STRUCTURE BASED SUBSTRATE IDENTIFICATION OF PROTEIN KINASE

Submitted in partial fulfilment of the requirement for the award of the degree of

BACHELOR OF TECHNOLOGY

IN
BIOINFORMATICS
By
Mandeep Singh, Rashika Singhal
(151501, 151508)
UNDER THE GUIDANCE OF
Dr. Narendra Kumar

Department of biotechnology and bioinformatics

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,WAKNAGHAT May,2019

ACKNOWLEGMENT

The work on this project has been a good, inspiring and exciting experience for us throughout the whole year, though it was challenging sometimes but we successfully completed our work within time. We are using this opportunity to express our gratitude to everyone who supported throughout the project (Substrate idendtification of Protein Kinases), their aspiring guidance, invaluably constructive criticism and friendly advice helped us a lot during the whole time. We are sincerely grateful to them for sharing their truthful and illuminating views on a number of issues related to the project.

We would like to express our warm thanks to our guide Dr. Narendra Kumar for his support and guidance helping in completing this project. We would also like to thank the officials of Jaypee University of Information technology (JUIT), Waknaghat for their help and cooperation. At last we would like to thank our parents and dear friends/batch mates for believing us and encouraging us through the whole.

DECLARATION BY SCHOLAR

I hereby declare that the thesis entitled"Substrate Identification of Protein Kinase" submitted at the Jaypee University of Information Technology, Waknaghat, India is the record of work carried out by me under the guidance of "Dr. Narendra Kumar". I have not submitted this work elsewhere for any degree or diploma. I am fully responsible for the content of my BTech thesis.

Mandeep singh(151501)

Rashika singhal(151508)

Jaypee University of Information Technology Waknaghat, India

Date:

CERTIFICATE

This is to certify that the project report entitled "Structure Based Substrate Identification of Protein Kinase", submitted by Mandeep Singh and Rashika Singhal at Jaypee University of Information Technology, Waknaghat, Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other university or Institute for the award of this or any other degree or diploma.

Signature of Supervisor

Name of Supervisor: Dr. Narendra Kumar
Designation: Assistant Professor,
Jaypee University of Information Technology,
Waknaghat Solan, Himachal Pradesh

CONTENTS

- LIST OF FIGURES 6
- LIST OF TABLES 7
- RATIONALE 8
- CHAPTER 1
- INTRODUCTION. 9-11
- CHAPTER 2
MATERIALS AND METHOD
- PROTOCOL 12
- DATA RETRIEVAL 13
- ANALYSIS OF RETRIEVED DATA. 13-24
- CHAPTER 3
RESULTS AND DISCUSSION 25-32
- CHAPTER 4
- CONCLUSION 33
- APPENDIX. $.34-36$
- REFERENCES 37

LIST OF FIGURES

Figure Number	Caption
1.1	Structure of protein kinase binding to its substrate
2.1	Protein kinase in UNIPROT
$2.2(\mathrm{a})$	BLAST against PDB
$2.2(\mathrm{~b})$	BLAST with e-value=10
3.1	BLAST hits
3.2	Sorted chain w.r.t length
$3.3(\mathrm{a})$	Substrate binding with protein kinase in 1QMZ
$3.3(\mathrm{~b})$	Substrate binding with protein kinase in 3E87,3O17

LIST OF TABLES

Table Number	Caption
2.1	Substrates binding with protein kinases
2.2	Residues which are less than 6angstrom apart
2.3	Calculated distance of residues
2.4	Expected value
2.5	Observed value
2.6	Kinases\& assosciated PDB ids
2.7	Known substrates of PAK
3.1	Score of PAK group binding peptide using Pair-potential matrix.
3.2	Score of PAK group binding peptide using Betancourt
$3.3(\mathrm{a})$	Thirumalai matrix
$3.3(\mathrm{~b})$	

RATIONALE

A protein kinase is a kinase enzyme that alter other molecules, most of them are proteins, by chemically adding phosphate groups to them (phosphorylation). The chemical activity of a kinase includes transferring a phosphate group from a nucleoside triphosphate (usually ATP) and covalently appending it to specific amino acids with a free hydroxyl group. Most kinases follow up on serine and threonine(serine/threonine kinases), others follow up on tyrosine (tyrosine kinases), and a number follow up on all of them (dual-specificity kinases). The substrate is perceived by kinase through the interactions of residues around the phosphorylation site in the substrate with the residues in the protein kinase. As we know that peptide is present on the surface of the substrate hence, we need to collect the x-ray structures of kinase-substrate peptide complexes. Through, these structures we will be able to identify the interaction between the peptide and the protein by visualising the structure. We will use these interactions to predict whether the unknown substrate will bind or not. To evaluate the potential of unknown peptide to be a substrate, you can model it in the active site and score the aminoamino interactions. Summing the interaction scores will give you the score of peptide. Peptides with a score above a threshold may be categorised as the substrates. (These scores have to be benchmarked against known substrates).

CHAPTER 1

INTRODUCTION

General Background

Protein kinases play a nearly universal role in cellular regulation and are rising as an important category of recent drug targets, nonetheless the cellular functions of most human kinases mostly remain unknown. Aspects of substrate recognition common to any or all kinases in the ATP nucleotide binding site have been exploited in the generation of analog-specific mutants for exploring kinase function and discovering novel super molecule(protein) substrates. Protein Kinase can modify the function of a protein in nearly each possible way[1]. The human protein kinase gene family comprises of 518 members along with 106 pseudogenes[2]. The SER/THR protein kinases are in enormous majority. The SER/THR protein kinases interact with various substrates starting from enzymes, including other kinases, to transcription factors, receptors, and different regulatory proteins. Thus, mechanisms to assure specificity should be present. However, from rising structural knowledge it is becoming apparent that the ways in which protein kinases interact with their substrates local to the active site are comparatively few. Instead, docking interactions, in pockets or grooves outside the active site of the kinase, are used to identify substrates and different interacting proteins. Protein phosphorylation is a common posttranslational modification and is concerned with several physiological and pathophysiological processes. Among other diseases, the liberation of protein kinase activities may cause cellular transformation and cancer.

