in Computer
Science, Springer, 1996, pp. 7-21.
[10] Johnson, N. F., Z. Duric, and S. Jajodia, "A Role for Digital Watermarking in Electronic
Commerce,” to appear in ACM Computing Surveys.
[11] Johnson, N. F., "An Introduction to Watermark Recovery from Images,” in SANS Intrusion

Detection and Response Conference, Proceedings, 1999.

[12] Craver, S., "On Public-Key Steganography in the Presence of an Active Warden," Technical
Report RC 20931, IBM, 1997.

R,

CHAPTER 2
A SURVEY OF STEGANAGRAPHIC TECHN IQUES

Types of Steganographic Techniques

There are several approaches in classifying steganographic systems. One could categorize
them according to the type of covers used for secret communication. A classification
according to the cover modifications applied in the embedding process is another
possibility. We want to follow the second approach and group steganographic methods in

six categories, although in some cases an exact classification is not possible:

* Substitution systems substitute redundant parts of a cover with a secret message;

* Transform domain techniques embed secret information in a transform space of the

signal (e.g., in the frequency domain);

* Spread spectrum techniques adopt ideas from spread spectrum communication;

* Statistical methods encode information by changing several statistical properties of a

cover and use hypothesis testing in the extraction process;

* Distortion techniques store information by signal distortion and measure the deviation

from the original cover in the decoding step;

* Cover generation methods encode information in the way a cover for secret

communication is created.

18

Notations:

Any cover can be represented by a sequence of numbers ¢ of length I(c)

(ie., |l <i<ife)

» The stego-object is denoted by s which is again a sequence :

siof length Ifc).

» To index all cover-clements c.. ; If the index is itself indexed by some set, we use

the notation ji. When we refer to the jith cover-element we mean Ci.
* Refer to a stego key as k

» The secret message will be denoted by m, the length of m by I(m), and the bits

forming m by m., 1 <i < /fm). Unless otherwise stated, we assume that »:- (0, 1}.

2.1 Substitution Systems :

A number of methods exist for hiding information in various media. These methods range
from LSB coding—also known as bitplane or noise insertion tools—manipulation of
image or compression algorithms to modification of image properties such as luminance.
Basic substitution systems try to encode secret information by substituting insignificant
patts of the cover by secret message bits; the receiver can extract the information if he
has knowledge of the positions where secret information has been embedded. Since only
minor modifications are made in the embedding process, the sender assumes that they

will not be noticed by a passive attacker.

19

2,1.1 Least Significant Bit Substitution

The embedding process consists of choosing a subset {j1, . . ., jl(m)} of cover-elements
and performing the substitution operation c;i.. mi on them, which exchanges the LSB of
cii by mi (mi can either be 1 or 0). One could also imagine a substitution operation which
changes more than one bit of the cover, for instance by storing two message bits in the |
two least significant bits of one cover-clement. In the extraction process, the LSB of the

selected cover-elements are extracted and lined up to reconstruct the secret message.

In order to be able to decode the secret message, the receiver must have access to the
sequence of element indices used in the embedding process. In the simplest case, the
sender uses all cover-elements for information transfer, starting at the first element. Since
the secret message will normally have less bits than /(c), the embedding process will be
finished long before the end of the cover. In this case, the sender can leave all other cover
elements unchanged. This can, however, lead to a serious security problem: the first part
of the cover will have different statistical propertics than the second part, where no
modifications have been made. To overcome this problem, more sophisticated approach
is the use of a pseudorandom number generator to spread the secret message over the
cover in a rather random manner; a popular approach is the random interval method (e.g.
[1]). If both communication partners share a stego-key k usable as a seed for a random
number generator, they can create a random sequence ki, ..., kimand use the elements
with indices

o=k

Joo= Jeit ki, 122
for information transfer. Thus, the distance between two embedded bits is determined
pseudorandomly. Since the receiver has access to the seed & and knowledge of the
pseudorandom number generator, he can reconstruct k and therefore the entire sequence

of element indices j: This technique—which is especially efficient in the case of stream

covers.

20

Er— pa——

e e

2.1.2 Pseudorandom Permutations

If all cover bits can be accessed in the embedding process (i.e., if ¢ is a random access
cover), the secret message bits can be distributed randomly over the whole cover. This
technique further increases the complexity for an attacker, since it is not guaranteed that

subsequent message bits are embedded in the same order.

In a first attempt Alice could create (using a pseudorandom number generator) a
sequence ji, . . . ,jim of element indices and store the kth message bit in the element with
index jx. Note that one index could appear more than once in the sequence, since we have
not restricted the output of the pseudorandom number generator in any way. We call such
a case "collision." If a collision occurs, Alice will possibly try to insert more than one

message bit into one cover-element, thereby corrupting some of them.

To overcome the problem of collisions, Alice could keep track of all cover-bits which
have already been used for communication in a set B. If during the embedding process
one specific cover-element has not been used prior, she adds its index to B and continues
to use it. If, however, the index of the cover-element is already contained in B, she
discards the element and chooses another cover-element pseudo randomly. At the

receiver side, Bob applies a similar technique.
2.1.3 Image Downgrading and Covert Channels

In 1992, Kurak and McHugh [2] reported on a security threat in high-security operating
systems. Their fear was that a steganographic technique, called image downgrading,
could be used to exchange images covertly. Image downgrading is a special case of a
substitution system in which images act both as secret messages and covers. Given a
cover-image and a secret image of equal dimensions, the sender exchanges the four least
significant bits of the cover's grayscale (or color) values with the four most significant
bits of the secret image. The receiver extracts the four least significant bits out of the

stego-image, thereby gaining access to the most significant bits of the secret image.

21

e

s e

T e e

While the degradation of the cover is not visually noticeable in many cases, 4 bits are

sufficient to transmit a rough approximation of the secret image.
2.1.4 Cover-Regions and Parity Bits

We will call any nonempty subset of {ci, .. . ,cu} a cover-region. By dividing the cover
in several disjoint regions, it is possible to store one bit of information in a whole cover-
region rather than in a single element. A parity bit of a region I can be calculated by

- m ¢ 3 N
ol = 3 LED{e v mod?

4

In the embedding step, /(m) disjoint cover-regions /(1 <i < I(m)) are selected, each

encodes one secret bit 7 in the parity bit p(Z). If the parity bit of one cover-region /i does

not match with the secret bit to encode, one LSB of the values in /is flipped. This will

result in p(1) = mi. In the decoding process, the parity bits of all selected regions are f
calculated and lined up to reconstruct the message. Again, the cover-regions can be

constructed pseudo randomly using the stego-key as a seed.

2.1.5 Palette-Based Images)

In a palette-based image only a subset of colors from a specific color space can be used to
colorize the image. Every palette-based image format consists of two parts: a palette
specifying N colors as a list of indexed pairs (i, ¢),assigning a color vector ¢ito every
index i, and the actual image data which assign a palette index to every pixel rather than
the color value itself. If only a small number of color values are used throughout the

image, this approach greatly reduces the file size. !

Generally, there are two ways to encode information in a palette-based image: either the i
palette or the image data can be manipulated. The LSB of the color vectors could be used
for information transfer. Alternatively, since the palette does not need to be sorted in any i

way, information can be encoded in the way the colors are stored in the palette. Since I

22 il

there are N/ different ways to sort the palette, there is cnough capacity to encode a small
message. However, all methods which use the order of a palette to store information, are
not robust, since an attacker can simply sort the entries in a different way and destroy the

secret message (he thereby does not even modify the picture visibly).

Alternatively, information can be encoded in the image data. Since neighboring palette

color values need not be perceptually similar, the approach of simply changing the LSB

of some image data fails. Some steganographic applications therefore sort the palette so

that neighboring colors are perceptually similar before they start the embedding process.

Color values can, for instance, be stored according to their Euclidian distance in RGB

space: i

d= Ry

Since the human visual system is more sensitive to changes in the luminance of a color,
another (probably better) approach would be sorting the palette entries according to their
luminance component. After the palette is sorted, the LSB of color indices can safely be

altered.

2.1.6 Information Hiding in Binary Images

Binary images—Tlike digitized fax data—contain redundancies in the way black and white
pixels are distributed. Although the implementation of a simple substitution scheme is
possible (e.g., certain pixels could be set to black or white depending on a specific
message bit), these systems are highly susceptible to transmission errors and are therefore

not robust.

One information hiding scheme which uses the number of black pixels in a specific
image region to encode secret information was presented by Zhao and Koch [3]. A binary
image is divided into rectangular image blocks B, let Po(Bj) be the percentage of black
pixels in the image block Biand Pi(B;) the percentage of white pixels, respectively.
Basically, one block embeds a 1, if Pu(B) > 50% and a 0, if Po(By) > 50%. In the

23

I

R R TR

P B h

embedding process the color of some pixels is changed so that the desired relation holds.
Modifications are carried out at those pixels whose neighbors have the opposite color; in
sharply contrasted binary images, modifications are carried out at the boundaries of black

and white pixels. These rules assure that the modifications are not generally noticeable.

