
1

PROJECT REPORT

MINING ONLINE REVIEWS FOR

PRIDICTING SALES PERFORMANCE

Department of Computer Science & Engineering

MAY 2014

Under the Supervision of

Dr. Rajni Mohana

By

 Saurabh Kumar(101331)

Submitted in partial fulfillment of the requirements

For the degree of

BACHELOR OF TECHNOLOGY

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

WAKNAGHAT

2

Table of Content

S. No. Topic Page no.

I. CERTIFICATE 3
II. ACKNOWLEDGEMENT 4

1. ARCHITECTURE OF THE PROPOSED SYSTEM 12
2. DATA FLOW DIAGRAM 13

 3.5 USE CASE DIAGRAM 14

 3.6 COMPONENT DIAGRAM 15

4. METHODOLOGY 16-43
9. MODULES 17
10. INSTALLATION & IMPLEMENTATION 17
11. SCREENSHOTS 19

 4.4 CODE 23

5. RESULTS & CONCLUSION 44

 5.1 FUTURE WORK44

6. REFRENCES 45

1. INTRODUCTION 05-06

 1.1 AIM 5

 1.2 EXISTING SYSTEM 6

 1.3 DRAWBACKS OF EXISTING SYSTEM 6

2. LITERATURE SURVEY 07-08

3. TECHNICAL DETAILS 09-14

 3.1 PROPOSED SYSTEM 10

 3.2 SPECIFIC REQUIREMENTS 11

3

Table of Fig.
Fig. 1: java environment

Fig. 2: compiling and processing 9

Fig. 2: compiling and processing 9

Fig. 3: java extension 10

Fig. 4: java database connectivity 11

Fig. 5: java program 16

Fig. 6: data flow diagram (user) 19

Fig. 7: component diagram 20

Fig. 8: use case diagram 20

Fig. 9: activity diagram 21

Fig. 10: sequence diagram 21

Fig. 11: flowchart of the program 25

Fig. 12: porter‟s stemming 38

4

CERTIFICATE

This is to certify that the work titled “MINING ONLINE REVIEW FOR

PRIDICTING SALES PERFORMANCE” submitted by saurabh kumar in partial

fulfillment for the award of degree of B.Tech of Jaypee University of Information

Technology, Waknaghat has been carried out under my supervision. This work has not

been submitted partially or wholly to any other University or Institute for the award of

this or any other degree or diploma.

Signature of Supervisor : ………………..

Name of Supervisor : Dr. Rajni Mohana

Designation :

Date:

5

ACKNOWLEDGEMENT

I would like to express our sincere thanks and gratitude to our guide Dr.Rajni Mohana for his

valuable guidance and suggestions. I am highly indebted to him for providing me an excellent

opportunity to learn and present my studies in the form of this project.

I take this opportunity to thank the members of the teaching and non-teaching staff of JUIT for the
timely help extended by them.

Lastly thanking our parents, for their morale support and encouragement.

Signature of the student : ………………….

Name of Student: Saurabh kumar

Date:

6

CHAPTER 1: Introduction

People‟s opinion has become one of the extremely important sources for various services in ever-

growing popular social networks. In particular, online opinions have turned into a kind of virtual

currency for businesses looking to market their products, identify new opportunities, and manage

their reputations. Hence, a mechanism that can provide users with condensed descriptions of

documents will facilitate the delivery of digital content. This paper explores and designs a mobile

system for movie rating and review summarization in which semantic orientation of comments,

the limitation of small display capability of cellular devices, and system response time are

considered. Practically, when we are not familiar with a specific product, we ask our trusted

sources to recommend one.

Today, the popularity of the Internet drives people to search for other people‟s opinions from the

Internet before purchasing a product or seeing a movie. Many websites provide user rating and

commenting services, and these reviews could reflect users‟ opinions about a product. For

example, the customer-review section in Amazon.com lists the number of reviews, the percentage

for different ratings, and comments from reviewers. When people want to purchase books, CDs, or

DVDs, these comments and ratings usually influence their purchasing behaviors. In addition to

these websites, a search engine is another important source for people to search for other people‟s

opinions. When a user enters a query into a search engine, the search engine examines its index

and provides a listing of best-matching web pages according to its criteria, usually with a short

summary containing the document‟s title and, sometimes, parts of the text.

1.1: AIM

This aim of this project is to develop software that will be able to read the blog or tweet from the

web and then it will tell us the reviews based on the sentiments. For this we will approach to

design a system that minimizes the ambiguity and redundancy problems. so that people can find

out the review of the particular product or the movie etc.

We will try to implement a stemming algorithm, a classifier and a naïve bias to fulfill our project

requirement.

7

1.2:EXISTING SYSTEM

A probabilistic latent semantic analysis (plsa) approach has already been presented that calculate

the words and then provides the reviews on the basis of calculation. Plsa is a mathematical

approach towards the calculation of total words. In plsa it searches for the total words and then

calculates for the sentiment of the words and then provide the overall positivity or negativity.

1.3: DRAWBACKS OF THE EXISTNG SYSTEM

 Does not convert the word into root word.

 Redundancy is not removed.

 Cannot remove the repeated words.

 Cannot identify the sentiments.

8

CHAPTER 2: TECHNICAL DETAILS

Software Environment

Java Technology

Java technology is both a programming language and a platform.

The Java Programming Language

The Java programming language is a high-level language that can be characterized by all of the

following buzzwords:

 Simple

 Architecture neutral

 Object oriented

 Portable

 Distributed

 High performance

 Interpreted

 Multithreaded

 Robust

 Dynamic

 Secure

With most programming languages, you either compile or interpret a program so that you can run

it on your computer. The Java programming language is unusual in that a program is both

compiled and interpreted. With the compiler, first you translate a program into an intermediate

language called Java byte codes —the platform-independent codes interpreted by the interpreter

on the Java platform. The interpreter parses and runs each Java byte code instruction on the

computer. Compilation happens just once; interpretation occurs each time the program is

executed. The following fig. illustrates how this works.