Thus, kinases are major drug targets. Seeing how kinases interact with their substrates may explain the processes that leads to ailment, just as help in the advancement of better, more specific kinase inhibitors with improved clinical achievements.

Protein kinases are made up of non-conserved regulatory domains and a conserved catalytic core of around 250 amino acid residues that binds and anchors substrates and is in charge for catalysis. The catalytic domain comprises of two lobes known as N and C (also called small and large lobes, respectively), named for their N - or C-terminal position, respectively, within the domain. The N -lobe comprises of five-stranded, anti-parallel β sheets that are a vital part of the adenosine triphosphate (ATP) binding site, whereas the C-lobe is generally coiled or helical .The active-site cleft, that contains the ATP binding site, lies between the two lobes. In an activated kinase, the lobes converge to make a deep cleft where ever the adenine ring of ATP binds such that the phosphate is positioned at the fringes where the transfer of the phosphoryl group takes place, whereas the adenosine moiety is buried in an exceedingly hydrophobic region of the pocket. Adjoining to the ATP binding pocket is a shallow crevice called the substrate binding site (SBS) that anchors the substrate and accurately positions the phosphorylatable residue.

Figure 1.1 Structure of protein kinases binding to its substrate. Image adapted from [2].

Catalysis is interceded by opening and closing of this active-site cleft. Substrates are anchored and positioned close to this cleft in order that the hydroxyl group of the phosphoryl table residue (termed P0) can accept the phosphate. Flanking regions helps in stabilizing the active kinase and are also essential for catalysis. Tyrosine kinases have a profound cleft crevice around P0 than serine/threonine (Ser/Thr) kinases to more readily oblige a massive side chain. .An increase in the catalytic activity of kinases typically results in cancer therefore, their activation must be firmly regulated.[3]

CHAPTER 2

MATERIAL AND METHOD

2.1 Data Retrieval

2.1.1 UNIPROT

It is freely accessible and collaboration of databases and contains huge information about the biological and molecular function. It provides researchers with a extensive, high-quality and freely accessible resource of protein sequence and functional information. Therefore, we have utilised this database to retrieve the information of protein kinase(PDB ID: Q9NYL2).

Protein | Mitogen-activated protein kinase kinase kinase $\mathbf{2 0}$
Gene MAP3K20
Organism Homo sapiens (Human)
Status Reviewed - Annotation score: 0000- Experimental evidence at protein level ${ }^{\mathrm{i}}$
Function
Stress-activated component of a protein kinase signal transduction cascade. Regulates the JNK and p38 pathways. Part of a signaling cascade that begins with the activation of the adrenergic receptor ADRA1B and leads to the activation of MAPK14. Pro-apoptotic. Role in regulation of S and G 2 cell cycle checkpoint by direct phosphorylation of CHEK2 (PubMed:10924358, PubMed:11836244, PubMed:15342622, PubMed:21224381). Involved in limb development (PubMed:26755636). - 5 Publications -

Isoform 1: Phosphorylates histone H3 at 'Ser-28' (PubMed:15684425). May have role in neoplastic cell transformation and cancer development
(PubMed:15172994). Causes cell shrinkage and disruption of actin stress fibers (PubMed:11042189). \& 3 Publications *
Catalytic activity ${ }^{\text {i }}$
ATP + a protein $=$ ADP + a phosphoprotein. 1 Publication *
Cofactor ${ }^{\text {i }}$
Mg^{2+} - 1 Publication -
Activity regulation ${ }^{\text {i }}$
Activated by phosphorylation by PKN1 and autophosphorylation on Thr-161 and Ser-165. 3 Publications -

Figure 2.1: Protein Kinase in Uniprot

2.1.2 BLAST

Basic local alignment tool (BLAST) one of the most favoured choices for searching and aligning sequences. Blast identify region of similarity between various biological sequences. The program
does the comparision between nucleotide or protein sequences with sequence databases and evaluates the statistical significances.Therefore, performed blast against the protein data bank.

Figure 2.2 : BLAST against PDB

Figure2.3: Blast for1000 target sequences setting E-value 10.

- Performed blast with E-Value equals to 10 and retrieved first initial 1000 sequences. And further wrote the python script to
> Download the PDB files,
$>$ To separate the chain ID and chains
$>$ File cleaning(kept only atoms)
$>$ To count the number of residues in chains
$>$ To retrieve the short peptides which have length less than 15 .
- Visualized the pdb ids using PYMOL software and thus identified the protein peptide complex.

Table 2.1 Showing substrate binding with protein kinase

PDB IDs	Title of the structure	Size of the Substrates	Known Substrate binding to kinases	Type
1ZYS	CO-CRYSTAL STRUCTURE OF CHECKPOINT KINASE CHK1 WITH A PYRROLO-PYRIDINE 2 INHIBITOR	5	Chain ID B	SER/THR
4JDJ	CRYSTAL STRUCTURE OF SERINE/THREONINE- PROTEIN KINASE PAK 4 F461V 2 MUTANT IN COMPLEX WITH PAKTIDE T PEPTIDE SUBSTRATE	6	Chain ID E	SER

2G01	PYRAZOLOQUINOLONES AS NOVEL, SELECTIVE JNK1	10	Chain ID C	TYR
3CQU	CRYSTAL STRUCTURE OF AKT-1 COMPLEXED WITH SUBSTRATE PEPTIDE 2 AND INHIBITOR	10	Chain ID C	SER/THR
2JDO	STRUCTURE OF PKB-BETA (AKT2) COMPLEXED WITH ISOQUINOLINE-5- 2 SULFONIC ACID (2-(2- (4-CHLOROBENZYLOXY) ETHYLAMINO)ETHYL)	10	Chain ID C	SER/THR
3E87	CRYSTAL STRUCTURES OF THE KINASE DOMAIN OF AKT2 IN COMPLEX WITH ATP- 2 COMPETITIVE INHIBITORS	10	Chain ID F	Chain ID C