2.2 Transform Domain Techniques

We have seen that LSB modification techniques are easy ways to embed information, but
they are highly vulnerable to even small cover modifications. An attacker can simply
apply signal processing techniques in order to destroy the secret information entirely. In
many cases even the small changes resulting out of lossy compression systems yield to

total information loss.

It has been noted early in the development of steganographic systems that embedding
information in the frequency domain of a signal can be much more robust than
embedding rules operating in the time domain. Most robust steganographic systems

known today actually operate in some sort of transform domain.

Transform domain methods hide messages in significant areas of the cover image which
makes them more robust to attacks, such as compression, cropping, and some image
processing, than the LSB approach. However, while they are more robust to various kinds
of signal processing, they remain imperceptible to the human sensory system. One
method is to use the discrete cosine transformation (DCT) [4] as a vehicle to embed
information in images; another would be the use of wavelet transforms [5].
Transformations can be applied over the entire image [6], to blocks throughout the image
[7], or other variations. However, a trade-off exists between the amount of information
added to the image and the robustness obtained [8]. Many transform domain methods are

independent to image format and may survive conversion between lossless and lossy

formats.

2.3 Spread Spectrum and Information Hiding

Spread spectrum (SS) communication technologies have been developed since the 1950s

in an attempt to provide means of low-probability-of-intercept and antijamming

communications. Pickholtz[9] define spread spectrum techniques as "means of

transmission in which the signal occupies a bandwidth in excess of the minimum

necessary to send the information; the band spread is accomplished by means of a code

which is independent of the data, and a synchronized reception with the code at the

receiver is used for despreading and subsequent data recovery." Although the power of

the signal to be transmitted can be large, the signal-to-noise ratio in every frequency band

will be small. Even if parts of the signal could be removed in several frequency bands,

enough information should be present in the other bands to recover the signal. Thus, SS

makes it difficult to detect and/or remove a signal. This situation is very similar to a

steganography system which tries to spread a secret message over a cover in order to

make it impossible to perceive. Since spreaded signals tend to be difficult to remove,

embedding methods based on SS should provide a considerable level of robustness.

In information hiding, two special variants of SS are generally used: direct-sequence and

Jrequency-hopping schemes. In direct-sequence schemes, the secret signal is spread by a

constant called chip rate, modulated with a pseudorandom signal and added to the cover.

On the other hand, in frequency-hopping schemes the frequency of the carrier signal is

altered in a way that it hops rapidly from one frequency to the another.

2.4 Statistical Steganography

Statistical steganography techniques utilize the existence of "1-bit" steganographic

schemes, which embed one bit of information in a digital carrier. This is done by

modifying the cover in such a way that some statistical characteristics change

significantly if a "1" is transmitted. Otherwise the cover is left unchanged. So the receiver

must be able to distinguish unmodified covers from modified ones.

i

In order to construct a /(m)-bit stego-system from multiple "1-bit" stegosystems, a cover

is divided into /(m) disjoint blocks Bi, . . ., Bim. A secret bit, m, is inserted into the ith

block by placing a "1" into Biif mi= 1. Otherwise, the block is not changed in the
embedding process. The detection of a specific bit is done via a test function which

distinguishes modified blocks from unmodified blocks:

i fri L Dlock #3, was modified o oihe aihedding provess
i O otherwise

I
!
! The function f can be interpreted as a hypothesis-testing function; we test the

; nullhypothesis "block Biwas not modified" against the alternative hypothesis "block B
‘ was modified." Therefore, we call the whole class of such steganography systems

statistical steganography. The receiver successively applies f to all cover-blocks B:in

order to restore every bit of the secret message.

2.5 Distortion Techniques

j [n contrast to substitution systems, distortion techniques require the knowledge of the
| original cover in the decoding process. Alice applies a sequence of modifications to a
| cover in order to get a stego-object; she chooses this sequence of modifications in such a
way that it corresponds to a specific secret message she wants to transmit. Bob measures
the differences to the original cover in order to reconstruct the sequence of modifications

applied by Alice, which corresponds to the secret message.

In many applications, such systems are not useful, since the receiver must have access t6
the original covers. If Wendy also has access to them, she can easily detect the cover

modifications and has evidence for a secret communication. If the embedding and

extraction functions are public and do not depend on a stego-key, it is also possible for

Wendy to reconstruct secret messages entirely.

26 f i‘ ll

e LI TR SN

Distortion techniques can easily be applied to digital images. Using a similar approach as
in substitution systems, the sender first chooses I(m) different cover-pixels he wants to
use for information transfer. Such a selection can again be done using pseudorandom
number generators or pseudorandom permutations. To encode a 0 in one pixel, the sender
leaves the pixel unchanged; to encode a 1, he adds a random value A, to the pixel's color.
Although this approach is similar to a substitution system, there is one significant
difference: the L.SB of the selected color values do not necessarily equal secret message
bits. In particular, no cover modifications are needed when coding a 0. Furthermore, A,
can be chosen in a way that better preserves the cover's statistical properties. The receiver
compares all I(m) selected pixels of the stego-object with the corresponding pixels of the

original cover. If the i pixel differs, the i" message bit is a 1, otherwise a 0.

2.6 Cover Generation Techniques

In contrast to all embedding methods presented above, where secret information is added
to a specific cover by applying an embedding algorithm, in this steganographic technique
one generates a digital object only for the purpose of being a cover for secret

communication,
In our project we have implemented the Least Significant Bit Substitution Method

using Pseudorandom number generation for determining the maximum allowed gap

between subsequent embeddings of the message.

27

References il

[1] Mblier, S., A. Pfitzmann, and 1. Stirand, "Computer Based Steganography: How It Works and
Why Therefore Any Restrictions on Cryptography Are Nonsense, At Best," in Information |

Hiding: First International Workshop, Proceedings, vol. 1174 of Lecture Notes in Computer

Science, Springer, 1996, pp. 7-21. -!i'
{2] Kurak, C., and J. McHughes, "A Cautionary Note On Image Downgrading,” in I[EEE T i

Computer Security Applications Conference 1992, Proceedings, IEEE Press, 1992, pp. 153-1 59.
{31 Zhao, J., and E. Koch, "Embedding Robust Labels into Images for Copyright Protection,” in
Proceedings of the International Conference on Intellectual Property Rights for Information,
Knowledge and New Techniques, Miinchen, Wien: Oldenbourg Verlag, 1995, pp. 242-251.

[4] Koch, E., and J. Zhao, "Towards Robust and Hidden Image Copyright Labeling,” in IEEE
Workshop on Nonlinear Signal and Image Processing, Jun. 1995, pp. 452—455.

[5] Xia, X., C. G. Boncelet, and G. R, Arce, "A Multiresolution Watermark for Digital Images,”
in Proceedings of the [EEE International Conference on Image Processing (ICIP'97), 1997.

{6] Cox, L, et al., "A Secure, Robust Watermark for Multimedia," in Information Hiding: First
International Workshop, Proceedings, vol. 1174 of Lecture Notes in Computer Science, Springer, !
1996, pp. 185-206. bl
{7} Rhodas, G. B., "Method and Apparatus Responsive to a Code Signat Conveyed Through a :"'%{‘ L-!i
Graphic Image," U.S. Patent 5,710,834, 1998, 4 i

[8] Johnson, N. F., and S. Jajodia, "Exploring Steganography: Seeing the Unseen," IEEE l.’,‘f')f'
Computer, vol. 31, no. 2, 1998, pp. 26-34. &t
[9] Pickholtz, R. L., D. L. Schilling, and I.. B. Miistein, "Theory of Spread-Spectrum L4
Communications—A Tutorial," IEEE Transactions on Communications, vol. 30, no. 5, 1982, pp. i
855-884. bl

CHAPTER 3

THE BITMAP (.bmp) FILE FORMAT

Introduction
There are many graphic file formats but mainly they are separated into two main families

of graphics: raster and vector

Raster Graphics:
A raster graphics image is a data file or structure representing a generally rectangular grid
of pixels, or points of color, on a computer monitor, paper, or other display device. The

color of each pixel is individually defined.

Vector Graphies:
As opposed to the raster image formats above (where the data describes the
characteristics of each individual pixel), vector image formats contain a geometric

description which can be rendered smoothly at any desired display size.

In our project we have focused only on BMP (bit mapped) file which are raster image

file formats.

