
1

A Load Balancing Model Based on Cloud Partitioning
For the Public Cloud

Enrollment No. : 101264

Name of Student: Sabhyata

Supervisor’s Name: Prof. Dr. Deepak Dahiya(CSE and ICT DEPT)

May-2014

Submitted in partial fulfillment of the Degree of Bachelor of Technology

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING & INFORMATION

TECHNOLOGY

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

WAKNAGHAT, SOLAN (H.P)

2

(i)

Table of Contents

CHAPTER NO TOPICS PAGE NO.

 Certificate from the Supervisor I

 Acknowledgement II

 Summary III

 List Of Figures IV

Chapter 1 : Introduction 1-3

1.1 Abstract

1.2 Problem Statement

Chapter 2: Literature review 4-7

 2.1 Background Study

 2.2 Scope of the Proposed System

Chapter 3: Analysis, Design and Modeling 8-23

 3.1 SYSTEM ANALYSIS

 3.2FUNCTIONAL REQUIREMENTS

 3.3 NON FUNCTIONAL REQUIREMENT

 3.4 SOFTWARE DESCRIPTIONS

 3.5 SYSTEM DESIGN

 3.6 Activity Diagram

 3.7 Sequence Diagram:

 3.8 Use Case Diagram:

 3.9 ER DIAGRAM

 3.10 Flow chart

3

Chapter 4: Implementation 24-30

 4.1 System Model

 4.2 Main Modules:-

 4.3 Main controller and balancers

 4.4 Cloud Partition Load Balancing Strategy

Chapter 5: Code Implementation 31-45

Chapter 6: Testing And Result 46- 54

 6.1 SOFTWARE TESTING

 6.2 CONCLUSION

 6.3 FUTURE WORK

References 55

I

4

CERTIFICATE

This is to certify that the work titled ―A Load Balancing model based on cloud

partitioning for the public cloud ” submitted by Sabhyata in partial fulfillment for

the award of degree of B.Tech Computer Science Engineering of Jaypee University

of Information Technology, Waknaghat has been carried out under my supervision.

This work has not been submitted partially or wholly to any other University or

Institute for the award of this or any other degree or diploma.

(Signature of Supervisor)

Name of Supervisor: Prof. Dr. Deepak Dahiya

Designation: Professor, Dept. of CSE and ICT

Date:

II

5

ACKNOWLEDGEMENT

I take this opportunity to express my profound gratitude and deep regards to Prof.

Deepak Dahiya, my Project Guide, for guiding and correcting me at every step of my

work with attention and care. He has taken pain to go through the project and make

necessary correction as and when needed.

Sincere thanks to Brig(retd.) S.P Gharera , HOD, CSE & IT Department, for being

cooperative to the students of the department and providing relevant guidance in

their endeavors.

I would also like to express my gratitude to this alma mater JUIT, Waknaghat for

providing proper resources as and when required such as an all time internet facility

and other resources.

Hence without giving a warm thanks to all of them who made this project work a

reality my work would be incomplete.

Signature of the Student……………………………….

Name of the Student – Sabhyata

Date -

6

III

SUMMARY

Objective

To develop a better load balance model for public cloud based on the cloud

partitioning concept with a switch mechanism to choose different strategies for

different situations. This algorithm applies the game theory to the load balancing

strategy to improves the efficiency in the public cloud environment .

Existing System

Cloud computing is efficient and scalable but maintaining the stability of processing

so many jobs in cloud computing environment is a very complex problem with load

balancing receiving much attentions for researchers . Since the job arrival pattern is

not predictable and the capacities of each node in cloud differ , load balancing

problem , Workload control is crucial to improve system performance and maintain

stability . Load balancing Schemes depend on whether the system dynamics are

important can be either static and dynamic. Static schemes do not use the system

but can change as the system status changes. A dynamic scheme is used here for

its flexibility.

Disadvantages :

Load balancing schemes depending on whether the system dynamics are important

can be either static and dynamic . Static schemes do not use the system information

and are less complex .

7

IV

List of Figures

Fig Fig 1: Compilation Process 11

Fig 2 : Java Virtual Machine 12

Fig 3 : Data Flow Diagram 13

Fig 4 :activity diagram 17

Fig 5 : Sequence diagram 19

Fig 6 : User system interaction 20

Fig 7 : Use case diagram 21

Fig 8 : ER diagram 22

Fig 9 : Flow Chart 23

Fig 10 : Partitioning of cloud 24

Fig 11: Job assigning 27

Fig 12 : relation between balancer and main controller 28

8

Chapter1 : INTRODUCTION

9

Chapter 1: INTRODUCTION

1.1 Abstract

Cloud computing is an attracting technology in the field of computer science. In

Gartner’s report, it says that the cloud will bring changes to the IT industry. The cloud

is changing our life by providing users with new types of services. Users get service

from a cloud without paying attention to the details. NIST gave a definition of cloud

computing as a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and

released with minimal management effort or service provider interaction. More and

more people pay attention to cloud computing. Cloud computing is efficient and

scalable but maintaining the stability of processing so many jobs in the cloud

computing environment is a very complex problem with load balancing receiving

much attention for researchers. Since the job arrival pattern is not predictable and

the capacities of each node in the cloud differ, for load balancing problem, workload

control is crucial to improve system performance and maintain stability. Load

balancing schemes depending on whether the system dynamics are important can

be either static or dynamic. Static schemes do not use the system information and

are less complex while dynamic schemes will bring additional costs for the system

but can change as the system status changes. A dynamic scheme is used here for

its flexibility. The model has a main controller and balancers to gather and analyze

the information. Thus, the dynamic control has little influence on the other working

nodes. The system status then provides a basis for choosing the right load balancing

strategy.

The load balancing model given in this article is aimed at the public cloud which has

numerous nodes with distributed computing resources in many different geographic

locations. Thus, this model divides the public cloud into several cloud partitions.

When the environment is very large and complex, these divisions simplify the load

balancing. The cloud has a main controller that chooses the suitable partitions for

10

arriving jobs while the balancer for each cloud partition chooses the best load

balancing strategy.

1.2 Problem Statement

What will be done in the project?

Load balancing schemes depending on whether the system dynamics are

important can be either static and dynamic . Static schemes do not use the system

information and are less complex while dynamic schemes will bring additional costs

for the system but can change as the system status changes. A dynamic scheme is

used here for its flexibility. The model has a main controller and balancers to gather

and analyze the information. Thus, the dynamic control has little influence on the

other working nodes. The system status then provides a basis for choosing the right

load balancing strategy.

