
1

Longitude & Latitude Display System Using

GPS & Microcontroller

Name – Abhiraj Rathore

Enroll no. – 101353

Supervisor – Prof. Vivek Sehgal

 May, 2014

Submitted

In

 Fulfillment of Degree of Bachelor of Technology

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

 AND

INFORMATION TECHNOLOGY

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY ,

WAKNAGHAT.

2

 CERTIFICATE

This is to certify that the work entitled Latitude & Longitude Display System using GPS &

Microcontroller” submitted by Abhiraj Rathore (101353) in partial fulfillment for award for

degree of Bachelor of Technology in Information Technology of JAYPEE UNIVERSITY OF

INFORMATION TECHNOLOGY has been carried out under my supervision. This work has not

been submitted partially or wholly to any other University for any award of this or any other

degree.

Prof. Vivek Sehgal

 (Associate Professor)

Department of Computer Science Engineering and Information Technology

Jaypee University of Information Technology

Waknaghat

3

Acknowledgement

 “It is not possible to prepare a project without the assistance &

 Encouragement of other people. This one is certainly no exception.”

On the very outset of this report, we would like to extend our sincere & heartfelt obligation towards

all the personages who have helped us in this endeavor. Without their active guidance, help,

cooperation & encouragement, we would not have made headway in the project.

We would like to show our greatest appreciation to Prof. Vivek Sehgal. We feel motivated every

time we get his encouragement. For his coherent guidance throughout the tenure of the project, we

feel fortunate to be taught by Prof. Vivek Sehgal, who gave us his unwavering support. Besides

being our mentor, he taught us that there is no substitute for hard work.

We will be always in debt of Prof. Punit Gupta for providing us his timely help and guidance.

We owe our heartiest thanks to Brig. (Retd.) S.P. Ghrera (HOD, CES/IT Department) who has

always inspired us to take initiatives and showed us the path for achieving our goal.

In the light of new developments and recent findings, we devote the task that was asked from us

at Jaypee University of Information Technology to “ Latitude & Longitude Display System

using GPS & Microcontroller”.

Abhiraj Rathore(101353)

4

 Table of Contents

 Page No.

1) Introduction

 - What is a Microcontroller? 5

 - Looking Inside The Microcontroller 5

 - Microcontroller Vendors 9

 - Difference b/w Microprocessor & Microcontroller 12

 - Global Positioning System 15

 - Max 232 & Programmer 17

2) Previous Study

 - Blinking a LED 19

 - Displaying On a LCD 22

 - Interfacing a Servo Motor with Arduino Uno 25

3) Interfacing L80M39 with Arduino Uno

 - Circuit Diagram 29

 - Code 32

 - Results 34

4) Future Scope 35

5) Conclusion 36

6) Tool & Techniques Used ` 37

7) References 38

5

CHAPTER 1 - INTRODUCTION

What is a MICROCONTROLLER?

A microcontroller is a small computer on a single integrated circuit containing a processor core,

memory, and programmable input/output peripherals. Microcontrollers are designed for embedded

applications, in contrast to the microprocessors used in personal computers or other general

purpose applications.

Microcontrollers are used in automatically controlled products and devices, such as automobile

engine control systems, implantable medical devices, remote controls, office machines,

appliances, power tools, toys and other embedded systems.

 Looking Inside the MICROCONTROLLER?

 Read Only Memory (ROM)

Read Only Memory (ROM) is a type of memory used to permanently save the program being

executed. The size of the program that can be written depends on the size of this memory. ROM

can be built in the microcontroller or added as an external chip, which depends on the type of the

microcontroller. Both options have some disadvantages. If ROM is added as an external chip, the

microcontroller is cheaper and the program can be considerably longer. At the same time, a number

of available pins is reduced as the microcontroller uses its own input/output ports for connection

to the chip. The internal ROM is usually smaller and more expensive, but leaves more pins

available for connecting to peripheral environment. The size of ROM ranges from 512B to 64KB.

 Random Access Memory (RAM)

Random Access Memory (RAM) is a type of memory used for temporary storing data and

intermediate results created and used during the operation of the microcontrollers. The content of

this memory is cleared once the power supply is off. For example, if the program performes an

addition, it is necessary to have a register standing for what in everyday life is called the “sum” .