3.1 BMP FILE

All bitmap files contain information about the image it contains. There is no “standard”
format for all bitmap images, but there is a generally accepted bitmap format (primarily
because of its widespread use). This is the format which follows specifications as laid
down by Microsoft. Other bitmap images available are those produced by OS/2. The

implementation of our project uses this widespread format only. The structure of this

format is explained below.

29

1. Bitmap Header: stores general information about the bitmap file.
2. Bitmap Information: stores detailed information about the bitmap image.

3. Color Palette: stores the definition of the colors being used.

A typical bitmap file usually contains the following blocks of data and in this order:
4. Bitmap Data: stores the actual image, pixel by pixel.

The basic file structure

_
_
HIAVIHSADVINLIS B !
Y3AVIHPALVINLIG 104 :
“

9

I
I
I
- I I
| 1 1
I 1 i
I | |
I I |
I | |
| 1 1
ko 1 1
s g ek _ |
| () pesn s10109 juepoduyy jo oN m !]
| H 1 1
! | i
() g deug | | F i g
=l 09 Jj0 0 e
104319840 i (¥) pesn s10100 jo ON _ " 2 m m
T I
I h 1 < | =
Q
“ (v) vopnjosey eoisp. 1| A |
e I w.. ! o
i o = i &
| () uomnjosey jejuozuoy | | = 0 (4B
(2) pansosay = | m _ M
| 5 W 2
! (v) 921 abew : ! ! 3
! [! g
i g -3 i en
(z) pansasay _ Lo i =
“ (¥) poulapy uoissaidwion : " “ m
u -
_ i i =
" (2) 19x1d 12 sng - _ —
! . Wit
: (z) ssueld J0j0D E ! o
(v) deuyg jo szig | | e “ =
m (¥) yBioH A !
i o _
_ Lo B g
! (7) uspy P = 235 |
— 1 L 258 0
_ o —
(z) soquiny oibeyy | | m - O 3
: (¢) @715 Japeay Do _
Ry siiens Dbl Loy s N R e 1

Iopeay deung uotnjeuroyuy deunig

3.1.1 Bitmap Header

This block of bytes is used for identification. A typical application will read this block
first to ensure that the file is actually a bitmap file gnd that it is not damaged. It is 14

bytes in size and is of the same structure for all bitmap variants.

e Bytes #0-1 store the magic number used to identify the bitmap file. Typical
values for these 2 bytes are 0x42 0x4D (ASCII code points for ‘B* and ‘M),
Other variants for these two bytes may be found for OS/2 Bitmap files.

e Bytes #2-5 store the size of the bitmap file using a dword (double word).

* Bytes #6-9 are reserved. Actual values depend on the application that creates the

image. : "!
° Bytes #10-13 store the offset, i.e. starting address, of the byte where the bitmap

data can be found.

3.1.2 Bitmap Information sl

=

This block of bytes tells the application detailed information about the image, which will

be used to display the image on the screen. It starts at byte #14 of the file. It varies

o

considerably for different bitmaps.]

Size Header Supported By

40 Windows V3 All Windows OSes since Windows 3.11

12 0S/2Vl1 0S/2 and also all Windows OSes since Windows 95/NT :
64 0S2V2 |
108 Windows V4 All Windows OSes since Windows 98/NT4 !
124 Windows V5 Windows 2000/XP and newer

3N

The bytes in a Windows V3 header are arranged as:

o Bytes #14-17 specify the header size. Values are: 40 — Windows V3,12 - 08/2
V1, 64 - 0S/2 V2, 108 — Windows V4, 124 — Windows V5

* Bytes #18-21 store the bitmap width in pixels.

e Bytes #22-25 store the bitmap height in pixels.

* Bytes #26-27 store the number of color planes being used. Not often used.

* Bytes #28-29 store the number of bits per pixel, which is the color depth of the
image. Typical values are 1, 4, 8, 16, 24.

1 —2 Colors
4 — 16 Colors
8 — 256 Colors

16 — 65536 Colors .
24 —16.7 Million Colors

e Bytes #30-33 define the compression method being used. Possible values are 0,1,
2,3,4 and 5:

0 - none (also identified by Bl RGB)

I - RLE 8-bit/pixel (also identified by BI RLES)
2 — RLE 4-bit/pixel (also identified by BI_RLE4)
3 - Bit field (also identified by BI_BITFIELDS) IITHIRAE |
4~ A JPEG image (also identified by BI_JPEG) |
5 — A PNG image (also identified by BI_PNG) |

However, since most BMP images are uncompressed, the most common value is 0.

* Bytes #34-37 store the image size. This is the size of the raw bitmap data (see
below), and should not be confused with the file size. |

e Bytes #38-41 store the horizontal resolution of the image. (pixel per meter) k

* Bytes #42-45 store the yertical resolution of the image. (pixel per meter)

32

o Bytes #46-49 store the number of colors used. Even though 2 "™ gives the

number of total colors used, this may not represent the actual number of colors
used in the color palette.

e Bytes #50-53 store the number of important colors used. This number will be

equal to the number of colors when every color is important. Otherwise it is used
by devices that are incapable of showing those many colors mentioned in bytes #

46-39.

The above is the description of a 54-byte header found in Windows V3. Windows V4 and
Windows V5 are so designed that these bytes remain the same and new information is

added after these bytes. The format for an OS/2 V1 header is shown below.

e Bytes 14-17 have the value 12.
o Bytes #18-19 store the bitmap width in pixels.
» Bytes #20-21 store the bitmap height in pixels.

» Bytes #22-23 store the number of color planes being used.

o Bytes #24-25 store the number of bits per pixel.

3.1.3 Color Palette

This block of bytes defines the colors being used inside the image. As stated above, the
bitmap picture will be stored pixel by pixel. Each pixel is described by a value which will

be stored using one or more bytes. Therefore, the purpose of the color palette is to tell the

application the actual color that each of these values corresponds to.

3.1.4 Bitmap Data

This block of bytes describes the image, pixel by pixel. Pixels are stored starting in the 1
bottom left corner going from left to right and then row by row from the bottom to the
top. Each pixel is described using one or more bytes. If the number of bytes matching a

horizontal line in the image is not divisible by 4, the line is padded with null-bytes.

33

\ We have implemented a Least Bit Substitution Steganographic method for

f embedding message into 16-bit and 24-pit uncompressed bitmap images. This
was done so as to avoid the complication involved in dealing with palette-based
Iimages. With palette based images, separate types of steganographic
techniques would need to be used. Also uncompressed images were used so
that Least Significant bit Substitution would be possible. Also significant distortion
would be noticed using these methods with anything less than 16-bits per pixel

images.

CHAPTER 4

r THE PROJECT

4.1 Theory

4.1.1 Outline

The project aimed on implementing a simple steganographic method on image files using
Graphical user interface for inputs and outputs. The Least Significant Bit Substitution
Method was implemented with some minor modifications on 16-bit and 24-bit
uncompressed bitmap images so that the embedding becomes secure and makes use a key

which must be mutually shared between the participants of the communication. °

Diagrammatically, the process of steganography as we've implemented it is:

Key Key

SENDER \ RECIEVER
Steganographic | Stego-Object Steganographic
Methods(E) " Methods(D) —> Message

Message)
Cover-Object

E: Encryption
D: Decryption

Fig. 4-1 Process of Steganography i

4.1.2 Algorithms Used
Briefly, the key is used a seed (o a pseudorandom number generator to generate
embedding gaps. Message bits are embedded after these gaps in the bitmap image. This

makes it a Secret-Key Steganographic technique. The algorithms are shown below.

35

Algorithm for Embedding:

Fixed-embedding-gap= constant
Maximum-embedding-gap=User-input

Initialize pseudorandom number generator with key as seed
Message = User-Input
Message-Length = Length(Message)

Until Message-Length gets exhausted
Get next Message-Length bit
Get next pseudorandom number modded with Fixed-embedding-gap into prn
Embed Message-Length bit after prn pixels in image

Until Maximum-embedding-gap gets exhausted
Get next Maximum-embedding-gap bit
Get next pseudorandom number modded with Fixed-embedding-gap into prn
Embed Maximum-embedding-gap bit after prn pixels in image

Until Message bits get exhausted
Get next Message bit(s)
Get next pseudo-random number modded with Maximum-embedding-gap into prn
Embed Message bit after prn pixels in image

Image has embedded data

Fig. 4-2 Algorithm for Embedding

36

Algorithm for Extraction:

Fixed-embedding-gap= constant
Maximum-embedding-gap="?
Message-Length="?

Message="?

