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Abstract

Modern speech understanding systems merge interdisciplinary technologies from signal pro-

cessing, pattern recognition, natural language, and linguistics into a unified statistical framework.

These systems, which have applications in a wide range of signal processing problems, represent a

revolution in Digital Signal Processing (DSP). Once a field dominated by vector-oriented proces-

sors and linear algebra-based mathematics, the current generation of DSP-based systems rely on

sophisticated statistical models implemented using a complex software paradigm. Such systems

are now capable of understanding continuous speech input for vocabularies of several thousand

words in operational environments. We explored the core components of modern statistically-

based speech recognition systems. The objective of this project is to implement a speech recogni-

tion engine and develop a system for speaker recognition using Mel Frequency Cepstrums and

Vector Quantization. This would involve the design of an efficient MATLAB code on a PC.

Throughout the development, measures will be taken to keep the memory requirement and the

processing time of the software as small as possible. Every Speech Recognition system must be

judged on two basic factors which govern its usability - accuracy and speed. Unfortunately, one

of them almost invariably comes at the cost of the other. A higher accuracy rate implies a wider

training sequence and a higher number of iterations in the learning algorithm. On the other hand,

accuracy remains an important objective of our project. The precision of the above two mentioned

algorithms that have been used depend almost entirely on the model parameters for every isolated

word which needs to be calculated at the very outset. To improve accuracy, we calculate these

parameters in a MATLAB environment deriving our results on a large number of test sequences

recorded in a typical noisy environment.



Chapter 1

Introduction

The fundamental purpose of speech is communication, i.e., the transmission of messages. Accord-

ing to Shannons information theory, a message represented as a sequence of discrete symbols can

be quantified by its information content in bits, and the rate of transmission of information is mea-

sured in bits/second (bps). In speech production, as well as in many human-engineered electronic

communication systems, the information to be transmitted is encoded in the form of a continuously

varying (analog)waveform that can be transmitted, recorded, manipulated, and ultimately decoded

by a human listener. In the case of speech, the fundamental analog form of the message is an acous-

tic waveform, which we call the speech signal[4]. Speech signals, can be converted to an electrical

waveform by a microphone, further manipulated by both analog and digital signal processing, and

then converted back to acoustic form by a loudspeaker, a telephone handset or headphone, as de-

sired. This form of speech processing is, of course, the basis for Bells telephone invention as well

as todays multitude of devices for recording, transmitting, and manipulating speech and audio sig-

nals. Although Bell made his invention without knowing the fundamentals of information theory,

these ideas have assumed great importance in the design of sophisticated modern communications

systems. Therefore, even though our main focus will be mostly on the speech waveform and its

representation in the form of parametric models, it is nevertheless useful to begin with a discussion

of how information is encoded in the speech waveform.
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Approaches

There are broadly three approaches of speech recognition, namely:

1. The acoustic-phonetic approach

It is basically based on the theory of acoustic phonetics that there exist finite, distinctive

phonetic units in the spoken language and that the phonetic units are broadly characterized

by a set of properties that manifest in speech signal, or its spectrum over time. Even though

the acoustic properties are of phonetic units are highly variable, both with the speakers and

with the neighboring phonetic units, it is assumed are straightforward and can be readily

learnt and appied in practical situations. Thus, the first step in acoustic-phonetic approach

to speech recognition is called a segmentation and labeling phase because it involves seg-

menting the speech signal into discrete(in time) regions where the acoustic properties of the

signal representative of one (or possibly several) phonetics units. To do speech recognition,

we need a second step. This second step attempts to derive a valid word from the sequence of

phonetic labels produced in the first step, which is consistent with the constraints of speech

recognition task.

2. The pattern-recognition approach

This approach to speech recognition is basically one in which the speech patterns are used di-

rectly without explicit feature determination (in the acoustic-phonetic sense) and segmenta-

tion. As with most pattern recognition approaches, the method has two steps- namely, train-

ing of speech patterns and recognition of patterns via pattern comparison. Speech knowledge

is brought into the system via the training procedure. The concept is that if enough versions

of a pattern to be recognized are included in the training set provided to the algorithm, the

training procedure should be able to adequately characterize the acoustic properties of the

pattern (with no regard for or knowledge of any other pattern presented to the training pro-

cedure). This type of characterization of speech via training is called pattern classification

because the machine learns which acoustic properties of the speech class are reliable and

repeatable across all training tokens of the pattern. The utility of the method is the pattern-

comparison stage, which does a direct comparison of the unknown speech (the speech to

be recognized), with each possible pattern learned in the training phase and classifies the
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unknown speech according to the goodness of the match patterns.

3. The artificial intelligence approach

The artificial intelligence approach to speech recognition is a hybrid of the acoustic-phonetic

approach and the pattern-recognition approach in that it exploits ideas and concepts of both

methods. The artificial intelligence approach attempts to mechanize the recognition pro-

cedure according to the way a person applies its intelligence in visualizing, analyzing and

finally making a decision on the measured acoustic features. In particular, among the tech-

niques used within this class of methods are the use of an expert system for segmentation

and labeling so that this crucial and most difficult step can be performed with more than just

the acoustic information used by pure acoustic- phonetic methods; learning and adapting

over time (i.e., the concept that knowledge is often both static and dynamic and that models

must adapt to the dynamic component of the data ) ; the use of neural networks for learning

the relationships between phonetic events and all known inputs as well as for discrimination

between similar sound classes.

The use of neural network could represent a separate structural approach to speech recogni-

tion or be regarded as an implementation architecture that may be incorporated in any of the

above three classical approaches.

Issues with acoustic phonetic approach

Many problems account for phonetic-acoustic approach to speech recognition. These problems, in

many ways account for lack of success in practical speech recognition systems.

1. The method requires extensive knowledge of the acoustic properties of phoneme units. This

knowledge is at best incomplete and at worst totally unavailable for all bit the simplest of

situations.

2. The choice of features is made mostly based on ad hoc considerations. For most systems the

choice of features is based on intuition and is not optimal in a well-defined and meaningful

sense.

3. The design of sound classifier is also not optimal. Ad hoc methods are generally used to

3



construct binary decision trees. More recently classification and regression tree (CART)

methods have been used to make the decision tree more robust. However, since the choice of

features is most likely to be suboptimal, optimal implementation of CART is rarely achieved.

No well-defined automatic procedure exists for tuning the method(i.e. adjusting the thresholds) .

In fact, there is not even an ideal way of labeling the training speech in a manner consistent and

agreed on uniformly by a wide class of linguistic experts.

Flow Chart

Analog Input

A/D Conversion

Software Processing

Desired Response

Database Comparison Via Speech recognition Algorithm

Figure 1.1: Dynamic time warping flow chart

Terms and Concepts

Following are a few of the basic terms and concepts that are fundamental to speech recognition.

It is important to have a good understanding of these concepts when developing applications of

Speech Recognition.

Utterances When the user says something, this is known as an utterance. An utterance is any

stream of speech between two periods of silence. Utterances are sent to the speech engine to be

processed. Silence, in speech recognition, is almost as important as what is spoken, because silence

delineates the start and end of an utterance. Here’s how it works. The speech recognition engine

is “listening” for speech input. When the engine detects audio input - in other words, a lack of

silence – the beginning of an utterance is signaled. Similarly, when the engine detects a certain

4



amount of silence following the audio, the end of the utterance occurs. Utterances are sent to the

speech engine to be processed. If the user doesnt say anything, the engine returns what is known as

a silence timeout - an indication that there was no speech detected within the expected timeframe,

and the application takes an appropriate action, such as reprompting the user for input.

An utterance can be a single word, or it can contain multiple words (a phrase or a sentence). If the

users pause too long between the words of a phrase, the end of an utterance can be detected too

soon, and only a partial phrase will be processed by the engine.