2 2XS0	LINEAR BINDING MOTIFS FOR JNK AND FOR CALCINEURIN ANTAGONISTICALLY 2 CONTROL THE NUCLEAR SHUTTLING OF NFAT4	12	Chain ID B	SER/THR
4 KBU	IN VITRO CRYSTAL STRUCTURE OF PAK4 IN COMPLEX WITH INKA PEPTIDE	13	Chain ID B	SER/THR
$5 N 37$	CAMP-DEPENDENT PROTEIN KINASE A FROM CRICETULUS	13	Chain ID I	DUAL
$5 V 62$	CRYSTAL STRUCTURE OF PHOSPHOLAMBAN (1- 19):PKA C-SUBUNIT:AMP-PNP:MG2+2 COMPLEX	14	Chain ID B	DUALSpecificity
$307 L$	CRYSTAL STRUCTURE OF AKT-1 COMPLEXED WITH SUBSTRATE PEPTIDE INHIBITOR AND	15	Chain ID B	SER/THR

- Calculating amino acid-amino acid contact preferences at the interface

 of protein kinases and their substrate.After visualizing the protein peptide complexes in pymol, Calculated amino acid - amino acid contact preferences at the interface of the protein kinases and their substrate.
Identified all possible amino acid - amino acid contacts from the crystal structures of protein kinase- substrate peptide complexes. The two residues were said to be in contact if they were less than 6Angstrom apart.All the residue residue contacts between peptide and protein were identified in all the complexes in the data set using the python program. Binding preferences of all amino acids were calculated as the log ratios of observed / expected frequencies. Observed frequencies were calculated from the count of amino acid-amino acid contact pair at the interface. Expected frequencies were calculated from the frequency of individual amino acid at the interface. A 20 X 20 matrix was calculated representing the binding preferences of residues which is specific to protein kinase peptide interface.

Table 2.2 Distances among the protein kinase and its substrate less than 6 amstrong.

RESIDUES	RES SEQ	CHAIN	RESIDUES	RES SEQ	CHAIN	DISTANCE
LEU	5	$\mathrm{~B} \longrightarrow$	ASP	161	A	5.8393087
ARG	6	$\mathrm{~B} \longrightarrow$	GLU	160	A	5.752933
ARG	6	$\mathrm{~B} \longrightarrow$	ASP	161	A	4.815948
ARG	6	$\mathrm{~B} \longrightarrow$	CYS	162	A	5.742791
VAL	7	$\mathrm{~B} \longrightarrow$	GLU	160	A	4.8825483
VAL	7	$\mathrm{~B} \longrightarrow$	CYS	162	A	5.700053
cVAL	8	$\mathrm{~B} \longrightarrow$	GLU	160	A	5.9848228

Table 2.3 Calculated distances of residues coming from protein kinase in structural library.

	ALA	ARG	ASN	ASP	CYS	GLU	GLN	GLY		HIS	ILE		LEU	LYS	MET	PHE	PRO	SER		THR	TRP	TYR	VAL
ALA	89	23	10	021	12	222	12		14	10		15	26	22	13	19	12		9	11	7	22	26
ARG	23	53	11	121	1	416	9	9	14	12		17	23	14	4	11	10		11	10	1	15	17
ASN	10	8	47	712	25	59	9	9	11	12		10	27	21	1 3	11	6		12	6	2	7	15
ASP	20	18	13	361	15	511	12		15	6	6	13	32	24	5	10	9		22	8	7	14	19
CYS	8	2	4	$4 \quad 4$	419	9	5	5	8	2	2	10	13	9	6	2	4		5	2	1	3	8
GLU	22	14	10	010	5	582	10		15	10		29	34	28	15	20	13		18	12	4	16	18
GLN	12	9	10	$0 \quad 12$	25	59	44		9	4	4	16	28	14	4	10	5		6	4	1	11	19
GLY	14	15	12	218	8	$8 \quad 18$	10		57	4	4	24	22	12	11	10	7		13	8	4	10	15
HIS	9	12	12	26	63	$3 \quad 10$	5	5	4	29		12	11	14	8	8	6		11	4	2	4	4
LE	16	19	10	$0 \quad 13$	312	29	15		25	13		93	34	33	3	12	15		16	7	6	17	25
EU	28	23	27	740	- 20	037	27		25	10		32	136	46	- 25	24	10		36	9	10	19	45
YS	22	14	21	125		928	14		12	14		33	46	107	13	26	11		19	10	6	14	33
MET	13	9	3	35	56	615	2	2	11	8	8	9	25	13	34	5	4		7	2	1	7	20
PHE	18	11	11	110	7	716	10		14	8	8	12	25	26	- 5	55	14		15	10	4	10	16
PRO	12	9	6	$6 \quad 10$		$4 \quad 13$	5	5	7	6	6	15	10	11	11	14	57		11	7	0	9	10
SER	9	11	12	221		720	6	6	17	11		14	24	17	7	13	12		46	12	4	13	10
THR	16	9	7	$7 \quad 25$	512	213	4	4	9	5	5	7	7	8	81	10	6		13	42	4	11	16
TRP	7	1	2	27	71	14	1	1	6	2	2	6	10	6	61	4	0		3	5	14	2	10
YR	22	15		$7 \quad 15$		416	11		10	4	4	17	19	14	4	10	9		15	11	2	58	24
VAL	26	17	15	519	99	922	17	715		4			44	33	30	15	10		9	16	,	22	78

- Finding the nature of interface in protein kinases when it binds to the peptide

Calculated the interaction frequency of each amino acids present on the interface of protein kinases and peptide. measured the expected values from these frequencies and thus computed the log score for every possible amino acid - amino acid interaction and prepared the pair potential matrix , using formula.