Initialize pseudorandom number generator with key as seed

Until Length(Message-Length) bits are extracted
Get next pseudo-random number modded with Fixed-embedding-gap into prn
Get next bit from image after prn pixels in image into Message-Length

Until Length(Maximum-embedding-gap) bits are extracted
Get next pseudo-random number modded with Fixed-embedding-gap into prn
Get next bit from image after prn pixels in image into Maximum-embedding-gap

Until Message-Length bits are extracted
Get next pseudo-random number modded with Maximum-embedding-gap into prn
Get next bit from image after prn pixels in image into Message

Message contains the (hidden) message to be extracted

Fig. 4-3 Algorithm for Extraction

Maximum-embedding-gap and Fixed-embedding-gap are variables that are used for a
mod operation with the pseudorandom number that is generated. This gives us the actual
number of pixels to leave before going on to the pixel into which message bits are
embedded. Fixed-embedding-gap is a constant. This is needed so that the length and the
Maximum-embedding-gap can be embedded into the image file to be extracted at the
other end.

The Maximum-embedding-gap is made variable so that the participants of the
communication can decide between more payload and more security. When the

maximum-embedding-gap is more, the data will be embedded far apart, providing

security in the way that the image will be distorted less as the variations will be far apart.

However if the Maximum-embedding-gap is less, more message bits will be able to get

into the image at the cost of the aforementioned security.

37

4.1.3 Embeddings in Bitmap Files

The image file used to embed data was of type bitmap (MIME : image/x-ms-bmp)
Only 16-bit and 24-bit uncompressed bitmaps were used for reasons mentioned earlier at
the end of section 3.1.4.

Uncompressed bitmap images were used. The structure of the pixel is shown along with

the bits where message bits would be embedded.

5-bits of 5-bits of 5-bits of

Data Embedded in these Least Significant Bits of each

Figure 4-4 Bytes in a pixel of a 16-bit uncompressed bitmap image

8-bits of 8-bits of

Data Embedded in these Least Significant Bits of each

Figure 4-5 Bytes in a pixel of a 24-bit uncompressed bitmap image

1
|
|
|

The 16-bit bitmapped image has two bytes allocated to one pixel with 5-bits for each
color and 1 bit unused. For the embedding process the least significant bits of these colors
is used along with the 1 bit which is unused. All 4 bits are shown in the figure. Similarly
for 24-bit bitmapped images, 3 bytes are allocated. Here there is no unused bit and hence

in 3 bytes only 3 bits of message can be embedded.

39

4.2 Implementation Details

Language Used C#

Libraries Used NET 2.0

IDE Visual Studio 2005

Platform Microsoft® Windows XP Professional
User Interface Graphical (Windows Application)

The Solution is organized into 3 projects:

1. BitmapStego
This is a class library project. It contains functions that perform steganographic
embedding and extraction of message data on 16-bit and 24-bit bitmap files. It is
the library that is referenced by the other two projects mentioned below.

2. LSBStegoEmbedding
This is windows application. It contains GUI code that references the
BitmapStego Project and embeds data into bitmap files.

3. LSBStegoExtraction
This is a windows application. It contains GUI code that references BitmapStego

and extracts data from the bitmap files.

The primary functions used for embedding and extracting data from 16-bit and 24-bit
Bitmap files lie in a class library which is built to give a DLL file (Project: BitmapStego).
This DLL file is referred to in the projects which have the GUL.

The LSBStegoEmbedding project draws three sections —
1. Input Properties
a. Cover Object BMP : The user must browse to the cover object; After all
checks are made, the disabled text field will display the path if the file is
valid. ‘

b. Input File : The user must specify the message as a file of any extension.

40

¢. Key (in Hexadecimal) : The user must input a key in hexadecimal. This
will be the key used in the secret-key steganography technique used to
embed the data. Ideally the key should be 16 bytes or longer, though the
software on its own puts no restriction on the size — upper or lower.

2. Set Payload Capacity : The payload capacity which is actually the maximum
embedding gap (as shown in section 4.1.2 is specified by the user. The minimum
allowed is 5 and the maximum allowed is 99.

3. Generate The Stego Object : The user must browse to the location where he/she

wants to save the resulting stego-object.

The user must specify a valid cover-object, i.e. it must be a bitmap file which conforms to
the Windows V3 specification (or those that are backward-compatible with it). Also it
must be a 16-bit or 24-bit uncompressed bitmap image.

The program will also throw an exception and draw a dialog box informing the user if the
payload-capacity settings are such that the message file cannot be embedded because its
size exceeds the payload capacity of the cover-object. The user must then try and adjust
the payload-settings. If this does not work, the message file simply cannot be embedded.
Either a smaller message file must be tried or a larger image file must be used as the

cover object.

The LSBStegoExtraction project draws 2 sections —
1. Set Input Properties
= Stego-Object : The user must browse to the stego-object’s location.
= Key : The user must specify the key used while embedding the
message. This will be the key used as secret-key steganography.
2. Extract Message File : The user must browse to the location where the
message file is to be saved. The user must also know the extension of the

file to be saved as this information is not embedded in the stego-object.

Exception handling has been built into the project. A friendly dialog box stating the cause

of the exception is displayed.

41

Screenshots of the GUIs for embedding and extracting data are shown, following which

flowcharts of important functions as they are implemented are shown.

42

|

4.3 Snapshots

mbedding WI-I'\&.D\;U. A

— Step 1: SetInput Properties

Cover Object BMP
| Browse

Input File

Browse

Key (In Hexadecimal)

— Step 2.; Set Payload Capacity

v
More Payload Mote Secwre

— Step 3: Generate The Stego Object

Generate Stego Object

Fig. 4-6 The Embedding Window in default mode

Embedding Window

~ Step 1 : Setinput Properties

Cover Object BMP
] Browse

Input File
[Biowse | _

Key (In Hexadecimal)
8d1feb1 2dfefbfdcact 703695 2fad7e9

— Step 2 : Set Payload Capacity

=1
v

More Payload Mote Seoute

~ Step 3: Generate The Stego Object

Generate Stego Ohject

Fig. 4-7 The Embedding Window after having all fields filled.

The “Key” field contains a 128 bit hexadecimal number.
The payload capacity determines the trade-off between Payload and Security.

The user must now press the “Generate Stego Object” button and choose the destination

of the file to saved.

ktraction Window :

— Step 1. SetInput Properties

Stego Object

l _ Browse I

Key

- Step 2: Extract Message File

Extract Message File

Fig. 4-8 The Extracting Window in Default Mode

xtraction Window

— Step 1: Setinput Properiies

Stego Dbject

| Browss I

Key
B feb1 2dieibfdcact 7098952 ad7e9

~— Step 2 : Extract Message File

Extract Message File

Fig 4-9 The Extraction Window with all fields filled.

The “Key” is a hexadecimal number.
The user can now press the “Extract Message File” button and choose the location and

extension of the message file to be extracted. (the receiver must know the extension of

the message file). b |

4.4 Flowcharts

Extract Message from
Bitmap Image Start

T

Read
StegoObject
<ey,
OutoutPath

Set "Qffsel” to position in Bitmap File from where image data
begins in SteqoObject .

Y o

Extract 4 Bytes of Messagel ength from StegoObject Using i
Kev and Embedding Gap = 10 at Offset

v

Extract 1 byte of MaxEmbeddingGap From SeaoObject Using
Key and Embedding Gap = 10 at Offset

A 4
Extract MessagelLength Bytes of Message from
StegoObject using Key and Embedding Gap =

MaxEmbeddingGap

h 4

Write Extracted Massage to a File

Successfully
Completed

Fig. 4-10 Flow Chart for Extracting Message from Bitmap Image

47

Extract Message from
16-Bit Bitmap Image
Start

5 Isj=8
Yes
h 4
Ha 1=0,j=0
>
- Y
maskArray ={
0" Bit k=k+1
5" Bit,
2% Bit,
" Bit
}
-
v Y$s
Read 2 bytes from H
StegoObject into P
from Offset Get the Next Pseudorandam Number, mod it i
with the Embedding gap and edd it to ‘
Offget + 2 to get the new Offset 1
< | | No
B
\\\
1s maskArray[k]™ bit oﬁk
“._byte of ReadFromFilen 17~
No |
Yes |
¥ | 3
Set " bit of i byte of Set " bit of i* byte of o
DataToBeWiitten to 1 DataToBeWritten to 0
S h 4
Return

DataToBeWritten

i=j+1

/ Sucoesefu"y\\

u:ompleted)

Fig. 4-11 Flow Chart for Extracting Message from 16 -bit Bitmap Image

Extract Message from
24-Bit Bitmap Image
S

v Has the required length of
ilten been
Z0. 1= = reached?
4
h 4 No
Read 3 bytes from

SteaoObiject inta

from Offset
S | No
4 No
Y
fsk=3
15.0" bit of K" byte of
ReadFromFilea1? Ygs
No
N Get the Next Pssudorandom Number, mod it | ves
e with the and add itto
Yes Offset + 2 to get the new Offsat
¥
¥ Set {" bit of " byte of
DataToBeWiilten to 0
Set " bit of " byte of
I to1
- fias the requirad length
been
reached?
h 4
j=j+1
Yes
5 Returmn
lsj=8 DataToBeWritten "
Yes

Successfully
Completed

Fig. 4-12 Flow Chart for Extracting Message from 24- bit Bitmap Image

Read InputPath,
OutputPath, Key,
Message,
MaximumEmbedding
Gap

s file a 16-bit or a 24-bit
uncompressed bitmap?