Pronunciations The speech recognition engine uses all sorts of algorithms to convert spoken

input into the desired response. One piece of information that the speech recognition engine uses

to process a command is its pronunciation, which represents what the speech engine thinks a word

should sound like. Words can have multiple pronunciations associated with them. For example,

the word “the” has at least two pronunciations in the U.S. English language: “thee” and “thuh.” As

a application developer, you may want to provide multiple pronunciations for certain words and

phrases to allow for variations in the ways your callers may speak them.

Grammars As an application developer, you must specify the words and phrases that users can

say to your application. These words and phrases are defined to the speech recognition engine

and are used in the recognition process. A grammar uses a particular syntax, or set of rules, to

define the words and phrases that can be recognized by the engine. A grammar can be as simple

as a list of words, or it can be flexible enough to allow such variability in what can be said that

it approaches natural language capability. Grammars define the domain, or context, within which

the recognition engine works. The engine compares the current utterance against the words and

phrases in the active grammars. If the user says something that is not in the grammar, the speech

engine will not be able to decipher it correctly.

Speaker Dependence vs. Speaker Independence Speaker dependence describes the degree to

which a speech recognition system requires knowledge of a speakers individual voice character-

istics to successfully process speech. The speech recognition engine can “learn” how you speak

words and phrases; it can be trained to your voice. Speech recognition systems that require a user

to train the system to his/her voice are known as speaker-dependent systems. If you are familiar
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with desktop dictation systems, most are speaker dependent. Because they operate on very large

vocabularies, dictation systems perform much better when the speaker has spent the time to train

the system to his/her voice. Speech recognition systems that do not require a user to train the

system are known as speaker independent systems.

Accuracy The performance of a speech recognition system is measurable. Perhaps the most

widely used measurement is accuracy. It is typically a quantitative measurement and can be cal-

culated in several ways. Arguably the most important measurement of accuracy is whether the

desired end result occurred. This measurement is useful in validating application design. For ex-

ample, if the user said “yes,“ the engine returned “yes,” and the “YES” action was executed, it is

clear that the desired end result was achieved. But what happens if the engine returns text that does

not exactly match the utterance? For example, what if the user said “nope,” the engine returned

“no,” yet the “NO” action was executed? Should that be considered a successful dialog? The an-

swer to that question is yes because the desired end result was achieved. Another measurement of

recognition accuracy is whether the engine recognized the utterance exactly as spoken. This mea-

sure of recognition accuracy is expressed as a percentage and represents the number of utterances

recognized correctly out of the total number of utterances spoken. It is a useful measurement when

validating grammar design. Using the previous example, if the engine returned “nope” when the

user said “no,” this would be considered a recognition error. Based on the accuracy measurement,

you may want to analyze your grammar to determine if there is anything you can do to improve

accuracy. For instance, you might need to add “nope” as a valid word to your grammar. Recogni-

tion accuracy is an important measure for all speech recognition applications. It is tied to grammar

design and to the acoustic environment of the user. You need to measure the recognition accuracy

for your application, and may want to adjust your application and its grammars based on the results

obtained when you test your application with typical users.

Digital Audio Basics Audio is inherently an analog phenomenon. Recording a digital sample

is done by converting the analog signal from the microphone to an digital signal through the A/D

converter in the sound card. When a microphone is operating, sound waves vibrate the magnetic

element in the microphone, causing an electrical current to the sound card (think of a speaker
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working in reverse). Basically, the A/D converter records the value of the electrical voltage at

specific intervals[5].

There are two important factors during this process. First is the “sample rate”, or how often to

record the voltage values. Second, is the “bits per sample”, or how accurate the value is recorded.

A third item is the number of channels (mono or stereo), but for most ASR applications mono is

sufficient. Most applications use preset values for these parameters and user’s shouldn’t change

them unless the documentation suggests it. Developers should experiment with different values to

determine what works best with their algorithms.

So what is a good sample rate for ASR? Because speech is relatively low bandwidth (mostly

between 100Hz8kHz), 8000 samples/sec (8kHz) is sufficient for most basic ASR. But, some people

prefer 16000 samples/sec (16kHz) because it provides more accurate high frequency information.

If you have the processing power, use 16kHz. For most ASR applications, sampling rates higher

than about 22kHz is a waste. And what is a good value for “bits per sample”? 8 bits per sample

will record values between 0 and 255, which means that the position of the microphone element

is in one of 256 positions. 16 bits per sample divides the element position into 65536 possible

values. Similar to sample rate, if you have enough processing power and memory, go with 16 bits

per sample.

7



Chapter 2

Technology Background

2.1 MATLAB

Matlab is a numerical computing programming language. It allows easy matrix manipulation,

plotting of functions and data, implementation of algorithm, creation of UI, and interfacing with

programs in other languages. It allows for other toolboxes to be included for additional capabilities.

Typical uses of Matlab include:

- Math and computation

- Algorithm development

- Modelling, simulation, and prototyping

- Data analysis, exploration, and visualization

- Scientific and engineering graphics

- Application development, including Graphical User Interface building

In this project we have used matlab as the main tool for designing the speech and speaker

recognition model. We have used various inbuilt commands and functions to implement the algo-

rithms. Many typical computations have been done quite efficiently and a good model for speech

and speaker recognition have been created. We have also created the graphical user interface using

8



the matlab commands so as to make the program user friendly. The main commands used in the

programs were as follows:

2.1.1 Commands and their brief description

DISP(X) displays the array, without printing the array name. In all other ways it’s the same as

leaving the semicolon off an expression except that empty arrays don’t display. If X is a string, the

text is displayed.

PAUSE(n) pauses for n seconds before continuing, where n can also be a fraction. The resolution

of the clock is platform specific. Fractional pauses of 0.01 seconds should be supported on most

platforms.

EXIST Check if variables or functions are defined.

LOAD loads workspace variables from disk. LOAD FILENAME retrieves all variables from a

file given a full pathname or a MATLABPATH relative partial pathname (see PARTIALPATH). If

FILENAME has no extension LOAD looks for FILENAME.mat and, if found, LOAD treats the

file as a binary “MAT-file”. If FILENAME.mat is not found, or if FILENAME has an extension

other than .mat it is treated as an ASCII file.

INPUT Prompt for user input.

ISEMPTY True for empty array. ISEMPTY(X) returns 1 if X is an empty array and 0 otherwise.

An empty array has no elements, that is prod(size(X))==0.

NUM2STR Convert numbers to a string.

AUDIORECORDER(Fs, NBITS, NCHANS) creates an AUDIORECORDER object with sam-

ple rate Fs in Hertz, number of bits NBITS, and number of channels NCHANS. Common sample

rates are 8000, 11025, 22050, and 44100 Hz (only 44100, 48000, and 96000 on a Macintosh). The

9



number of bits must be 8, 16, or 24 on Windows, 8 or 16 on UNIX. The number of channels must

be 1 or 2 (mono or stereo).

RECORD Record data and event information to a file.

GETAUDIODATA Gets recorded audio data in audiorecorder object. GETAUDIODATA(OBJ)

returns the recorded audio data as a double array.

SAVE FILENAME saves all workspace variables to the binary “MAT-file” named FILENAME.mat.

The data may be retrieved with LOAD. If FILENAME has no extension, .mat is assumed.

WAVWRITE(Y,FS,NBITS,WAVEFILE) writes data Y to a Windows WAVEfile specified by

the file name WAVEFILE, with a sample rate of FS Hz and with NBITS number of bits. NBITS

must be 8, 16, 24, or 32. Stereo data should be specified as a matrix with two columns. For NBITS

¡ 32, amplitude values outside the range [-1,+1] are clipped.