The load balancing model given in this article is aimed at the public cloud

which has numerous nodes with distributed computing resources in many different

geographic locations. Thus, this model divides the public cloud into several cloud

partitions. When the environment is very large and complex, these divisions simplify

the load balancing. The cloud has a main controller that chooses the suitable

partitions for arriving jobs while the balancer for each cloud partition chooses the

best load balancing strategy.

11

 Chapter2 : LITERATURE REVIEW

12

 2.1 Background

There have been many studies of load balancing for the cloud environment. Load

balancing in cloud computing was described in a white paper written by Adler who

introduced the tools and techniques commonly used for IEEE TRANSACTIONS ON

CLOUD COMPUTING YEAR 2013 load balancing in the cloud. However, load

balancing in the cloud is still a new problem that needs new architectures to adapt to

many changes. Chaczko et al. described the role that load balancing plays in

improving the performance and maintaining stability. There are many load balancing

algorithms, such as Round Robin, Equally Spread Current Execution Algorithm, and

Ant Colony algorithm. Nishant et al. used the ant colony optimization method in

nodes load balancing. Randles et al. gave a compared analysis of some algorithms

in cloud computing by checking the performance time and cost. They concluded that

the ESCE algorithm and throttled algorithm are better than the Round Robin

algorithm. Some of the classical load balancing methods are similar to the allocation

method in the operating system, for example, the Round Robin algorithm and the

First Come First Served (FCFS) rules. The Round Robin algorithm is used here

because it is fairly simple.

Cloud computing is causing a transformational shift that touches almost every part of

technology landscape. The cloud is changing our life by providing users with new

type of services. In Gartner’s report , it says that the cloud will bring changes to the

IT industry. Cloud computing is a type of computing in which resources are provided

over internet. We can compare cloud model with managed-hosting model where

infrastructure is hosted and managed by third party and consumed by users. In the

same way, cloud subscribed users consume services which are managed by cloud

provider. It is model for enabling ubiquitous, convenient, on-demand network access

to a shared pool of configurable computing resources. With this we can provision or

release resources with minimum management and service provider interaction.

Cloud computing is mostly used to sell hosted services in the sense of application

service provisioning that run client server software at remote location. These

services are IaaS (Infrastructure as a Service), PaaS (Platform as a Service), SaaS

(Software as a Service). End users access cloud-based

13

applications through a web browser, thin client or mobile app while the business

software and user’s data are stored at remote location. IaaS provides virtual

machines, servers, storage space, network, load balancers etc. Multiple virtual

machines can be built on a single physical server using hypervisor. Each virtual

machine has its own operating system. In this model cloud user maintains operating

systems and application software. PaaS provides a computing platform including

programming language execution environment, database and web server. Using

SaaS, users are provided access to application software and databases. Cloud

providers manage the infrastructure and platforms that run the applications.

Study

1. Infinite numbers of pooled computing resources are available to subscribed users.

Cloud computing utilizes pooled computing resources that may be externally

purchased and controlled or may be internal resources that are pooled but not

dedicated. These resources contributing to the cloud are available to any subscribing

users.

2. Virtualization of computer resources.

Virtualization is vital to the cloud because the scale of cloud infrastructure has to be

enormous. Each server takes up physical space and significant power and cooling.

Hence, getting high utilization from each server is vital to be cost effective.

2.2 Scope of the Proposed System

There are several cloud computing categories with this work focused on a public

cloud. A public cloud is based on the standard cloud computing model, with service

provided by a service provider. A large public cloud will include many nodes and the

nodes in different geographical locations. Cloud partitioning is used to manage this

large cloud. A cloud partition is a subarea of the public cloud with divisions based on

the geographic locations.

Good load balance will improve the performance of the entire cloud. Better load

balance model for the public cloud based on the cloud partitioning concept with a

switch mechanism to choose different strategies for different situations.The current

model integrates several methods and switches between the load balance methods

based on the system status. A relatively simple method can be used for the partition

14

idle state with a more complex method for the normal state. The load balancers then

switch methods as the status changes. Here, the idle status uses an improved

Round Robin algorithm while the normal status uses a game theory based load

balancing strategy.

.

15

Chapter3 : ANALYSIS, DESIGN AND MODELING

16

3.1 SYSTEM ANALYSIS

Analysis

Introduction to System Analysis

Analysis is the process of understanding the problem and its domain. The

main objective of analysis is to capture a complete, unambiguous and consistent

picture of the requirements of the system and what the system must do to satisfy the

user needs and requirements. The principal objective of the systems analysis phase

is the specification of what the system is required to do. The systems development

data input and output forms and conventions.

 The eventual goal of information systems engineering is to develop software

―factories‖ that use natural language and artificial intelligence technique as part of an

integrated set of tools to support the analysis and design of large information

Feasibility Study

The prime focus of the feasibility study is evaluating the practicality of the

proposed system keeping in mind a number of factors [9]. The following factors are

taken into account before deciding in favor of the new system:

Economic Feasibility

 The proposed cellular bidding System will save lots of paper work and

Facilitate magnetic record keeping thereby reducing the costs incurred on above

heads. This reduction in cost prompts the company to go for such computer-based

system.

Technical Feasibility

As the saying goes, "to err is human". Keeping in view the above fact, now

days all organizations are automating the repetitive and monotonous works done by

humans as well as proving a means of establishing a connection through their j2me

enabled mobiles. The key process areas of current system are nicely amenable to

automation and hence the technical feasibility is proved beyond doubt.

17

Operational Feasibility

Since the inception of Internet, it is continuously growing in leaps and bounds,

as more people are arriving at the conclusion that they cannot escape from it and in

order to keep up, they have to participate in that. In today's world, Cellular Mobile

Devices provides an efficient, reliable, cost-effective and timesaving platform for

communication. Here in the proposed system bidding is implemented on the mobile

devices, which will be enable to end users of Cellular Mobile Devices to obtain the

information about the various products that are the part of the system and the at the

same time can proceed with the bidding.

Time and Resource Feasibility

This system helps the user to find in the best usage of resources keeping in track

of all the product details over a period of time, thereby reducing the decision making

process easier and worth while. This acts to be a solution provider in determining the

best allocation of resources and finding out the way for time reduction.

3.2FUNCTIONAL REQUIREMENTS

The Functional Requirements Specification documents the operations and activities

that a system must be able to perform. a description of the facility or feature

required. Functional requirements deal with what the system should do or provide for

users. They include description of the required functions, outlines of associated

reports or online queries, and details of data to be held in the system.

Each requirement can be perceived as a module or component, each module has

specific functionality on which other modules depend on. The module can be part of

one software product or can be distributed among several software products and

secure communication is established between the different modules.

