fore e vARrE:

Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num. SPotpfo Call Num:
General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

& Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

& The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

N

4010

'ﬁ

P2P System

Submitted in partial fulfillment of the Degree of

Bachelor of Technology
By |
Vasu Gupta(041211)
Praﬂeet Tandon(041279)

Kavitt Sharma(041421)

JAYPEE UNIVERSITY QF
INFORMATION TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
WAKNAGHAT

MAY-2008

Abstract

i Transferring of data in connected machines is not easy. Either one has to connect remotely to
another machine or use external media to transfer data. Usage of external media requires a
person to physically go to a machine, copy data first to the external device and then onto his/her
own machine. In the case of a Remote connection, the data transfer rate is slow and till the time
data is being copied, one machine cannot be used as it becomes locked as soon as a remote
connection is made. Our tool helps in transferring files from one machine to another without any
obstruction of work of any of the connected users. All files being shared by one client are

accessible to all the clients who are logged in. Hence this tool helps in transferring files shared

on one machine to another on a network with greater efficiency.

CERTIFICATE -

This is to certify that the work entitled, “P2P System” submitted by Vasu Gupta, Praneet
Tandon and Kavitt Sharma in partial fulfillment for the award of degree of Bachelor of
Technology in Computer Science of Jaypee University of Information Technology has been
carried out under my supervision. This work has not been submitted partially or wholly to

any other University or Institute for the award of this or any other degree or diploma.

C/\/\/J '
Supervisor: /

Mr. Vipin Arora

Lecturer,

Department of Computer Science and Information Technology,
Jaypee University of Information Technology,

Waknaghat, Solan-172315, Himachal Pradesh,

INDIA.

ACKNOWLEDGEMENT

We wish to express our earnest gratitude to Mr. Vipin Arora, for providing us invaluable

guidance and suggestions, which inspired us to submit this project on time.

We would also like to thank all the staff members of Computer Science and Engineering
Department of Jaypee University of Information Technology, Waknaghat, for providing us all

the facilities required for the completion of this project.

Last but not least we wish to thank all our classmates and friends for their timely suggestions and

cooperation during the period of our project.

Vasu Gupta (041211) Prancet Tandon (041279)

[PPSTRVELN

Kavitt Sharma (041421)

Table of Contents

List of figures A%
I' List of abbreviations VII
1. Project Basics l
i Project Aim 1
ii. Project Scope 1
iii. Introduction to the Platform 2
iv. Chapterization and Theoretical Basics 6
2. Project Design 7
i. Methodology and Approach 7
ii. Implementation 8
iii. Software Development Cycle 22
iv. ER Diagram 23
v. Data Flow Diagram 24
vi. Flow Chart 27
vii. Event Diagram 28 !
viii, Testing 29 ;
3. Graphical User Interface Details 33
4. Source Code 39
5. Conclusion and Future Scope &9
6. References 90
7. Installation Guide 91

List of figures

Fig 2.1: User interface of the Project

Fig 2.2.1: Basics of Discovery Service

Fig 2.2.2: Search queries

Fig 2.2.3: File Upload Information Display
Fig 2.2.4: Download Information Display
Fig 2.2.5: Downloading Display

Fig 2.3: Lifecycle of the project

Fig 2.4: Entity-Relationship Diagram

Fig 2.5.1: Zero-Level Data Flow Diagram
Fig 2.5.2: Level-One Data Flow Diagram
Fig 2.5.3: Level-Two Data Flow Diagram
Fig 2.6: Flowchart

Fig 2.7: Event Diagram

Fig 2.8.1: Graph Based Method

Fig 2.8.2: Boundary Value Analysis

Kig 3.1.1: User Interface of Prototype

Fig 3.1.2: User Interface of Final Tool

Fig 3.1.3: Download Information Display

Fig 3.1.4: File Upload Information Display

Fig 3.1.5: Client Settings Display

vl

List of Abbreviations

1. P2P — Peer to peer

2. .Net — Visual Basic. Net 2.005 (VB. Net)
3. 1IS - Internet Indexing Service

4. NAT - Network Address Translation

5. GUID - Global unique Identifier

6. LAN - Local Area Network

7. SQL - Structured Query Language

All other abbreviations that were used sparingly have been explained wherever they were

used.

Vil

1. PROJECT BASICS:

1.1 PROJECT AIM:

The project aims on the development of a user friendly tool which can transfer files across a

network. It will be used to transfer shared files from one machine to another.

1.2 PROJECT SCOPE:

The tool is a Peer to Peer system. It will enable users to transfer files shared on machines
across a network. It will allow them to continue working without any hindrance as the files

they request are being copied in the background. It is a better option than a Remote Desktop

Connection which stops the usage of the machine that is being accessed.

B LT

1.3 Introduction to the Platform

| VB.Net

Visual Basic .NET provides the easiest, most productive language and tool for rapidly
building Windows and Web applications. Visual Basic .NET comes with enhanced visual
designers, increased application performance, and a powerful integrated development
environment (IDE). It also supports creation of applications for wireless, Internet-enabled

hand-held devices. The following are the features of Visual Basic .NET.
1. Powerful Windows-based Applications

Visual Basic .NET comes with features such as a powerful new forms designer, an in-
place menu editor, and automatic control anchoring and docking. Visual Basic .NET
delivers new productivity features for building more robust applications easily and
quickly. With an improved integrated development environment (IDE) and a significantly
! reduced startup time, Visual Basic .NET offers fast, automatic formatting of code as you

type, an enhanced object browser and XML designer, and much more.
2. Building Web-based Applications

| With Visual Basic .NET we can create Web applications using the shared Web Forms
' Designer and the familiar "drag and drop" feature. You can double-click and write code
to respond to events. Visual Basic .NET 2003 comes with an enhanced HTML Editor for

working with complex Web pages.
3. Simplified Deployment

With Visual Basic .NET we can build applications more rapidly and deploy and maintain
them with efficiency. Visual Basic .NET 2003 and .NET Framework 1.1 makes "DLL
Hell" a thing of the past. Side-by-side versioning enables multiple versions of the same
component to live safely on the same machine so that applications can use a specific

version of a component. XCOPY-deployment and Web auto-download of Windows-

2

based applications combine the simplicity of Web page deployment and maintenance

with the power of rich, responsive Windows-based applications.
Powerful, Flexible, Simplified Data Access

You can tackle any data access scenario easily with ADO.NET and ADO data access.
The flexibility of ADO.NET enables data binding to any database, as well as classes,
collections, and arrays, and provides true XML representation of data. Seamless access to
ADO enables simple data access for connected data binding scenarios. Using ADO.NET,
Visual Basic .NET can gain high-speed access to MS SQL Server, Oracle, DB.,

Microsoft Access, and more.
Improved Coding

You can code faster and more effectively. A multitude of enhancements to the code
editor, smart listing of code for greater readability and a background compiler for real-
time notification of syntax errors transforms into a rapid application development (RAD)

coding machine.

. Direct Access to the Platform

Visual Basic developers can have full access to the capabilities available in .NET
Framework 1.1. Developers can easily program system services including the event log,
performance counters and file system. The new Windows Service project template
enables to build real Microsoft Windows NT Services. Programming against Windows
Services and creating new Windows Services is not available in Visual Basic .NET

Standard, it requires Visual Studio 2003 Professional, or higher.

. Full Object-Oriented Constructs

One can create reusable, enterprise-class code using full object-oriented constructs.

Language features include full implementation inheritance, encapsulation, and

10.

1

polymorphism. Structured exception handling provides a global error handler and

eliminates spaghetti code.,
XML Web Services

XML Web services enable you to call components running on any platform using open
Internet protocols. Working with XML Web services is easier where enhancements
simplify the discovery and consumption of XML Web services that are located within
any firewall. XML Web services can be built as easily as you would build any class in
Visual Basic 6.0. The XML Web service project template builds all underlying Web

service_infrastructure.
Mobile Applications

Visual Basic .NET 2003 and the .NET Framework 1.1 offer integrated support for
developing mobile Web applications for more than 200 Internet-enabled mobile devices.
These new features give developers a single, mobile Web interface and programming

model to support a broad range of Web devices.

COM Interoperability

One can maintain existing code without the need to recode. COM interoperability enables
you to leverage your existing code assets and offers seamless bi-directional

communication between Visual Basic 6.0 and Visual Basic .NET applications.

Reuse Existing Investments

You can reuse all your existing ActiveX Controls. Windows Forms in Visual Basic .NET

2003 provide a robust container for existing ActiveX controls. In addition, full support

for existing ADO code and data binding enable a smooth transition to Visual Basic .NET

2003.

N)
12. Upgrade Wizard

We can upgrade our code to receive all of the benefits of Visual Basic .NET 2003. The
Visual Basic .NET Upgrade Wizard, available in Visual Basic .NET 2003 Standard
Edition, and higher, upgrades up to 95 percent of existing Visual Basic code and forms to
Visual Basic NET with new support for Web classes and User Controls.

i 3

R 5

1.4 CHAPTERISATION AND THEORETICAIL BASIS:

| Project Overview, approach, methodology.

2 Project design including finalization of specification.

3 First review of project design.

4 Implementation of prototype, input, output and user Interface.

5 Second review of project design.

6 Coding design-flowchart, file design, data representation, testing procedure.
7 Coding.

8 Final Testing and Releases.

9 Final documentation and completion.

.
- 6

PROJECT DESIGN:

2.1 METHODOLOGY & APPROACH:

This project is divided into two modules

1. GUI development.

2. Implementation.

GUI development module gives the complementary view of the desired system behavior which is

user compatible and easy to use. File Transfer will help in realization of the goal.

Fig 2.1: User Interface of the Project

2.2 Implementation:

Communicating with TCP

TCP connections require a three-stage handshaking mechanism:

1. First, the server must enter listening mode by performing a passive open. At this

point, the server will be idle, waiting for an incoming request.

2. A client can then use the IP address and port number to perform an active open. The
server will respond with an acknowledgment message in a predetermined format

that incorporates the client sequence number.

3. Finally, the client will respond to the acknowledgment. At this point, the connection

is ready to transmit data in either direction.

In .NET, you perform the passive open with the server by using the TcpListener.Start()
method. This method initializes the port, sets up the underlying socket, and begins
listening, although it doesn't block your code. After this point, you can call the Pending()
method to determine if any connection requests have been received. Pending() examines
the underlying socket and returns True if there's a connection request. You can also call
AcceptTcpClient() at any point to retrieve the connection request, or block the application

until a connection request is received.

The Discovery Service

A discovery service has one key task: to map peer identifiers to peer connectivity
information. The peer identifier might be a unique user name or a dynamically generated
identifier such as a globally unique identifier (GUID). The connectivity information
includes all the details needed for another peer to create a direct connection. Typically, this -
includes an IP address and port number, although this information could be wrapped up in
a higher-level construct. For example, the coordination server that we used in the Remoting

chat application stores a proxy (technically, that encapsulates the IP address and port

number as well as other details such as the remote class type and version.

