JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- Feb 2019

B.Tech VIII Semester

COURSE CODE: 13B1WEC831

COURSE NAME: SOFT COMPUTING TECHNIQUES

MAX. MARKS:15

COURSE CREDITS: 3

Note: All questions are compulsory. Carrying of mobile phone during examinations will be

Q1 How is Fuzzy logic different from Probability theory and Crisp Theory?

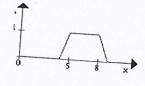
[2] [CO1]

[4] [CO2]

Q2.	Consider two	given	fuzzy	sets
Q2.	Consider two	given	fuzzy	sets

	X_1	X ₂	V			
A	0.1	0.6	0.8	X ₄	X_5	X ₆
B	0.9	0.7	0.5	0.9	0.7	0.1
ss th	e follow	$ving \lambda - \alpha$	Cut cot	1 0.2	0.1	0

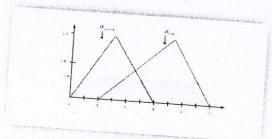
Express the following λ - cut set


Perform (i) AUB) 0.6 (ii) AUB')0.6 (iii) A \cap B)0.7 (iv) A' \cap B) 0.7

Q3 A linguistic variable x which measures the academic excellence is taken from universe of discourse U={ 1 2 3 4 5 6 7 8 9 10}. The membership functions are defined as follows μ (Excellent)={(8, 0.2) (9, 0.6) (10 1)}, μ (good)={(6 0.1) (7 0.5) (8, 0.9) (9,1) (10 1)} [1] [CO2]

Construct the membership function of Good but not excellent.

Q4 Consider two membership functions


[3] [CO1]

Find i) AUB (ii) A\cap B (iv) A'

Q5. The width of a road as narrow and wide is defined by two fuzzy sets, whose membership functions are plotted as shown above. If a road with its degree of membership value is 0.4 then what will be its [2] [CO5]

Q6. Find the two relational compositions of the fuzzy sets.

[3] [CO2]

$$P(x,y) = \begin{bmatrix} 0.3 & 0.5 & 0.8 \\ 0.0 & 0.7 & 1.0 \\ 0.4 & 0.6 & 0.5 \end{bmatrix}$$

$$P(x,y) = \begin{bmatrix} 0.3 & 0.5 & 0.8 \\ 0.0 & 0.7 & 1.0 \\ 0.4 & 0.6 & 0.5 \end{bmatrix}$$

$$Q(x,y) = \begin{bmatrix} 0.9 & 0.5 & 0.7 & 0.7 \\ 0.3 & 0.2 & 0.0 & 0.9 \\ 1.0 & 0.0 & 0.5 & 0.5 \end{bmatrix}$$