For that purpose, one of the registers in RAM is called the "sum" and used for storing results of

addition. The size of RAM goes up to a few KBs.

 Electrically Erasable Programmable ROM (EEPROM)

The EEPROM is a special type of memory not contained in all microcontrollers. Its contents may

be changed during program execution (similar to RAM), but remains permanently saved even

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Input/output
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Embedded_system

6

after the loss of power (similar to ROM). It is often used to store values, created and used during

operation (such as calibration values, codes, values to count up to etc.), which must be saved after

turning the power supply off. A disadvantage of this memory is that the process of programming

is relatively slow. It is measured in miliseconds.

 Special Function Registers (SFR)

Special function registers are part of RAM memory. Their purpose is predefined by the

manufacturer and cannot be changed therefore. Since their bits are physically connected to

particular circuits within the microcontroller, such as A/D converter, serial communication module

etc., any change of their state directly affects the operation of the microcontroller or some of the

circuits. For example, writing zero or one to the SFR controlling an input/output port causes the

appropriate port pin to be configured as input or output. In other words, each bit of this register

controls the function of one single pin.

 Program Counter

Program Counter is an engine running the program and points to the memory address containing

the next instruction to execute. After each instruction execution, the value of the counter is

incremented by 1. For this reason, the program executes only one instruction at a time just as it is

written. However…the value of the program counter can be changed at any moment, which causes

a “jump” to a new memory location. This is how subroutines and branch instructions are executed.

After jumping, the counter resumes even and monotonous automatic counting +1, +1, +1…

 Central Processor Unit (CPU)

As its name suggests, this is a unit which monitors and controls all processes within the

microcontroller and the user cannot affect its work. It consists of several smaller subunits, of which

the most important are:

 Instruction decoder is a part of the electronics which recognizes program instructions and

runs other circuits on the basis of that. The abilities of this circuit are expressed in the

"instruction set" which is different for each microcontroller family.

 Arithmetical Logical Unit (ALU) performs all mathematical and logical operations upon

data.

 Accumulator is an SFR closely related to the operation of ALU. It is a kind of working

desk used for storing all data upon which some operations should be executed (addition,

shift etc.). It also stores the results ready for use in further processing. One of the SFRs,

called the Status Register, is closely related to the accumulator, showing at any given time

the "status" of a number stored in the accumulator (the number is greater or less than zero

etc.).

7

 Oscillator

Even pulses generated by the oscillator enable harmonic and synchronous operation of all circuits

within the microcontroller. It is usually configured as to use quartz-crystal or ceramics resonator

for frequency stabilization. It can also operate without elements for frequency stabilization (like

RC oscillator). It is important to say that program instructions are not executed at the rate imposed

by the oscillator itself, but several times slower. It happens because each instruction is executed in

several steps. For some microcontrollers, the same number of cycles is needed to execute any

instruction, while it's different for other microcontrollers. Accordingly, if the system uses quartz

crystal with a frequency of 20MHz, the execution time of an instruction is not expected 50nS, but

200, 400 or even 800 nS, depending on the type of the microcontroller!

 Timers/Counters

Most programs use these miniature electronic "stopwatches" in their operation. These are

commonly 8- or 16-bit SFRs the contents of which is automatically incremented by each coming

pulse. Once the register is completely loaded, an interrupt is generated!

If these registers use an internal quartz oscillator as a clock source, then it is possible to measure

the time between two events . If the registers use pulses coming from external source, then such a

timer is turned into a counter.

 Watchdog timer

The Watchdog Timer is a timer connected to a completely separate RC oscillator within the

microcontroller.

If the watchdog timer is enabled, every time it counts up to the program end, the microcontroller

reset occurs and program execution starts from the first instruction. The point is to prevent this

from happening by using a special command. The whole idea is based on the fact that every

program is executed in several longer or shorter loops.

If instructions resetting the watchdog timer are set at the appropriate program locations, besides

commands being regularly executed, then the operation of the watchdog timer will not affect the

program execution.