: Peer’s Name Disciver
p Peer 2 ol d
____/ Peer’s Connectivity Information Service
I
Contact Peer Directly
Peer

Fig 2.2.1: Basics of Discovery Service

In addition, a discovery service might provide information about the resources a peer
provides. For example, in the file-sharing application, a peer creates a query based on a file
name or keyword. The server then responds with a list of peers that can satisfy that request.
In order to provide this higher-level service, the discovery service needs to store a catalog
of peer information. This makes the system more dependent on its central component, and
it limits the ways that you can search, because the central component must expect the types ‘
of searches and have all the required catalogs. However, if your searches are easy to

categorize, this approach greatly improves performance and reduces network bandwidth.

The Registration Database

The registration database stores a list of all the peers that are currently available and the
information needed to connect to them. It also uses a basic cataloging system, whereby
each peer uploads a catalog of available resources shortly after logging in. When a peer
needs a specific resource, it calls a web-service method. The web service attempts to find

peers that can provide the resource and returns a list of search matches with the required

peer-connectivity information.

In this case, the resources are files that a peer is willing to exchange. The catalog stores file
names, but that isn't enough. File names can be changed arbitrarily and have little
consistency among users, so searching based on file names isn't a desirable option. Instead,
file names are indexed using multiple content descriptors. In the case of an MP3 file, these
content descriptors might include information such as the artist name, song title, and so on.
The file-sharing application can use more than one possible method to retrieve this
information, but the most likely choice is to retrieve it from the file. For example, MP3
files include a header that stores song data. A file-sharing application could use this
information to create a list of keywords for a file, and submit that to the server. This is the

approach taken in our sample registration database.

Creating the Database

The registration database consists of three tables. These tables include the following:

1. The Peers table lists currently connected peers, each of which is assigned a unique
GUID. The peer-connectivity information includes the numeric IP address (stored
as a string in dotted notation) and port number. The Peers table also includes a
LastUpdate time, which allows an expiration policy to be used to remove old peer

registration records.

2. The Files table lists shared files, the peer that's sharing them, and the date stamp on
the file. Each file has a unique GUID, thereby ensuring that they can be tracked
individually.

3. The Keywords table lists a single-word descriptor for a file. You'll notice that the
Keywords table is linked to both the Files table and the Peers table. This makes it
easier to delete the keywords related to a peer if the peer registration expires,

without having to retrieve a list of shared files.

10

Working of the Discovery Service

Now that the actual data-access logic has been written, the actual discovery web service

will need very little code. For the most part, its methods simply wrap the P2PDatabase

component. All exceptions are caught, logged, and suppressed, so that sensitive

information will not be returned to the client, who is in no position to correct low-level

database errors anyway.

A typical interaction with the discovery service goes as follows:

1.

4.

3.

The client generates a new GUID to identify itself, records its current IP address

and port, and calls Register() with this information.

The client inspects the files that it's sharing, creates the keywords lists, and calls

PublishFiles() to submit the catalog.

After this point, the client calls RefreshRegistration() periodically, to prevent its

login information from expiring.
Optionally, the client calls SearchForFile() with any queries.

The client ends the session by calling Unregister().

An Overview of FileSwapper

The FileSwapper application is built around a single. This form uses multiple tables and

allows users to initiate searches, configure settings, and monitor uploads and downloads.

FileSwapper divides its functionality into a small army of classes, including the following:

SwapperClient, which is the main form class. It delegates as much work as possible
to other classes and uses a timer to periodically update its login information with

the discovery service.

Global, which includes the data that's required application-wide (for example,

registry settings).

11

e App, which includes shared methods for some of the core application tasks such as
Login(), Logout(), and PublishFiles(), and also provides access to the various

application threads.

o KeywordUtil and MP3Util, which provide a few shared helper methods for
analyzing MP3 files and parsing the keywords that describe them.

e RegistrySettings, which provides access to the application's configuration settings,

along with methods for saving and loading them.
e ListViewltemWrapper, which performs thread-safe updating of a ListViewItem.

e Search, which contacts the discovery service with a search request on a separate

thread (allowing long-running searches to be easily interrupted).

e FileServer and FileUpload, which manage the incoming connections and transfer

shared files to interested peers. {

e FileDownloadQueue and FileDownloadClient, which manage in-progress

downloads from other peers.
o Messages, which defines constants used for peer-to-peer communication.

The file-transfer process is fairly easy. Once a peer locates another peer that has an
interesting file, it opens a direct TCP/IP connection and sends a download request
However, the application is still fairly complex because it needs to handle several tasks that
require multithreading at once. Because every peer acts as both a client and a server, every i
application needs to simultaneously monitor for new incoming connections that are
requesting files. In addition, the application must potentially initiate new outgoing
connections to download other files. Not only does the client need to perform uploading
and downloading at the same time, but it also needs to be able to perform multiple uploads
or downloads at once (within reason). In order to accommodate this design, a scparate

thread needs to work continuously to schedule new uploads or downloads as required.

12

Global Data and Tasks

The FileSwapper application uses two classes that consist of shared members: Global and
App. These classes act like global modules and are available from any location in the
FileSwapper code. That means that you don't need to create an instance of these classes—
instead, their properties and methods are always available and you can access them through

the class name.

The Global class stores data that's required by multiple objects in the application. As with
any application, it's always best to keep the amount of global data to a miﬂimum. A large
number of global variables usually indicates a poor structure that really isa't object-
oriented. All the data in the Global class is held using public shared variables, making it
widely available. For example, any code in the application can use the Global.Identity
property to access information about the current computer's IP address and port number

settings.

The App class also relies on shared variables to store a common set of information. It
actually stores references to three separate objects, each of which will be executed on an
independent thread. Using the App class, your startup code can easily initialize the threads

on startup and abort them when the application is about to end. The App class also includes

a private shared variable that references the web-service proxy. This ensures that no other {
part of the application can access the discovery service directly—instead, the application :

must call one of the App class methods.

Utility Functions

There are three utility classes in the FileSwapper: RegistrySettings, MP3Util, and
KeywordUtil. All of them use shared methods to provide helper functions.

The first class, RegistrySettings, wraps access to the Windows registry. It allows the

application to store and retrieve machine-specific information. You could replace this class

with code that reads and writes settings in an application configuration file, but the
drawback would be that multiple users couldn't load the same client application file from a

network (as they would end up sharing the same configuration file). ‘
13 ‘

S ———

The RegistrySettings class provides five settings as public variables and two methods. The
Load() method retrieves the values from the specified key and configures the public

variables. The Save() method stores the current values in the appropriate locations.

The final utility class is KeywordUtil. It includes a single shared method—

ParseKeywords()—that takes a string which contains a list of keywords, and splits it into
words wherever a space, comma, or period is found. This step is performed using the built- E
in String.Split() method. Thus, if you index an MP3 file that has the artist "Linkin Park," j
the keyword list will include two entries: "Linkin" and "Park”. This allows a peer to search

with both or only one of these terms.

Thread-Safe ListViewltem Updates

This is usually the case when updating one of the three main ListView controls in the

FileSwapper: the upload status display, the download status display, and the search-result

listing.

For the first two cases, there's a direct mapping between threads and ListView items. For
example, every concurrent upload requires exactly one ListViewItem to display ongoing
status information. To simplify the task of creating and updating the ListViewltem,

FileSwapper includes a wrapper class called ListViewltemWrapper.

The Main Form

When the main form first loads, it reads the registry, updates the configuration window
with the retrieved settings, starts the other threads, and then logs in. The login is actually a
multiple step procedure. First, the peer information is submitted with the App.Login()
method. Next, the file catalog is created and submitted with the App.PublishFiles() method.

Finally, the timer is enabled to automatically update the login information as required.

While the peer is sending data to the discovery web service, the mouse pointer is changed

to an hourglass, and the text in the status bar panel is updated to reflect what's taking place.

Searches

The Search class is the first of three custom-threaded objects used by FileSwapper. As part
of any search, FileSwapper attempts to contact each peer with a network ping (the
equivalent of asking "are you there?"). FileSwapper measures the time it takes for a
response and any errors that occur, and then displays this information in the search results.
This allows the user to decide where to send a download request, depending on which peer

is fastest.

The drawback of this approach is that pinging each peer could take a long time, especially
if some peers are unreachable. This in itself isn't a problem, provided the user has some
way to cancel a long-running search and start a new one. To implement this approach, the

Search class uses custom threading code.

Threading the Search class may seem easy, but it runs into the classic userinterface
problem. In order to display the results in the ListView, the user-interface code must be
marshaled to the main application thread using the Control.Invoke() method. This isn't q

difficult, but it is an added complication.

The Search class needs to track several pieces of information:

e The thread it's using to execute the search. ‘
e Its current state (searching, not searching).

e The search keywords.

e The ListView where it should write search results.

e The SearchResults it retrieves.

e The ping times it calculates.

15

i Ao A Bt : “ ;
Ons AZAN0B4SI06PM 1721653 B0l SciericSarfA13-adte NG e 4 47260
ons 4,129}21])5{ 1:16PM 172.16.5.3 BOCO Ab7zbb-2077-4112- 057305529833 2914
dns 4}38&316I:51:16FM 172.16.5.3 Boc1 #325879-4a304915-2d53-c4205a315436 1e0HPea-cidc- 4248-ac06- 5161 0678 80

: Ram, e
42812008 4.51:15 P 1721653 SoiAeT9c-5alf- ﬂﬂﬂdﬂ—ﬁﬁm 97067 2B 754460899082 4be 47250
4{2BR0345L:16PH 172.1653 €70b72bb-2077-41 12~ 05- 7320929839 291d7cH-2500-4b6b-0377-hI5T45Hbe 1
4j28/20084:51:16PH 1721653 1e0H08ea-dhdc-4243-aC6-5161 b8 a0

Fig 2.2.2: Search queries

Uploads

The file uploading and downloading logic represents the heart of the FileSwapper
application. The user needs the ability not only to perform both of these operations at the
same time, but also to serve multiple upload requests or download multiple files in parallel.
To accommodate this requirement, we must use a two-stage design, in which one class is

responsible for creating new upload or download objects as needed. In the case of an

16

upload, this is the FileServer class. The FileServer waits for requests and creates a

FileUpload object for each new file upload.

il FileSwapper Peer

Search _[_Dgwniéam_:is-_] Uploads]Options’

{ HERO.mp3) ‘ 0% transferred

Fig 2.2.3: File Upload Information Display

The FileServer Class

The FileServer class listens for connection requests on the defined port using a

TepListener. It follows the same pattern as the asynchronous Search class:
e The thread used to monitor the port is stored in a private member variable.

e The thread is created with a call to StartWaitForRequest(), and aborted with a call

to Abort(). The actual monitoring code exists in the WaitForRequest() method.

e The ListView that tracks uploads is stored in a private member variable.
17

This framework is shown in the following code listing. One of the differences you'll notice |
is that an additional member variable is used to track individual upload threads. The l
Abort() method doesn't just stop the thread that's waiting for connection requests—it also |

aborts all the threads that are currently transferring files. ;

FileSwapper peers communicate using simple string messages. A peer requests a file for
downloading by submitting its GUID. The server responds with a string "OK" or "BUSY" J
depending on its state. These values are written to the stream using the BinaryWriter. To |
ensure that the correct values are always used, they aren't hard-coded in the ’
WaitForRequest() method, but defined as constants in a class named Messages. As you can ‘

see from the following code listing, FileSwapper peers only support a very limited

vocabulary.