Log(Observed/Expected)

Table 2.4 Expected No. of context in the in the library.

ALA ARG ASN ASP CYS GLU GLN GLY HIS ILE LEU LYS METPHE PRO SER THR TRP TYR VAL
ALA AR G ASN
ASP CYS
GLU
GLN
GLY
HIS
ILE
LEU
LYS ME 0.010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .01

THR 0.010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .01
TRP 0.010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .01

TYR 0.010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .010 .01

Table 2.5 Observed No. of context in the library.

 ALA ARG ASN ASP CYS GLU GLN GLY HIS ILE LEU LYS MET PHE PRO SER THR TRP TYR VALALA

- Calculated the binding score of substrate

Since, the pair potential matrix we calulated is specific to protein kinase- peptide interface, it could be used for calculating the binding score of a potential unknown peptide (substrate) for classifying it into a binder or a non- binder.The binding score for the peptide would be calculated as the sum of all its interactions with the protein kinase. The cut off for the binding score would be decided based on the benchmarking on the known peptides of the protein kinases.

Table2.6 List of kinases and associated PDB ids

Protein Kinases	PDB IDS
CHK1	1ZYS
PAK 4	4JDJ,2QON,4XBU
CDK2	1QMZ,3QHR
PHK1	2PHK
MAP2K6	2Y8O
MAPK1	3O71,5V62,2FYS
MAPK8/ JNK1	4UX9,2XRW,3V3V, 3O17,2GO1,3VUD,3VUG,3VUH
MAPK14	5ETF
MAPK10	3PTG
NEK7	5DE2
MEF2A	1LEW
AKT 1	3CQU,3OCB,3O7L
AKT 2	1O6K,1O6L,2JDO,3E87,
PKA Alpha	5N37
MAPK	2B9H,3P4K

- Phospho.ELM

It is a relational database designed to store in vivo and in vitro phosphorylation data extracted from the scientific literature and phosphor proteomic analyses. It consists of 42574 serine, threonine and tyrosine non-redundant phosphorylation sites. The conservation of the phosphosites can be envisioned directly on the multiple sequence alignment which is used for the score calculation. In addition, it also includes information for the phosphorylated residue, i.e. conservation score (CS) and the surface accessibility score which are either anticipated or measured. The data can be obtained directly by a user-friendly web interface.[4]

Retrieved the known substrates of the kinases through Phospho.ELM and prepared the table given below.

Table 2.7 Known substrates of PAK group.

Accession	Residue	Position	Context
P35240	S	518	FKDTDMKRLSMEIEKEKVEY
P04049	S	338	KIRPRGQRDSSYYWEIEASE
P04049	S	338	KIRPRGQRDSSYYWEIEASE
P17600	S	605	GPAGPTRQASQAGPVPRTGP
P08670	S	26	GPGTASRPSSSRSYVTTSTR
P08670	S	39	YVTTSTRTYSLGSALRPSTS
P08670	S	51	SALRPSTSRSLYASSPGGVY
P08670	S	56	STSRSLYASSPGGVYATRSS
P08670	S	56	STSRSLYASSPGGVYATRSS
P08670	S	66	PGGVYATRSSAVRLRSSVPG
P08670	S	73	RSSAVRLRSSVPGVRLLQDS