8

If for any reason (usually electrical noise in industry), the program counter "gets stuck" at some

memory location from which there is no return, the watchdog will not be cleared, so the register’s

value being constantly incremented will reach the maximum et voila! Reset occurs!

 Interrupt - electronics is usually more faster than physical processes it should keep under

control. This is why the microcontroller spends most of its time waiting for something to

happen or execute. In other words, when some event takes place, the microcontroller does

something. In order to prevent the microcontroller from spending most of its time endlessly

checking for logic state on input pins and registers, an interrupt is generated. It is the signal

which informs the central processor that something attention worthy has happened. As its

name suggests, it interrupts regular program execution. It can be generated by different

sources so when it occurs, the microcontroller immediately stops operation and checks for

the cause. If it is needed to perform some operations, a current state of the program counter

is pushed onto the Stack and the appropriate program is executed. It's the so called interrupt

routine.

 Stack is a part of RAM used for storing the current state of the program counter (address)

when an interrupt occurs. In this way, after a subroutine or an interrupt execution, the

microcontroller knows from where to continue regular program execution. This address is

cleared after returning to the program because there is no need to save it any longer, and

one location of the stack is automatically availale for further use. In addition, the stack can

consist of several levels. This enables subroutines’ nesting, i.e. calling one subroutine from

another.

9

There most commonly used Microcontroller in the world today

ATMEL AVR

The AVR is a modified Harvard architecture 8-bit RISC single chip microcontroller which was

developed by Atmel in 1996. The AVR was one of the first microcontroller families to use on-

chip flash memory for program storage, as opposed to one-time programmable ROM, EPROM,

or EEPROM used by other microcontrollers at the time.

Basic families

AVRs are generally classified into following:

 tinyAVR — the ATtiny series

 0.5–16 kB program memory

 6–32-pin package

 Limited peripheral set

 megaAVR — the ATmega series

 4–512 kB program memory

 28–100-pin package

 Extended instruction set (multiply instructions and instructions for handling larger

program memories)

 Extensive peripheral set

 XMEGA — the ATxmega series

 16–384 kB program memory

 44–64–100-pin package (A4, A3, A1)

 Extended performance features, such as DMA, "Event System", and cryptography

support.

 Extensive peripheral set with ADCs

http://en.wikipedia.org/wiki/Modified_Harvard_architecture
http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/Reduced_instruction_set_computer
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Atmel
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Programmable_read-only_memory
http://en.wikipedia.org/wiki/EPROM
http://en.wikipedia.org/wiki/EEPROM
http://en.wikipedia.org/wiki/Atmel_AVR_ATtiny_comparison_chart
http://en.wikipedia.org/wiki/Analog-to-digital_converter

10

Microchip PIC

PIC is a family of modified Harvard architecture microcontrollers made by Microchip Technology,

derived from the PIC1650,originally developed by General Instrument's Microelectronics Division.

The name PIC initially referred to "Peripheral Interface Controller'" now it is "PIC'" only.[4][5]

PICs are popular with both industrial developers and hobbyists alike due to their low cost, wide

availability, large user base, extensive collection of application notes, availability of low cost or

free development tools, and serial programming (and re-programming with flash memory)

capability.

The PIC architecture is characterized by its multiple attributes:

 Separate code and data spaces (Harvard architecture).

 A small number of fixed length instructions

 Most instructions are single cycle execution (2 clock cycles, or 4 clock cycles in 8-bit models),

with one delay cycle on branches and skips

 One accumulator (W0), the use of which (as source operand) is implied (i.e. is not encoded

in the opcode)

 All RAM locations function as registers as both source and/or destination of math and other

functions.[6]

 A hardware stack for storing return addresses

 A small amount of addressable data space (32, 128, or 256 bytes, depending on the family),

extended through banking

 Data space mapped CPU, port, and peripheral registers

.

http://en.wikipedia.org/wiki/Modified_Harvard_architecture
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Microchip_Technology
http://en.wikipedia.org/wiki/General_Instrument
http://en.wikipedia.org/wiki/PIC_microcontroller#cite_note-1976databook-4
http://en.wikipedia.org/wiki/PIC_microcontroller#cite_note-1976databook-4
http://en.wikipedia.org/wiki/Harvard_architecture
http://en.wikipedia.org/wiki/Accumulator_(computing)
http://en.wikipedia.org/wiki/Opcode
http://en.wikipedia.org/wiki/PIC_microcontroller#cite_note-6