ISRECORDING Indicates if recording is in progress.

STRCAT Concatenate strings.

DELETE file name deletes the named file from disk. Wildcards may be used. For example,

DELETE *.p deletes all P-files from the current directory.

2.1.2 Graphical User Interface

Software that works at the point of contact (interface) between a computer and its user, and which

employs graphic elements (dialog boxes, icons, menus, scroll bars) instead of text characters to let

the user give commands to the computer or to manipulate what is on the screen. GUI elements are

usually accessed through a pointing device such as a mouse, pen, or stylus. All programs running

under a GUI use a consistent set of graphical elements so that once the user learns a particular

interface, he or she can use all programs without learning additional or new commands. Pioneered
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by Xerox and developed by Apple computers, GUI is now employed by all modern operating sys-

tems and application programs.

A GUI is a graphical user interface to a computer. The term came into existence because the first

interactive user interfaces to computers were not graphical; they were text-and-keyboard oriented

and usually consisted of commands you had to remember and computer responses that were infa-

mously brief. The command interface of the DOS operating system is an example of the typical

user-computer interface before GUIs arrived. An intermediate step in user interfaces between the

command line interface and the GUI was the non-graphical menu-based interface, which let you

interact by using a mouse rather than by having to type in keyboard commands.

Today’s major operating systems provide a graphical user interface. Applications typically use the

elements of the GUI that come with the operating system and add their own graphical user inter-

face elements and ideas. Elements of a GUI include such things as: windows, pull-down menus,

buttons, scroll bars, iconic images, wizards, the mouse, and no doubt many things that haven’t

been invented yet. With the increasing use of multimedia as part of the GUI, sound, voice, motion

video, and virtual reality interfaces seem likely to become part of the GUI for many applications.

A system’s graphical user interface along with its input devices is sometimes referred to as its

“look-and-feel.”

When creating an application, many object-oriented tools exist that facilitate writing a graphical

user interface. Each GUI element is defined as a class widget from which you can create object

instances for your application. You can code or modify prepackaged methods that an object will

use to respond to user stimuli.

Some of the GUI commands used in the programs is as follows:

MENU Generate a menu of choices for user input. CHOICE = MENU(HEADER, ITEM1,

ITEM2, ... ) displays the HEADER string followed in sequence by the menu-item strings: ITEM1,

ITEM2, ... ITEMn. Returns the number of the selected menu-item as CHOICE, a scalar value.

There is no limit to the number of menu items.
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Figure 2.1: GUI - Menu

msgbox(Message) creates a message box that automatically wraps Message to fit an appropri-

ately sized Figure. Message is a string vector, string matrix or cell array.

Figure 2.2: GUI - Message Box

WARNDLG Warning dialog box.

HANDLE = WARNDLG(WARNSTRING,DLGNAME) creates an warning dialog box which dis-

plays WARNSTRING in a window named DLGNAME.

A push button labeled OK must be pressed to make the warning box disappear.

12



Figure 2.3: GUI - Warning dialog box

QUESTDLG Question dialog box. ButtonName = QUESTDLG(Question) creates a modal di-

alog box that automatically wraps the cell array or string (vector or matrix) Question to fit an

appropriately sized window. The name of the button that is pressed is returned in ButtonName.

The Title of the figure may be specified by adding a second string argument:

ButtonName = questdlg(Question, Title)

QUESTDLG uses UIWAIT to suspend execution until the user responds. The default set of buttons

names for QUESTDLG are “Yes”,“No” and “Cancel”.

Figure 2.4: GUI - Question dialog box
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Chapter 3

Algorithms

There are three approaches to speech recognition namely the acoustic phonetic approach, the pat-

tern recognition approach and artificial intelligence approach. The acoustic phonetic approach is

based on the theory of acoustic phonetics that postulates that there exist finite, distinctive phonetic

units in spoken language, and that the phonetic units are broadly characterized by a set of proper-

ties that are manifest in the speech signal or its spectrum over time. Pattern recognition approach to

speech recognition is basically one in which the speech patterns are used directly without explicit

feature determination and segmentation. Pattern recognition is concerned with the classification

of objects into categories, especially by machine . A strong emphasis is placed on the statistical

theory of discrimination, but clustering also receives some attention. Hence it can be summed in

a single word: “classification”, both supervised (using class information to design a classifier i.e.

discrimination) and unsupervised (allocating to groups without class information i.e. Clustering).

Its ultimate goal is to optimally extract patterns based on certain conditions and is to separate one

class from the others. Artificial Intelligence approach to speech recognition is a hybrid of the

acoustic phonetic approach and the pattern recognition approach [1] in that it exploits ideas and

concepts of both methods. The artificial Intelligence approach attempts to mechanize the recog-

nition procedure according to the way a person applies its intelligence in visualizing, analyzing,

and finally making a decisions on the measured acoustic features. One of the simplest and earliest

approaches to pattern recognition is the template approach. Matching is a generic operation in pat-

tern recognition which is used to determine the similarity between two entities of the same type.

In template matching the template or prototype of the pattern to be recognized is available. The
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pattern to be recognized is matched against the stored template taking into account all allowable

pose and scale changes. Dynamic Time Warping is a pattern recognition technique.

3.1 Dynamic Time Warping

A distance measurement between time series is needed to determine similarity between time series

and for time series classification. Euclidean distance is an efficient distance measurement that can

be used. The Euclidian distance between two time series is simply the sum of the squared distances

from each nth point in one time series to the nth point in the other. The main disadvantage of using

Euclidean distance for time series data is that its results are very unintuitive. If two time series are

identical, but one is shifted slightly along the time axis, then Euclidean distance may consider

them to be very different from each other. Dynamic time warping (DTW) was introduced to

overcome this limitation and give intuitive distance measurements between time series by ignoring

both global and local shifts in the time dimension.

3.1.1 Problem Formulation

The dynamic time warping problem is stated as follows:

Given two time series X, and Y, of lengths |X | and |Y |, construct a warp path W where K is the

length of the warp path and the kth element of the warp path is where i is an index from time series

X, and j is an index from time series Y. The warp path must start at the beginning of each time

series at w1 = (1,1) and finish at the end of both time series at Wk = (|X |, |Y |). This ensures that

every index of both time series is used in the warp path. There is also a constraint on the warp

path that forces i and j to be monotonically increasing in the warp path, which is why the lines

representing the warp path in Figure 1

reffig:timealign do not overlap. Every index of each time series must be used.

Stated more formally:

The optimal warp path is the warp path is the minimum-distance warp path, where the distance

of a warp path W is Dist(W ) is the distance (typically Euclidean distance) of warp path W, and

Dist(wki,wk j) is the distance between the two data point indexes (one from X and one from Y) in
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the kth element of the warp path.

3.1.2 Matching Patterns in Time

Speech is a temporal signal; by this we mean that the Linguistic information encoded in an acoustic

speech signal is encoded in both the properties of the signal at any given instant and the way that

those properties change over time. A case in point is a diphthongal vowel which can only be iden-

tified by looking at the way that it changes over time – moving from one target location to another.

To recognize a continuous speech signal we must develop a method for comparing sequences of

observations with stored patterns.

A fully function system will operate as follows:

The analog signal of this command will then be converted to a digital signal. After A/D conversion

of the signal, software will process the signal and store it in memory. The stored information will

then be compared to the information stored in a database of pre-recorded commands via a speech

recognition algorithm. When a match is made a control signal will be issued to the output interface

circuitry, which will control the appliances. This will occur in real time, optimized for minimum

delay.