Yes

h 4

Calkeulate Payload
based on Key and
Maximum
Embedding Gap

No

Is Payload greater

than message size?

Yes

A J No

Set “Offset” to position in
Bitmap File from where image
data begins in InputPath

v

Initialize Pseudo Random Number

. 4

Copy file from InputPath to
OutputPath

Y, A

S /I‘Tot Successfully
(ot

Y
Embed at Offset Length
of "Message” witha
Fixed Embedding Gap =
10 in QutputPath

A 4

Embed at Offset Maximum
Embedding Gap with a Fixed
Embedding Gap = 10 in

QutputPath

v

Embed at Offset Message

with a Embedding Gap =
MaximumEmbeddingGap
in_QutputPath

K Complated

Fig. 4-13 Flow Chart for Embedding Message in Bitmap Image

Embedding :
Function for 16-bit isj=8
Bitmap Start

e, s Yes
= = = eSS, SoNR R
i el Na 120,j=0
e
maskArray "
—*__{ 4
Q'f; bit,
3 k=k+1
Zom e

L Isk=4

h 4 _ Yes
v

Read 2 bytes beginning from
Offset from file; OutputPath Overwrita 2 bylsslof
into ReadFromFile ReadFromFile into

No OutputPath beginning at

h 4

Get the Next Pseudorandom
Number mod it with

No Embedding Gap and add it to
Offset + 2 to get the new
Offset

Change maskArcay[kl" Ghange raylk™ bit
bit of k2% hyte of of ki2" byte of
ReadFromFile to 1 ReadFromFile to 0 |

Is ri
exhausted?

Yes

, SESRTCE |

@ssfuuy ' E
Completed |
A T |

\,

et

Fig. 4-14 Flow Chart for Embedding Message in 16 -bit Bitmap Image

51

Embedding
Function for 24-bit
_Bitmap Start

. 4

Read 3 bytes beginning from
Offset from file: OutputPath
into ReadFromFile

bit of mf

J
DataToBeWritten a
1?

No

b o I

Change Ql_r_' bit of K™

byte of ReadFromFile
to 1

Change 0" bit of k™ byte of

ReadFromFile to 0

No

P

S i e,
T—~__ exhausted? /
‘\\ /

No

4

k=k+1

6k=3

Yes
d, ST

Overwrite 3 bytes of
ile into
OuiputPath beginning at

y.

Get the Next Pseudorandom
Number mod it with

Embedding Gap and add it to
Offset + 3 to getthe new
Offset

Is DataToBeWritten
exhausted?

Yes
h 4

(Successfully
\ Completed]

Fig. 4-15 Flow Chart for Embedding Message in 24 -bit Bitmap Image

52

Yes

T i |

4.5 Class Documentation for Project: BitmapStego

BitmapStego (Class)
BMPSimplel.SB

Provides steganographic functions for embedding and extracting information from 16-bit

and 24-bit uncompressed bitmap images.

Fields
Used to store the first 2 bytes of the file header. For a
BMPFileType compatible bitmap this must be "BM". Set by
GetlmageProperties()
BMPFileSize Filesize of the bitmap. Set by GetImageProperties()
Offset from where Bitmap data begins. Set by
BMPFileOffset
GetlmageProperties()
BMPFileWidth Width of the bitmap image. Set by GetlmageProperties() T:: N
BMPFileHeight Height of the bitmap image. Set by GetlmageProperties() ‘
Color bitcount of the bitmap image. Can be 1,4,8,16,24,32.
BMPFileBitCount i
Set by GetImageProperties()
Type of bitmap compression. Can be
0: No Compression
|
1: RLE 8 bit/pixel i
2: RLE 4 bit/pixel '
BMPFileCompression
3: Bit Field
4: JPG Image

5: PNG Image
Set by GetlmageProperties()

53

BMPFileColorsUsed

BMPFileImpColors

prn

maxEmbeddingGap

toRead
toReadPath

fixedEmbeddingGap

Properties

MaxEmbeddingGap

No of colors used in bitmap
1: 2

4: 16

8: 256

16: 65536

24: 16777216

No of important colors used in bitmap

Object of type Random which is seeded with the key and is
used to get the next Pseudorandom number

The maximum gap allowed between embeddings of data.
Bigger implies lesser distortion, less payload. Smaller implied
more distortion, more payload.

The 7:System.10. FileStream Object associated with the
Original Bitmap.

The path of the original bitmap file

The fixed embedding gap used while embedding the Message * i
length and Maximum Embedding Gap \

To set and get the maxEmbeddingGap. This value must be
between 0 and 99

System.ArgumentOutOfRangeException: Thrown when the
maximum embedding gap is tried to be set to less than 0 or |

mare than 99

54

Methods

GetlmageProperties(System,IO.FileStream)

Sets the private fields describing various properties of the bitmap image.

Parameters Exceptions

fs: A System.10.IOException: Thrown
T:System. 1O, FileStreamobject when the image does not have 54
that points to the bitmap file. bytes to be read.

CheckImagePreRequisites(System.1O.FileStream)
Checks whether bitmap is a windows bitmap, is at least a 16-bit image and whether it is
not compressed. Failing any of these conditions causes it to throw a

T:System.10.InvalidDataException

Exceptions
Parameters

- System.1O.InvalidDataException:
S

: Thrown when the image is either not
T:System.10. FileStreamobject

; _ bitmap, not 16-bit or 24-bit or is
that points to the bitmap file.
compressed

InitPRNG(System.Byte[])
Initializing the PseudoRandom Number Generator with the key

Parameters

key: The key to be used in

steganography

GetNextPRN

Gets the next pseudorandomly generated number

Return Value

Return Value:
The next

pseudorandom

55

number
CheckPayLoad(System.Byte[])
Returns payload available in bitmap file

Return Value

Parameters Return Value:

An estimate of
key: The key to be used in

the payload
steganography)

amount In

bytes
Constructor: BMPSimpleLSB(System.String,System.Int32)

Constructor taking as arguements the Path of the original bitmap file and the maximum

embedding gap. The image properties are checked here.

Parameters
Exceptions
path: The path of the Bitmap

acting as the stego object System.10.I0Exception: Thrown

when there is problem opening the

meg: The maximum "path" in Read-Only mode

embedding gap

WriteNewBMPFile(System.String,System.Byte[],System.Byte[])

Writes out the stego object - the changed bitmap file to a given location. It uses the
image file passed to the constructor as the Cover Object This function calls in
WriteNewBMPFile16 and WriteNewBMPFile24 to do the work depending on whether
the file is a 16-bit or a 24-bit bitmap. It also creates a filestream object which it passes
on to these functions.

Parameters Exceptions

path: The path of the new System.IO.IOException: Thrown

bitmap file when there is problem in either

copying the fule to "path" or there is

56

key: The key to be used in a problem opening the file in write

steganography mode

msg: The byte stream of the

message to be embedded
WriteNewBMPFile16(System.[O.FileStream,System.Byte[], System.Byte[])
Writes out a new 16-bit bitmap file with the message embedded in it based on the key.

Parameters

fs: The
T:System.10.FileStream object
associated with the new

bitmap file

key: The key to be used in
steganography

msgByteArray: The byte
stream of the message to be
embedded

WriteNewBMPFile24(System.1O.FileStream, System.Byte[],System. Byte[])
Writes out a new 24-bit bitmap file with the message embedded in it based on the key.

Parameters

fs: The
T:System 10. FileStream object
associated with the new

bitmap file

key: The key to be used in
steganography

57

msgByteArray: The byte
| stream of the message to be
\ embedded

ReadBMPFile(System.Byte[])

Extracts the embedded message in the stego object based on the key. The image passed

to the constructor is taken as the stego object. The work is actually done by
ReadBMPFile16 and ReadBMPFile24 based on whether the bitmap is 16-bits or 24- !
bits.

Return Value
Exceptions
Parameters
Return Value:
. System.JO.IOException: Thrown
key: The key to be used in A bytestream _
w when reading from the file creates
steganography containing the
problems
message

ReadBMPFile16(System.IO.FileStream,System.Byte[])

Extracts the embedded message from a 16-bit bitmap image based on a key.