11

Philips LPC

LPC is a family of 32-bit microcontroller integrated circuits by NXP Semiconductors (formerly

Philips Semiconductors). The LPC chips are grouped into related series that are based around

the same 32-bit ARM processor core, such as the Cortex-M4F, Cortex-M3, Cortex-M0+,

or Cortex-M0. Internally, each microcontroller consists of the processor core, static

RAM memory, flash memory, debugging interface, and various peripherals. The legacy LPC

families were based on the 8-bit 80C51 core.[2] As of February 2011, NXP had shipped over one

billion ARM processor-based chips.

Motorola’s Freescale 68HC11

The 68HC11 (6811 or HC11 for short) is an 8-bit microcontroller (µC) family introduced by

Motorola in 1985.[1] Now produced by Freescale Semiconductor, it descended from the Motorola

6800 microprocessor. It is a CISC microcontroller. The 68HC11 devices are more powerful and

more expensive than the 68HC08microcontrollers, and are used in barcode readers, hotel card

key writers, amateur robotics, and various other embedded systems. The MC68HC11A8 was the

first MCU to include CMOS EEPROM.

http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/NXP_Semiconductors
http://en.wikipedia.org/wiki/32-bit
http://en.wikipedia.org/wiki/ARM_architecture
http://en.wikipedia.org/wiki/ARM_Cortex-M4F
http://en.wikipedia.org/wiki/ARM_Cortex-M3
http://en.wikipedia.org/wiki/ARM_Cortex-M0%2B
http://en.wikipedia.org/wiki/ARM_Cortex-M0
http://en.wikipedia.org/wiki/Static_RAM
http://en.wikipedia.org/wiki/Static_RAM
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Intel_MCS-51
http://en.wikipedia.org/wiki/NXP_LPC#cite_note-LPC-Website-2
http://en.wikipedia.org/wiki/ARM_Holdings
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Freescale_68HC11#cite_note-1
http://en.wikipedia.org/wiki/Freescale_Semiconductor
http://en.wikipedia.org/wiki/Motorola_6800
http://en.wikipedia.org/wiki/Motorola_6800
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Complex_instruction_set_computer
http://en.wikipedia.org/wiki/Freescale_68HC08
http://en.wikipedia.org/wiki/Barcode
http://en.wikipedia.org/wiki/Embedded_system

12

Difference between Microcontrollers & Microprocessors

Microprocessor Microcontroller

It is just a processor. Memory and I/O

components have to be connected externally

Micro controller has external processor along

with internal memory and i/O components

Since memory and I/O has to be connected

externally, the circuit becomes large.

Since memory and I/O are present internally,

the circuit is small.

Cannot be used in compact systems and hence

inefficient

Can be used in compact systems and hence it is

an efficient technique

Cost of the entire system increases Cost of the entire system is low

Due to external components, the entire power

consumption is high. Hence it is not suitable

to used with devices running on stored power

like batteries.

Since external components are low, total

power consumption is less and can be used

with devices running on stored power like

batteries.

Most of the microprocessors do not have

power saving features.

Most of the micro controllers have power

saving modes like idle mode and power saving

mode. This helps to reduce power consumption

even further.

Since memory and I/O components are all

external, each instruction will need external

operation, hence it is relatively slower.

Since components are internal, most of the

operations are internal instruction, hence speed

is fast.

Microprocessor have less number of registers,

hence more operations are memory based.

Micro controller have more number of

registers, hence the programs are easier to

write.

Microprocessors are based on von Neumann

model/architecture where program and data

are stored in same memory module

Micro controllers are based on Harvard

architecture where program memory and Data

memory are separate

Mainly used in personal computers Used mainly in washing machine, MP3 players

13

Microcontroller Used

The Microcontroller used as a part of this project is ATMEL’s AtMega 328P.

ATMEGA

328P

MICROCONTROLLER

ATMEGA 328P

The ATmega328P is a single chip micro-controller created by Atmel and belongs to

the mega series.