3.1.3 Block Diagram

Analysis

System

Pattern 

Training

Templates 

or models

Reference

Patterns

Pattern 

Classi er

Design

Logic

Recognized

Speech

Speech

Recognition

s[n]

Filter

Bank

Feature 

Measurement Test

Pattern

DTW

Figure 3.1: Block diagram for speech recognition
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3.1.4 Distance between Two Sequences of Vectors

A classification of a spoken utterance would be easy if we had a good distance measure D(X ,W )

at hand. To get a good distance measure, the distance measure must :

1. Measure the distance between two sequences of vectors of different length.

2. While computing the distance, find an optimal assignment between the individual feature

vectors.

3. Compute a total distance out of the sum of distances between individual pairs of feature

vectors.

3.1.5 Comparing the distance between two sequences of vectors of different

length

In dynamic time warping method (DTW), when comparing sequences with different length, the

sequence length is modified by repeating or omitting some frames, so that both sequences have the

same length as shown figure 1 below. This modification of sequences is called time warping.

3.1.6 Linear Time Warping

As it can be seen from figure, the two sequences X and W consist of six and eight vectors, respec-

tively. The sequence W was rotated by 90 degrees, so that the time index for this sequence runs

from the bottom of the sequence to its top. The two sequences span a grid of possible assignments

between the vectors. Each path through this grid (as the path shown in the figure) represents one

possible assignment of the vector pairs. For example, the first vector of X is assigned the first vec-

tor of W, the second vector of X is assigned to the second vector of W, and so on. As an example

the, let us assume that path P is given by the following sequence of time index pairs of the vector

sequences.

P = {(0,0),(1,1),(2,2),(3,2),(4,2),(5,3),(6,4),(7,4)}
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Figure 3.2: DTW time alignment

The length of path P is determined by the maximum of the number of vectors contained in X and

W. The assignment between the time indices of W and X as given by P can be interpreted as “time

warping” between the time axes of W and X. In our example, the vectors x2, x3 and x4 were all

assigned to w2, thus warping the duration of w2 so that it lasts three time indices instead of one.

By this kind of time warping, the different lengths of the vector sequences can be compensated.

And for the given path P, the distance measure between the vector sequences can be computed as

the sum of the distances between the individual vectors.

3.1.7 Finding the optimal Path

Once we have the path, computing the distance becomes a simple task. DTW distance can be

computed efficiently by using Bellmans principle of optimality. It states that If optimal path is

the path through the matrix of grid points beginning at A and ending at B, and the grid point K is

part of path, then the partial path from A to B is also part of optimal path[8]. From that, we can

construct a way of iteratively finding our optimal path P.

According to this principle, it is not necessary to compute all possible paths P and corresponding

distances to find the optimum path. Out of the huge number of theoretically possible paths, only

a fraction is computed. To illustrate this concept further, we need to discuss what is called a local

path alternative or local distance.
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Figure 3.3: Optimal Path

3.1.8 Local distances

Since both sequences of vectors represent feature vectors measured in short time intervals, we can

restrict the time warping to reasonable boundaries. The first vectors of X and W should be assigned

to each other as well as their last vectors. For the time indices in between, we want to avoid any

big leap backward or forward in time, but want to restrict the time warping just to the reuse of the

preceding vector(s) to locally warp the duration of a short segment of speech signal. With these

restrictions, we can draw a diagram of possible local path alternatives for one grid point and its

possible predecessors. As we can see, a grid point (i, j) can have the following

Predecessors:

Figure 3.4: Local distance

(i−1, j) : horizontal local path

(i−1, j−1) : diagonal local path

(i, j−1) : vertical local path
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A(i, j) = ∂ (xi,r j)+min[A(i−1, j)∗q,A(i−1, j−1),A(i−1, j−2)

All possible paths P, which we will consider as possible candidates for being the optimal path,

can be constructed as a concatenation of the local path alternatives as described above. According

to the local path alternatives diagram shown above, there are only three possible predecessor paths

leading to a grid point (i, j): The partial paths from (0,0) to the grid points (i−1, j), (i−1, j−1)

and (i, j−1) ). The (globally) optimal path from (0,0) to grid point (i, j) can be found by selecting

exactly the one path hypothesis among our alternatives which minimizes the accumulated distance

A(i, j) of the resulting path from (0,0) to (i, j).

Starting from grid point (0,0) to the vector distances defined by the grid point (1,0) and (0,1), we

can compute A(1,0) and A(0,1). Now we look at the points which can be computed from the three

points we just finished. For each of these points (i, j), we search the optimal predecessor point out

of the set of possible predecessors. That way we walk through the matrix from bottom-left to top-

right. Once we reached the topright corner of our matrix, the accumulated distance A (RefFrames,

TestFrames) is the distance D(W,X) between the vector sequences.

3.1.9 Optimizations

The major optimizations to the DTW algorithm arise from observations on the nature of good paths

through the grid. These can be summarized as:

Monotonic condition: the path will not turn back on itself, both the i and j indexes either stay

the same or increase, they never decrease.

Continuity condition: The path advances one step at a time. Both i and j can only increase by 1

on each step along the path.

Boundary condition: the path starts at the bottom left and ends at the top right.

Adjustment window condition: a good path is unlikely to wander very far from the diagonal.

The distance that the path is allowed to wander is the window length r.
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Slope constraint condition: The path should not be too steep or too shallow. This prevents very

short sequences matching very long ones. The condition is expressed as a ratio n/m where m is the

number of steps in the x direction and m is the number in the y direction. After m steps in x you

must make a step in y and vice versa.

By applying these observations we can restrict the moves that can be made from any point in the

path and so restrict the number of paths that need to be considered. For example, with a slope

constraint of P=1, if a path has already moved one square up it must next move either diagonally

or to the right.

The power of the DTW algorithm goes beyond these observations though. Instead of finding all

possible routes through the grid which satisfy these constraints, the DTW algorithm works by

keeping track of the cost of the best path to each point in the grid. During the match process we

have no idea which path is the lowest cost path; but this can be traced back when we reach the end

point.

3.1.10 The Weighting Function

A path through the grid is written in the paper asF = c(1),c(2) · · ·c(K), the generalized element of

the path is c(k) and this consists of a pair of coordinates in the i (input) and j (stored) directions.

The i coordinate of the kth path element is i(k).

The weighting function w(k) introduced into the overall distance measure is used to normalize

for the path length. Two alternate weighting functions are presented: symmetric and asymmetric.

Both functions are derived from the distance travelled (in grid units) in the last step of the path.

The symmetric form combines the i and j directions while the asymmetric form uses just the i

direction.

If the path has just made a diagonal step then i and j both increase by 1 and the symmetric w(k)

= 1+1 = 2; the asymmetric w(k) = 1; The sum of this function over the length of the path gives a

measure of how long the path is. This is used in normalizing the overall distance measures.
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3.1.11 Endpoint detection

One issue that arises in isolated word recognition is separating speech from silence in the input

signal. Each template and input sequence must correspond to a single word; the user is required to

pause between words to make this segmentation possible.

One simple method of making a speech/no speech decision is to use a combination of zero cross-

ings and RMS energy. Together these two features provide a reasonable separation of speech and

silence since low energy speech (fricatives) tends to have high zero crossing rates and low ZCR

speech (vowels) tend to have high energy. The speech signal is segmented into words before being

passed to the front end of the recognition system.

3.1.12 Selecting Templates

So far I have assumed that a single recording of each word is used as the basis for the stored tem-

plate in a DTW based recognizer. This approach will not be very robust since it takes no account

of the variability of different utterances and does not ensure that the template is representative of

the class as a whole. A number of methods have been proposed which seek to address these issues.

3.1.13 Continuous Speech

The DTW technique is obviously suited to isolated word recognition since the start and end of

the words needs to be known before the match can proceed. Advanced versions of DTW were

developed to match sequences of words in connected speech.