Parameters 5 i
fs: The Return Value 2/ \

T:System.10. FileStream object Tatnrn Valie: !

associated with the stego A bytestream |

i Ll 2 containing the

key: A bytestream containing ege

the message
ReadBMPFile24(System.l1O.FileStream,System.Byte[])
Extracts the embedded message from a 24-bit bitmap image based on a key.

Parameters Return Value

fs: The Return Value:
T:System.lO. FileStream object A bytestream

58

associated with the stego containing the

bitmap file message

key: A bytestream containing

the message

4.6 Directory Structure & Files

\LSBStego
LSBStego.sin IDE Generated File For Solution
LSBStego.suo IDE Generated File For Solution

\LSBStego\BitmapStego

BitmapStego.csproj Project File for BitmapStego Project
Classl.cs C# Program
\LSBStego\LSBStego

ClassDiagram].cd

Class Diagram File

Form].resx Resources used by GUI
Forml.cs Event Handling Code for GUI
Forml.Designer.cs Code Generated by IDE
LSBStego TemporaryKey.pfx IDE Generated File

LSBStegoEmbedding.csproj

Project File for LSBStegoEmbedding Project

LSBStegoEmbedding.csproj.user

Project File for LSBStegoEmbedding Project

Program.cs C# Code containing Main()
\LSBStego\LSBStegoExtraction

Form1.resx Resources used by GUI

Forml.cs Event Handling Code for GUI

Form1.Designer.cs Code Generated by IDE

LSBStegoExtraction.cspro)

Project File for LSBStegoExtraction

Program.cs

C# Code containing Main()

\LSBStego\BitmapStego\obj

59

i, . |

BitmapStego.csproj.FileList.txt

\LSBStego\BitmapStego\Properties

AssemblylInfo.cs

Information About the Assembly

\LSBStego\LSBStego\Properties

Assemblylnfo.cs

Assembly Information

Resources.resx

Resources Used by LSBStego

Resources.Designer.cs

IDE Generated File

Settings.settings

IDE Generated File

Settings.Designer.cs

IDE Generated File

\LSBStego\LSBStego\publish

LSBStego.application

Published (Deployment) File

LSBStego_1_0_0_0.application

Published (Deployment) File

setup.exe

Published (Deployment) File

\LSBStego\LSBStegoExtraction\Properties

AssemblylInfo.cs

Assembly Information

Resources.resx

Resources Used by LSBStego

Resources.Designer.cs

IDE Generated File

Settings.settings

IDE Generated File

Settings.Designer.cs

IDE Generated File

\LSBStego\BitmapStego\bin\Debug

BitmapStego. XML

XML Documentation of Project BitmapStego

\LSBStego\BitmapStego\bin\Release

BitmapStego.pdb

IDE Generated File

BitmapStego.dll

Compiled class library of project BitmapStego

\LSBStego\BitmapStego\obj\Release

BitmapStego.pdb

IDE Generated File

BitmapStego.dll

Compiled class library of project BitmapStego

\LSBStego\LSBStego\bin\Debug

LSBStego. XML

XML Documentation of Project LSBStegoEmbedding

60

LSBStego.vshost.application Compiled GUI Application

LSBStego.vshost.exe Compiled GUI Application l

LSBStego.vshost.exe.manifest Compiled GUI Application

LSBStego.exe Executable GUI Application ‘
\LSBStego\LSBStego\publish\LSBStego_l_O_([_O |

BitmapStego.dll.deploy Published (Deployment) File

LSBStego.exe.deploy Published (Deployment) File

LSBStego.exe.manifest Published (Deployment) File
\LSBStego\LSBStegoExtraction\bin\Debug

LSBStegoExtraction. XML XML Documentation of Project LSBStegoExtraction

LSBStegoExtraction.vshost.exe | Compiled GUI Application

LSBStegoExtraction.exe Executable GUI Application

The LSBStego.exe and LSBStegoExtraction.exe are the executable files for embedding ‘

and extraction respectively.

61

4.7 Compilation Environment

Architecture X86

Processor Intel Pentium 4 2.8GHz (HT Enabled)
Main Memory 512MB RAM

Non-Volatile Store 120GB IDE HDD

Platform Microsoft Windows XP Professional
IDE Microsoft Visual Studio 2005

62

4.8 Experimental Setup

Two experiments were conducted with two different cover objects, the first using a 24-bit

1 bitmap image and the other a 16-bit bitmap image. An image was taken in each case as
the message object. The images used as cover-object, message-object and stego-object
are shown for each of the experiments. The key used and the Payload-Capacity settings

are also mentioned.

Embed Extract

Message Message
o [Stego-Object

Fig. 4-16 Node Configuration

Key exchange takes place manually or through some other application.

4.8.1 Experiment 1

Embedding

Input Settings:

Fig. 4-17 Cover Object: 24-bit bitmap image (1024 X 768)

Fig. 4-18 Message Object: JPEG Image (800 X 600, 69.5 KB)

. -

Key : ab45dbce78ede8e9d7d51dd3adacce6d
Payload — Capacity : 17
Fig. 4-19 Output: Stego-Object: 24-bit bitmap image (1024 X 768)

Iy

Extraction:

Input Settings

1 Stego-Object: As shown above.
| Key: ab45dbce78ede8e9d7d5 1dd3adacce6d
Fig. 4-20 Output: Message Object on extraction:

4.8.2 Experiment 2
Embedding:

1 Input Settings:

Fig. 4-21 Cover Object : 16-bit bitmap image (1024 X 768):

Key : ab45dbce78ede8e9d7d51dd3adacce6d
Payload — Capacity : 5

Fig. 4-23 Output: Stego-Object: 16-bit bitmap image (1024 X 768)

67

Extraction:

Input Settings: ‘

1. Stego-Object: As shown above.
Key: ab45dbce78ede8e9d7d5 1dd3adacce6d
Fig. 4-24 Output: Message Object on extraction:

4.8.3 Conclusion of Experiment
There was obviously more distortion in the 16-bit image. Noise is clearly visible in the

second experiment’s stego-object. There was however no visible distortion in the stego-

object for which a 24-bit image was taken as the cover object, in the 1*' Experiment.

4.9 Code

System;
System.Collections.Generic;
iy System.Text;

i cxirr System. 10;

< ¢ BitmapStego

|
q
g:
3
i

0o =ty i BMPFileType;

peiir in- BMPFileSize;

o Lt BMPFileOffset; |
g f

‘it iut BMPFileWidth; P [
HW :

f :

int BMPFileHeight;

tut BMPFileBitCount;

i it int BMPFileCompression:

69

F“PT'1
ﬂ' l
d BMPFileColorsUsed;
BMPFileImpColors; %
;
4
W
I ¢ GetImageProperties(fs) :
{
v [1 bmpinfobyte = 1y o [54];
fs.Read (bmpinfobyte, ¢, 54);
b]
.
"4
utfBenc = . {):
BMPFileType = utf8enc.GetString(bmpinfobyte, 0, 2};
BMPFileSize = .ToInt32 (bmpinfobyte, 2);
BMPFileQffset = .TeInt32 (bmpinfobyte, 10); Ty
BMPFileWidth = .ToInt3Z2 (bmpinfobyte, 18); ‘
BMPFileHeight = .ToInt3Z (bmpinfobyte, 22);
BMPFileBitCount = .ToIntlé{bmpinfobyte, 28); i
BMPFileCompression = .ToInt32 (bmpinfobyte, 30); #ﬁ
BMPFileColorsUsed = .TeInt32 (bmpinfobyte, 46}; ‘
BMPFileImpColors = .ToInt3Z {bmpinfobyte, 50};
}
W
"4
"4
’'4
st Tkl CheckImagePreRequisites|(fs)
{
GetImageProperties{fs);
it (BMPFileType I= }
frinoor no { i
(BEMPFileBitCount != 16 && BMPFileBitCount I= 24)
L ‘ v
b
(BMPFileCompression != {)
L S {)
}
v
prn;
70]

}
{
}
}
[
{
)
prn
}
{
}
[
Init
{
maxEmbedding

{

}

it maxEmbeddingGap;

MazEmbeddingGap
' maxEmbeddingGap;

PN (b < 0[] el e »= 100))
maxEmbeddingGap = i

.