The high-performance Atmel 8-bit AVR RISC-based microcontroller combines

 Flash memory - 32 KB ISP

 EEPROM - 1 KB

 SRAM - 2 KB

 23 general purpose I/O lines,

 32 general purpose working registers

 3 flexible timer/counters with compare modes, internal and external interrupts,

 Serial Programmable USART

 A byte-oriented 2-wire serial interface

 SPI serial port

http://en.wikipedia.org/wiki/Integrated_circuits
http://en.wikipedia.org/wiki/Micro-controller
http://en.wikipedia.org/wiki/Atmel
http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/Atmel_AVR
http://en.wikipedia.org/wiki/RISC
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/In-system_programming
http://en.wikipedia.org/wiki/EEPROM
http://en.wikipedia.org/wiki/Static_random-access_memory
http://en.wikipedia.org/wiki/Processor_register
http://en.wikipedia.org/wiki/Counters
http://en.wikipedia.org/wiki/Interrupts
http://en.wikipedia.org/wiki/USART
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

14

 6-channel 10-bit A/D converter

 Internal oscillator

 Software selectable power saving modes.

The device operates between 1.8-5.5 volts. By executing powerful instructions in a single clock

cycle, the device achieves throughputs approaching 1 MIPS per MHz, balancing power

consumption and processing speed.

http://en.wikipedia.org/wiki/A/D_converter
http://en.wikipedia.org/wiki/Electronic_oscillator
http://en.wikipedia.org/wiki/Million_instructions_per_second#Million_instructions_per_second

15

What is a GPS?

The Global Positioning System (GPS) is a space-based satellite navigation system that provides

location and time information in all weather conditions, anywhere on or near the Earth where there

is an unobstructed line of sight to four or more GPS satellites.[1] The system provides critical

capabilities to military, civil and commercial users around the world. It is maintained by the United

States government and is freely accessible to anyone with a GPS receiver.

A GPS receiver calculates its position by precisely timing the signals sent by GPS satellites high

above the Earth. Each satellite continually transmits messages that include:

 the time the message was transmitted and,

 satellite position at time of message transmission.

The receiver uses the messages it receives to determine the transit time of each message and

computes the distance to each satellite using the speed of light. Each of these distances and

satellites' locations defines a sphere. The receiver is on the surface of each of these spheres when

the distances and the satellites' locations are correct. These distances and satellites' locations are

used to compute the location of the receiver using the navigation equations. This location is then

displayed, perhaps with a moving map display or latitude and longitude; elevation or altitude

information may be included, based on height above the geoid (e.g. L80M39).

Reciever Used

The Reciever used as a part of this project is L80M39

ADXL 335

http://en.wikipedia.org/wiki/Satellite_navigation
http://en.wikipedia.org/wiki/Global_Positioning_System#cite_note-1
http://en.wikipedia.org/wiki/GPS_receiver
http://en.wikipedia.org/wiki/Satellites
http://en.wikipedia.org/wiki/Global_Positioning_System#Navigation_equations
http://en.wikipedia.org/wiki/Moving_map_display
http://en.wikipedia.org/wiki/Latitude
http://en.wikipedia.org/wiki/Longitude
http://en.wikipedia.org/wiki/Geoid

16

Features:

 MediaTek MT3329 Chipset, L1 Frequency, C/A code, 66 Channels

 RS232 Interface via DB9 Connector

 USB MiniB type connector for USB interface and Power

 9 VDC supply @ 55 mA (typical)

 Data output Baud rate: 9600 bps(Default)

 Standard NMEA0183 output format

 Low Power Consumption: 55mA @ acquisition, 40mA @ tracking

 High Sensitivity, -165 dBm, TCXO Design , superior urban performances

 Position Accuracy: <3.0M 2D-RMS

 DGPS (WAAS/EGNOS/MASA/GAGAN) Support

 Multi-path Compensation ; E-GSM-900 Band Rejection

 Cold Start is Under 36 seconds (Typical)

 Warm Start is Under 34 seconds (Typical)

 Hot Start is Under 1 second (Typical)

 Max. Update Rate : 10Hz (Default: 1 Hz)

 Pin Diagram GPS Module L80M39

17

MAX232

The MAX232 is an IC, that converts signals from an RS-232 serial port to signals suitable for use

in TTL compatible digital logic circuits. The MAX232 is a dual driver/receiver and typically

converts the RX, TX, CTS and RTS signals.