 So here in this system there are four modules .The functional requirement of the

system are divided into four modules user, system model, main controller and

balancer and cloud partition and load balancing. The functional requirement of the

first module is only registered user can access the data in the second model it

checks the status of the node and remaining two module requirement is to balance

the load between partitions.

18

3.3 NON FUNCTIONAL REQUIREMENT

1. High Performance

2. Secured

3. Time complexity is managed

4. Better load balancing.

5. Efficiency is provided

3.4 SOFTWARE DESCRIPTIONS

Java Technology

Java technology is both a programming language and a platform.With most

programming languages, you either compile or interpret a program so that you can run it on

your computer. The Java programming language is unusual in that a program is both

compiled and interpreted. With the compiler, first you translate a program into an

intermediate language called Java byte codes —the platform-independent codes interpreted

by the interpreter on the Java platform. The interpreter parses and runs each Java byte code

instruction on the computer. Compilation happens just once; interpretation occurs each time

the program is executed. The following figure illustrates how this works.

 Fig 1: Compilation Process

 You can think of Java byte codes as the machine code instructions for the

Java Virtual Machine (Java VM). Every Java interpreter, whether it’s a development

tool or a Web browser that can run applets, is an implementation of the Java VM.

Java byte codes help make ―write once, run anywhere‖ possible. You can compile

your program into byte codes on any platform that has a Java compiler. The byte

19

codes can then be run on any implementation of the Java VM. That means that as

long as a computer has a Java VM, the same program written in the Java

programming language can run on Windows 2000, a Solaris workstation, or on an

iMac.

 Fig 2 : Java Virtual Machine

The Java Platform

A platform is the hardware or software environment in which a program runs. We’ve

already mentioned some of the most popular platforms like Windows 2000, Linux,

Solaris, and Mac OS. Most platforms can be described as a combination of the

operating system and hardware. The Java platform differs from most other platforms

in that it’s a software-only platform that runs on top of other hardware-based

platforms.

The Java platform has two components:

 The Java Virtual Machine (Java VM)

 The Java Application Programming Interface (Java API)

You’ve already been introduced to the Java VM. It’s the base for the Java platform

and is ported onto various hardware-based platforms.

The Java API is a large collection of ready-made software components that provide

many useful capabilities, such as graphical user interface (GUI) widgets. The Java

20

API is grouped into libraries of related classes and interfaces; these libraries are

known as packages.

The following figure depicts a program that’s running on the Java platform. As the

figure shows, the Java API and the virtual machine insulate the program from the

hardware.

Native code is code that after you compile it, the compiled code runs on a specific

hardware platform. As a platform-independent environment, the Java platform can

be a bit slower than native code. However, smart compilers, well-tuned interpreters,

and just-in-time byte code compilers can bring performance close to that of native

code without threatening portability.

The Java platform gives you the following features:

 The essentials: Objects, strings, threads, numbers, input and output,

data structures, system properties, date and time, and so on.

 Applets: The set of conventions used by applets.

 Networking: URLs, TCP (Transmission Control Protocol), UDP (User

Data gram Protocol) sockets, and IP (Internet Protocol) addresses.

 Internationalization: Help for writing programs that can be localized

for users worldwide. Programs can automatically adapt to specific

locales and be displayed in the appropriate language.

 Security: Both low level and high level, including electronic signatures,

public and private key management, access control, and certificates.

 Software components: Known as JavaBeans TM, can plug into

existing component architectures.

 Object serialization: Allows lightweight persistence and

communication via Remote Method Invocation (RMI).

Java Database Connectivity (JDBCTM): Provides uniform access to a wide range of

relational databases.

21

Swings

After learning AWT, lets now see what's Swing? Well, Swing is important to develop

Java programs with a graphical user interface (GUI). There are many components

which are used for the building of GUI in Swing. The Swing Toolkit consists of many

components for the building of GUI. These components are also helpful in providing

interactivity to Java applications. Following are components which are included in

Swing toolkit:

 list controls

 buttons

 labels

 tree controls

 table controls

All AWT flexible components can be handled by the Java Swing. Swing toolkit

contains far more components than the simple component toolkit. It is unique to any

other toolkit in the way that it supports integrated internationalization, a highly

customizable text package, rich undo support etc. Not only can this have you also

created your own look and feel using Swing other than the ones that are supported

by it. The customized look and feel can be created using Synth which is specially

designed. Not to forget that Swing also contains the basic user interface such as

customizable painting, event handling, drag and drop etc.

MY SQL

MySQL is the world's second most widely used open-source relational database

management system. It is named after co-founder Michael Widenius's daughter, My.

The SQL phrase stands for Structured Query Language.

MySQL, pronounced either "My S-Q-L" or "My Sequel," is an open source relational

database management system. It is based on the structure query language (SQL),

which is used for adding, removing, and modifying information in the database.

http://www.techterms.com/definition/sql

22

Standard SQL commands, such as ADD, DROP, INSERT, and UPDATE can be

used with MySQL.

MySQL can be used for a variety of applications, but is most commonly found on

Web servers. A website that uses MySQL may include Web pages that access

information from a database. These pages are often referred to as "dynamic,"

meaning the content of each page is generated from a database as the page loads.

Websites that use dynamic Web pages are often referred to as database-driven

websites.

Many database-driven websites that use MySQL also use a Web scripting language

like PHP to access information from the database. MySQL commands can be

incorporated into the PHP code, allowing part or all of a Web page to be generated

from database information. Because both MySQL and PHP are both open source

(meaning they are free to download and use), the PHP/MySQL combination has

become a popular choice for database-driven websites.

SQL yog MySQL GUI

SQLyog is the most powerful MySQL manager and admin tool, combining the

features of MySQL Administrator, phpMyAdmin and other MySQL Front Ends and

MySQL GUI tools.

SQLyog is a GUI tool for the RDBMS MySQL. It is developed by Webyog, Inc. based

out of Bangalore, India and Santa Clara, California.. SQLyog was freely available

until v3.0 when it was made commercial software. SQLyog .

3.5 SYSTEM DESIGN

 INTRODUCTION

Systems design is the process of defining the architecture, components, modules,

interfaces, and data for a system to satisfy specified requirements. Systems design

could be seen as the application of systems theory to product development.

http://www.techterms.com/definition/php
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/Requirement
http://en.wikipedia.org/wiki/Systems_theory
http://en.wikipedia.org/wiki/Product_development

23

1. Detailed design

A data-flow diagram (DFD) is a graphical representation of the "flow" of data through

an information system. DFDs can also be used for the visualization of data

processing (structured design).