The FileUpload Class

The FileUpload class uses the same thread-wrapping design as the FileServer and Search
classes. The actual file transfer is performed by the Upload() method. This method is .u.
launched asynchronously when the FileServer calls the StartUpload() method and canceled
if the FileServer calls Abort(). A reference is maintained to the ListView control with the

upload listings in order to provide real-time progress information.

Downloads "

The file-downloading process is similar to the file-uploading process. A

FileDownloadQueue class creates FileDownloadClient instances to serve new user !
requests, provided the maximum number of simultaneous downloads hasn't been reached.
Download progress information is written directly to the download ListView display, using

the thread-safe ListViewltemWrapper.

A download operation begins when a user double-clicks an item in the ListView search
results, thereby triggering the ItemActivate event. The form code handles the event, checks
that the requested file hasn't already been submitted to the FileDownloadQueue, and then

adds it. This code demonstrates another advantage of using GUIDs to uniquely identify all

18

19

isplay

D

t allows each peer to maintain a history of downloaded
tion

Download Informa

i

.
-
-

4

0% transferred

y

ig 2.

F

files on the peer-to-peer network
1 FiteSwapper Peer

files.

ET Y

20

Downloading Display

Fig2.2.5

3
&
‘&
5
=
g
)
=
<L
]
=
2
=
s
o
(=]
n
e
=
£
&
o
1]
<L

The FileDownloadQueue Class

The FileDownloadQueue tracks and schedules ongoing downloads. When the user requests
a file, it's added to the QueuedFiles collection. If the maximum download thread count
hasn't yet been reached, the file is removed from this collection and a new
FileDownloadClient object is created to serve the request. All active FileDownloadClient

objects are tracked in the DownloadThreads collection.

The FileDownloadClient Class

The FileDownloadClient uses the same thread-wrapping design as the FileUpload class.
The actual file transfer is performed by the Download() method. This method is launched
asynchronously when the FileDownloadQueue calls the StartDownload() method, and
canceled if the FileDownloadQueue calls Abort(). The current SharedFile and

ListViewlItem information is tracked using a private DisplayFile property.

- E—

21

2.3 SOFTWARE DEVELOPMENT LIFECYCLE:

Requirements
analysis

Design &
Specification

Coding and Module
implementation

GUI
Development

Delivery and
Maintenance

Fig 2.3 Lifecycle of the project

22

2.4 Entity-Relationship Diagram:

o |

\

. Swapper
T Client Class

e, :

Registry
Settings
Ciass

e

-
/ N‘\"m
o . -
T //-/ ¢ Global Class i e
File Downloa i T

Class Software f———" App Class

. A

File Upload e T
e i
/
Returns

Downloads
file fromor
uploads file

—

/

- - Peer and
/ \L information

Queries
for
Required
Files

Web Service
Class
Registration

Database
Class

tores

Data

in
i

Fig 2.4 Entity-Relationship Diagram

23

— -

r

2.5 Data Flow Diagram:

2.5.1 Zero-Level Data Flow Diagram:

User 1

User 2

Peer To Peer System User Terminal

User 3

User 4

DB_P2P

Fig 2.5.1 Zero-Level Data Flow Diagram

24 i

2.5.2 Level-One Data Flow Diagram:

} @ User 1
User 1

User 2
Upload

Discovery Service

User 3

DB_P2P

Registiy Settings User 1

Fig 2.5.2 Level-One Data Flow Diagram

25

B

2.5.3 Level-Two Data Flow Diagram:

Send IP

Sending Keywords

User 1

Update
Registey Settings
zhare Pa

Discovery Service

L
Port No ax Downlo Max Upload ‘

User1

User 1
Sending Text
DB_P2P

ist Displayed

Check Thread Limit
Not Reached
Add File To Qusue
Start Download

User2

o flic . Lo

Fig 2.5.3 Level-Two Data Flow Diagram

26

es: b ari i~

2.6 FLOWCHART:

Execute Software

i)

Logs Ento Discovery Service

Log
Successful
5 ,
Y

Send Peer ID And List of
Files to Database

i 4

e
Query For Required File

v

Discovery Service searches
alt peers logged in for file

If File
Found?

, Display Error in
Status Panel e

Display Message "No
Matching Searches”

/0

Display File and List of all peers sharing
the file with |P and Ping Times

e

/

i

Copy File From Any Peer as
per Requirement

Fig 2.6 Flowchart

27

1

- i
|
2.7 EVENT DIAGRAM:

! Event diagrams are constructed through event lists which are list of stimuli coming from
the environment to which the system must respond. According to the responses events '
are described as Flow Oriented Temporal and Control events. |

Discovery : ‘l
User Service Database User /;
s
Logsin To .
Sends File And Peer List
Query
Searches For File N i
Sends Info of Peer Having File
Initiates File Trapsfer .
|
Logsin To N
|
Fig 2.7 Event Diagram)
_ 28
.
U
i

™
- i

2.8 TESTING: hii

] Unit Testing: :

The first consideration for any peer-to-peer application is how peers will discover one another

on the network and retrieve the information they need to communicate.

We identified four units namely Web-Service Client, Registration Database Discovery Service

& File Swapper. i

Web-Service Client Class was tested whether it can cross different firewalls or not as it is
requested like a web page over a HTTP channel which allows it to do so. Web Services are
created to serve a single client request and are destroyed immediately when the request ends &

needs to be created again for a new request so it was tested for multiple requests at a time. il

Registration Database Class was tested for the IP string, port, Filenames, tags, keywords, user 1o

ID stored is valid or not. It was also tested for the updates and deletes performed by the client i v

is reflected in the database class at the same time.
i/l

Discovery Service simply wraps the P2P Database component. All exceptions are caught,
logged, and suppressed. Discovery Service was first tested on the localhost whether it is

successfully running and identifying the user and the files shared by the user.

After testing on a single user it was tested on the Local Area Network by adding the discovery

file of a user to other users connected to the service.

Integrated Testing: i

The units were combined together to build the application which was checked whether threads

cause any exception handling or show any atypical behavior.

It was successfully tested for a maximum of 10 users at a time & is scalable also.

29

-

BLACK BOX Testing:
Graph Based Test Method

r In this method, the first step is to understand the objects that are modeled in the software and
the relationships that connect these objects. Once this has been accomplished, the next step is
to define a series of tests that verify “all objects have the expected relationship to one another”.
Stated in another way, software testing begins by creating a graph of important objects and
their relationships and then devising a series of tests that will cover the graph so that each

object and relationship is exercised and errors are uncovered. [l

Content Request

b Discovery
Peer’s Connectivity Information

Fig 2.8.1: Graph Based Method

Boundary Value Analysis

Boundary value analysis is a test case design technique that complements equivalence
partitioning. Rather than selecting any element of an equivalence class, BVA leads to the h
selection of test cases at the edges of the class. Rather than focusing solely on input conditions,
BVA derives test cases from the output domain as well.

It was tested for downloading and uploading multiple files at a time also when the download

limit is reached the file is queued for downloading later once in progress files are completed.

30

:

Fi!eSwappef Peér. .

FileSwapper .vshost. application Completed

FileSwapper.exe 54% transferred ;
FileSwapper.pdb 20% transferred]
FileSwapper.vshost.exe Queued
Network Management Assignments,doc Queued
edited P2P(REPORT).doc Queued
P2P(REPORT).doc Queued

i ‘!
i
.f:.'
i
L ‘l;
Fig 2.8.2 Boundary Value Analysis RO\
L
il \
We tested the maximum downloads and uploads at a time for 5 whereas it is set to default as 2. .wﬂ
Also Ports should range from 1024 to 65000. W/
It was specifically tested for sharing Mp3 files only & then implemented for sharing different .:-"]
types of file. ‘l
I
White Box Testing i

It is a test case design that uses the control structure described as part of component-level

design to derive test cases.

Using white-box testing following points were kept in consideration:

e All Data Structures were used.

o All logical decisions were tested for True & False cases.

31

Y

¢ All loops were tested at boundary values.

e All independent paths are being exercised at once.

32

T

3. GUI Details

We have implemented the prototype with a very simple interface. We have implemented the

client and server on the same windows form so as to provide simplicity of use.

{ E.iMessage text

- { 17216531 %
1.2.3.0 will scan from 1,231 to |-
1.2.3.254

Fig 3.1.1:GUI of Prototype

In the Client part of the interface, one has to insert the destination IP, that is, the IP of the
server and the Port on which the server is running. There is a list box in which the user can
type the message he/she wants to send to the server. Then there is a send message button which
executes the send function to send this message to the server. Also there is a button for the
transfer of files. This button opens the select file to send dialog box. One can browse through
their hard disk drive to select the files required to be sent. As soon as the open button is

pressed, the function to send the selected file is executed.

33

In the Server part of the interface, the IP of the server is displayed. One can set the port on
which the server should run. We have set the default port as 6666, The port selection part
enables users to create a server which will not be shown by the server scanner unless the port is
known. This allows server host to receive messages and files from only those users who know
the specific port of his/her server. This helps in avoiding useless files and messages coming in.
There is a Start/Stop button which is used to start and stop the server. Then there is a browse
button which helps the server to select the location to save incoming files. Below that is a list

box which will show the messages and files coming in.

In the Server Scanner part of the interface, one has to input the IP’s to scan when looking for
servers. We have also mentioned the way to search the servers if one wants to scan the whole
range of IP’s. One has to input the port at which the servers are to be scanned, the number of
threads, and the time to live of the scanner function in nanoseconds, The Scan button initiates
the scan function. If it finds a server on the same machine, a message is displayed in a
messagebox stating that this message comes from the same machine. Below that is a list box
which shows the progress of the scan. After scanning completes, it shows a list of IP’s hosting
a server.

We implemented the prototype to get a feel for developing networking applications. We did
this by implementing a chat and file transfer client which we have used in implementing the
final tool. We have used the same methodology for transferring files and used the prototype as

a base for our work towards achieving our end goal.

34

We have implemented the final tool with a very simple interface.

FileSwapper Peer

Fig 3.1.2 User Interface

Upon loading the interface, a form is shown with a search textbox and below it there is a
listbox which is used for listing the files with the various attributes. The attribotes being
displayed are Filename, Ping of that filename, Time of Creation of File, IP on which file is
shared, Port on which file is shared, Unique File GUID and Unique Peer GUID. There is a
status bar at the base which when code is executed shows ‘Trying to Log in’. If login is
successful it displays ‘File List Published to Server’ else shows ‘Not Logged In’. There is also

an Exit Button for closing the Client. The Status Bar and the Exit button are constant in all the

forms.

35

D°!; transferred

Fig 3.1.3: Download Information Display

This is the form used for seeing the progress of the files being downloaded. It shows the name

of the file and the progress of the file transferred.

36

0% transferred

Fig 3.1.4: File Upload Information Display

This form is used to show the uploads, that is, the file that is being transferred from this

machine and the progress of the transfer.

37

\File‘éwap

i

Fig 3.1.5: Client Settings Display

This is the form which has the options for the client which are editable. Here the user can set or
change the path in which files are shared and downloaded, change the port no so as to ensure a

private network, and set the maximum number of uploads and downloads. Also there Is an

option of only sharing MP3 files as we had earlier based the coding on Napster and Kaazaa,

and then broadened the scope to include all types of files. The update button saves the

configuration changes if any are made.