3.2 Mel Frequency Cepstrum Coefficients

The purpose of this module is to convert the speech waveform, using digital signal processing

(DSP) tools, to a set of features (at a considerably lower information rate) for further analysis. This

is often referred as the signal-processing front end . The purpose of this module is to convert the

speech waveform, using digital signal processing (DSP) tools, to a set of features (at a considerably

lower information rate) for further analysis. This is often referred as the signal-processing front
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end.

Figure 3.5: Example of Speech signal

A wide range of possibilities exist for parametrically representing the speech signal, such

as Linear Prediction Coding (LPC), Mel-Frequency Cepstrum Coefficients (MFCC), and others.

MFCC is perhaps the best known and most popular. MFCCs are based on the known variation of

the human ears critical bandwidths with frequency, filters spaced linearly at low frequencies and

logarithmically at high frequencies have been used to capture the phonetically important character-

istics of speech. This is expressed in the mel-frequency scale , which is a linear frequency spacing

below 1000 Hz and a logarithmic spacing above 1000 Hz.

The feature extraction is usually a non-invertible (lossy) transformation, Making an analogy with

filter banks, such transformation does not lead to perfect reconstruction, i.e., given only the features

it is not possible to reconstruct the original speech used to generate those features. Computational

complexity and robustness are two primary reasons to allow loosing information. Increasing the
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accuracy of the parametric representation by increasing the number of parameters leads to an in-

crease of complexity and eventually does not lead to a better result due to robustness issues. The

greater the number of parameters in a model, the greater should be the training sequence.

3.2.1 Mel-frequency cepstrum coefficients processor

A block diagram of the structure of an MFCC processor is given in Figure 3.6. The speech input

is typically recorded at a sampling rate above 10000 Hz. This sampling frequency was chosen to

minimize the effects of aliasing in the analog-to-digital conversion. These sampled signals can

capture all frequencies up to 5 kHz, which cover most energy of sounds that are generated by

humans. As been discussed previously, the main purpose of the MFCC processor is to mimic the

behavior of the human ears. In addition, rather than the speech waveforms themselves, MFFCs are

shown to be less susceptible to mentioned variations.

Step 1: Preemphasis In processing electronic audio signals, pre-emphasis refers to a system

process designed to increase (within a frequency band) the magnitude of some (usually higher)

frequencies with respect to the magnitude of other (usually lower) frequencies in order to improve

the overall signal-to-noise ratio by minimizing the adverse effects of such phenomena as attenu-

ation distortion or saturation of recording media in subsequent parts of the system. That is the

mirror of the de-emphasis. The whole system is called emphasis. The frequency curve is decided
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by special time constants.

Y [n] = X [n]−0.95X [n−1]

In high speed digital transmission, pre-emphasis is used to improve signal quality at the output

of a data transmission. In transmitting signals at high data rates, the transmission medium may

introduce distortions, so pre-emphasis is used to distort the transmitted signal to correct for this

distortion. When done properly this produces a received signal which more closely resembles the

original or desired signal, allowing the use of higher frequencies or producing fewer bit errors.

Step 2: Framing In this step the continuous speech signal is blocked into frames of N samples,

with adjacent frames being separated by M (M ¡ N). The first frame consists of the first N samples.

The second frame begins M samples after the first frame, and overlaps it by N - M samples and so

on. This process continues until all the speech is accounted for within one or more frames. Typical

values for N and M are N = 256 (which is equivalent to 30 msec windowing and facilitate the fast

radix-2 FFT) and M = 100.

Step 3: Hamming windowing Speech is non-stationary signal where properties change quite

rapidly over time. This is fully natural and nice thing but makes the use of DFT or autocorrelation

as a such impossible. For most phonemes the properties of the speech remain invariant for a short

period of time (.5-100 ms). Thus for a short window of time, traditional signal processing methods

can be applied relatively successfully. Most of speech processing in fact is done in this way: by

taking short windows (overlapping possibly) and processing them. The short window of signal like

this is called frame.

In implementational view the windowing corresponds to what is understoods in filter design as

window-method: a long signal (of speech for instance or ideal impulse response) is multiplied

with a window function of finite length, giving finite length weighted (usually) version of the orig-

inal signal. In speech processing the shape of the window function is not that crucial but usually

some soft window like Hanning, Hamming, triangle, half parallerogram, not with right angles.

The reason is same as in filter design, sideband lobes as substantially smaller than in a rectangular

window. Moreover in LPC-analysis (to be studied later on) the signal is presumed to be 0 outside

the window, hence the rectangular window produces abrupt change in the signal, which usually
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distorts the analysis.

yi(n) = xi(n)w(n),0 ≤ n ≤ N −1

The Hamming window has the form:

w(n) = 0.54−0.46cos
( 2πn

N−1

)
,0 ≤ n ≤ N −1

Step 4: Fast Fourier Transform The next processing step is the Fast Fourier Transform, which

converts each frame of N samples from the time domain into the frequency domain. The FFT is a

fast algorithm to implement the Discrete Fourier Transform (DFT), which is defined on the set of

N samples xn, as follow:

Xk = ∑N−1
n=0 xne− j2πkn/N,k = 0,1,2, ....,N −1

In general Xks are complex numbers and we only consider their absolute values (frequency

magnitudes). The resulting sequence Xk is interpreted as follow: positive frequencies. 0≤ f <Fs/2

correspond to values 0 ≤ n ≤ N
2 − 1, while negative frequencies −Fs/2 < f < 0 correspond to

N/2+1 ≤ n ≤ N −1 . Here, Fs denotes the sampling frequency.

A fast Fourier transform (FFT) is an algorithm to compute the discrete Fourier transform (DFT)

and its inverse. Fourier analysis converts time (or space) to frequency and vice versa; an FFT

rapidly computes such transformations by factorizing the DFT matrix into a product of sparse

(mostly zero) factors. The DFT is obtained by decomposing a sequence of values into components

of different frequencies. This operation is useful in many fields but computing it directly from

the definition is often too slow to be practical. An FFT is a way to compute the same result

more quickly: computing the DFT of N points in the naive way, using the definition, takes O(N2)

arithmetical operations, while a FFT can compute the same DFT in only O(N log N) operations.

The difference in speed can be enormous, especially for long data sets where N may be in the

thousands or millions.

In practice, the computation time can be reduced by several orders of magnitude in such cases,

and the improvement is roughly proportional to N / log(N). This huge improvement made the

calculation of the DFT practical; FFTs are of great importance to a wide variety of applications,
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from digital signal processing and solving partial differential equations to algorithms for quick

multiplication of large integers.

Step 5: Mel Filter Bank Processing The human auditory system doesnt interpret pitch in a

linear manner. The human interpretation of the pitch reises with the frequency, which in some

applications may be a unwanted Feature. To compensate for this the mel-scale was developed[11].

The mel-scale was developed by experimenting with the human ears interpretation of a pitch in

1940s. The sole purpose of the experiment were to describe the human auditory system on a linear

scale. the pitch is linearly perceived in the frequency range 0-1000hz. Above 1000 hz, the scale

becomes logarithmic. An approximated formula widely used for mel-scale is shown below:

Fmel =
1000

log(2).[1+
FHz

1000]

where Fmel is the resulting frequency on the mel-scale measured in mels and FHz is the normal

frequency measured in Hz.

With the mel-scale applied, coefficients from a LPC will be concentrated in the lower frequencies

and only around the area perceived by humans as the pitch, which may result in a more precise de-

scription of a signal, seen from the perception of the human auditory system[13]. This is although

not proved and it is only suggested that the mel-scale may have this effect. The mel-scale is, re-

gardless of what have been said above, a widely used and effective scale within speech recognition,

in which a speaker need not to be identified, only understood.