CHAPTER 3

RESULTS AND DISCUSSION

BLAST

Figure 3.1: BLAST hits

$\square \times$							
Θ Descriptions							
Sequences producing significant alignments: Select: All None Selected:0							
Description	$\begin{array}{\|l\|l\|} \hline \text { Max } \\ \text { scoore } \end{array}$	Total score	Query cover	$\underset{\text { value }}{E}$	Ident	Accession	
- Chain A.Human Leucine Zliperer-And Sterile Alpha Motif-containing Kinase (zak. Mit. Hocs-4. Mrik. Azk. Milk) in Comolex With Vemurafenib	642	642	38\%	0.0	99\%	5HES A	
- Chain A.Crystal stucture of ZAK in complex with compound D2829	641	641	38\%	0.0	100\%	$\underline{5 \times 50 \mathrm{~A}}$	
- Chain A.Structure Of Mk1 Kinase Domain With Leucine Zipper 1	228	228	37\%	$8 \mathrm{e}-68$	40\%	4UY9 A	
- Chain A. Structure of mik 4 Kinase Domain With Atpgammas	223	223	37\%	6e-66	38\%	4UYA A	
- Chain A. Crystal Structure Or Mixed-Lineage Kinase M1k1 Comolexed With Compound 16	213	213	32\%	7e-63	42\%	3DTC A	
- Chain A.Crystal Structure Of Dik (kinase Domain)	211	211	35\%	4e-62	40\%	SCEN A	
- Chain A.Cysytal stucture of CTR1 1 kinase domain mutant D676N in complex with staurosporine	189	189	31\%	9e-54	40\%	$3 \mathrm{PP66}$ A	
- Chain A . Crystal stucture of CTR 1 kinase domain in complex with staurosporine	187	187	31\%	5e-53	40\%	3PPZ A	
- Chain A. Irrosine Kinase As - A Common Ancestor Of Src And Abl	169	169	30\%	4e-47	38\%	YUEU A	
- Chain A. Irreversible Inhibition of Tak1 Kinase By 52-7-0xozeaenol	163	163	32\%	2e-44	36\%	4656 A	
- Chain A.Crystal Stucture of Type il il inhibior Na 25 Bound To Tak1-tab1	163	163	32\%	3e-44	36\%	4091 A	
	162	162	32\%	3e-44	36\%	4L52 A	
- Chain A. Structural Basis For The interaction of Tak1 Kinase With its Activating Protein Tab1	162	162	32\%	3e-44	36\%	2eva A	
- Chain A.Crystal Structure of Human Tak1/tab1 Fusion Protein In Complex With Ligand 11 c	162	162	31\%	4e-44	36\%	SJGA A	
- Chain A. Crystal Structure Of Mutant Abl Kinase Domain In Complex With Small Molecule Fragment	158	158	33\%	$6 \mathrm{e}-43$	33\%	30k6 A	
- Chain B. The crystal stucture of human abl1 wid type kinase domain in complex with axitinib	157	157	32\%	1e-42	33\%	4WA9 B	
- Chain A.Structure Of The Kinase Domain Of An Imatinib-resistant Abl Mutant in Complex With The Aurora Kinase Inhibitor Vxx-680	157	157	32\%	1e-42	33\%	254.5 A	
- Chain A.VVx-680/mk-0457 Binds To Human Abl1 Also in Inactive Dfg Conformations	157	157	32\%	2e-42	33\%	4206 A	
- Chain A.A. Sra-Like Inactive Conformation In The Abl Tyrosine Kinase Domain	157	157	32\%	2e-42	33\%	$\underline{2 G 2 F A}$	
- Chain A.A S Sc-LLike Inactive Conformation In The Abl Tyrosine Kinase Domain	157	157	32\%	2e-42	33\%	$261 T$ A	
- Chain A. Crystal Stucture Of Mutant Abl Kinase Domain In Complex With Small Molecule Fraoment	157	157	33\%			ons/com	
Crsstal Sturcture of The C.Abl Kinase Domain In Comolex With Inno-4n6.	157	157	32\%				


```
    Chain A. The crvata turvcture ot human obll T315L Ootion
```



```
    Chain A. The Crvatal structure Ot Human Abli Kinase Dom
```



```
    ChainA. The cocatal atuctuce el buman ABL2 I complex with. QLEEVEC
```



```
    Chain A. Orounkation Ot The Sh3.3n2 Unillin Active And Inactive Forms of
    *)
    -
```



```
    Chain A. .rystal Stucurces Or The Phoschomblated And Unothosbhon\\ated Kinas
    Chain. Crvtal Stucture Of FvnK.Kinone Domain Co
    Chain8. Co-crastal Structurc.or Ack1 With inhibitor
    Chain.B. Crymal structure OCACki win compound Tes
    Chain B. Crytal stucure Or Ackl with Com
    Chain A. .nni3k Comolored Wim laniblor 1
```



```
    Chain A. Crystal Atructure ef ACK1 with cemmeound.
    In A Acilimen Comear min commeund 100
```



```
    Chain B. Structural Bavios For The Recegnition Or C.ame By lem inactivator Cus
```


Chain ID Separation: Separated chain ids and chains using python script.

Figure 3.2 Sorted chains with respect to length

Table 3.1Selected PDB ids length less than 10

Pdb id	chain	length	residues length
2JAM. pdb	E	31	4
4AZE.pdb	E	25	4
4AZE.pdb	F	25	4
4AZE.pdb	G	25	4
1ZYS.pdb	B	30	5
4027.pdb	C	47	5
$2 \mathrm{JAM} . \mathrm{pdb}$	D	42	6
$4 \mathrm{JDJ} . \mathrm{pdb}$	B	66	6
4NM5.pdb	C	44	6
5LW1.pdb	L	48	6
1QMZ. pdb	E	58	7
1QMZ.pdb	F	58	7
2PHK.pdb	B	65	7
4FIF.pdb	C	57	7
4FIF.pdb	D	57	7
2Y80.pdb	B	56	8
$3071 . \mathrm{pdb}$	B	64	8
4UX9.pdb	G	59	8
5ETF.pdb	B	59	8
3AGM. pdb	B	92	9
4UX9.pdb	I	77	9
5DE2.pdb	D	76	9
5LW1.pdb	C	72	9
5LW1.pdb	F	72	9
1LEW.pdb	B	79	10
106K.pdb	C	79	10
106L.pdb	C	79	10
1UKH.pdb	B	84	10
2G01.pdb	F	73	10
2G01.pdb	G	73	10
2JDO.pdb	C	79	10
3CQU.pdb	C	79	10
3E87.pdb	C	79	10
3E87.pdb	D	79	10
3017 . pdb	F	83	10
$3017 . \mathrm{pdb}$	G	83	10
30CB.pdb	C	78	10
30CB.pdb	D	78	10
30XI.pdb	J	83	10
3PTG. pdb	J	84	10
3QHR.pdb	J	79	10
3QHR.pdb	L	79	10
3QHR.pdb	M	79	10
3VUD. pdb	F	84	10
3VUG.pdb	F	84	10
3VUH.pdb	F	84	10
3VUI.pdb	F	84	10
3VUK.pdb	F	84	10
3VUL.pdb	F	84	10
4UX9.pdb	F	77	10
5LIH.pdb	G	76	10

- Binding of Substrate with the protein kinase:

Separated chains from the PDB files. Poly-peptides and protein kinase are obtained. Now further using this data the analysis of where Substrate is binding to the protein kinase was done and observed in Pymol.

Figure 3.3(a) Substrate (chain E) binding with the protein kinase (chain A) in 1QMZ.

Figure 3.3(b) Substrate binding with kinase protein in different PDB ID 3E87, 3017.