4. Source Code e

Code executed at the loading of the form: [

Imports FileSwapper.localhost

.

Public Class SwapperClient

Inherits System.Windows.Forms.Form i

#Region " Windows Form Designer generated code "
Pl
Public Sub New()

MyBase .New () i
'This call is required by the Windows Form Designer. |
InitializeComponent () ‘11‘

1

4

i

'Add any initialization after the InitializeComponent () call 2

End Sub g
1

|

'"Form overrides dispose to clean up the component list. P e ’

Protected Overloads Overrides Sub Dispose (ByVal disposing As Boolean) WA
If disposing Then 5 i |
If Not (components Is Nothing) Then
components.Dispose () il
End If '
End If
MyBase.Dispose (disposing)

End Sub A ﬂ

'Required by the Windows Form Designer

Private components As System.ComponentModel.IContainer

"NOTE: The following procedure is required by the Windows Form Designer
'"Tt can be modified using the Windows Form Designer.
"Do not modify it using the code editor.

Friend WithEvents TabPagel As System.Windows.Forms.TabPage

39

Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend
Friend

Friend

WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents

TabPage2 As System.Windows.Forms.TabPage
TabPage3 As System.Windows.Forms.TabPage
cmdExit As System.Windows.Forms.Button
StatusBarl As System.Windows.Forms.StatusBar
pnlState As System.Windows.Fcrms.StatusBarPanel
txtSharePath As System.Windows.Forms.TextBox
txtPort As System.Windows.Forms.TextBox

Labell As
Label?2 As

System.Windows.Forms.Label
System.windows.Forms.Label
cmdSearch As System.Windows.Forms.Button
Label3 As System.Windows.Forms.Label

txtKeywords As System.Windows.Forms.TextBox
1stSearchResults As System.Windows.Forms.ListView
TabPaged4 As System.Windows.Forms.TabPage
lstUploads As System.Windows.Forms.ListView
chkMP30nly As System.Windows.Forms.CheckBox
cmdUpdate As System.Windows.Forms.Button

Filename As System.Windows.Forms.ColumnHeader

IP As System.Windows.Forms.ColumnHeader

Ping As System.Windows.Forms.ColumnHeader
CreatedDate As System.Windows.Forms.ColumnHeader
Port As System.Windows.Forms.ColumnHeader
tmrRefreshRegistration As System.Windows.Forms.Timer
FileGUID As System‘Windows.Forms.ColumnHeader
PeerGUID As System.Windows.Forms.ColumnHeader
Labeld4 As System.Windows.Forms.Label

txtDownloads As System.Windows.Forms.TextBox
txtUploads As System.Windows.Forms.TextBox

Label5 As System.Windows.Forms.Label

File As System.Windows.Forms.ColumnHeader

Progress As System.Windows.Forms.ColumnHeader
lstDownloads As System.Windows.Forms.ListView
ColumnHeaderl As System.Windows.Forms.ColumnHeader
ColumnHeader2 As System.Windows.Forms.ColumnHeader
tbPages As System.Windows.Forms.TabControl

Label6 As System.Windows.Forms.Label

40

<System.Diagnostics.DebuggerStepThrough()> Private Sub
InitializeComponent ()

Me.components = New System.ComponentModel.Container()

Me.tbPages = New System.Windows.Forms.TabControl()

Me .TabPagel = New System.Windows.Forms.TabPage()
Me.txtKeywords = New System.Windows.Forms.TextBox()
Me.Label3 = New System.Windows.Forms.Label()

Me.cmdSearch = New System.Windows.Forms.Button{)
Me.lstSearchResults = New System.Windows.Forms.ListView()
Me.Filename = New System.Windows.Forms.ColumnHeader()
Me.Ping = New System.Windows.Forms.ColumnHeader()

Me .CreatedDate = New System.Windows.Forms.ColumnHeader(}
Me,IP = New System.Windows.Forms.ColumnHeader()

Me.Port = New System.Windows.Forms.ColumnHeader()

Me.FileGUID New System.Windows.Forms.ColumnHeader()
Me .PeerGUID = New System.Windows.Forms.ColumnHeader()
Me.TabPage? = New System.Windows.Forms.TabPage()

Me.lstDownleocads = New System.Windows.Forms.ListView()

Me.ColumnHeaderl = New System.Windows.Forms.ColumnHeader()

Me.ColumnHeader2 New System.Windows.Forms.ColumnHeader()
Me.TabPaged = New System.Windows.Forms.TabPage()
Me.lstUploads = New System.Windows.Forms.ListView()
Me.File = New System.Windows.Forms.ColumnHeader()

New System.Windows.Forms.ColumnHeader()

Me.Progress
Me . TabPage3 = New System.Windows.Forms.TabPage()
Me.Label6 = New System.Windows.Forms.Label()

Me.Label5 New System.Windows.Forms.Label()
Me.txtUploads = New System.Windows.Forms.TextBox()
Me.txtDownloads = New System.Windows.Forms.TextBox()
Me.lLabeld = New System.Windows.Forms.Label()
Me.chkMP30Only = New System.Windows.Forms.CheckBox()
Me.cmdUpdate = New System.Windows.Forms.Button()
Me.LabelZ = New System.Windows.Forms.Label()
Me.l.abell = New System.Windows.Forms.Label()
Me.txtPort = New System.Windows.Forms.TextBox()
Me.txtSharePath = New System.Windows.Forms.TextBox()

Me.cmdExit = New System.Windows.Forms.Button()

Me.StatusBarl = New System.Windows.Forms.StatusBar ()

Me.pnlState = New System.Windows.Forms.StatusBarPanel()

Me.tmrRefreshRegistration = New
System.Windows.Forms.Timer(Me.components)

Me.tbPages.SuspendLayout ()

Me.TabPagel. SuspendLayout ()

Me .TabPage2.SuspendLayout ()

Me.TabPaged.SuspendLayout {}

Me.TabPage3l. SuspendLayout (}

CType (Me.pnlState,
System.ComponentModel.ISupportInitialize).BeginInit()

Me.SuspendLayout ()

1

'tbPages
'
Me.tbPages.Anchor = (((System.Windows.Forms.AnchorStyles.Top Or
System.Windows.Forms.AnchorStyles.Bottom)
Or System.Windows.Forms,AnchorStyles,.Left)
Or System.Windows.Forms.AnchorStyles.Right)
Me.tbPages.Controls.AddRange (New System.Windows.Forms.Control()
{Me.TabPagel, Me.TabPage2, Me.TabPaged, Me.TabPage3})
Me.tbPages.Location = New Systlem.Drawing.Point ({12, 12}
Me.tbPages.Name = "tbPages”
Me, tbPages.SelectedIndex = 0
Me.tbPages.Size = New $ystem.Drawing.Size (644, 328)
Me.tbPages.TabIndex = 0

r

'"TabPagel

Me.TabPagel.Controls.AddRange (New System.Windows.Forms.Control ()

{Me.txtKeywords, Me.Label3, Me.cmdSearch, Me.lstSearchResults})
Me.TabPagel.Location = New System.Drawing.Point (4, 22)
Me.TabPagel .Name = "TabPagel”

I

Me.TabPagel.Size New System.Drawing.Size (636, 302)
Me.TabPagel.TabIndex = 0

Me.TabPagel.Text = "Search"

L}

42

'txtKeywords
L .

Me.txtKeywords.Location = New System.Drawing.Point(84, 16)
r Me.txtKeywords.Name = "t xtKeywords™

Me.txtKeywords.8ize = New System.Drawing.Size(328, 21)
Me.txtKeywords.Tablndex = 7
Me.txtKeywords.Text = ""

"Label3

t

Me.Label3.Location = New System.Drawing.Point(lZ, 20)
Me.Label3.Name = "Label3"

Me.Label3.5ize New System.Drawing.Size(Gﬂ, 16}
Me.Label3.TablIndex = 6
Me.Label3.Text = "search For:"

temdSearch

'

Me.cmdSearch.FlatStyle = System.Windows.Forms.FlatStyle.System
Me.cmdSearch.Location = New System.Drawing.Point(420, 15)

Me .cmdSearch .Name = "emdSearch”

Me.cmdSearch.Size = New System.Drawing.Size(GO, 24)
Me.cmdSearch.TabIndex = 5

Me.cmdSearch.Text = "Search™

1

t1stSearchResults
'
Me.lstSearchResults.Activation =
System.Windows.Forms.ItemActivation.TwoClick
Me.lstSearchResults.Anchor = (((System.Windows.Forms.AnchorStyles.Top
or System.Windows.Forms.AnchorStyles.Bottom)
Or System.Windows.Forms.AnchorStyles.Left)
Orx System.Windows.Forms.AnchorStyles.Right)
""" Me.lstSearchResults.Columns.AddRange(New
System.Windows.Forms.ColumnHeader() {Me.Filename, Me.Ping, Me.CreatedDate,
Me.IP, Me.Port, Me.Fi1leGUID, Me ,PeerGUID})
Me.lstSearchResults.FullRowSelect = True

Me.lstSearchResults.HeaderStyle =
System.Windows.Forms.ColumnHeaderStyle.Nonclickable
Me.lstSearchResults.Location = New System.Drawing.Point (16, 52)
Me.lstSearchResults.MultiSelect = False
Me.lstSearchResults.Name = "lstSearchResults"
Me.lstSearchResults.Size = New System.Drawing.Size (612, 240)
Me.lstSearchResults.TabIndex = 0
Me.lstSearchResults.View = System.Windows.Forms.View.Details

1

'Filename

)

Me.Filename.Text = "Filename"
Me.Filename.Width = 150

T

YPang

]

Me.Ping.Text = "Ping"
Me.Ping.Width = 100

'CreatedDate

]

Me.CreatedDate.Text = "File Created"
Me.CreatedDate.Width = 100

T

'IP

[;

Me.IP.Text = "IP"
Me.IP.Width = 100

'Port

1

Me.Port.Text = "Port"

1

'FileGUID

Me.FileGUID.Text = "File GUID"
Me.FileGUID.Width = 100

A4

'PeerGUID

'

Me.PeerGUID.Text = "Peer GUID"

Me.PeerGUID.Width = 100

!

"TabPage?2

1

Me .TahPage?2.Controls.AddRange (New System.Windows.Forms.Control ()
{Me.lstbownloads})

Me.TabPage2.Location = New System.Drawing.Point (4, 22)

Me .TabPage2.Name = "TabPagel"

Me.TabPageZ.Size = New System.Drawing.Size (636, 302)

Me.TabPage?2.TabIndex = 1

Me .TabPage2.Text = "Downloads"

11sthownloads

'
Me.lstDownloads.Anchor = (((System.Windows.Forms.AnchorStyles.Top Cr
System.Windows.Forms.AnchorStyles.Bottom)
Oor System.Windows.Forms.AnchorStyles.Left)
Oor System.Windows.Forms.AnchorStyles.Right)
Me.lstDownloads.Columns.AddRange (New
System.Windows.Forms.ColumnHeader() {Me.ColumnHeaderl, Me.ColumnHeader2}) -
Me.lstDownloads.FullRowSelect = True
Me.lstDownloads.Location = New $ystem.Drawing.Point (12, 13)

Me ., lstDownlcads.Name = "] stbownloads"

I

Me.lstDownloads.Size New System.Drawing.Size (612, 276)
Me.lstDownloads.TabIndex = 3
Me.lstDownloads.View = System.Windows.Forms.View.Details

1ColumnHeaderl
t
Me.Columnleaderl.Text = "File"

Me.Columnieaderl . Width = 200

'ColumnHeader?