Step 6: Discrete Cosine Transform(Obtaining Cepstrums) This is the process to convert the

log Mel spectrum into time domain using Discrete Cosine Transform (DCT). The result of the

conversion is called Mel Frequency Cepstrum Coefficient. The set of coefficient is called acoustic

vectors. Therefore, each input utterance is transformed into a sequence of acoustic vector.

Mel Frequency Cepstral Coefficients (MFCC) is usually derived using a filter bank, this is illus-

trated in figure. It has been found that the energy in a critical band of a particular frequency

influence the human auditory systems perception. This critical band bandwidth varies with the

frequency, where it is linear below 1 kHz and logarithmic above. Combining this with the mel

scale, the distributions of these critical bands becomes linear. The critical band is a band pass

filter, adjusted around the center frequency. Below 1 kHz critical bands are placed linear around
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Figure 3.7: Mel Scale

100, 200, ... 1000 Hz. Above 1 kHz these bands are placed with the mel-scale. In the calculation

of the MFCCs the total energy in each critical band is used.

The filter bank has a triangular band pass frequency response, and the spacing as well as the

bandwidth is determined by a constant mel frequency interval. The number of mel spectrum coef-

ficients, K, is typically chosen as 20. Note that this filter bank is applied in the frequency domain,

thus it simply amounts to applying the triangle-shape windows as in the figure to the spectrum.

A useful way of thinking about this mel-wrapping filter bank is to view each filter as a histogram

bin (where bins have overlap) in the frequency domain[1]. Now we convert the log mel spectrum

back to time. The result is called the mel frequency cepstrum coefficients (MFCC). The cepstral

representation of the speech spectrum provides a good representation of the local spectral proper-

ties of the signal for the given frame analysis. Because the mel spectrum coefficients (and so their

logarithm) are real numbers, we can convert them to the time domain using the Discrete Cosine

Transform (DCT). Therefore if we denote those mel power spectrum coefficients that are the result

of the last step are S̃0,k = 0,2, ....,K −1 we can calculate the MFCC’s, c̃n, as
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Figure 3.8: Mel-spaced filter bank

c̃n = ∑K
k=1(logS̃k)cos

[
n(k− 1

2)
π
K

]
,n = 0,1, ...,K −1

Note that we exclude the first component, c̃0 from the DCT since it represents the mean value

of the input signal.

3.3 Vector Quantization

The natural way of communication among human beings is through speech. Many human beings

are exchanging the information through mobile phones as well as other communication tools in

a real manner . The Vector Quantization (VQ) is the fundamental and most successful technique

used in speech coding, speech recognition, and speech synthesis and speaker recognition. These

techniques are applied firstly in the analysis of speech where the mapping of large vector space

into a finite number of regions in that space. The VQ techniques are commonly applied to develop

discrete or semi-continuous MFCC based speech recognition system[3]. In VQ, an ordered set of
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signal samples or parameters can be efficiently coded by matching the input vector to a similar

pattern or codevector (codeword) in a predefined codebook. The VQ techniques are also known

as data clustering methods in various disciplines. It is an unsupervised learning procedure widely

used in many applications. The data clustering methods are classified as hard and soft clustering

methods. In the hard clustering, each data point belongs to exactly one of the partitions in ob-

taining the disjoint partitioning of the data whereas each data point has a certain probability of

belonging to each of the partitions in soft clustering. The parametric clustering algorithms are

very popular due to its simplicity and scalability. The hard clustering algorithms are based on the

iterative relocation schemes. The classical K-means algorithm is based on Euclidean distance and

the Linde-Buzo-Gray (LBG) algorithm is based on the Itakura-Saito distance. The performance

of vector quantization techniques depends on the existence of a good codebook of representative

vectors. An efficient VQ codebook design algorithm is proposed known as Modified K-means

LBG algorithm. This algorithm provides superior performance as compared to classical K-means

algorithm and the LBG algorithm.

The main objective of data compression is to reduce the bit rate for transmission or data storage

while maintaining the necessary fidelity of the data. The feature vector may represent a number of

different possible speech coding parameters including linear predictive coding (LPC)coefficients,

cepstrum coefficients. The VQ can be considered as a generalization of scalar quantization to the

quantization of a vector. The VQ encoder encodes a given set of k-dimensional data vectors with a

much smaller subset. The subset C is called a codebook and its elements Ci are called codewords,

codevectors, reproducing vectors, prototypes or design samples. Only the index i is transmitted to

the decoder. The decoder has the same codebook as the encoder, and decoding is operated by table

look-up procedure. The commonly used vector quantizers are based on nearest neighbor called

Voronoi or nearest neighbour vector quantizer. Both the classical K-means algorithm and the LBG

algorithm belong to the class of nearest neighbor quantizers. A key component of pattern matching

is the measurement of dissimilarity between two feature vectors. The measurement of dissimilar-

ity satisfies three metric properties such as Positive definiteness property, Symmetry property and

Triangular inequality property. Each metric has three main characteristics such as computational

complexity, analytical tractability and feature evaluation reliability. The metrics used in speech
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processing are derived from the Minkowski metric. The Minkowski metric can be expressed as

Dp(X ,Y ) = p
√

∑k
i=1 |xi − yi|p

Where X = {x1,x2, ......,xk} and Y = {y1,y2, ......,yk} are vectors and p is the order of the

metric. The City block metric, Euclidean metric and Manhattan metric are the special cases of

Minkowski metric. These metrics are very essential in the distortion measure computation func-

tions. The distortion measure is one which satisfies only the positive definiteness property of the

measurement of dissimilarity. There were many kinds of distortion measures including Euclidean

distance, the Itakura distortion measure and the likelihood distortion measure, and so on. The Eu-

clidean metric is commonly used because it fits the physical meaning of distance or distortion. In

some applications division calculations are not required. To avoid calculating the divisions, the

squared Euclidean metric is employed instead of the Euclidean metric in pattern matching. The

quadratic metric is an important generalization of the Euclidean metric. The weighted cepstral dis-

tortion measure is a kind of quadratic metric. The weighted cepstral distortion key feature is that

it equalizes the importance in each dimension of cepstrum coefficients. In the speech recognition,

the weighted cepstral distortion can be used to equalize the performance of the recognizer across

different talkers. The Itakura-Saito distortion measure computes a distortion between two input

vectors by using their spectral densities. The performance of the vector quantizer can be evaluated

by a distortion measure D which is a non-negative cost

D(X j, X̂ j) associated with quantizing any input vector X j with a reproduction vector X̂ j. Usually

the Euclidean distortion measure is used. The performance of a quantizer is always qualified by an

average distortion Dv = E[D(X j, X̂ j)] between the input vectors and the final reproduction vectors,

where E represents the expectation operator. Normally, the performance of the quantizer will be

good if the average distortion is small. Another important factor in VQ is the codeword search

problem. As the vector dimension increases accordingly the search complexity increases exponen-

tially, this is a major limitation of VQ codeword search. It limits the fidelity of coding for real

time transmission. A full search algorithm is applied in VQ encoding and recognition. It is a time

consuming process when the codebook size is large. In the codeword search problem, assigning

one codeword to the test vector means the smallest distortion between the codeword and the test
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vector among all codewords. Given one codeword Ct and the test vector X in the k-dimensional

space, the distortion of the squared Euclidean metric can be expressed as follows:

There are three ways of generating and designing a good codebook namely the random method, the

pair-wise nearest neighbor clustering and the splitting method. There are three major procedures

in VQ, namely codebook generation, encoding procedure and decoding procedure.

3.3.1 Feature Matching

The problem of speech recognition belongs to a much broader topic in scientific and engineering

so called pattern recognition. The goal of pattern recognition is to classify objects of interest into

one of a number of categories or classes. The objects of interest are generically called patterns

and in our case are sequences of acoustic vectors that are extracted from an input speech using the

techniques described in the previous section. The classes here refer to different words. Since the

classification procedure in our case is applied on extracted features, it can be also referred to as

feature matching[7].