Table 3.2 Pair Potential matrix

	A	R	N	D	C	E	Q	G	H	I	L	K	M	F	P	S	T	W	Y	V
A	1.3	0.7	0.4	0.7	0.4	0.7	0.4	0.5	0.4	0.5	0.8	0.7	0.5	0.6	0.4	0.3	0.4	0.2	0.7	0.8
	5	6	0	2	8	4	8	4	0	7	1	4	1	8	8	5	4	4	4	1
R	0.7	1.1	0.4	0.7	0.0	0.6	0.3	0.5	0.4	0.6	0.7	0.5	0.3	0.4	0.4	0.4	0.4	-	0.5	0.6
	6	2	4	2	0	0	5	4	8	3	6	4	5	4	0	4	0	0.6	7	3
																		0		
N	0.4	0.3	1.0	0.4	0.1	0.3	0.3	0.4	0.4	0.4	0.8	0.7	-	0.4	0.1	0.4	0.1	-	0.2	0.5
	0	0	7	8	0	5	5	4	8	0	3	2	0.1	4	8	8	8	0.3	4	7
													2					0		
D	0.7	0.6	0.5	1.1	0.1	0.4	0.4	0.5	0.1	0.5	0.9	0.7	0.1	0.4	0.3	0.7	0.3	0.2	0.5	0.6
	0	5	1	8	0	4	8	7	8	1	0	8	0	0	5	4	0	4	4	8
C	0.3	-	0.0	0.0	0.6	0.1	0.1	0.3	-	0.4	0.5	0.3	0.1	-	0.0	0.1	-	-	-	0.3
	0	0.3	0	0	8	0	0	0	0.3	0	1	5	8	0.3	0	0	0.3	0.6	0.1	0
		0							0					0			0	0	2	
E	0.7	0.5	0.4	0.4	0.1	1.3	0.4	0.5	0.4	0.8	0.9	0.8	0.5	0.7	0.5	0.6	0.4	0.0	0.6	0.6
	4	4	0	0	0	1	0	7	0	6	3	5	7	0	1	5	8	0	0	5
Q	0.4	0.3	0.4	0.4	0.1	0.3	1.0	0.3	0.0	0.6	0.8	0.5	-	0.4	0.1	0.1	0.0	-	0.4	0.6
	8	5	0	8	0	5	4	5	0	0	5	4	0.3	0	0	8	0	0.6	4	8
													0					0		
G	0.5	0.5	0.4	0.6	0.3	0.6	0.4	1.1	0.0	0.7	0.7	0.4	0.4	0.4	0.2	0.5	0.3	0.0	0.4	0.5
	4	7	8	5	0	5	0	5	0	8	4	8	4	0	4	1	0	0	0	7
H	0.3	0.4	0.4	0.1	-	0.4	0.1	0.0		0.4	0.4	0.5	0.3	0.3	0.1	0.4	0.0	-	0.0	0.0
	5	8	8	8	0.1	0	0	0	6	8	4	4	0	0	8	4	0	0.3	0	0
					2													0		
1	0.6	0.6	0.4	0.5	0.4	0.8	0.5	0.8	0.5	1.3	0.9	0.9	0.3	0.4	0.5	0.6	0.2	0.1	0.6	0.8
	0	8	0	1	8	6	7	0	1	7	3	2	5	8	7	0	4	8	3	0
L	0.8	0.7	0.8	1.0	0.7	0.9	0.8	0.8	0.4	0.9	1.5	1.0	0.8	0.7	0.4	0.9	0.3	0.4	0.6	1.0
	5	6	3	0	0	7	3	0	0	0	3	6	0	8	0	5	5	0	8	5
K	0.7	0.5	0.7	0.8	0.3	0.8	0.5	0.4	0.5	0.9	1.0	1.4	0.5	0.8	0.4	0.6	0.4	0.1	0.5	0.9
	4	4	2	0	5	5	4	8	4	2	6	3	1	1	4	8	0	8	4	2
M	0.5	0.3	-	0.1	0.1	0.5	-	0.4	0.3	0.3	0.8	0.5	0.9	0.1	0.0	0.2	-	-	0.2	0.7
	1	5	0.1	0	8	7	0.3	4	0	5	0	1	3	0	0	4	0.3	0.6	4	0
			2				0										0	0		
F	0.6	0.4	0.4	0.4	0.2	0.6	0.4	0.5	0.3	0.4	0.8	0.8	0.1	1.1	0.5	0.5	0.4	0.0	0.4	0.6
	5	4	4	0	4	0	0	4	0	8	0	1	0	4	4	7	0	0	0	0
P	0.4	0.3	0.1	0.4	0.0	0.5	0.1	0.2	0.1	0.5	0.4	0.4	0.0	0.5	1.1	0.4	0.2	0.0	0.3	0.4
	8	5	8	0	0	1	0	4	8	7	0	4	0	4	5	4	4	0	5	0
S	0.3	0.4	0.4	0.7	0.2	0.7	0.1	0.6	0.4	0.5	0.7	0.6	0.2	0.5	0.4	1.0	0.4	0.0	0.5	0.4
	5	4	8	2	4	0	8	3	4	4	8	3	4	1	8	6	8	0	1	0
T	0.6	0.3	0.2	0.8	0.4	0.5	0.0	0.3	0.1	0.2	0.2	0.3	-	0.4	0.1	0.5	1.0	0.0	0.4	0.6
	0	5	4	0	8	1	0	5	0	4	4	0	0.6	0	8	1	2	0	4	0
w	0.2	-	-	0.2	-	0.0	-	0.1	-	0.1	0.4	0.1	-	0.0	0.0	-	0.1	0.5	-	0.4
	4	0.6	0.3	4	0.6	0	0.6	8	0.3	8	0	8	0.6	0	0	0.1	0	4	0.3	0
		0	0		0		0		0				0			2			0	
Y	0.7	0.5	0.2	0.5	0.0	0.6	0.4	0.4	0.0	0.6	0.6	0.5	0.2	0.4	0.3	0.5	0.4	-	1.1	0.7
	4	7	4	7	0	0	4	0	0	3	8	4	4	0	5	7	4	$\begin{gathered} 0.3 \\ 0 \end{gathered}$	6	8
v	0.8	0.6	0.5	0.6	0.3	0.7	0.6	0.5	0.0	0.8	1.0	0.9	0.7	0.5	0.4	0.3	0.6	0.3	0.7	1.2
	1	3	7	8	5	4	3	7	0	0	4	2	0	7	0	5	0	5	4	9

In pair potential matrix negative values indicates that the score is less than expected so it is unlikely to interact at the interface, zero value indicates by random match they may be favorable.