45 |

Me.ColumnHeader2.Text = "Progress"
Me.ColumnHeader2.Width = 200

1

'TabPage4

'

Me.TabPaged.Controls.AddRange (New System.Windows.Forms.Control ()
{Me.lstUploads})

Me .TabPaged.Location = New System.Drawing.Point (4, 22)

Me .TabPaged4 .Name = "TabPage4"

Me.TabPage4d4.Size = New System.Drawing.Size (636, 302)

Me .TabPage4.TabIndex = 3

Me.TabPaged4.Text = "Uplcads"

"lstUploads
'
Me.lstUploads.Anchor = ({((System.Windows.Forms.AnchorStyles.Top Or
System.Windows.Forms.AnchorStyles.Bottom) _ |
Or System.Windows.Forms.AnchorStyles.Left)
Or System.Windows.Forms.AnchorStyles.Right)
Me.lstUploads.Columns.AddRange (New
System.Windows.Forms.ColumnHeader () {Me.File, Me.Progress})

Me.lstUploads.FullRowSelect = True

Me.lstUploads.Location = New System.Drawing.Point (12, 13)
"lstUploads" il

Me.lstUploads.Name
Me.lstUploads.Size
Me.lstUploads.TablIndex = 2 ’

New System.Drawing.Size (612, 276)
Me.lstUploads.View = System.Windows.Forms.View.Details

'File

1

Me.File.Text = "File"

Me.File.Width = 200 |

'Progress

1

Me.Progress.Text = "Progress"

46

Me.Progress.Width = 200

t

'TabPage3

'

Me.TabPage3.Controls.AddRange (New System.Windows.Forms.Control ()
{Me.Label6, Me.Label5, Me.txtUploads, Me.txtDownloads, Me.Labeld,
Me.chkMP30Only, Me.cmdUpdate, Me.Label2, Me.Labell, Me.txtPort,
Me.txtSharePath})

Me.TabPage3.Location = New System.Drawing.Point (4, 22)
"TabPage3"

Me .TabPage3.Name
Me.TabPage3.Size = New System.Drawing.Size (636, 302)
Me.TabPage3.TabIndex = 2

Me.TabPage3.Text. = "Options"

'Label6

T

Me.Label6.Location = New System.Drawing.Point (300, 132)
"Label6"

Me.Label6.Name
Me.Label6.Size = New System.Drawing.Size (268, 108)
Me.Label6.TabIndex = 10

Me.Label6.Text = "Changes to the Port settings will not take effect

until you restart the applicati" & _

" "

on.

T

'Label5

L}

Me.Label5.Location = New System.Drawing.Point (12, 116)
"Labelb"

]

Me.Label5.Name

Me.Labelb5.Size New System.Drawing.Size (84, 16)
Me.Label5.TabIndex = 9
Me.Label5.Text = "Max Uploads:"

'txtUploads

T

Me.txtUploads.Location = New System.Drawing.Point (100, 112)
Me.txtUploads.Name = "txtUploads"

Me.txtUploads.Size New System.Drawing.Size (88, 21)

47

Me.txtUploads.TabIndex = 8
Me.txtUploads.Text = ""

' 'txtDownloads

! i
Me.txtDownloads.Location = New System.Drawing.Point (100, 80)
Me.txtDownloads.Name = "txtDownloads"

Me.txtDownloads.Size = New System.Drawing.Size (88, 21)
Me.txtDownloads.TabIndex = 7

Me . txtDownloads.Text = ""

'

'Labeld

'

Me.Labeld.lLocation = New System.Drawing.Point {12, 84)
Me.Labeld .Name = "Label4"

Me.Label4.Size = New System.Drawing.Size(88, 16)
Me.Labeld.TabIndex = 6

Me.Label4.Text = "Max Downloads:"

T

'chkMP30nly

1

Me.chkMP30nly.FlatStyle = System.Windows.Forms.FlatStyle.System
Me.chkMP30nly.Location = New System.Drawing.Point (12, 148)
Me.chkMP30nly.Name = "chkMP30Only"

Me.chkMP30Only.Size = New System.Drawing.Size (164, 24) il
Me.chkMP30nly.TabIndex = 5 '
Me.chkMP30nly.Text = "Only Share MP3 Files" ’
' i

'cmdUpdate _W
'

Me.cmdUpdate.FlatStyle = System.Windows.Forms.FlatStyle.System

Me.cmdUpdate.Location = New System.Drawing.Point (12, 188)

Me.cmdUpdate.Name = "cmdUpdate"

Me.cmdUpdate.Size = New System.Drawing.Size (60, 24)

Me.cmdUpdate.TabIndex = 4

Me.cmdUpdate.Text = "Update"

1

48

'Label2
! i
Me.Label?2.Location = New System.Drawing.Point (12, 52) !

Me.Label2.Name "Label2"

Me.Label2.Size = New System.Drawing.Size (84, 16)
Me.Label2.TabIndex = 3
Me.Label2.Text = "Use Port:"

t

'Labell |
, ji!
Me.Labell.Location = New System.Drawing.Point (12, 20)

Me.Labell.Name = "Labell" .

Me.Labell.Size New System.Drawing.Size (84, 16)

Me.Labell.TabIndex = 2

Me.Labell.Text = "Share Files In:"

'

'txtPort

'

Me.txtPort.Location = New System.Drawing.Point (100, 48) N
Me.txtPort.Name = "txtPort" ‘%
Me.txtPort.Size = New System.Drawing.Size (88, 21) "
Me.txtPort.TabIndex = 1

Me.txtPort.Text = "" ol ?

T

'txtSharePath

Me.txtSharePath.Location = New System.Drawing.Point (100, 16)
Me.txtSharePath.Name = "txtSharePath"

Me.txtSharePath.Size New System.Drawing.Size (388, 21)
Me.txtSharePath.TabIndex = 0

Me.txtSharePath.Text = ""

'emdExit

Me.cmdExit.Anchor = (System.Windows.Forms.AnchorStyles.Bottom Or

System.Windows.Forms.AnchorStyles.Right)
Me.cmdExit.FlatStyle = System.Windows.Forms.FlatStyle.System

49

Me.cmdExit.Location = New System.Drawing.Point (580, 348)

Me.cmdExit.Name = "cmdExit™ i

Me.cmdExit.Size = New System.Drawing.Size (75, 28) i

Me.cmdExit.TabIndex = 1 .H
Me.cmdExit.Text = "Exit" 1114l

]

'StatusBarl

Me.StatusBarl.Location = New System.Drawing.Point (0, 392)
Me .StatusBarl.Name = "StatusBarl"
Me.StatusBarl.Panels.AddRange (New

System.Windows.Forms.StatusBarPanel () {Me.pnlState})

Me.StatusBarl.ShowPanels = True |
Me.StatusBarl.Size = New System.Drawing.Size (668, 22)
Me.StatusBarl.SizingGrip = False
Me.StatusBarl.TabIndex = 2

Me.StatusBarl.Text = "StatusBarl"

'pnlState

Me.pnlState.AutoSize =
System.Windows.Forms.StatusBarPanelAutoSize.Spring

Me.pnlState.Text = "Not logged in." .

Me.pnlState.Width = 668 |

'tmrRefreshRegistration

1

Me.tmrRefreshRegistration.Interval = 300000

1

'SwapperClient

1

Me.AutoScaleBaseSize = New System.Drawing.Size (5, 14)
Me.ClientSize = New System.Drawing.Size (668, 414)
Me.Controls.AddRange (New System.Windows.Forms.Control ()

{Me.StatusBarl, Me.cmdExit, Me.tbPages})

50 o

NS

Me.Font = New System.Drawing.Font ("Tahoma", 8.25!,

System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, CType (0,

Byte))
Me.Name = "SwapperClient"
Me.Text = "FileSwapper Peer" : J?
Me.tbPages.ResumelLayout (False) P

Me.TabPagel.ResumeLayout(False)
Me.TabPage?.ResumeLayout (False)
Me.TabPaged .ResumelLayout (False)
Me .TabPage3.ResumeLayout (False)
CType (Me.pnlState,
System.ComponentModel. ISupportIinitialize) .EndInit ()

Me.Resumelayout (False)
End Sub
#End Region
Private Sub cmdExit Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles cmdExit.Click

Me.Close ()
End Sub

Private Sub SwapperClient Load(ByVal sender As Object, ByVal e As
System.EventArgs) Handles MyBase.Load bl -

Me.Show () !
Me.Refresh ()

' Read registry.

[Global] .Settings.Load()

txtSharePath.Text = [Global].Settings.SharePath
txtPort.Text = [Global].Settings.Port 1
chkMP30nly.Checked = [Global].Settings.ShareMP30nly
txtUploads.Text = [Global].Settings.MaxUploadThreads
txtDownloads.Text = [Global].Settings.MaxDownloadThreads Q

51

' Create the search, download, and upload objects.

' They will create their own threads.

App.SearchThread = New Search (1stSearchResults)
App.DownwnloadThread = New FileDownlecadQueue (lstDownloads)
App.UploadThread = New FileServer (lstUploads)
App.UploadThread.StartWaitForRequest()

{Globall] .Identity.Port = {Glokal] -Settings.Port
DoLogin ()
AddHandlier AppDomain.CurrentDomain.UnhandledException, AddressOf

UnhandledException
End Sub
Private Sub DoLogin({}
Me.Cursor = Curseors.WaitCursor

' Log in.

pnlState.Text = "Trying to log in."

App.Login{)

If Not [Globall.LoggedIn Then
pnlState.Text = "Not logged in."
Me.Cursor = Cursors.Default
Return

End If

' Submit list of files.
pnlState.Text = "Sending file information..."
1f App.PublishFiles() Then
pnlState.Text = "File list published to server.
Else
pnlState.Text

"Could not publish file list."”

Fnd If

' Refresh login information every five minutes.

tmrRefreshRegistration.Start ()

Me.Cursor = Cursors.Default

End Sub

Private Sub SwapperClient Closed(ByVal sender As Object, ByVal e As
System.EventArgs) Handles MyBase.Closed

App.Logout ()
App.DownwnloadThread.Abort ()
App.SearchThread.Abort ()
App.UploadThread.Abort ()

End Sub

Private Sub cmdSearch Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles cmdSearch.Click

If App.SearchThread.Searching Then
App.SearchThread. Abort ()
End If

App.SearchThread.StartSearch (txtKeywords.Text)

End Sub

Private Sub cmdUpdate Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles cmdUpdate.Click

[Global] .Settings.Port = Val({txtPort.Text)

{Global) .Settings.SharePath = txtSharePath.Text

[Global] .Settings.ShareMP30nly = chkMP30nly.Checked

[Globkall .Settings.MaxDownloadThreads = Val {(txtDownloads.Text)
[Global] .Settings.MaxUploadThreads = Val (txtUploads.Text)

[Global] .Settings.Save ()

53

' Log back in. "‘

a App.Logout ()
[Global].Identity.Port = [Global].Settings.Port t:i_

DoLogin{)

End Sub 'f |
e

Private Sub tmRefreshRegistration Tick(ByVal sender Aas System.Obiect,

ByVal e As System.EventArgs) Handles tmrRefreshRegistration.Tick

' Fires every five minutes to update registration.