Furthermore, if there exists some set of patterns that the individual classes of which are already

known, then one has a problem in supervised pattern recognition. These patterns comprise the

training set and are used to derive a classification algorithm. The remaining patterns are then used

to test the classification algorithm; these patterns are collectively referred to as the test set. If the

correct classes of the individual patterns in the test set are also known, then one can evaluate the

performance of the algorithm.

The state-of-the-art in feature matching techniques used in speech recognition include Dynamic

Time Warping (DTW), Hidden Markov Modeling (HMM), and Vector Quantization (VQ). In this

project, the VQ approach will be used, due to ease of implementation and high accuracy. VQ

is a process of mapping vectors from a large vector space to a finite number of regions in that

space. Each region is called a cluster and can be represented by its center called a codeword. The

collection of all codewords is called a codebook.

In the figure, only two words and two dimensions of the acoustic space are shown. The circles refer

to the acoustic vectors from the word 1 while the triangles are from the word 2. In the training

phase, using the clustering algorithm, a speaker-specific VQ codebook is generated for each known

speaker by clustering his/her training acoustic vectors. The result codewords (centroids) are shown
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in Figure by black circles and black triangles for word 1 and 2, respectively. The distance from a

vector to the closest codeword of a codebook is called a VQ-distortion. In the recognition phase,

an input utterance of an unknown voice is vector-quantized using each trained codebook and the

total VQ distortion is computed. The word corresponding to the VQ codebook with smallest total

distortion is identified as the word spoken in the input utterance.

Figure 3.9: VQ codebook formation

3.3.2 Clustering the Training Vectors

After the acoustic vectors extracted from input speech of each speaker provide a set of training

vectors for that word. As described above, the next important step is to build a speaker-specific VQ

codebook for each speaker using those training vectors. There is a well-know algorithm, namely

LBG algorithm[9], for clustering a set of L training vectors into a set of M codebook vectors. The

algorithm is formally implemented by the following recursive procedure:

1. Design a 1-vector codebook; this is the centroid of the entire set of training vectors (hence,

no iteration is required here).
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2. Double the size of the codebook by splitting each current codebook yn according to the rule

where n varies from 1 to the current size of the codebook, and is a splitting parameter (we

choose =0.01).

3. Nearest-Neighbor Search: for each training vector, find the codeword in the current code-

book that is closest (in terms of similarity measurement), and assign that vector to the corre-

sponding cell (associated with the closest codeword).

4. Centroid Update: update the codeword in each cell using the centroid of the training vectors

assigned to that cell.

5. Iteration 1: repeat steps 3 and 4 until the average distance falls below a preset threshold.

6. Iteration 2: repeat steps 2, 3 and 4 until a codebook size of M is designed.

Intuitively, the LBG algorithm designs an M-vector codebook in stages. It starts first by design-

ing a 1-vector codebook, then uses a splitting technique on the codewords to initialize the search

for a 2-vector codebook, and continues the splitting process until the desired M-vector codebook

is obtained.
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3.3.3 Block Diagram
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Figure 3.10: VQ flow chart
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Chapter 4

Applications

4.1 Accessing videos using speech recognition

Speech recognition field is one of the most challenging fields that have faced the scientists from

long time. The complete solution is still far from reach. The efforts are concentrated with huge

funds from the companies to different related and supportive approaches to reach the final goal.

Then, apply it to the enormous applications who are still waiting for the successful speech recog-

nizers that are free from the constraints of speakers, vocabularies and environment. This task is

not an easy one due to the interdisciplinary nature of the problem and as it requires speech per-

ception to be implied in the recognizer (Speech Understanding Systems) which in turn strongly

points to the use of intelligence within the systems. The bare techniques of recognizers (without

intelligence) are following wide varieties of approaches with different claims of success by each

group of authors who put their faith in their favorite way. The entire process of speech recognition

can be broadly split into two subsequent phases -the training phase and the testing phase.

4.1.1 Basic Structure of Speech Recognition System

An Automatic Speech Recognition (ASR) engine tries to imitate the human auditory system.

Speech recognition boils down to a matching problem matching the input speech signal to the

reference speech signals stored in our brain or on a machine, as is the case for human and machine

speech recognition, respectively. So, most of the latest speech recognition engines involve 2 parts
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training and recognition. Vector Quantization is a process of mapping vectors from a large vector

space to a finite number of regions in that space. Each region is called a cluster and can be rep-

resented by its center called a codeword. The collection of all code words is called a codebook .

Mapping or clustering the feature vectors can be done a number of clustering algorithms like the

LBG algorithm or the K-means algorithm[2].

Pre Processing 

Unit
Feature

Extraction

VQ book

codebook

Euclidian distance

measurement unit

Video

playback unit

Speech Signal

for training

Speech Signal

for testing

Recognized

speech signal

Figure 4.1: Video accessing block diagram

4.1.2 Pre-Processing Unit

This unit is a part of the training module of the application. Input training signals are preprocessed

here so that they can be further used to extract the features.

The steps involved in pre processing are:

1. Segmentation and pre emphasis

The speech signal is first segmented into lengths of 10/20 ms segments.Then it is subjected

to pre emphasis. The pre-emphasizer is used to spectrally flatten the speech signal. This is

usually done by a high pass filter.

2. Frame blocking and windowing

The concept of short time analysis is fundamental to most speech analysis techniques. The

assumption made is that, over a long interval of time, speech waveform is not stationary

but that, over a sufficiently short time interval say about 10- 30msec, it can be considered
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stationary. This is due to that fact that the rate at which the spectrum of the speech signals

changes is directly dependant on the rate of movement of the speech articulators. Since this

is limited by physiological constraints, most speech analysis systems operate at uniformly

spaced time intervals or frames of typical duration 10- 30 msec. In frame blocking, the

continuous speech signal is blocked into frames of N Samples , with adjacent frames being

separated by M (M ¡ N).The next thing to do is to apply a window to each frame in order

to reduce signal discontinuity at either end of the block. The concept here is to minimize

the spectral distortion by using the window to taper the signal to zero at the beginning and

end of each frame. In other words, when we perform Fourier Transform, it assumes that the

signal repeats, and the end of one frame does not connect smoothly with the beginning of the

next one. This introduces some glitches at regular intervals. So we have to make the ends

of each frame smooth enough to connect with each other. This is possible by a processing

called Windowing. In this process, we multiply the given signal (frame in this case) by a so

called Window Function. A commonly used window is the Hamming window.

3. FFT and Magnitude Response Extraction

The next processing step is the Fast Fourier Transform, which converts each frame of N

samples from the time domain into the frequency domain. The FFT is a fast algorithm to

implement the Discrete Fourier Transform (DFT) which is defined on the set of N samples

Xn.

Xn = ∑N−1
k=0 xke−

π jkn
N ,n = 0,1,2, .....,N −1

After the frames are converted to frequency domain from time domain using Fast Fourier

Transform, we need to extract the magnitude response of the signals. This is so because

while processing the speech signals we dont require the phase response of the signals. Thus

we obtain the magnitude response of the speech signal.

4.1.3 Feature Extraction Unit

The purpose of this unit is to convert the speech waveform to a set of features for further analysis.

This is often referred as the signal-processing front end. This method consists of two parts: the
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cepstrum calculation and a method called Mel scaling.