On a DFD, data items flow from an external data source or an internal data

store to an internal data store or an external data sink, via an internal process.

A DFD provides no information about the timing of processes, or about

whether processes will operate in sequence or in parallel. It is therefore quite

different from a flowchart, which shows the flow of control through an algorithm,

allowing a reader to determine what operations will be performed, in what order, and

under what circumstances, but not what kinds of data will be input to and output from

the system, nor where the data will come from and go to, nor where the data will be

stored (all of which are shown on a DFD).

 The Below DFD shows the complete data flow in the System.

 Fig 3 : Data Flow Diagram

3.6 Activity Diagram

Activity diagrams are graphical representations of workflows of stepwise activities

and actions with support for choice, iteration and concurrency. In the Unified

Modeling Language, activity diagrams can be used to describe the business and

24

operational step-by-step workflows of components in a system. An activity diagram

shows the overall flow of control.

Fig 4 :activity diagram

3.7 Sequence Diagram:

A sequence diagram in a Unified Modeling Language (UML) is a kind

of interaction diagram that shows how processes operate with one another and in

what order. It is a construct of a Message Sequence Chart. A sequence diagram

25

shows object interactions arranged in time sequence. It depicts the objects and

classes involved in the scenario and the sequence of messages exchanged between

the objects needed to carry out the functionality of the scenario. Sequence diagrams

typically (but not always), are associated with use case realizations in the Logical

View of the system under development.

Sequence diagrams are sometimes called event diagrams, event scenarios,

and timing diagrams.

A sequence diagram shows, as parallel vertical lines (lifelines), different

processes or objects that live simultaneously, and, as horizontal arrows, the

messages exchanged between them, in the order in which they occur. This allows

the specification of simple runtime scenarios in a graphical manner

Below diagram shows the sequence diagram of the proposed system it shows the

interaction between different modules of the proposed system.

26

 Fig 5 : Sequence diagram

27

3.8 Use Case Diagram:

A use case in software engineering and systems engineering is a description

of a system’s behavior as it responds to a request that originates from outside of that

system. In other words, a use case describes "who" can do "what" with the system in

question. The use case technique is used to capture a system's behavioral

requirements by detailing scenario-driven threads through the functional

requirements.

The below system shows the user interaction with the system here in this proposed

system the user is the system which receive,validate,transfer data .

 Fig 6 : User system interaction

28

 Fig 7 : Use case diagram

29

3.9 ER DIAGRAM

 Fig 8 : ER diagram

30

3.10 Flow chart

 Fig 9 : Flow Chart

31

Chapter4 : IMPLEMENTATION

32

4.1 System Model

There are several cloud computing categories with this work focused on a public

cloud. A public cloud is based on the standard cloud computing model, with service

provided by a service provider. A large public cloud will include many nodes and the

nodes in different geographical locations. Cloud partitioning is used to manage this

large cloud. A cloud partition is a subarea of the public cloud with divisions based on

the geographic locations.

Good load balance will improve the performance of the entire cloud. Better load

balance model for the public cloud based on the cloud partitioning concept with a

switch mechanism to choose different strategies for different situations. The current

model integrates several methods and switches between the load balance methods

based on the system status. A relatively simple method can be used for the partition

idle state with a more complex method for the normal state. The load balancers then

switch methods as the status changes. Here, the idle status uses an improved

Round Robin algorithm while the normal status uses a game theory based load

balancing strategy.

 Fig 10 : Partitioning of cloud ref : IEEE TRANSACTIONS ON

CLOUD COMPUTING YEAR 2013

33

4.2 Main Modules:-

1. USER MODULE :

 In this module, Users are having authentication and security to access the

detail which is presented in the ontology system. Before accessing or searching the

details user should have the account in that otherwise they should register first.

2. SYSTEM MODEL :

There are several cloud computing categories with this work focused on a

public cloud. A public cloud is based on the standard cloud computing model, with

service provided by a service provider. A large public cloud will include many nodes

and the nodes in different geographical locations. Cloud partitioning is used to

manage this large cloud. A cloud partition is a subarea of the public cloud with

divisions based on the geographic locations. With the main controller deciding which

cloud partition should receive the job. The partition load balancer then decides how

to assign the jobs to the nodes. When the load status of a cloud partition is normal,

this partitioning can be accomplished locally. If the cloud partition load status is not

normal, this job should be transferred to another partition.

3. MAIN CONTROLLER AND BALANCERS:

The load balance solution is done by the main controller and the balancers.

The main controller first assigns jobs to the suitable cloud partition and then

communicates with the balancers in each partition to refresh this status information.

Since the main controller deals with information for each partition, smaller data sets

will lead to the higher processing rates. The balancers in each partition gather the

status information from every node and then choose the right strategy to distribute

the jobs.

34

4. CLOUD PARTITION LOAD BALANCING STRATEGY:

When the cloud partition is idle, many computing resources are available and

relatively few jobs are arriving. In this situation, this cloud partition has the ability to

process jobs as quickly as possible so a simple load balancing method can be used.

There are many simple load balance algorithm methods such as the Random

algorithm, the Weight Round Robin, and the Dynamic Round Robin. The Round

Robin algorithm is used here for its simplicity.

The load balancing strategy is based on the cloud partitioning concept. After creating

the cloud partitions, the load balancing then starts: when a job arrives at the system,

with the main controller deciding which cloud partition should receive the job. The

partition load balancer then decides how to assign the jobs to the nodes. When the

load status of a cloud partition is normal, this partitioning can be accomplished

locally. If the cloud partition load status is not normal, this job should be transferred

to another partition. The whole process is shown in Fig.2.

Fig 11: Job assigning .

35

4.3 Main controller and balancers

The load balance solution is done by the main controller and the balancers.The main

controller first assigns jobs to the suitable cloud partition and then communicates

with the balancers in each partition to refresh this status information. Since the main

controller deals with information for each partition, smaller data sets will lead to the

higher processing rates. The balancers in each partition gather the status information

from every node and then choose the right strategy to distribute the jobs. The

relationship between the balancers and the main controller is shown in fig 12;

 Fig 12 : relation between balancer and main controller

Assigning jobs to the cloud partition

When a job arrives at the public cloud, the first step is to choose the right partition.

The cloud partition status can be divided into three types:
(1) Idle: When the percentage of idle nodes exceeds , change to idle status.

(2) Normal: When the percentage of the normal nodes exceeds , change to

normal load status.
(3) Overload: When the percentage of the overloaded nodes exceeds , change to

overloaded status.