App.RefreshLogin () A
' Currently no steps are taken to refresh subscribed file list. !

End Sub

Private Sub lstSearchResults)ItemActivate(ByVal sender As Object, ByVal e
As System.EventArgs) Handles lstSearchResults.ItemActivate
Dim File As SharedFile
File = CType (CType (sender, ListView) .SelectedItems (0) .Tag,

SharedFile)

If App.DownwnloadThread.CheckForFile (File) Then I

MessageBox.Show ("You are already downloading this file.", 1

"Error", MessageBoxButtons.OK, MessageBoxIcon.Information)

'‘Flself File.Peer.Guid.ToString{) =
Global.Identity.Guid.ToString() Then |

'MessageBox.Show{"This is a local file.”, "Errcr®,
MessageBoxButtons.CK, McssageBoxIcon. Information)
Else j ‘
et App.DownwnloadThread.AddFile (File) ‘

If Not App.DownwnloadThread.Working Then !
App.DownwnloadThread,StartAllocateWork ()

End If

54

tbPages.SelectedTab = tbPages.TabPages (1)
End If

End Sub

Public Sub UnhandledException (ByVal sender As Object,

ByVal e As UnhandledExceptionEventArgs)

' Log the error.

Trace.Write (e.ExceptionObject.ToString())

' Log out of the discovery service.

App.Logout ()

End Sub

End Class

55

N,

Code for Assembly Information (Deployment Information):

Imports System.Reflection

Imports System.Runtime.InteropServices

' General Information about an assembly is controlled through the following
' set of attributes. Change these attribute values to modify the information

' associated with an assembly.
' Review the values of the assembly attributes

<Assembly: AssemblyTitle("")>
<Assembly: AssemblyDescription ("")>
<Assembly: AssemblyCompany ("") >
<Assembly: AssemblyProduct ("")>
<Assembly: AssemblyCopyright ("")>
<Assembly: AssemblyTrademark("")>

<Assembly: CLSCompliant (True)>

'The following GUID is for the ID of the typelib if this project is exposed
to COM
<Assembly: Guid("3CBD4A2B—8A5A—4DC3—93DA—711EBA992F76")>

' Version information for an assembly consists of the following four values:

' Major Version
L Minor Version
' Build Number
' Revision

'

' You can specify all the values or you can default the Build and Revision
Numbers

' by using the '*' as shown below:

<Assembly: AssemblyVersion("1.0.%")>

56

M

Code for the Downloading Function:

} Imports FileSwapper.localhost
Imports System.Threading !

Imports System.Net

Imports System.Net.Sockets

Imports System.IO

Public Class FileDownloadQueue
Private AllocateWorkThread As System.Threading.Thread
Private Working As Boolean
Private ListView As ListView
Private QueuedFiles As New ArrayList ()
Private DownloadThreads As New ArrayList ()
Public S5ub New(ByVal linkedControl As ListView}
ListView = linkedControl ﬁb
End Sub |
i
Public Sub AddFile({ByVal file As SharedFile) #h‘
‘ i

' Add shared file.
SyncLock QueuedFiles
QueucedFiles.Add (New DisplayFile(file, ListView))
End SyncLock
End Sub

Public Function CheckForFile (ByvVal file As SharedFile) As Boclean

Dim Item As DisplayFile
For Each Item In QueuedFiles
If Item.File,Guid.ToString() = file.Guid.ToString()} Then Return
True

Next

57

Dim DownloadThread As FileDownloadClient
For Each DownloadThread In DownloadThreads
Tf DownloadThread.File.Guid.ToString() = file.Guid.ToString()
Then Return True

Next

Return False

End Function

Private Sub AllocateWork(}

Do
' Remave completed.
Dim i As Integer
For i = DownloadThreads.Count - 1 To 0 Step -1
pim DownloadThread As FileDownloadClient
pownloadThread = CType {DownlcadThreads (i},
FilebownloadClient}

If Not DownloadThread.Working Then
SyncLock DownloadThreads
DownloadThreads.Remove (DownloadThread)
End SyncLock
End If
Next

' Allocate new while threads are avallable.
Do While QueuedFiles.Count > 0 And DownloadThreads.Count <
[Glocbal] .Settings.MaxDownloadThreads
Dim DownloadThread As New FileDownloadClient (QueuedFiles (0))
SyncLock DownloadThreads
DownloadThreads .Add {DownloadThread)
End SyncLock
synclock QueuedFiles
QueuedFiles.RemcveAt (0)
End SynclLock
DownloadThread.StartDownload ()

Loop

58

=Y

Thread.Sleep {TimeSpan.FromSeconds (10))
Loop
End Sub

Public Sub StartAllocateWork()
If Working Then
Throw New ApplicationException({"Already in progress."}
Else

_Working = True

AllocateWorkThread = New Threading.Thread (AddressOf AllocateWork)
AllocateWorkThread.Start ()
End If
End Sub 3

Public Sub Abort ()
If Working Then
AllocateWorkThread.Abort {}

'AllocateWorkThread. Join{)

' Abort all download threads.

Dim DownloadThread As FileDownlecadClient

For Each DownloadThread In DownloadThreads
DownloadThread.Abort ()

Next

_Working = False
End If
End Sub

Public ReadOnly Property Working{} As Boolean
Get
Return Working
End Get
End Property

59

~

End Class

Public Class FileDownloadClient

Private DisplayFile As DisplayFile
Private DownloadThread As System.Threading.Thread

Private Working As Boolean

Public Sub New(ByVal file As DisplayFile)
Me.DisplayFile = file
End Sub

Private Client As TcpClient

Private Sub Download()

DisplayFile.ListViewItem.ChangeStatus ("Connecting...")
' Connect.
Dim Completed As Boolean = False
Do
' (Add error handling.)
Client = New TcpClient ()

Client.Connect (Dns.GetHostEntry (DisplayFile.File.Peer.IP) .AddressList (0),
Val (DisplayFile.File.Peer.Port))

Dim r As New BinaryReader (Client.GetStream())

Dim Response As String = r.ReadString()
If Response = Messages.Ok Then
DisplayFile.ListViewItem.ChangeStatus ("Connected")

Dim w As New BinaryWriter (Client.GetStream())
' Request file.
w.Write (DisplayFile.File.Guid.ToString())

60

' Write file.

Dim TotalBytes As Integer = r.ReadInt32()

If TotalBytes = Messages.FileNotFound Then
DisplayFile.ListViewItem.ChangeStatus ("File Not Found")

Else
' Write temporary file.
Dim FullPath As String =
Path.Combine([Global] .Settings.SharePath, File.Guid.ToString() & ".tmp")
Dim Download As New FileInfo(FullPath)

Dim TotalBytesRead, BytesRead As Integer

Dim fs As FileStream = Download.Create()

Dim Buffer(1024) As Byte

Dim Percent As Single

Dim LastWrite As DateTime = DateTime.Now

Do
BytesRead = r.Read(Buffer, 0, Buffer.Length)
fs.Write (Buffer, 0, BytesRead)
TotalBytesRead += BytesRead

If DateTime.Now.Subtract (LastWrite).TotalSeconds > 2
Then
LastWrite = DateTime.Now
Percent = Math.Round((TotalBytesRead /
TotalBytes) * 100, 0)

DisplayFile.ListViewItem.ChangeStatus (Percent.ToString() & "% transferred")
End If

Loop While BytesRead > 0

fs.Close ()

' Ensure a unique name 1is chosen.

61

rm

pim FileNames() As String =
Directory.GetFiles ([Global] .Settings.SharePath)

Dim FinalPath As String =
Path.Combine{ (Globall.Settings.SharePath, File.FileName)

Dim i As Integer

Do While Array.IndexOf {FileNames, FinalPath) <> -1

i4+= 1,

FinalPath = Path.Combine{[Globall.Settings.S5harePath,

Path.GetFileNameWithoutExtension(FiLe.FileName) & 1.ToString() &
Path.GetExtension(File.FileName))

Loop

' Rename file.
System.IO.File.Move (FullPath, FinalPath)

.

' We could also contact the server here to update the
file
' subsription information.

DisplayFile.ListViewItem.ChangeStatus(“Completed")
gnd If

Client.Close()
Completed = True

ElseIf Response = Messages.Busy Then

DisplayFile.ListViewItem.ChangeStatus ("Busy - Will Retry")
Client.Close{)

Else
DisplayFile.ListViewItem.ChangeStatus ("Error -~ Will Retry")

Client.Close ()

End If
1f Mot Completed Then Thread.Sleep{TimeSpan.FromSeconds(10))

TLoop Until Completed

62

_Working = False

2k End Sub

Public Sub StartDownload() 7"'
If Working Then
Throw New ApplicationException("Already in progress.") |
Else f
_Working = True /|
DownloadThread = New Threading.Thread (AddressOf Download) E
DownloadThread.Start ()
End If
End Sub

Public Sub Abort()
If Working Then
'Client.Close() {
DownloadThread.Abort ()
'DownloadThread. Join ()
_Working = False
End If
End Sub

Public ReadOnly Property Working() As Boolean h
Get

Return _Working "

End Get i

End Property)

Public ReadOnly Property File() As SharedFile
Get
Return DisplayFile.File
End Get
End Property

End Class \

63

Public Class DisgplayFile

Private ListViewItem As ListViewItemWrapper

Private File As SharedFile

Public ReadOnly Property File() As SharedFile
Get
Return _File
End Get

End Property

Public ReadOnly Property ListViewltem(} As ListViewlItemWrapper
Get
Return ListViewltem
End Get
End Property

Public Sub New{ByVal file As SharedFile, ByVal linkedControl As ListView)

_ListViewItem = New ListViewItemWrapper (linkedControl, file.FileName,

"Queued”)

_File = file

End Sub

End Class

Public Class ListViewItemWrapper
Private ListView As ListView
Private ListViewItem As ListViewItem
Private RowName As String

Private RowStatus As String

Public Sub New (ByVal listView As ListView, ByVal rowName As String, ByvVal

rowStatus As String)

Me.ListView = listView

64

L

Me.RowName = rowName

Me .RowStatus = rowStatus rm,
-

' Marshal the operation to the user interface thread. o
listView.Invoke (New MethodInvoker (AddressCf AddListViewItem)) :!
End Sub

' This code executes on the user interface thread.

Private Sub AddListViewItem/() i
' Create new ListView item. g
ListViewltem = New ListViewItem{RowName)

ListViewItem.SublItems.Add (RowStatus) ;
ListView.Items.Add (ListViewItem)
End Sub

Public Sub ChangeStatus{ByVal rowStatus As String)

Me .RowStatus = rowStatus

' Marshal the coperation to the user interface thread.
ListView,Invoke (New MethodInvoker (AddressOf RefreshlistViewItem))

End Sub

' This code executes on the user interface thread.