MFCC:

MFCCs are commonly calculated by first taking the Fourier transform of a windowed excerpt of a

signal and mapping the powers of the spectrum obtained above onto the Mel scale, using triangular

overlapping windows. Next the logs of the powers at each of the Mel frequencies are taken, Direct

Cosine Transform is applied to it (as if it were a signal). The MFCCs are the amplitudes of the

resulting spectrum. This procedure is represented step -wise in the figure below:

Fourier transform of a windowed signal

Mapping of powers of spectrum on to Mel scale

Logarithm of powers at each of the Mel frequencies

Discrete cosine transform of Mel log powers

Coefficients of the resulting spectrum

Figure 4.2: Procedure for forming MFCC

Codebook Generation Unit:

The problem of speech recognition belongs to a much broader topic in scientific and engineering

so called pattern recognition. The goal of pattern recognition is to classify objects of interest into

one of a number of categories or classes. The objects of interest are generically called patterns

and in our case are sequences of acoustic vectors that are extracted from an input speech using

the techniques described above. The classes here refer to different words. Since the classification

procedure in our case is applied on extracted features, it can be also referred to as feature matching.

Furthermore, if there exist some set of patterns that the individual classes of which are already

known, then one has a problem in supervised pattern recognition. The remaining patterns are then
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used to test the classification algorithm, these patterns are collectively referred to as the test set. If

the correct classes of the individual patterns in the test set are also known, then one can evaluate

the performance of the algorithm. The VQ approach is used, due to ease of implementation and

high accuracy. VQ is a process of mapping vectors from a large vector space to a finite number of

regions in that space. Each region is called a cluster and can be represented by its center called a

codeword. The collection of all code words is called a codebook.

Euclidean Distance Measurement Unit:

In this unit we would calculate the Euclidean distance between the test pattern and the codewords

which are generated and recorded in the codebook. The codeword which has the minimum Eu-

clidean distance will be the recognized word and the recognized word will be passed on to the

video playback unit.

Video Playback Unit:

In this unit we get an input as a recognized word. This unit will look for a video named with the

recognized word in the directory and will then play that video in the media player.

4.2 Speaker Recognition

Speaker recognition is the process of automatically recognizing who is speaking on the basis of

individual information included in speech waves. This technique makes it possible to use the

speaker’s voice to verify their identity and control access to services such as voice dialing, bank-

ing by telephone, telephone shopping, database access services, information services, voice mail,

security control for confidential information areas, and remote access to computers.

4.2.1 Principles of Speaker Recognition

Speaker recognition can be classified into identification and verification. Speaker identification is

the process of determining which registered speaker provides a given utterance. Speaker verifica-

tion, on the other hand, is the process of accepting or rejecting the identity claim of a speaker[6].
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Figure shows the basic structures of speaker identification and verification systems. The system

that we will describe is classified as text-independent speaker identification system since its task

is to identify the person who speaks regardless of what is saying. At the highest level, all speaker

recognition systems contain two main modules: feature extraction and feature matching. Feature

extraction is the process that extracts a small amount of data from the voice signal that can later

be used to represent each speaker. Feature matching involves the actual procedure to identify the

unknown speaker by comparing extracted features from his/her voice input with the ones from a

set of known speakers.

Input 

Signal
Feature

Extaction

Similarity

Similarity

Maximum

selection
cation

esult

Reference 

model

Speaker #1

Reference 

model

Speaker #N

Figure 4.3: Speaker Identification

Now, I will take you through each system one by one. Feature extraction as the name suggest

refers to extracting the important features of the speech signal for speech recognition. The analogue

speech is converted into digital format by the microphone itself. After the speech is in digital

format, it becomes easier to process. The first few values of the speech signal are taken into

consideration for further processing. This is because after continuous evaluation it was noticed

that all the major differences in the speech vectors are represented by the initial values. Once,

we have the extracted features which are used further. We classify these into different classes;

each class represents a different speaker. Each speaker or class is assigned a class number or

speaker number, which is called as the reference model. These reference models are used while

identifying the speaker. Now whichever class or speaker has the maximum matching with the input

that reference model is chosen and the speaker ID corresponding to the reference model is shown.
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Figure 4.4: Speaker verification

For Feature Verification, the input speech and the speaker ID is passed to the system. The

system checks for the similarity of the voice based on quality/duration/loudness/pitch[12]. The

extracted features from the input are then compared to the models. A threshold has been set for

the maximum allowable variation in the features, and a decision is made. If the value exceeds the

threshold value the decision is made as rejection, i.e. the input feature does not match the trained

features and no such speaker has been listed in their database. If the value is within the threshold

limits the decision is made as accepted and the speaker details are flashed on the output window.

Speaker recognition is a difficult task. Automatic speaker recognition works based on the

premise that a persons speech exhibits characteristics that are unique to the speaker. However

this task has been challenged by the highly variant of input speech signals. The principle source

of variance is the speaker himself/herself. Speech signals in training and testing sessions can be

greatly different due to many facts such as people voice change with time, health conditions (e.g.

the speaker has a cold), speaking rates, and so on. There are also other factors, beyond speaker

variability, that present a challenge to speaker recognition technology. Examples of these are

acoustical noise and variations in recording environments (e.g. speaker uses different telephone

handsets).
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Chapter 5

Simulations and Results

5.1 Speaker Recognition System

This is the graphical user interface (GUI) menu that we see after initializing the program:

- We can add a new sound or voice to the database.

- The speaker can be identified if his information is present in the database.

- We can retrieve the database info.

- The database can also be deleted.

Figure 5.1: Speaker recognition menu
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This is the command window that we see when we have to add a new speakers information to the

system. It requires the speaker to enter his/her name and the duration of the speech to be recorded.

When the sound has been added to the database a message is displayed in the command window.

It gives the distance of the test sound vector from the trained vectors and displays the recognized

speaker.

Figure 5.2: initializing speaker recognizing system
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Figure 5.3: Command window recognizing speaker
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5.2 Accessing Videos using Speech Recognition

This is the command window that we see when the voice recognition system is initialized. It

prompts the user to choose from the given list of videos. The user can access the videos from the

list through his voice. It then returns the distance of the users voice from the trained set. If the

information is matched with the trained set, then the corresponding video is played through VLC

player.

Figure 5.4: Video accessing system
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Chapter 6

Conclusion and Future Scope

6.1 Conclusion

On implementing the system for speech recognition and speaker recognition, we can assert with

confidence that such systems can be used for a variety of applications. For instance speech recogni-

tion can be used to access videos i.e. Hands free accessing videos from a system. This system can

be used for a variety of other applications such as in cars for assisting the driver for maneuvering,

picking up a call, changing songs via voice while driving and many others to name a few.

Unique identification of voice is often of utmost importance in many sectors of industry. The

speaker recognition system can be used for various security applications such as password authen-

tication of bank account or homes or even high profile offices. The algorithms used in this project

are uniformly accepted and recognized and are used for practical implementation of such systems.

The market for voice implemented systems is continuously growing and need for systems like

these are also increasing. Our recognition engines can be used by the common people without any

difficulties due to the user friendly interface and the use of Graphic User Interface.

There is always a need to modify and add features according to the growing technology. We know

there is profitability for modifying the technology to compete the market. Even though there are

certain disadvantages and limitations to these systems due to lack of funds and limited scope and

time available to us, they can be overcome by making certain changes and enhancements to our

current system.
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6.2 Future Scope

There are certain enhancements which would increase the efficiency of these recognition systems.

Firstly, the accuracy of these systems can be increased by implementing and training in noisy and

unfavorable environments. This would make the system more reliable and can be used in any con-

ditions. Secondly, we can implement this system using a more practical algorithm know as Hidden

Markov Model (HMM). Further these speaker recognition systems can be used to implement the

following practical applications such as defense and security can be used to detect a suspect while

searching for his voice. It can also be used in personalization as intelligent answering machine

or voice-web/device. We can also use for speech data management such as voice mail browsing

or searching audio archives. These additions would make the system more complete and more

capable of being able to work in any kind of environment.
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