The parameters , , and are set by the cloud partition balancers. The main controller

has to communicate with the balancers frequently to refresh the status information.

The main controller then dispatches the jobs using the following strategy: When job i

arrives at the system, the main controller queries the cloud partition where job is

located. If this location’s status is idle or normal, the job is handled locally. If not,

another cloud partition is found that is not overloaded.

Algorithm 1 Best Partition Searching
begin

while job do searchBestPartition (job);

if partitionState == idle k partitionState == normal then Send Job to Partition;

else
search for another Partition; end if

36

end while end

Assigning jobs to the nodes in the cloud partition

The cloud partition balancer gathers load information from every node to evaluate
the cloud partition status. This evaluation of each node’s load status is very
important. The first task is to define the load degree of each nodes.

The node load degree is related to various static parameters and dynamic

parameters. The static parameters include the number of CPU’s, the CPU

processing speeds, the memory size, etc. Dynamic parameters are the memory

utilization ratio, the CPU utilization ratio, the network bandwidth, etc.

The load degree results are input into the Load Status Tables created by the cloud

partition balancers. Each balancer has a Load Status Table and refreshes it each

fixed period . The table is then used by the balancers to calculate the partition

status. Each partition status has a different load balancing solution. When a job

arrives at a cloud partition, the balancer assigns the job to the nodes based on its

current load strategy. This strategy is changed by the balancers as the cloud

partition status changes

4.4 Cloud Partition Load Balancing Strategy

Motivation

Good load balance will improve the performance of the entire cloud. However, there

is no common method that can adapt to all possible different situations. Various

methods have been developed in improving existing solutions to resolve new

problems.

Each particular method has advantage in a particular area but not in all situations.

Therefore, the current model integrates several methods and switches between the

load balance method based on the system status.

A relatively simple method can be used for the partition idle state with a more

complex method for the normal state. The load balancers then switch methods as

the status changes. Here, the idle status uses an improved Round Robin algorithm

while the normal status uses a game theory based load balancing strategy.

Load balance strategy for the idle status

When the cloud partition is idle, many computing resources are available and

relatively few jobs are arriving. In this situation, this cloud partition has the ability to

process jobs as quickly as possible so a simple load balancing method can be used.
There are many simple load balance algorithm methods such as the Random

algorithm, the Weight Round Robin, and the Dynamic Round Robin. The Round

Robin algorithm is used here for its simplicity.

37

The Round Robin algorithm is one of the simplest load balancing algorithms, which

passes each new request to the next server in the queue. The algorithm does not

record the status of each connection so it has no status information. In the regular

Round Robin algorithm, every node has an equal opportunity to be chosen.

However, in a public cloud, the configuration and the performance of each node will

be not the same; thus, this method may overload some nodes. Thus, an improved

Round Robin algorithm is used , which called ―Round Robin based on the load

degree evaluation‖.

The algorithm is still fairly simple. Before the Round Robin step, the nodes in the

load balancing table are ordered based on the load degree from the lowest to the

highest. The system builds a circular queue and walks through the queue again and

again. Jobs will then be assigned to nodes with low load degrees. The node order

will be changed when the balancer refreshes the Load Status Table.
However, there may be read and write inconsistency at the refresh period . When

the balance table is refreshed, at this moment, if a job arrives at the cloud partition, it

will bring the inconsistent problem. The system status will have changed but the

information will still be old. This may lead to an erroneous load strategy choice and

an erroneous nodes order. To resolve this problem, two Load Status Tables should

be created as: Load Status Table 1 and Load Status Table 2. A flag is also assigned

to each table to indicate Read or Write.

When the flag = ―Read‖, then the Round Robin based on the load degree

evaluation algorithm is using this table. When the flag = ―Write‖, the table is being

refreshed, new information is written into this table. Thus, at each moment, one table

gives the correct node locations in the queue for the improved Round Robin

algorithm, while the other is being prepared with the updated information. Once the

data is refreshed, the table flag is changed to ―Read‖ and the other table’s flag is

changed to ―Write‖. The two tables then alternate to solve the inconsistency.

38

Chapter 5 : CODE IMPLEMENTATION

39

Administration Implementation

package com.vss.sac.dbos;

import com.vss.sac.bussnsonject.LocationsBO;

import com.vss.sac.bussnsonject.NumofConnBO;

import com.vss.sac.bussnsonject.ServersBO;

import com.vss.sac.utill.HibernateUtils;

import java.util.List;

import org.hibernate.HibernateException;

import org.hibernate.Query;

import org.hibernate.Session;

public class AdminImplementation {

 public boolean addlocations(LocationsBO location) {

 Session hbmSession = null;

 boolean STATUS_FLAG = true;

 try {

 hbmSession = HibernateUtils.getSession();

 hbmSession.beginTransaction();

 hbmSession.saveOrUpdate(location);

 hbmSession.getTransaction().commit();

 } catch (Exception ex) {

 // // hbmSession.getTransaction().rollback();

 ex.printStackTrace();

 STATUS_FLAG = false;

 } finally {

 HibernateUtils.closeSession(hbmSession);

 }

 return STATUS_FLAG; }

public List<LocationsBO> getalllocation() {

 List<LocationsBO> allcat = null;

 Session hbmSession = null;

 boolean STATUS_FLAG = true;

40

 try {

 hbmSession = HibernateUtils.getSession();

 hbmSession.beginTransaction();

 allcat = hbmSession.createQuery("from LocationsBO").list();

 hbmSession.getTransaction().commit();

 } catch (HibernateException ex) {

 STATUS_FLAG = false;

 } finally {

 HibernateUtils.closeSession(hbmSession);

 }

 return allcat;

 }

 public boolean deletelocations(int locid) {

 Session hbmSession = null;

 try {

 hbmSession = HibernateUtils.getSession();

 hbmSession.beginTransaction();

 LocationsBO user = (LocationsBO) hbmSession.get(LocationsBO.class, locid);

 hbmSession.delete(user);

 hbmSession.getTransaction().commit();

 } catch (Exception ex) {

 // // hbmSession.getTransaction().rollback();

 ex.printStackTrace();

 } finally {

 HibernateUtils.closeSession(hbmSession);

 }

 return true;

 }

 public boolean addservers(ServersBO servers) {

 Session hbmSession = null;

41

 boolean STATUS_FLAG = true;

 try {

 hbmSession = HibernateUtils.getSession();

 hbmSession.beginTransaction();

 hbmSession.saveOrUpdate(servers);

 hbmSession.getTransaction().commit();

 } catch (Exception ex) {

 // // hbmSession.getTransaction().rollback();

 ex.printStackTrace();

 STATUS_FLAG = false;