Private Sub RefreshListViewItem{)
ListViewItem.SubItems (1) .Text = RowStatus

End Sub

End Class ‘Q

Code for the Global Class: P

Imports System.Net .
Imports System.IO
Imports System.Text ;|

Imports FileSwapper.localhost

Public Class [Global] s

' Contains information about the current peer.
Public Shared LoggedIn As Boolean = False

Public Shared Identity As New Peer ()

' Lists files that are available for other peers.

Public Shared SharedFiles () As SharedFile
' Provides access to configuration settings that are stored in the M
registry. |

Public Shared Settings As New RegistrySettings ()

End Class

Public Class App

' Holds a reference to the web service proxy. |I

Private Shared Discovery As New DiscoveryService()

Public Shared SearchThread As Search
Public Shared DownwnloadThread As FileDownloadQueue i\

Public Shared UploadThread As FileServer

Public Shared Sub Login()

[Global] .Identity.Guid = Guid.NewGuid

[Global].Identity.IP =
Dns.GetHostEntry (Dns.GetHostName) . AddressList (0) .ToString ()
3 [Global] .LoggedIn = Discovery.Register{[Global].TIdentity)

End Sub '1!%

Public Shared 3Sub Logout ()
If [Global).loggedIn Then Discovery.Unregister ([Global].Identity} 5;

End Sub i

Public Shared Sub RefreshLogin () ‘

If [Globall.LoggedIn Then {A

Discovery.RefreshRegistration([Glokall.Identity} i
End Sub

Public Shared Function PublishFiles () As Boolean

Try
' Perform a failsafe check in case olid registry settings
' that point to a directory that no longer exists. ﬂi\
If Not Pirectory.Exists{[Globall.Settings.SharePath) Then i
[Global].Settings.SharePath = Application.StartupPath
End If

Dim Dir As New DirectoryInfo([Global].Settings.SharePath) i -

Dim Files() As FileInfo = Dir.GetFiles()}
Dim FilelList As New ArrayList()

Dim File As FileInfo

Dim IsMP3 As Boolean

For Each File In Files |
‘

IsMP3 = Path.GetExtension(File.Name).ToLower{() = ".mp3"

If Path.GetExtension(File.Name).ToLower () = ".tmp" Then g

' Ignore all temporary files.

j 67

ElseIf (Not IsMP3) And [Global].Settings.ShareMP30nly Then
' Igneore non-MP3 file depending on setting.
Else
Dim SharedFile As New SharedFile ()
SharedFile.Guid = Guid.NewGuid/{)
SharedFile.FileName = File.Name

SharedFile.FileCreated = File.CreationTime

If IsMP3 Then
SharedFile.Keywords =
MP3Util.GetMP3Keywords (File.FullName)

Else
' Determine some other way to set keywords,
' perhaps by filename or depending on the file
' type.
' The default (no keywords), will prevent the
' file from appearing in a search.

End If

FileList.Add (SharedFile}
End If
Next

[Global] .SharedFiles =
CType {FileList.ToArray(GetType (SharedFile)), SharedFile())

Return Discovery.PublishFiles([Global].SharedFiles,
{Global] .Identity)

Catch Err As Exception
MessageBox.Show (Err.ToS5tring ()}
End Try

End Function

Public Shared Function SearchForFile (ByVal keywords{} &s String) As
SharedFile ()

68

Return Discovery.SearchForFile (keywords)

End Function

End Class

Public Class KeywordUtil K

Private Shared NoiseWords() As String = {"the", "for", "and", "or"} ﬂ

Public Shared Function ParseKeywords (ByVal keywordString As String) As |6

String ()

* Spliit the list of words into an array.
Dim Keywords{) As String
" n "

Dim Delimeters{) As Char = {" ", ",", "."}

Keywords = keywordString.Split (Delimeters)

' Add each valid word into an ArrayList.
Dim FilteredWords As New ArrayList({) ‘
bim Word As String
For Each Word In Keywords
If Word.Trim{) <> "" And Word.Length > 1 Then
If Array.IndexOf (NoiseWords, Word.ToLower()) = =1 Then

FilteredWords.Add (Word)
End If
End If
Next

' Convert the ArraylList into a normal string array.

Return FilteredWords.ToArray{GetType (String)}
End Function B
End Class

Public Class MP3Util
Public Shared Function GetMP3Keywords (ByVal filename As String) As

String(} 2K
69

oy

PE T S W

Dim fs As New FileStream{filename, FileMode.Open)

' Read the MP3 tag.

fs.Seek (0 - 128, SeekOrigin.End)
Dim Tag(2) As Byte

fs.Read (Tag, 0, 3)

If Encoding.ASCII.GetString(Tag) .Trim() = "TAG" Then

Dim KeywordString As New StringBuilder ()
' Title.

KeywordString.Append (GetTagData{fs, 30})
" Artist.

KeywordString.Append (" ")
KeywordString.Append (GetTagData (fs, 30))
' Album.

KeywordString.Append (" ")
KeywordString.Append (GetTagData (fs, 30)}
' Year.

'KeywordString.Append (" ")
'KeywordString.Append{GetTagData(fs, 4})
' Comment.

'KeywordString.Append (" ™)
'KeywordString.Append (GetTagbata(fs, 30))

fs.Close ()
Dim Keywords () As String =
KeywordUtil.ParseKeywords {(KeywordString.ToString ()}
Return Keywords
Else
fs.Close()
Dim EmptyArray() As String = {}
Return EmptyArray
End I1f

End Function

70

TR

Public Shared Function GetTagData(ByVal stream As Stream, ByVal length As ;.

Integer) As String

Dim Bytes{length - 1) As Byte
stream.Read (Bytes, 0, length)

Dim TagData As String = Encoding.ASCII.GetString{Bytes)
' Trim nulls.

Dim TrimChars({) As Char = (" ", wvbNullChar)

TagData = TagData.Trim(TrimChars)

Return Tagbata

End Function

End Class

71

Code for the Registry Class: 1

Imports Microsoft.Win32

Public Class RegistrySettings

Public SharePath As String

Public ShareMP30nly As Boolean
Public MaxUploadThreads As Integer
Public MaxDownloadThreads As Integer

Public Port As Integer
Public Sup Load()

Dim Key As RegistryKey
Key = Microsoft.Win32.Registry.LocalMachine.CreateSubKey(_

"software\FilesSwapper\Settings")

SharePath = Key.GetValue ("SharePath", Application.StartupPath)

Port = CType (Key.GetValue ("LocalPort™, "8000"), Integer)

ShareMP30nly = CType (Key.GetValue("OnlyShareMP3", "True™), Boolean) .
MaxUploadThreads = CType (Key.GetValue ("MaxUploadThreads™, "zmy, |

Integer)
MaxDownloadThreads = CType (Key.GetValue ("MaxDownloadThreads"”, "2"},

Integer)
End Sub
Public Sub Save()
Dim Key As RegistryKey

Key = Microsoft.Win32.Registry.LocalMachine.CreateSubKey(_
"Software\FilesSwapper\Settings")

Key.SetValue(“SharePath“, SharePath)
Key.SetValue ("LocalPort", Port.ToString()) N
! Key.SetValue {"OnlyShareMP3", ShareMP30Only.ToStringl(}) “

72

Key.SetValue ("MaxUploadThreads", MaxUploadThreads.ToString{)}
Key.SetValue("MaxDownloadThreads", MaxDownloadThreads.ToString ())
i

End Sub

End Class

i -
Hl
.|
iy

L

Code for the Search Class:

Imports FileSwapper.localhost

Imports System.Threading.Thread

Public Class Search

Private SearchThread As System.Threading.Thread

Private ListView As ListView

Private SearchResults{) As SharedFile

Private PingTimes As New Hashtable ()

Private _Searching As Boolean = False

Private Keywords () As String

Public Sub New({ByVal linkedControl As ListView) .
ListView = linkedControl il
End Sub

Private Sub Search{)
SearchResults = App.SearchForFile (Me.Keywords)

_Searching = False

PingRecipients ()

Try
ListView.Invoke (New MethodInvoker (AddressOf UpdatelInterface))

Catch

' An error could occur here if the search is cancelled and the
' class is destroyed before the invoke finishes.
End Try
End Sub) _‘__7;

Private Sub PingRecipients()

7

PingTimes.Clear ()
Dim File As SharedFile
g For Fach File In SearchResults
pDim PingTime As Integer =
PingUtility.Pinger.GetPingTime (File.Peer.IP)
If PingTime = -1 Then

PingTimes.Add (File.Guid, "Error")
Else

PingTimes.Add(File.Guid, PingTime.ToString(} & " ms") AJ;
End If "

Next
End Sub

Private Sub UpdateInterface()
ListView.Items.Clear () |
If SearchResults.Length = 0 Then
MessageBox.Show ("No matches found.", "Error™,
MessageBoxButtons.OK, MessageBoxIcon.Information)
Else
Dim File As SharedFile ‘hfn
I For Each File In SearchResults

Dim Item As ListViewItem = ListView.Items.Add{File.FileName)

i Item. Subltems.Add (PingTimes {File.Guid) .ToString())
Item.SubItems.Add(File.FileCreated)
Item.SubItems.Add(File.Peer.IP}

Item,SubItems.Add{File.Peer,Port)
Item,SubItems.Add(File.Guid.ToString())
Ttem.SubIltems.Add(File.Peer.Guid.ToString(}}

' Store the SharedFile object for easy access later.

Item.Tag = File ‘i}
~ Next

End If
End Sub ﬂ
i
i

Public Sub StartSearch{ByvVal keywordString As String)

75

o

If _Searching Then
Throw New ApplicationException{'"Cancel current search first.")

Else
_Sear&hing = True
SearchResults = Nothing
Keywords = KeywordUtil.ParseKeywords (keywordString)
SearchThread = New Threading.Thread (AddressOf Search)
SearchThread. Start (}

End If

End Sub

Public Sub Abort ()
If Searching Then

SearchThread. Abort ()
SearchThread. Join (}

_Searching = False
End If
End Sub

Public Function GetSearchResults () As SharedFile(}
If Searching = False Then
Return SearchResults
Else
Return Nothing
End If

End Function

Public ReadOnly Property Searching{} As Boolean
Get
Return _Searching
End Get
End Property
End Class

76

LIS

Code for the Uploading Function: | ol .

Imports FileSwapper.localhost
Inports System.Threading :é
Imports System.Net i o
Imports System.Net.Sockets '
Imports System.IO

Public Class FileServer

Private WaitForRequestThread As System.Threading.Thread

Private Working As Boolean

Private ListView As ListView

Private UploadThreads As New ArrayList()

Public Sub New(ByVal linkedControl As ListView)
ListView = linkedControl

End Sub

Private Listener As TcpListener

Public Sul WaitForReguest{)

Dim localaddr As System.Net.IPAddress ;
localaddr = Dns.GetHostFEntry(Dns.GetHostName) .AddressList (0) 8
1 Listener = New T¢plistener{localaddr, [Globall.Settings.Port) -
: Listener.Start () 18
Do

' (Exrror handling code). ;

' Block until connection received.