)i

InNitPRNG{: - [] key)

initprn = 0;
(i 1 = 0; i < key.Length; i++)

initprn = {initprn + key[il]) %

= (initprn};

GetNextPRN ()

prn.MNext ();

CheckPayLoad(l - [] key)

PRNG (key} ;
totalPayload = 0;
toadd = 4;
BMPFileBitCount == 24}
tcadd = 3;

(irt i = BMPFileOffset; i < BMPFileSize;

Gap + BMPFileBitCount / B)

totalPaylcad 1= toadd;

i totalPayload / 8;

tocRead;

Fal

.MaxValue;

i += GetNextPRN{}

Pordrat o st toReadPath;

'4
"4
W
. BMPSimpleLSB (.t vy, path, i1 meg)
{
toRead = {path, .Open, .Read});
toReadPath = path;
MaxEmbeddingGap = meg;
CheckImagePreRequisites(toRead};
1
"4
ey 1o 1 fixedEmbeddingGap = 10;
"4
"4
"4
o t WriteNewBMPFile (¢ iy path, [1 key, i1+ - (] msg)
{
toCreate = .. 1;
[
{
pl = CheckPayLoad(key};
{msg.Length + 5 > Pl "4
[R R { v
);
.Copy (toReadPath, path, Lile) g
toCreate = 1, (path, .Open, .ReadWrite);
"4
v iE (BMPFileBitCount)
1
16;:
WriteNewBMPFileIG(toCreate, key, msg);
Ponakg
urt 240
WriteNewBMPFileEd(toCreate, key, msqg);
}
1
{

72

1J(toCreate!=nu}J)
toCreate.Close();

\
A
[WriteNewBMPFilelé(fs, . [] key, i-v-q] msgByteArray)
{
InitPRNG(key);
toplace = BMPFileOffset;
by] msgLengthArray = -y cora (4] "4
msglLengthArray = ‘GetBytes(msgByteArray.Length);
Lo [} tempToWrite = .- e 2] "4
nt 1= 0,
j = OI
k = 0; "4
oIl maskArray ={ 0x01, 0x02, 0x04, 0x08, Oxio, 0x20, 0x40, 0x80 }:
i 1 maskArraylt ={ 0x80, 0x04, 0x20, 0x01 Y
v bl maskArrayCompl6é ={ 0x7F, 0xFB, 0xDF, 0xFE };
ot tmp;
i (msgLengthArray.Length I= i)
{
fs.S8eek(toplace, .Begin};
fs.Read (tempToWrite, 4, 2);
/ (k= 0y k < 4; k++}
{
tmp = (%;17)(msgLenqthArray[i} & maskArrayl[}]):;
{tmp != 0x00)
{
tempToWrite[(i1)k / 2] = (r:'ﬂ)(tempToWrite[(.w!Jk /21 ¢
maskArrav16[k]):;
i
{
tempToWrite[(i)k / 2] = (};")(tempToWrite[(Ln')k /2] & "4
maskArrayComplé[k]);

73

fs.8eek (toplace,
fs.Write{tempToWrite, O,

.Begin};
23

toplace += GetNextPRN() % fixedEmbeddingGap + 2;

i }
A
s meg = ymaxEmbeddingGap;
i = 0;
whibe (1L1=1)
{
fs.Seek(toplace, .Begin);
fz,Read(tempTcWrite, &, 2});
L (ko= 03 k < 4; kt+4)
{
tmp = (i i+){meq & maskArray([]])
: (tmp != 0x00)
{
tempToWrite([(::v)k / 2] = (i
maskirraylé[k]);
}
{
tempToWrite[(=i}k / 2] = (
maskArrayComplé[k]);
}
3= (3 + 1) % 8;
(o == 0
{
i++;
}
}
fs.8eek (toplace, .Begin);
fs.Write(tempToWrite, 0, 2);

toplace += GetNextPRN{}

i = 0;
S (msgByteArray.Length != i)
{
fs.8eek({toplace, .Begin};
fs.Read(tempTcoWrite, 0, 2);
{k = 0; k < 4; k++)

tmp = (i
if (tmp !'= 0x00;
{
tempToWrite[(v Yk / 2]
maskArraylo[k]);
}
{
tempToWrite[{::)k / Z]
maskArrayCompl&{kl);

74

-y {tempTcWritef { it

-y {tempToWrite ({1

¢ fixedEmbeddingGap + 2

=) {msgByteArray[i] & maskArray[jl}:

) (tempToWrite](

) (tempToWrite [(i -

Yk /2]

Yk /2]

yk /2]

Jk /2]

| "4
& 4
| "4
& "4

gy

fs.Seek(toplace, .Begin):
fs.Write{tempToWrite, 0, 2}:
toplace += GetNextPRN{)} % maxEmbeddingGap + 2;

A
L i WriteNewBMPFile24(£s, 101 key, . {]
{
InitPRNG (key) ;
toplace = BMPFileOffset;
i [] msgLengthArray = v @0 [4)7
msgLengthArray = .GetBytes (msgByteArray.Length};
[] tempToWrite = - .o © - [3];
o 1= 0,
. 3 =0,
k = 0;
‘{1 maskBArray ={ 0x01, 0x0z, 0=z04, 0x08, 0x10, 0x20, 0x40,
tmp;
. {(msgLengthArray.Length != i)
{
fs.Seek({toplace,) .Begin);

fs.Read (tempToWrite, 0, 3}

(k = 0; k < 3; k++)

tmp = (&t) {msgLengthArray[i] & maskArray[i]):
0 {tmp != 0x00}
{
tempToWritel[k] =) (tempToWrite[k] | 0x01});

} {tempToWrite[k] & OxFE);

tempToWrite [k)

jo= (i + 1 % 8
P A3 == 0y
{
i++;
(i == msgliengthArray.Length)
)
}
fs.Seek{toplace, .Begin);

fs.Write(tempToWrite, 0, 3);
toplace += GetNextPRN{} % fixedEmbeddingGap + 3;

meg = {: - -}maxEmbeddingGap;
i = 0;
B (1!= 1)
{
fs.Seek{toplace, .Begin);

fs.Read{tempToWrite, 0, 3);

wr (k= 0; k < 3; k++)

75

msgByteArray}

0x80 };

i = 0;

tmp = () ;*-}(meg & maskArrav[j});
L1 {tmp !'= 0x00)
{

tempToWrite [k] (1) (tempToWrite[k] | 0x01);

}

It

tempToWrite (k] {7) {tempToWrite [kl & 0xFE);

j o= (3 + 1) & 8;
o == 0y
{
i++;
Sl == 1)

}
}
fs.Seek(toplace, .Begin);

fs.Write(tempToWrite, 0, 3}
toplace += GetNextPRN() % fixedEmbeddingGap + 3;

(msgByteArray.Length != i)

fs.8eek(toplace, .Begin);
fs.Read!{tempToWrite, 0, 3);

o (k= 0; ko< 3 k44)

tmp = (i -) (msgBytehrray[i] & maskBArray([jl);
e {tmp = 0x00)
{
tempToWritelk} = {} " =~} (tempToWrite[k] | 0x01);

}
{

tempToWrite[k] (v -) {tempToWritelk] & OxFE};

o= (3 + 1) % 8;
(j == 0)
{
i++;
ir (msgByteArray.Length == i)
H
}
fs.Seek(toplace, .Begin);

fs. Write{tempToWrite, 0, 3);
toplace += GetNextPRN{] % maxEmbeddingGap + 3;

v
v
"4
“yuro [l ReadBMPFile(: - [] key)
toExtract = i

76

l.IIl'.IIIIlllllIIIIIlllIIIllIlllllllllllllllllI-IIlIl-I--------'Lfﬁ~~-!

b []1 toreturn = nnllg
toExtract = toRead:

{BMPFileBitCount}

16:
toreturn = ReadBMPFilel6{tcExtract, key);
24
toreturn = ReadBMPFile2d {toExtract, key}:

k]

toExtract,Close();

toreturn;

vrlene oty [ReadBMPFilel6 (fs, vt e[1 key}
{
i=0,
j =0,
k = 0;
ot [1 msgLengthArray = 50 V- [4];

.1t toplace = BMPFileOffset;

InitPRNG{key}:

[1 tempToRead = ::0 70 [2];

©-:[] maskArray ={ 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 };
P[] maskArraylé ={ 0x80, 0x04, 0x20, 0x01 };
1] maskArrayComplé ={ 0xFE, OxFD, O0xFB, 0xF7, 0xEF, OxDF, OxBF, 0x7F };

tmp;
W {msgLengthArray.Length != i)
{
fs.S5eek(toplace, .Begin);

fs.Read (tempToRead, 0, 2};

e (ko= 0 ko< 4; k)

tmp = (¢ -)} {tempToRead[{ -}k / 2] & maskArraylé(k]);
{tmp !'= 0x00)
{
msgLengthArray[i] = (7~) (msgLengthArray[i] | maskArray[jl}:
77