 } finally {

 HibernateUtils.closeSession(hbmSession);

 }

 return STATUS_FLAG;

 }

 public List<ServersBO> getallservers() {

 List<ServersBO> allcat = null;

 Session hbmSession = null;

 boolean STATUS_FLAG = true;

 try {

 hbmSession = HibernateUtils.getSession();

 hbmSession.beginTransaction();

 allcat = hbmSession.createQuery("from ServersBO").list();

 hbmSession.getTransaction().commit();

 } catch (HibernateException ex) {

 STATUS_FLAG = false;

 } finally {

 HibernateUtils.closeSession(hbmSession);

 }

 return allcat; }

public boolean deleteserver(int srvrid) {

42

 Session hbmSession = null;

 try {

 hbmSession = HibernateUtils.getSession();

 hbmSession.beginTransaction();

 ServersBO user = (ServersBO) hbmSession.get(ServersBO.class, srvrid);

 hbmSession.delete(user);

 hbmSession.getTransaction().commit();

 } catch (Exception ex) {

 // // hbmSession.getTransaction().rollback();

 ex.printStackTrace();

 } finally {

 HibernateUtils.closeSession(hbmSession);

 }

 return true;

 }

 public List<ServersBO> getallserversrandom() {

 List<ServersBO> allcat = null;

 Session hbmSession = null;

 boolean STATUS_FLAG = true;

 try {

 hbmSession = HibernateUtils.getSession();

 hbmSession.beginTransaction();

 allcat = hbmSession.createQuery("from ServersBO WHERE conn < normlcon order by rand()").list();

 hbmSession.getTransaction().commit();

 } catch (HibernateException ex) {

 STATUS_FLAG = false;

 } finally {

 HibernateUtils.closeSession(hbmSession);

43

 }

 return allcat;

 }

 public boolean updateconnections(int serverid) {

 List<ServersBO> server = null;

 Session hbmSession = null;

 boolean STATUS_FLAG = true;

 try {

 hbmSession = HibernateUtils.getSession();

 hbmSession.beginTransaction();

 server = hbmSession.createQuery("from ServersBO where serverid=" + serverid + "").list();

 int conncount = server.get(0).getConn();

 conncount = conncount + 1;

 Query query = hbmSession.createQuery("update ServersBO set conn=" + conncount + " where

serverid=" + serverid + "");

 int result = query.executeUpdate();

 hbmSession.getTransaction().commit();

 } catch (Exception ex) {

 // // hbmSession.getTransaction().rollback();

 ex.printStackTrace();

 STATUS_FLAG = false;

 } finally {

 HibernateUtils.closeSession(hbmSession);

 }

 return STATUS_FLAG;

 }

44

 public boolean updatenumberconnection(int serverid) {

 NumofConnBO numcon = new NumofConnBO();

 numcon.setServerid(serverid);

 Session hbmSession = null;

 boolean STATUS_FLAG = true;

 try {

 hbmSession = HibernateUtils.getSession();

 hbmSession.beginTransaction();

 hbmSession.saveOrUpdate(numcon);

 hbmSession.getTransaction().commit();

 } catch (Exception ex) {

 // // hbmSession.getTransaction().rollback();

 ex.printStackTrace();

 STATUS_FLAG = false;

 } finally {

 HibernateUtils.closeSession(hbmSession);

 }

 return STATUS_FLAG;

 }

 public List<ServersBO> getallnormlserver() {

 List<ServersBO> allcat = null;

 Session hbmSession = null;

 boolean STATUS_FLAG = true;

 try {

 hbmSession = HibernateUtils.getSession();

 hbmSession.beginTransaction();

 allcat = hbmSession.createQuery("from ServersBO where conn>=normlcon and conn < overcon order by

rand()").list();

45

 hbmSession.getTransaction().commit();

 } catch (HibernateException ex) {

 STATUS_FLAG = false;

 } finally {

 HibernateUtils.closeSession(hbmSession);

 }

 return allcat;

 }

 public List<NumofConnBO> getallactivecon() {

 List<NumofConnBO> allcat = null;

 Session hbmSession = null;

 boolean STATUS_FLAG = true;

 try {

 hbmSession = HibernateUtils.getSession();

 hbmSession.beginTransaction();

 allcat = hbmSession.createQuery("from NumofConnBO").list();

 hbmSession.getTransaction().commit();

 } catch (HibernateException ex) {

 STATUS_FLAG = false;

 } finally {

 HibernateUtils.closeSession(hbmSession);

 }

 return allcat;

 }

 public boolean deletetheconnandrelesrreso(int delid,int serviceid){

46

 List<ServersBO> server = null;

 Session hbmSession = null;

 try {

 hbmSession = HibernateUtils.getSession();

 hbmSession.beginTransaction();

 NumofConnBO user = (NumofConnBO) hbmSession.get(NumofConnBO.class, delid);

 hbmSession.delete(user);

 server = hbmSession.createQuery("from ServersBO where serverid=" + serviceid + "").list();

 int conncount = server.get(0).getConn();

 conncount = conncount - 1;

 Query query = hbmSession.createQuery("update ServersBO set conn=" + conncount + " where

serverid=" + serviceid + "");

 int result = query.executeUpdate();

 hbmSession.getTransaction().commit();

 } catch (Exception ex) {

 // // hbmSession.getTransaction().rollback();

 ex.printStackTrace();

 } finally {

 HibernateUtils.closeSession(hbmSession);

 }

 return true;

 }

}

Cloud admin

package com.vss.sac.servlets;

import java.io.IOException;

47

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

@WebServlet(name = "CloudAdmin", urlPatterns = {"/CloudAdmin"})

public class CloudAdmin extends HttpServlet {

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 try (PrintWriter out = response.getWriter()) {

 String uname=request.getParameter("username");

 String pass=request.getParameter("password");

 if(uname.equalsIgnoreCase("admin") && pass.equalsIgnoreCase("admin")){

 response.sendRedirect("adminhome.jsp");

 }

 else{

 response.sendRedirect("adminlogin.jsp");

 }

 }

 }

 @Override

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

48

 @Override

 public String getServletInfo() {

 return "Short description";

 }// </editor-fold>

}

Delete locations:

package com.vss.sac.servlets;

import com.vss.sac.dbos.AdminImplementation;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

@WebServlet(name = "Deleatlocations", urlPatterns = {"/Deleatlocations"})

public class Deleatlocations extends HttpServlet {

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 try (PrintWriter out = response.getWriter()) {

 int locid=Integer.parseInt(request.getParameter("lid"))