Positive values indicate that the interactions are favorable.

Table 3.3(a): Score of PAK group binding peptide using Pair-potential matrix.

RETNLDSLPLVDT	9.9
ENTLQSFRQDVDN	10.4
LQSFRQDVDNASL	11.2
LDSLPLVDTHSKR	11.3
DVSKPDLTAALRD	13.3
QDSVDFSLADAIN	13.4
NFSSLNLRETNLD	13.5
DLTAALRDVRQQY	13.5
QLTNDKARVEVER	13.6
NASLARLDLERKV	14.2
TRTNEKVELQELN	14.7
TRSVSSSSYRRMF	14.8
RSSVPGVRLLQDS	14.8
YESVAAKNLQEAE	15.4
QDTIGRLQDEIQN	15.5
PSTSRSLYASSPG	15.5
MSTRSVSSSSYRR	15.7
VDTHSKRTLLIKT	16.6
SRSYVTTSTRTYS	16.7
VETRDGQVINETS	16.7
TRSSAVRLRSSVP	16.8
QESTEYRRQVQSL	17
DLSEAANRNNDAL	17.2
TASRPSSSRSYVT	17.3
IATYRKLLEGEES	17.3
TYSLGSALRPSTS	17.5
RSSAVRLRSSVPG	17.6
VTTSTRTYSLGSA	17.6
KRTLLIKTVETRD	17.7
TRTYSLGSALRPS	17.8
KNTRTNEKVELQE	17.8
THSKRTLLIKTVE	17.9
NESLERQMREMEE	17.9
RISLPLPNFSSLN	17.9
ESTEYRRQVQSLT	18
SLTCEVDALKGTN	18
RPSSSRSYVTTST	18.3
SRSLYASSPGGVY	18.3
VSSSSYRRMFGGP	18.4
YVTTSTRTYSLGS	18.5
TSTRTYSLGSALR	18.6
SSSRSYVTTSTRT	18.7
ASSPGGVYATRSS	18.8
GKSRLGDLYEEEM	18.9
LRSSVPGVRLLQD	19.3

YASSPGGVYATRS	20
SVSSSSYRRMFGG	20
LGSALRPSTSRSL	20
INTEFKNTRTNEK	20.1
VESLQEEIAFLKK	20.4
EESRISLPLPNFS	20.6
TTSTRTYSLGSAL	20.7
RPSTSRSLYASSP	21.1
STSRSLYASSPGG	21.5
SSSSYRRMFGGPG	23.5

Table 3.3(b): Score of PAK group binding peptide using Betancourt Thirumalai matrix

VETRDGQVINETS	-3.8
GKSRLGDLYEEEM	-3.6
SSSRSYVTTSTRT	-3.4
PSSSRSYVTTSTR	-3.1
KNTRTNEKVELQE	-2.7
THSKRTLLIKTVE	-2.5
TRTNEKVELQELN	-2.4
YATRSSAVRLRSS	-2.4
ANRNNDALRQAKQ	-2.3
PSTSRSLYASSPG	-2.1
IATYRKLLEGEES	-2
EESRISLPLPNFS	-2
SRSYVTTSTRTYS	-1.9
DVSKPDLTAALRD	-1.9
RPSSSRSYVTTST	-1.4
KGTNESLERQMRE	-1.1
ASSPGGVYATRSS	-1.1
TTSTRTYSLGSAL	-0.8
STSRSLYASSPGG	-0.7
YASSPGGVYATRS	-0.6
SSSYRRMFGGPGT	-0.5
RPSTSRSLYASSP	-0.3
YKSKFADLSEAAN	-0.2
MSTRSVSSSSYRR	0.5
NFSSLNLRETNLD	0.6
TSTRTYSLGSALR	0.6
PGTASRPSSSRSY	0.6
LRSSVPGVRLLQD	0.7
TASRPSSSRSYVT	0.8
VDTHSKRTLLIKT	0.9
RETNLDSLPLVDT	1
YVTTSTRTYSLGS	1
RSSAVRLRSSVPG	1.2

SSSSYRRMFGGPG	1.2
QESTEYRRQVQSL	1.2
KRTLLIKTVETRD	1.8
ESTEYRRQVQSLT	1.8
RSSVPGVRLLQDS	2.1
LGSALRPSTSRSL	2.1
VSSSSYRRMFGGP	2.3
INTEFKNTRTNEK	2.3
NESLERQMREMEE	2.3
TYSLGSALRPSTS	2.4
SVSSSSYRRMFGG	2.4
ENTLQSFRQDVDN	2.6
YESVAAKNLQEAE	2.6
TRTYSLGSALRPS	2.7
NASLARLDLERKV	3
TRSSAVRLRSSVP	3
DFSLADAINTEFK	3.1
TRSVSSSSYRRMF	3.6
DLTAALRDVRQQY	4.3
IKTVETRDGQVIN	4.3
DLSEAANRNNDAL	4.6
LQSFRQDVDNASL	5.1
VESLQEEIAFLKK	5.8
QDSVDFSLADAIN	6.1
SRSLYASSPGGVY	6.4
LDSLPLVDTHSKR	6.5
FSSLNLRETNLDS	6.6
VQSLTCEVDALKG	8.2
RISLPLPNFSSLN	8.4
LLQDSVDFSLADA	8.6
SLTCEVDALKGTN	10.3

This is the score of PAK group binding peptide. The benchmarking of known PAK group is done by default matrix as well the pair potential matrix which was prepared by us. Further, work is to refine pair-potential matrix on the larger dataset.