Dim Client As TcpClient = Listener.AcceptTcpClient ()

' Check for completed requests.
' This will free up space for new requests. }'
Dim UploadThread As FileUpload

Dim i As Integer

77

For i = (UploadThreads.Count - 1) To 0 Step -1
UplecadThread = CType (UploadThreads (i), FileUpload)
If UploadThread.Working = False Then i
UploadThreads.Remove(UploadThread)

End If ‘
Next

Dim s As NetworkStream = Client.GetStream() i

Dim w As New BinaryWriter(s) 1B

Tf UploadThreads.Count > [Globall .Settings.MaxUpleadThreads Then]
w.Write (Messages.Busy} i
s.Close{) ﬁ

Else i

I w.Write (Messages.0Kk)

L Dim Upload As WNew FilelUpload(s, ListView)
UploadThreads.Add (Upleoad)
Upload.StartUpload ()}

End If
Loop
End Sub

Public Sub StartWaitForRequest ()

Throw New ApplicationException("Already in progress.")
Else

_Working = True

If Working Then :
WaitForRequestThread = New Threading.Thread{(AddressOf
WaitForRequest)
WaitForRequestThread.Start ()
End If
End Sub
Public Sub Abort () L
If Working Then
Listener.Stop() -i

78

WaitForRequestThread.Abort ()
’ 'WaitForReguestThread.Join()

] ' Abort all upload threads. '
Dim UploadThread &s FileUplecad

For Each UploadThread In UplocadThreads
UploadThread.Abort (}

VT,

Next

_Working = False il
End If |
End Sub :

Public ReadOnly Property Working() As Boolean
Get
Return Working
End Get
End Property

End Class
public Class FileUpload } 2
Private Stream As NetworkStream
Private UploadThread As System.Threading.Thread

Private Working As Boolean

Private ListView As ListView

public Sub New(ByVal stream As NetworkStream, ByVal listView As ListView)
Me.Stream = stream 12

\

Me.ListView = listView !

End Sub

Private Sub Upload{})

' Cennect. i

79 '- I'

Dim w As New BinaryWriter (Stream)

Dim r As New BinaryReader (Stream)

' Read file request.

Dim FileRequest As String = r,ReadString({)

Dim File As SharedFile
Dim Filename As String
Filename = ""
For Each File In [Global].SharedFiles
If File.Guid.ToString() = FileRequest Then
Filename = File.FileName
Exit For
End If

Next

' Check file is shared.
If Filename = "" Then
w.Write (Messages.FileNotFound)

Else

' Create ListView.

Dim ListViewItem As New ListViewItemWrapper (ListView, Filename,

"Initializing™)

' (Add error handling.)

' Open file.

Dim Upload As New
FileInfo{Path.Combine{[Global].Settings.SharePath, Filename))

' Read file.
Lim TotalBytes As Integer = Upload.Length
w.Write (TotalBytes)

Dim TotalBytesRead, BytesRead As Integer

Dim fs As FileStream = Upload.OpenRead ()

80

! Dim Buffer(1024) As Byte

) Dim Percent As Single :
|

1 Dim LastWrite As DateTime = DateTime.MinValue !
Do I

BytesRead = fs.Read{Buffer, 0, Buffer.Length)

w.Write {(Buffer, 0, BytesRead)

TotalBytesRead += BytesRead

Percent = Math.Round{(TotalBytesRead / TotalBytes) * 100, 0)

If DateTime.Now.Subtract (LastWrite) .TotalSeconds > 2 Then
LastWrite = DateTimé.Now
ListViewItem.ChangeStatus (Percent.ToString() & "%

transferred")
End If
Thread.Sleep (TimeSpan.FromSeconds (1} }
Loop While BytesRead > 0

fs.Close ()

ListviewItem.ChangeStatus ("Completed")
End If
Stream.Close ()

_Working = False
End Sub

Public Sub StartUpload()
If Working Then I
Throw New ApplicationException("Already in progress.")
Else
_Working = True
UploadThread = New Threading.Thread(AddressOf Upload)
UploadThread.Start ()
End If
End Sub

81 l

Public Sub Abort()
| If Working Then ’
| UploadThread.Abort ()

'UploadThread.Jein ()

; _Working = False
End If
End Sub

Public ReadOnly Property Working(} As Boolean
Get
Return _Working
End Get
End Property

End Class

82

Code for the Discovery Service:

Code for the structures used:

Namespace Discovery

Public Class Peer |

Public Guid As Guid
Public IP As String
Public Port As Integer

End Class

Public Class SharedFile
Public Guid As Guid
Public FileName As String
Public FileCreated As Date
Public Peer As New Peer()
Public Keywords () As String

End Class

End Namespace

83

Code for the Global Class:

Imports System.Web

Imports System.Web.SessionState

Namespace Discovery

Public Class [Global}
Inherits System.Web.HttpApplication

#Region " Component Designer Generated Code "

Public Sub New{)

MyBase.New ()

'"This call is required by the Component Designer.

InitializeComponent ()
'Add any initialization after the InitializeComponent{) call
End Sub

'Required by the Component Designerx

Private components As System.ComponentModel.IContainer

'NOTE: The following procedure is required by the Component Designer
"It can be modified using the Component Designer.
*Po not modify it using the code editor.
<System.Diagnostics.DebuggerStepThrough()> Private S5ub
InitializeComponent ()
components = New System.ComponentModel.Container ()

Fnd Sub

#End Region

84

Sub Application Start (ByVal sender As Cbject, ByVal e As EventArgs)
' Fires when the application is started

End Sub

Sub Session_Start (ByVal sender As Object, ByVal e As EventArgs)

~in,

' Pires when the session is started

End Sub

Sub Application_BeginRequest(ByVal sender As Object, ByVal e As

FventArgs)

' Fires at the beginning of each request

End Sub ‘

Sub Application_AuthenticateRequest(ByVal sender As Object, ByvVal e As

EventArgs)

' Fires upon attempting to authenticate the use

End Sub

Sub Application Error (ByvVal sender As Cbject, ByVal e As EventArgs)
' Fires when an e€rrox OCCUIrS

End Sub

Sub Session End(ByVal sender As Object, ByVal e As EventArgs)
' Fires when the session ends N

End Sub

Sub Application End(ByVal sender As Object, ByVal e As EventArgs)
' Fires when the application ends
End Sub

End Class #
AN

End Namespace

85

Code for the Discovery Service Page:

Imports System.Web.Services

Namespace Discovery

Public Class DiscoveryService

Inherits System.Web.Services.WebService

"

#Region " Web Services Designer Generated Code

Public Sub New()
MyBase .New{)

'This call is required by the Web Services Designer.

InitializeComponent {)

'Add your own initialization code after the InitializeComponent ()

call

End Sub

'Required by the Web Services Designer

Private components As System.ComponentModel. IContainex

"NOTFE: The following procedure is required by the Web Services
Designer

"It can be modified using the Web Services Designer.
'No not modify it using the code editor.
<System.Diagnostics.DebuggerStepThrough()> Private Sub
InitializeComponent {)
components = New System.CompenentModel . Container ()

End Sub

Protected Overloads Overrides Sub Dispose (ByVal disposing As Boolean)
'CODEGEN: This procedure is required by the Web Services Designer
"Do not modify it using the code editor.
If disposing Then
If Not {components Is Nothing) Then

86

components.bispose ()
End If
End If
MyBase .Dispose (disposing)
End Sub

#End Region

Private DB As New PZPDatabase()

<WebMethod (}> _

Public Function Register(ByVal peer As Peer) As Boolean

Try
DB .AddPeer (peer)
Return True

Catch err As Exception
Trace.Write (err.ToString)
Return False

End Try

End Function

<WebMethod (}> _

Public Function RefreshRegistration(ByVal peer As Peer) As Boolean

Try
DB.RefreshPeer (peer)
Return True

Catch err As Exception
Trace.Write{err.ToString)
Return False

End Try

End Function

<WebMethod {}> _

Public Sub Unregister (ByVal peer As Peer)

Try
DB.DeletePeerAndFiles {peer)
Catch err As Exception
Trace.Write {err.ToString)
fnd Try
End Sub
<WebMethod ()} > _

oublic Function PublishFiles(Byval files() As sharedFile, ByVal peer

As Peer) As Boolean

Try
DBR.AddFileInfo(files, peer)
Return True

Catch err As Exception
Trace.Write (err.ToString)
Return False

End Try
End Function

<WebMethod {)> _
public Function SearchForFile{ByVal keywords () As String} As

SharedFile ()

Try
Return DB.GetFileInfo (keywords)

Catch err As Exception
Trace.Write{err.ToString)
Dim EmptyArray() As SharedFile = {}
Return EmptyArray

End Try

End Function
End Class

End Namespace

88

5. Conclusion and Future Scope:

This software is basically a File Transfer system to be used on any Local Area Network. It is
useful for usage in organizations where files have to be sent to others frequently or the work is
being shared by a team and they have to proof-read the work of others before presenting it to a
client. It can also be used by students on a LAN to transfer various files which are useful to

their studies or for entertainment.

In future, the feature of Load-Sharing can be added, that is, the file can be copied in parts from
various users who are sharing it so as to share the load of the machines. Moreover, security
features and encryption could be provided in the software. It ca be scaled to be used over the

internet, so that'people requiring files from remote locations can easily obtain them.

89

6. References:

* o & @

Tanenbaum, Andrew S. Computer Networks Fourth Edition. Prentice Hall
O’Reilly, Peer to Peer: Harnessing the Power of Disruptive Technologies
Holzner, Steven Visual Basic 6 Black Book. The Coriolis Group

Reid, Fiach Network Programming in .Net. Digital Press.

90

7. Installation Guide:

i.

ii.

iii.

iv.

Contents of CD

e The CD contains two main folders, Part 1 and Part 2. In the folder ‘part 1° there is

a folder Setup that contains sub folders debug and release. It also contains .Net
Framework 1.1. In the folder “part 2°, there is a folder Setup which has sub folders
dotnetfx, Fileswapper, instmsi and the setup.exe file.

Software Requirements

o Both the setups require the Computer running them to have Windows Xp or
Windows 98 installed on them.

e The Part 1 code requires .Net Framework [.1 which has to be installed before the
software is setup on the machine. It also requires a .dll file which is inbuilt into
the setup.

o The Part 2 code requires .Net Framework 2.0 which is inbuilt into the setup of the
software. It will be installed automatically if not found on the machine. It also
requires 1 machine to have Internet Indexing Services(IIS) and SQL server to be
installed. This machine will act as Server for the files being shared. The IP of the
machine running the server has to one provided by us as it is inbuilt into the
setup and the clients will not run unless it is the same. Here we have put the IP as

172.16.10.254.

Hardware Requirements
e The machines running the codes should have minimum 128MB RAM and all

should have a Pentium III or higher processor.
Test Layout with Expected output.

e There is no specified test layout.

e In the Part 1 code the client will run and all those having started a server on the
same port will be able to chat and transfer files with each other. A client can also
scan for all servers running on a specified port.

e In the Part 2 code the client will run and in the Options form there is a path to a
folder on which the files are to be shared. All the other clients will similarly
share their files and in the Search option in the main form, one can search the

91

required file and if it is found, it will be displayed in the List Box and it can be

downloaded by double-clicking it.

92