The drivers provide RS-232 voltage level outputs (approx. ± 7.5 V) from a single + 5 V supply via

on-chip charge pumps and external capacitors. This makes it useful for implementing RS-232 in

devices that otherwise do not need any voltages outside the 0 V to + 5 V range, as power

supply design does not need to be made more complicated just for driving the RS-232 in this case.

The receivers reduce RS-232 inputs (which may be as high as ± 25 V), to standard 5 V TTL levels.

These receivers have a typical threshold of 1.3 V, and a typical hysteresis of 0.5 V.

http://en.wikipedia.org/wiki/RS-232
http://en.wikipedia.org/wiki/Transistor-transistor_logic
http://en.wikipedia.org/wiki/Volt
http://en.wikipedia.org/wiki/Charge_pump
http://en.wikipedia.org/wiki/Power_supply
http://en.wikipedia.org/wiki/Power_supply
http://en.wikipedia.org/wiki/Transistor-transistor_logic
http://en.wikipedia.org/wiki/Hysteresis

18

PROGRAMMER

The programmer used is ARDUINO UNO BOARD. The Arduino Uno is a microcontroller board

based on the ATmega328P. It has 14 digital input/output pins (of which 6 can be used as PWM

outputs), 6 analog inputs, a 16 MHz ceramic resonator, a USB connection, a power jack, an ICSP

header, and a reset button. It contains everything needed to support the microcontroller; simply

connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get

started.

Pin diagram Arduino Uno

19

CHAPTER 2 –PREVIOUS STUDY

As this project was altogether new and different, it needed the study of basics of Hardware, circuits.

Thus I had to go through the basic libraries for coding in Arduino, Implemented

the basic circuits & programs and then went through with the Project .

The basic programs implemented were

Blinking an LED

Hardware Required

 Arduino Uno Board

 LED’S

 AtMega 328P

Circuit

20

Schematic

Code

 #include <Blink.h>

int led = 13;

void setup()

{

 pinMode(led, OUTPUT);

}

void loop()

{

 digitalWrite(led, HIGH);

 delay(1000);

 digitalWrite(led, LOW);

 delay(1000);

}

21

Results

 ORIGNAL CIRCUIT

 BLINKING LED

22

Displaying On a LCD Screen

Hardware Required

 Arduino Board

 LCD Screen

 Pin headers to solder to the LCD display pins

 10k Variable Resistance

 Breadboard

 Hook-up wire

Circuit

23

Schematic

Code

#include <LiquidCrystal.h>

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup()

{

 lcd.begin(16, 2);

 lcd.print("hello, world!");

}

void loop()

{

 lcd.setCursor(0, 1);

 lcd.print(millis()/1000);

}

24

Results

 DISPLAYING ON A LCD

25

Interfacing Servo Motor with Arduino Uno

Hardware Required

 Arduino Uno Board

 Servo Motor

 Hook Up Wires

Circuit

26

Schematic

Code for Arduino

#include <Servo.h>

Servo servo1; Servo servo2;

void setup() {

 pinMode(1,OUTPUT);

 servo1.attach(14); //analog pin 0

 //servo1.setMaximumPulse(2000);

 //servo1.setMinimumPulse(700);

 servo2.attach(15); //analog pin 1

 Serial.begin(19200);

 Serial.println("Ready");

}

27

void loop() {

 static int v = 0;

 if (Serial.available()) {

 char ch = Serial.read();

 switch(ch) {

 case '0'...'9':

 v = v * 10 + ch - '0';

 break;

 case 's':

 servo1.write(v);

 v = 0;

 break;

 case 'w':

 servo2.write(v);

 v = 0;

 break;

 case 'd':

 servo2.detach();

 break;

 case 'a':

 servo2.attach(15);

 break;

 }

 }

 Servo::refresh();