CHAPTER 4

CONCLUSION

Protein kinases constitute the largest family in the eukaryotes. It modifies other proteins by adding phosphate group and 30% of all proteins may be phosphorylated by the protein kinases. In this project we analyzed the crystal structure which are in complex with protein kinases substrate which were retrieved by performing BLAST against the protein databank. Identified the interactions between the peptide and the protein kinases. The short peptides with length less than 15 were only used. Thus, protein and Substrate complex was formed using pymol. After the Substrate and protein complex was formed, all possible amino acid - amino acid contacts from the crystal structures of protein kinase- substrate peptide complexes were identified and binding preferences of all amino acids were calculated as the log ratios of observed / expected frequencies. Thus, a pair potential matrix was prepared which was specific to the protein kinase and the substrate interface. This work has been done for the first time. There are other pair potential matrix also which are generalized to certain principles but our matrix is specific to the protein peptide interactions. Therefore we calculated the pair potential matrix which is specific to substrate which can be further used for the benchmarking.

APPENDIX

CODE 1:

Python code to retrieve chain ID, Fasta sequences, PDB file chains separation, removal of water molecules and ligands, and shorts peptides.

```
from Bio.PDB.PDBParser import PDBParser
from Bio.PDB.Substrate import three_to_one
from Bio.PDB.Substrate import is_aa
from Bio.Alphabet import IUPAC
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
import sys
import MDAnalysis
with open("file.txt", 'r') as fh:
for pdbFile in fh:
pdbFile= pdbFile.rstrip("\n")
print(pdbFile)
p = PDBParser(PERMISSIVE=1)
structure = p.get_structure(pdbFile, pdbFile)
for model in structure:
i=0
for chain in model:
seq= list()
chainID= chain.get_id()
for residue in chain:
if is_aa(residue.get_resname(), standard=True):
seq.append(three_to_one(residue.get_resname()))
else:
seq.append("X")
print ">Chain_" + chainID+ "\n" + str("".join(seq))
print "ChainID"+ chainID+ " "
print i
u = MDAnalysis.Universe(pdbFile, permissive=False)
A = u.select_atoms('segid '+ chainID)
filename = chainID+ '_' + pdbFile
```

```
A.write("/root/Desktop/Project/PDB_FILES/Files/chains/"+filename)
pdb= open("/root/Desktop/Project/PDB_FILES/Files/chains/"+filename, "r")
file = open("/root/Desktop/Project/PDB FILES/Files/atoms/Atom "+filename, "w")
for line in pdb:
if line[:4] == 'ATOM' and line[17:20] !='HOH' and line[23:26] != ' 0':
i+=1
maximum = line[23:26]
file.write(line)
file0 = open("/root/Desktop/Project/PDB_FILES/Files/atoms/Atom_"+filename, "r")
data = file0.readline()
minimum = int(data[23:26])
if minimum == 1:
minimum = 0
file0.close()
res = abs(minimum - int(maximum))
finalfi= open("/root/Desktop/Project/PDB_FILES/Files/chains/finalfile.txt", "a+")
data = str(pdbFile+ " " + chainID+ " " + str(i) + " "
+ str(res) + " " +"\n")
finalfi.write(data)i=0
```


CODE 2:

Title: Python code to generate multiple links to download PDB file.

```
with open('script.sh', 'r') as f:
    lines = f.readlines()
lines =[ line.replace('wget https://files.rcsb.org/download/', '') for line in
lines]
with open('script.sh', 'w') as f:
f.writelines(lines)
```


CODE 3:

Python code for the calculation of distances
s
from Bio.PDB import PDBParser
\# create parser
parser = PDBParser()

```
# read structure from file
with open("peptideFilee.txt", 'r') as fh, open("Proteinfilee.txt", 'r') as
rf:
    for pdbFile, pdbFile2 in zip(fh,rf):
        pdbFile = pdbFile.rstrip("\n")
        pdbFile2 = pdbFile2.rstrip("\n")
        pdbFile = pdbFile.rstrip("\r")
        pdbFile2 = pdbFile2.rstrip("\r")
        print(pdbFile)
        print(pdbFile2)
        alpha = str(pdbFile[5:6])
        beta = str(pdbFile2[5:6])
        print(alpha)
        print(beta)
        structure = parser.get_structure('P', pdbFile)
        structure1 = parser.get_structure('P', pdbFile2)
        model = structure[0]
        model1 = structure1[0]
        chain = model[alpha]
        chain1 = model1[beta]
        # this example uses only the first residue of a single chain.
        # it is easy to extend this to multiple chains and residues.
        for residue1 in chain:
            for residue2 in chain1:
                        file = open("Residue_info/Data_" + pdbFile + pdbFile2,
"a+")
        #if residue1 != residue2
        try:
                            distance = residue1['CA'] - residue2['CA']
                except KeyError:
                    continue
            if distance <= 6:
                print(residue1, residue2, distance)
                    print ("\n")
                    res = str(residue1)
                    res1 = str(residue2)
                        file.write(res[9:13] + " " + res[19:29]+ " " + alpha
+ " " + "--------->" + " " + res1[9:13] + " " + res1[19:29] + " "+
beta + " " + str(distance) + "\n")
```


REFERENCES

1. Benjamin E turk, "Understanding and exploiting substrate recognition by protein kinases": Current opinion in chemical biology ,4-10(2008).
2. Roskoski R Jr "A historical overview of protein kinases and their targeted small molecule inhibitors" :pharmacological research 100 ,1-23(2015).
3. Paulo Sérgio L. de Oliveira, Felipe Augusto N. Ferraz, Darlene A. Pena, Dimitrius T. Pramio, Felipe A. Morais, and Deborah Schechtman "Revisiting protein kinase-substrate interactions" Science Signalling, vol 9: 420(2016).
4. Holger Dinke, Claudia Chica, Allegra Via, Cathryn M. Gould, Lars J. Jensen, Toby J. Gibson, and Francesca Diella. "Phospho.ELM database for phosphorylation sites" : Nucleic Acid Research, D261-D267(2011).
5. Debasisa Mohanty, Narendra Kumar "MODPROPEP: a program for knowledge-based modeling of protein - peptide complexes" : Nucleic Acid Research,W549-W555(2007).