T

e i ek

R

}

=0
int msglength =

while {mughArray.Length !=

{

fs5,5calk o ,
fs.Read(tempToRead, ¢, 2);

aloe A Embed 7
{
meglengthArray[1] = (byte} (nsglengthfrray[i] & maskArrayComplé w
R
i
Io= (3 + 1) % B;
it (j == 0}
i
i+
}
}
PR Tt
topiace 2;
b
g 0 A s H ne g 4 R L v
; vt oAl E (K nodda criwern above
o= 0y
byte meg={byte)maxEnkeddingGap;
while (1 != i)
{
fs.8eek{torlace, .Bedgin};
fs.Read(renpocRead, G, 2)};
for (k = 0; k < 47 k++}
{
tmp = (byte) (tenpToRead[(int)k / 2} & maskArrayléfk]);
if {tmp Y= 0x00)
i
meg = (byte) tmeqg | maskArray([]l):
t
else
{
meqg = (byte) (meg & maskArrayCoupl&[i]);
= (31 + 1) % 8;
if (3 == 0}
{
i++
b
¥
toplace += GetNextPRN() % fixedEmkeddingGap +
i
SV r Thva Morimni i3 of 3 H The valnis nEtraote : ¢
Fil
wazbmbeddingGap = meg;
A P e dew ek ;

. -ToInt3Z2 {msglengthArray, 0);
bytel] mzgArray — new bytelmsglengthl];

)

.Begin);

for (k= 0; k < 4} kt++)

Lmp = (byte) (tenpToRead[lint)k / 2]

if (tmp = 0x00)
|

nEgArray [1]

clze

msgArray([i] =

(byte) (sghrray[i]

(byte) (msghArray[i]

78

o omasxBArrayla(hk]y

& maskArrayConple[3]);

e et

}
toplace += GetNextPRN()

% maxEmbeddingGap + 2;

i mSgArravy;
)
L [] ReadBMPFileZ4(fs, o [1 key)
{
t
i=10, 3 =0, k = 0;
=[] msglengthArray = 1w o0 [4]
“ ‘1l toplace = BMPFileOffset;
InitPRNG (key) ;
it [1 tempToRead = o Bov-[3]; .
“ot [maskArray ={ 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
st [] maskArrayCompl6é ={ OxFE, 0OxFD, 0xzFB, OxF7, OxEF,
i tmp;
whtl. (msglLengthArray.Length != i)
{
fs.Seek(toplace, .Begin);
Is.Read (tempToRead, 0, 3);
: (k = 0; k < 3; k++}
(
tmp = (: -) (tempToRead[k] & 0x01};
poo (tmp = 0x00)

{
msgLengthArray[i]
}
{
masgLlengthArray{i)
[i1i:

-

i++;

) {imsgLengthArray(i]

) (msgLengthArray{i]

i7 (1 == msglLengthArray.Length)

’

}
}
toplace += GetNextPRN()

= 0;
meg={:r -
(li= i}

fs.S5eek (toplace,

fs.Read{tempToRead, 0,

33

% fizedEmbeddingGap + 3;

JmaxEmbeddingGap;

.Begin};

79

0x40, 0x80 1};
0xDF, O0xBF, 0z7F };

| maskArrayl[jl);

& maskArrayComplé w

1o (k= 0; k < 3; k++)

tmp = { -} {tempToRead[k] & 0z01);
(tmp !'= 0x00) ;
{
meg) (meg | maskArray[j]): ;

}

{rv0) lmeg & maskArrayComplé[j])

E
®
Q

i

toplace += GetNextPRN() % fixedEmbeddingGap + 37

}
maxEmbeddingGap = meqg;

i = 0;
‘v msglength = .ToInt32 (msgLengthArray, 0};
- []1 msgArray = v wo- {msglengthl
it (msgArray.Length != 1)
(R
fs.S5eek{toplace, .Begin);

fs.Read {tempToRead, 0, 3):

o {k o= 0; k < 3; k++)
{
tmp = (.) (tempToRead[k] & 0x01);
femp = 0x00)

{
o) {msgArraylil | maskArray(jl);

msghrray[i]
H

ey {msgArray[i] & maskArrayCompl6[i]};

msgArrayl[i]

it++;
(i == msgArray.Length)

}

J
toplace += GetNextPRN (]} 3 maxEmbeddingGap + 3;

. msgArray;

80

Conclusion

A study of the various steganographic methods for embedding data into image files was
studied. The Least Significant Bit Substitution method with some modifications was
implemented. After conducting experiments, we concluded that 16-bit bitmap images get
significantly distorted when data is embedded into them. However for 24-bit bitmap

images, the distortions are not visible.
Additionally, the project can be extended by implementing LSB techniques for other
uncompressed image file format or those with color palette data in them. Also more

robust methods like embedding data in another transform domain could be implemented.

An auxiliary utility to exchange the secret keys can be implemented.

81

Bibliography \
B Study of Steganography & Image File Formats
¢ Stefan Katzenbeisser, Fabien A.P. Petitcolas Information Hiding Technigques for
Steganography and Digital Watermarking Artech House Inc, 2000.
¢ Chun-Shien Lu Multimedia Security : Steganography and Digital Watermarking

Techniques for Protection Of Intellectual Property Idea Group Publishing, 2004

e Alvaro Martin, Guillermo Sapiro, and Gadiel Seroussi,”” Is Image Steganography
Natural?*’, Fellow, IEEE Transaction on Image Processing, Vol. 14,No.12,
December 2005
* Giuseppe Mastronardi, Marcello Castellano, Francescomaria Marino,”
Steganography Effects in Various Formats of Images. A Preliminary Study ,
International Workshop on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications 1-4 July 2001. Foros. Ukraine , 0-7803- i
7164-1XO 1 1 2001 IEEE
e Samer Atawneh, ‘A New Algorithm for Hiding Gray Images Using Blocks *’, 0-
7803-9521-2/06/§2006 IEEE.
* Lisa M. Marvel and Charles T. Retter, Charles G. Boncelet, Jr.,” Hiding
Information in Images”, 0-8186-8821-1198 0 1998 IEEE
¢ Mehdi Kharrazi, Husrev T. Sencar, and Nasir Memon, “Image Steganography:
Concepts and Practice”, April 22, 2004 1:49 WSPC/Lecture Notes Series: 9in x
6in
e Lisa M. Marvel and Charles T. Retter, Charles G. Boncelet, Jr., “A Methodology :
For Data Hiding Using Images”, 0-7803-4506-1/98/ 01 998 IEEE. =§

o Hide and Seek- An Introduction to Steganography- Security & Privacy, Niels
Provos And Peter Honeyman, Magazine-IEEE

¢ Digital Steganography: Hiding Data within Data, Donovan Artz « Los Alamos
National Laboratory,IEEE

e H.-C. Wy, N.-I. Wuy, C.-S. Tsai and M.-S. Hwang, “ Image steganographic
scheme based on pixel-value differencing and LSB replacement methods >, IEEE

Proc.-Vis. Image Signal Process., Vol. 152, No. 5, October 2005

82

el

» Chi-Shiang Chan and Chin-Chen Chang, “An Image Hiding Scheme Based on
Multi-bit-reference Substitution Table Using Dynamic Programming Strategy ’,

Fundamenta Informaticae 65 (2005) 291-305, 10S Press

¢ Kevin Curran, “An Evaluation of Image Based Steganography Methods **,
International Journal of Digital Evidence Fall 2003, Volume 2, Issue 2

¢ Jessica Fridrich SUNY Binghamton, “Minimizing the Embedding Impact in
Steganography”, MM&Sec’06, September 26-27, 2006, Geneva, Switzerland.
Copyright 2006 ACM 1-59593-493-6/06/0009

* R.Chandramouli,Nasir Memon, Analysis of LSB Based Image Steganographic
Techniques **,0-7803-6725-1/01/ IEEE

e Bret Dunbar, “A detailed look at Steganographic Techniques and their use in an
Open-Systems Environment”, © SANS Institute 2002, As part of the Information
Security Reading Room.

* Ran-Zan Wang and Yeh-Shun Chen, “High-Payload Image Steganography Using
Two-Way Block Matching , Manuscript received August 17, 2005; revised
October 19, 2005.1EEE

* Armando J. Pinho and Ant6nio J. R. Neves, “A Survey on Palette Reordering

Metheds for Improving the Compression of Color-Indexed Images”, IEEE
Transactions on Image Processing, VOI.. 13, NO. 11, Nov. 2004

¢ Ching-Yu Yang, “Based upon RBTC and LSB Substitution to Hide Data *,
Proceedings of the First International Conference on Innovative Computing,
Information and Control (ICICIC'06) 0-7695-2616-0/06 , 2006 IEEE

e www Wikipedia.ore

¢ hupwww.devx.comidotnet/ Article/22667

o hitpr//vwww.ddj.com/ 184409317

» MSDN (Microsoft Developer Network) Library

Study of C# and .net
¢ Wrox Professional C# 2005
i Wrox Beginning Visual C# 2005

83

T