}

Processing Code

import processing.serial.* ;

int gx = 15;

int gy = 35;

int spos=90;

float leftColor = 0.0;

float rightColor = 0.0;

28

Serial port;

void setup()

{

 size(720, 720);

 colorMode(RGB, 1.0);

 noStroke();

 rectMode(CENTER);

 frameRate(100);

 println(Serial.list());

 port = new Serial(this, Serial.list()[1], 19200);

}

void draw()

{

 background(0.0);

 update(mouseX);

 fill(mouseX/4);

 rect(150, 320, gx*2, gx*2);

 fill(180 - (mouseX/4));

 rect(450, 320, gy*2, gy*2);

}

void update(int x)

{

 spos= x/4;

 port.write("s"+spos);

 leftColor = -0.002 * x/2 + 0.06;

 rightColor = 0.002 * x/2 + 0.06;

 gx = x/2;

 gy = 100-x/2;

}

29

Chapter 3: INTERFACING L80M39 GPS MODULE WITH ARDUINO UNO

Hardware Required

 Arduino Uno Board

 GPS Reciever Module L80M39

 Hook Up Wires

Schematic

30

Working

Let me tell you, if we want an object location on the earth, GPS receiver have to connect with

minimum 3 Satellite at the point of time. Now i explain this in a simple way by the help of fig 1.1:

In Fig 1.1, I am trying to symbolize ‘Earth with a Sky Blue Circle’, ‘Satellites with Dark Blue’,

‘Satellites radius with Black outline circle’ and the ‘position with small Red circle’.

So let us assume we are standing on the earth with GPS Receiver and receiver is connected with

two satellites- Satellite 1 and Satellite 2 at the time of instant. Both satellites have its own radius

and after connecting with GPS Receiver, both radius will intersect with two points. This means

we got two positions of us with respect to satellite at the same point of time which is practically

not possible. So we will not able to fix our fix position in this case.

31

Problem solved. If our GPS receiver is connect with minimum 3 satellite at point of time, we got

three radius by Satellite 1, Satellite 2 and Satellite 3, and all three radius will intersect in a common

point and that common intersect point is our fix location on the earth with respect to satellites, that

I meant in the starting of this section. I hope now you will be able to understand the concept

32

Code

int Gpsdata;

 unsigned int finish =0;

 unsigned int pos_cnt=0;

 unsigned int lat_cnt=0;

 unsigned int log_cnt=0;

 unsigned int flg =0;

 unsigned int com_cnt=0;

 char lat[20];

 char lg[20];

 void Receive_GPS_Data();

 void setup()

 {

 Serial.begin(9600);

 }

 void loop()

 {

 Receive_GPS_Data();

 Serial.print("Latitude : ");

 Serial.println(lat);

 Serial.print("Longitude : ");

 Serial.println(lg);

 finish = 0;pos_cnt = 0;

 void Receive_GPS_Data()

 {

 while(finish==0){

 while(Serial.available()>0){

 Gpsdata = Serial.read();

 flg = 1;

 if(Gpsdata=='$' && pos_cnt == 0)

 pos_cnt=1;

 if(Gpsdata=='G' && pos_cnt == 1)

 pos_cnt=2;

 if(Gpsdata=='P' && pos_cnt == 2)

 pos_cnt=3;

 if(Gpsdata=='R' && pos_cnt == 3)

 pos_cnt=4;

 if(Gpsdata=='M' && pos_cnt == 4)

 pos_cnt=5;

33

 if(Gpsdata=='C' && pos_cnt==5)

 pos_cnt=6;

 if(pos_cnt==6 && Gpsdata ==','){

 com_cnt++;

 flg=0;

 }

 if(com_cnt==3 && flg==1){

 lat[lat_cnt++] = Gpsdata;

 flg=0;

 }

 if(com_cnt==5 && flg==1){

 lg[log_cnt++] = Gpsdata;

 flg=0;

 }

 if(Gpsdata == '*' && com_cnt >= 5){

 com_cnt = 0;

 lat_cnt = 0;

 log_cnt = 0;

 flg = 0;

 finish = 1;

 }

 }

 }

}

34

Results using Serial Monitor

35

CHAPTER 4 – FUTURE SCOPE

Like the Internet, GPS is an essential element of the global information infrastructure. The free,

open, and dependable nature of GPS has led to the development of hundreds of applications

affecting every aspect of modern life. GPS technology is now in everything from cell phones and

wristwatches to bulldozers, shipping containers, and ATM's.