 AdminImplementation adminimp=new AdminImplementation();

 boolean flag=adminimp.deletelocations(locid);

 if(flag){

 response.sendRedirect("AddLocations.jsp");

 }

 }

 }

49

 @Override

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 public String getServletInfo() {

 return "Short description";

 }// </editor-fold>

}

Delete server :

package com.vss.sac.servlets;

import com.vss.sac.dbos.AdminImplementation;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

@WebServlet(name = "DeleatServers", urlPatterns = {"/DeleatServers"})

public class DeleatServers extends HttpServlet {

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

50

 try (PrintWriter out = response.getWriter()) {

 /* TODO output your page here. You may use following sample code. */

 int srvrid=Integer.parseInt(request.getParameter("serid"));

 AdminImplementation adminimp=new AdminImplementation();

 boolean flag=adminimp.deleteserver(srvrid);

 if(flag){

 response.sendRedirect("AddServer.jsp");

 }

 }

 }

 @Override

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 public String getServletInfo() {

 return "Short description";

 }// </editor-fold>

}

Add sever location :

package com.vss.sac.servlets;

import com.vss.sac.bussnsonject.ServersBO;

import com.vss.sac.dbos.AdminImplementation;

import java.io.IOException;

import java.io.PrintWriter;

51

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

@WebServlet(name = "AddServertoloc", urlPatterns = {"/AddServertoloc"})

public class AddServertoloc extends HttpServlet {

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 try (PrintWriter out = response.getWriter()) {

 String servername = request.getParameter("servername");

 String serverip = request.getParameter("serverip");

 int serverloc = Integer.parseInt(request.getParameter("serverloc"));

 int numofcon = Integer.parseInt(request.getParameter("noofcon"));

 int idcon = Integer.parseInt(request.getParameter("idlcon"));

 int nrlcon = Integer.parseInt(request.getParameter("normlcon"));

 int ovcon = Integer.parseInt(request.getParameter("overcon"));

 ServersBO servers=new ServersBO();

 servers.setServername(servername);

 servers.setServerip(serverip);

 servers.setServerloc(serverloc);

 servers.setNumcon(numofcon);

 servers.setIdlcon(idcon);

 servers.setNormlcon(nrlcon);

 servers.setOvercon(ovcon);

 servers.setConn(0);

 AdminImplementation adminimp=new AdminImplementation();

 boolean flag=adminimp.addservers(servers);

 if(flag){

 response.sendRedirect("AddServer.jsp");

52

 }

 }

 }

 // <editor-fold defaultstate="collapsed" desc="HttpServlet methods. Click on the + sign on the left to edit the

code.">

 @Override

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 public String getServletInfo() {

 return "Short description";

 }// </editor-fold>

}

53

Chapter 6 : Testing And Result

54

6.1 SOFTWARE TESTING

The purpose of testing is to discover errors. Testing is the process of trying to

discover every conceivable fault or weakness in a work product. It provides a way to

check the functionality of components, sub assemblies, assemblies and/or a finished

product It is the process of exercising software with the intent of ensuring that the

Software system meets its requirements and user expectations and does not fail in

an unacceptable manner. There are various types of test. Each test type addresses

a specific testing requirement.

TYPES OF TESTS:

Unit testing:

 Unit testing involves the design of test cases that validate that the internal

program logic is functioning properly, and that program inputs produce valid outputs.

All decision branches and internal code flow should be validated. It is the testing of

individual software units of the application .it is done after the completion of an

individual unit before integration. This is a structural testing, that relies on knowledge

of its construction and is invasive. Unit tests perform basic tests at component level

and test a specific business process, application, and/or system configuration. Unit

tests ensure that each unique path of a business process performs accurately to the

documented specifications and contains clearly defined inputs and expected results.

Integration testing:

 Integration tests are designed to test integrated software components to

determine if they actually run as one program. Testing is event driven and is more

concerned with the basic outcome of screens or fields. Integration tests demonstrate

that although the components were individually satisfaction, as shown by

successfully unit testing, the combination of components is correct and consistent.

Integration testing is specifically aimed at exposing the problems that arise from the

combination of components.

55

Functional test:

 Functional tests provide systematic demonstrations that functions tested are

available as specified by the business and technical requirements, system

documentation, and user manuals.

Functional testing is centered on the following items:

Valid Input : identified classes of valid input must be accepted.

Invalid Input : identified classes of invalid input must be rejected.

Functions : identified functions must be exercised.

Output : identified classes of application outputs must be

exercised.

Systems/ Procedures: interfacing systems or procedures must be invoked.

 Organization and preparation of functional tests is focused on requirements, key

functions, or special test cases. In addition, systematic coverage pertaining to

identify Business process flows; data fields, predefined processes, and successive

processes must be considered for testing. Before functional testing is complete,

additional tests are identified and the effective value of current tests is determined.

System Test:

 System testing ensures that the entire integrated software system meets

requirements. It tests a configuration to ensure known and predictable results. An

example of system testing is the configuration oriented system integration test.

System testing is based on process descriptions and flows, emphasizing pre-driven

process links and integration points.

White Box Testing:

 White Box Testing is a testing in which in which the software tester has

knowledge of the inner workings, structure and language of the software, or at least

its purpose. It is purpose. It is used to test areas that cannot be reached from a black

box level.

56

Black Box Testing:

 Black Box Testing is testing the software without any knowledge of the inner

workings, structure or language of the module being tested. Black box tests, as most

other kinds of tests, must be written from a definitive source document, such as

specification or requirements document, such as specification or requirements

document. It is a testing in which the software under test is treated, as a black box

.you cannot ―see‖ into it. The test provides inputs and responds to outputs without

considering how the software works.

Unit Testing:

 Unit testing is usually conducted as part of a combined code and unit test

phase of the software lifecycle, although it is not uncommon for coding and unit

testing to be conducted as two distinct phases.

Test strategy and approach:

 Field testing will be performed manually and functional tests will be written in

detail.

Test objectives:

 All field entries must work properly.

 Pages must be activated from the identified link.

 The entry screen, messages and responses must not be delayed.

Features to be tested

 Verify that the entries are of the correct format

 No duplicate entries should be allowed

 All links should take the user to the correct page.

Integration Testing:

 Software integration testing is the incremental integration testing of two or

more integrated software components on a single platform to produce failures

caused by interface defects.

57

 The task of the integration test is to check that components or software

applications, e.g. components in a software system or – one step up – software

applications at the company level – interact without error.

Test Results: All the test cases mentioned above passed successfully. No defects

encountered.

Acceptance Testing:

 User Acceptance Testing is a critical phase of any project and requires

significant participation by the end user. It also ensures that the system meets the

functional requirements.