GPS boosts productivity across a wide swath of the economy, to include farming, construction,

mining, surveying, package delivery, and logistical supply chain management. Major

communications networks, banking systems, financial markets, and power grids depend heavily

on GPS for precise time synchronization. Some wireless services cannot operate without it.

GPS saves lives by preventing transportation accidents, aiding search and rescue efforts, and

speeding the delivery of emergency services and disaster relief. GPS is vital to the Next

Generation Air Transportation System (NextGen) that will enhance flight safety while increasing

airspace capacity. GPS also advances scientific aims such as weather forecasting, earthquake

monitoring, and environmental protection.

Finally, GPS remains critical to U.S. national security, and its applications are integrated into

virtually every facet of U.S. military operations. Nearly all new military assets -- from vehicles

to munitions -- come equipped with GPS.

36

CHAPTER 5 – CONCLUSION

Through this Project , I got the basic idea of working with Microcontrollers and its applications.

Global Positioning System is used for Navigational Purposes. This project taught me about

GPS as well as interfacing it with Microcontrollers. The working & function of

components like MAX 232 and Arduino Uno board were also understood really well. Thus this

Project enriched my knowledge and was found to be very beneficial.

37

CHAPTER 6 – TOOLS & TECHNIQUES USED

Proteus - It is a software for microprocessor simulation, schematic capture, and printed circuit

board (PCB) design. It is developed by Labcenter Electronics. It combines the ISIS schematic

capture and ARES PCB layout programs to provide a powerful, integrated and easy to use suite of

tools for professional PCB Design.

Arduino IDE - The Arduino integrated development environment (IDE) is a cross-

platform application written in Java, and is derived from the IDE for the Processing programming

language and the Wiring projects. It is designed to introduce programming to artists and other

newcomers unfamiliar with software development. It includes a code editor with features such

as syntax highlighting, brace matching, and automatic indentation, and is also capable of compiling

and uploading programs to the board with a single click. A program or code written for Arduino

is called a "sketch".

Fritzing - Fritzing is an open source software initiative to support designers and artists ready to

move from physical prototyping to actual product. It was developed at the University of Applied

Sciences of Potsdam. The software is created in the spirit of Processing and Arduinoand allows a

designer, artist, researcher, or hobbyist to document their Arduino-based prototype and create

a PCB layout for manufacturing.

http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Printed_circuit_board
http://en.wikipedia.org/wiki/Printed_circuit_board
http://en.wikipedia.org/w/index.php?title=Labcenter_Electronics&action=edit&redlink=1
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Cross-platform
http://en.wikipedia.org/wiki/Cross-platform
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Processing_(programming_language)
http://en.wikipedia.org/wiki/Processing_(programming_language)
http://en.wikipedia.org/wiki/Wiring_(development_platform)
http://en.wikipedia.org/wiki/Syntax_highlighting
http://en.wikipedia.org/wiki/Brace_matching
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Potsdam
http://en.wikipedia.org/wiki/Processing_(programming_language)
http://en.wikipedia.org/wiki/Arduino
http://en.wikipedia.org/wiki/Printed_circuit_board

38

CHAPTER 7 – REFERNCES

- [1]Edward A. Lee and Sanjit A. Seshia, Introduction to Embedded

Systems, A Cyber-Physical Systems Approach

- [2]Sangiovanni-Vincentelli, A., Zeng, H., Di Natale, M., Marwedel,

Embedded Systems Development

WEB REFRENCES

- http://learn.parallax.com/KickStart/28500

- http://www.rhydolabz.com/wiki/?p=229

- http://en.wikipedia.org/

- http://www.arduino.cc/

http://leeseshia.org/index.html
http://leeseshia.org/index.html
http://learn.parallax.com/KickStart/28500
http://www.rhydolabz.com/wiki/?p=229
http://en.wikipedia.org/
http://www.arduino.cc/

39

40