Test Cases

Test

case

ID

Test case

name

Test case

description

Test steps Test

status

P/F
Step I/p given Expected

o/p

Actual o/p

TC01 Admin login To verify

that the

user name

and

password

is correct

Enter user

name and

password

Un:admin

Pw:admin

Admin is

ensured

with

successful

login

Admin logs

in to the

server home

page

Pass

Admin login To verify

user name

and

password

is valid

Enter user

name and

password

Un:admin

Pw:pwadmin

Error

message

should be

displayed

A pop up

message is

displayed to

enter valid

user name

and

password

Fail

TC02 User Validate

the

Enter all

the details

Add all the

Details of

Accept all

the details

Notify

successful

Pass

58

registration correctness

of the

details

of user the

user

and update

at the back

end

update at

the back end

User

registration

Validate

the

correctness

of the

details

If any of

the field is

left empty

All the

details

Of the user

Pop up

message to

enter all

the

Details

Pop up

message to

Enter all the

details

Fail

TC03 Server

Registration

Validate

the

correctness

of the

details

Enter all

the details

of new

server

Server

details

Accept all

the details

and update

at the back

end

Notify

successful

update at

the back end

Pass

server

registration

Validate

the

correctness

of the

details

If any of

the field is

left empty

Server

details

Pop up

message to

enter all

the Details

Pop up

message to

enter all the

details

Fail

TC04 Cloud

Application

Cloud

application

Sends

request to

the server

Cloud

request

Cloud

request is

sent to the

Server

Connection

is

Established

from client

to the

server

Connection

is

Established

from client to

the server

And cloud

services

count is

incremented

Pass

59

TC05 Release

Connection

Connected

Client are

released

Release

connection

Client

connection/

Server

connection

to the client

Connection

to the client

from server

is released

Connection

is released

from server

to the client

And cloud

services

count is

decremented

Pass

 Fail

TC06 Load

Balancing

Service

request

load is

distributed

among

available

server

Send the

request

Cloud

application

Cloud

application

Request

distributed

among

server

Based on

round robin

and game

theory

Cloud

application

Request

distributed

among

server

Based on

round robin

and game

theory

Pass

TC07 Logout Once the

operations

are finished

Admin

comes out

of the

current

page

Select the

page to

come out

Select

logout

Comes out

of the

current

page

Comes out

of the page

60

Test Results: All the test cases mentioned above passed successfully. No defects

encountered

6.2 CONCLUSION

Load balancing in the cloud computing environment has been an important impact

on the performance. Good load balancing makes cloud computing more efficient and

improves user satisfaction. This article introduced a better load balance model for

the public cloud based on the cloud partitioning concept with a switch mechanism to

choose different strategies for different situation. The algorithm applied the game

theory to the load balancing strategy to improve the efficiency in the public cloud

environment.

Our proposed cloud clustering technique divides the cloud environment into multiple

partitions and simplifies the process load balancing effectively. The algorithm used in

this paper is able to automatically supervise the load balancing work through load

balancer assigned to each cluster. Thus CPU and Memory can be utilized properly.

Thus our proposed technique achieves higher performance, stability, optimal

resource utilization, minimize response time and application down time over cloud

environment.

6.3 FUTURE WORK

Since this work is just a conceptual framework, more work is needed to implement

the framework and resolve new problems. Some important points are:

(1) Cloud division rules: Cloud division is not a simple problem. Thus, the framework

will need a detailed cloud division methodology. For example, nodes in a cluster may

be far from other nodes or there will be some clusters in the same geographic area

that are still far apart. The division rule should simply be based on the geographic

location (province or state).

(2) How to set the refresh period: In the data statistics analysis, the main controller

and the cloud partition balancers need to refresh the information at a fixed period. If

the period is too short, the high frequency will influence the system performance. If

61

the period is too long, the information will be too old to make good decision. Thus,

tests and statistical tools are needed to set reasonable refresh periods.

(3) A better load status evaluation: A good algorithm is needed to set Load degree

high and Load degree Low , and the evaluation mechanism needs to be more

comprehensive.

(4) Find other load balance strategy: Other load balance strategies may provide

better results, so tests are needed to compare different strategies. Many tests are

needed to guarantee system availability and efficiency.

62

REFERENCES

1) Gaochao Xu, Junjie Pang, and Xiaodong Fu_, IEEE TRANSACTIONS ON
CLOUD COMPUTING, hhtps://wwwgooge/cloudloadbalancing?doccd=9864
83&ref=jujie,YEAR 2013

2) 1) Z. Chaczko, V. Mahadevan, S. Aslanzadeh, andC. Mcdermid, Availability and

load balancing in cloudcomputing, presented at the 2011 International Conferenceon

Computer and Software Modeling, Singapore, 2011.

3) 2) K. Nishant, P. Sharma, V. Krishna, C. Gupta, K. P. Singh,N. Nitin, and R. Rastogi,

Load balancing of nodesin cloud using ant colony optimization, in Proc. 14th Interna

tional Conference on Computer Modelling andSimulation (UKSim), Cambridgeshire,

United Kingdom,Mar. 2012, pp. 28-30.

4) 3) M. Randles, D. Lamb, and A. Taleb-Bendiab, A comparative study into distributed

load balancing algorithms for cloud computing, in Proc. IEEE 24th International

Conference on Advanced Information Networking and Applications, Perth, Australia,

2010, pp. 551-556.

5) 4) A. Rouse, Public cloud, http://searchcloudcomputing. techtarget.com/defi

nition/public-cloud, 2012.

6) 5) D. MacVittie, Intro to load balancing for developers —The algorithms,

https://devcentral.f5.c om /blogs/us/introto-load-balancing-for-developers-ndash-the-

algorithms,2012.

7) 6) S. Penmatsa and A. T. Chronopoulos, Game-theoreticstatic load balancing for

distributed systems, Journal of Parallel and Distributed Computing, vol. 71, no. 4, pp.

537-555, Apr. 2011.

8) 7) D. Grosu, A. T. Chronopoulos, and M. Y. Leung, Load balancing in distributed

systems: An approach using cooperative games, in Proc. 16th IEEE Intl. Parallel

andDistributed Processing Symp., Florida, USA, Apr. 2002, pp. 52-61.

9) 8) S. Aote and M. U. Kharat, A game-theoretic model for dynamic load balancing in

distributed systems, in Proc. The International Conference on Advances in

Computing, Communication and Control (ICAC3 ’09), New York, USA, 2009, pp.

235-238

http://searchcloudcomputing/
https://devcentral.f/

63