9

 Fig. 1: java environment

You can think of Java byte codes as the machine code instructions for the Java Virtual Machine

(Java VM). Every Java interpreter, whether it‟s a development tool or a Web browser that can run

applets, is an implementation of the Java VM. Java byte codes help make “write once, run

anywhere” possible. You can compile your program into byte codes on any platform that has a

Java compiler. The byte codes can then be run on any implementation of the Java VM. That means

that as long as a computer has a Java VM, the same program written in the Java programming

language can run on Windows 2000, a Solaris workstation, or on an iMac.

 Fig. 2:compiling and processing

The Java Platform

A platform is the hardware or software environment in which a program runs. We‟ve already

mentioned some of the most popular platforms like Windows 2000, Linux, Solaris, and MacOS.

Most platforms can be described as a combination of the operating system and hardware. The Java

platform differs from most other platforms in that it‟s a software-only platform that runs on top of

other hardware-based platforms.

The Java platform has two components:

 The Java Virtual Machine (Java VM)

 The Java Application Programming Interface (Java API)

10

You‟ve already been introduced to the Java VM. It‟s the base for the Java platform and is ported

onto various hardware-based platforms.

The Java API is a large collection of ready-made software components that provide many useful

capabilities, such as graphical user interface (GUI) widgets. The Java API is grouped into libraries

of related classes and interfaces; these libraries are known as packages. The next section, What

Can Java Technology Do? Highlights what functionality some of the packages in the Java API

provide.

The following fig. depicts a program that‟s running on the Java platform. As the fig.

shows, the Java API and the virtual machine insulate the program from the hardware.

Fig. 3: java extension

Native code is code that after you compile it, the compiled code runs on a specific hardware

platform. As a platform-independent environment, the Java platform can be a bit slower than

native code. However, smart compilers, well-tuned interpreters, and just-in-time byte code

compilers can bring performance close to that of native code without threatening portability.

What Can Java Technology Do?

The most common types of programs written in the Java programming language are applets and

applications. If you‟ve surfed the Web, you‟re probably already familiar with applets. An applet is

a program that adheres to certain conventions that allow it to run within a Java-enabled browser.

However, the Java programming language is not just for writing cute, entertaining applets for the

Web. The general-purpose, high-level Java programming language is also a powerful software

platform. Using the generous API, you can write many types of programs.

An application is a standalone program that runs directly on the Java platform. A special kind of

application known as a server serves and supports clients on a network. Examples of servers are

Web servers, proxy servers, mail servers, and print servers. Another specialized program is a

servlet. A servlet can almost be thought of as an applet that runs on the server side. Java Servlets

are a popular choice for building interactive web applications, replacing the use of CGI scripts.

Servlets are similar to applets in that they are runtime extensions of applications. Instead of

working in browsers, though, servlets run within Java Web servers, configuring or tailoring the

server.

11

How does the API support all these kinds of programs? It does so with packages of

software components that provides a wide range of functionality. Every full

implementation of the Java platform gives you the following features:

 The essentials: Objects, strings, threads, numbers, input and output, data

structures, system properties, date and time, and so on.

 Applets: The set of conventions used by applets.

 Networking: URLs, TCP (Transmission Control Protocol), UDP (User Data gram

Protocol) sockets, and IP (Internet Protocol) addresses.

 Internationalization: Help for writing programs that can be localized for users

worldwide. Programs can automatically adapt to specific locales and be displayed

in the appropriate language.

 Security: Both low level and high level, including electronic signatures, public and

private key management, access control, and certificates.

 Software components: Known as JavaBeans
TM

, can plug into existing component

architectures.

 Object serialization: Allows lightweight persistence and communication via

Remote Method Invocation (RMI).

 Java Database Connectivity (JDBC
TM

): Provides uniform access to a wide range

of relational databases.

The Java platform also has APIs for 2D and 3D graphics, accessibility, servers,

collaboration, telephony, speech, animation, and more. The following fig. depicts what is

included in the Java 2 SDK.

 Fig. 4: java database connectivity

12

How Will Java Technology Change My Life?

We can‟t promise you fame, fortune, or even a job if you learn the Java programming

language. Still, it is likely to make your programs better and requires less effort than other

languages. We believe that Java technology will help you do the following:

 Get started quickly: Although the Java programming language is a powerful

object-oriented language, it‟s easy to learn, especially for programmers already

familiar with C or C++.

 Write less code: Comparisons of program metrics (class counts, method counts,

and so on) suggest that a program written in the Java programming language can be

four times smaller than the same program in C++.

 Write better code: The Java programming language encourages good coding

practices, and its garbage collection helps you avoid memory leaks. Its object

orientation, its JavaBeans component architecture, and its wide-ranging, easily

extendible API let you reuse other people‟s tested code and introduce fewer bugs.

 Develop programs more quickly: Your development time may be as much as

twice as fast versus writing the same program in C++. Why? You write fewer lines

of code and it is a simpler programming language than C++.

 Avoid platform dependencies with 100% Pure Java: You can keep your

program portable by avoiding the use of libraries written in other languages. The

100% Pure Java
TM

Product Certification Program has a repository of historical

process manuals, white papers, brochures, and similar materials online.

 Write once, run anywhere: Because 100% Pure Java programs are compiled into

machine-independent byte codes, they run consistently on any Java platform.

 Distribute software more easily: You can upgrade applets easily from a central

server. Applets take advantage of the feature of allowing new classes to be loaded

“on the fly,” without recompiling the entire program.

ODBC

Microsoft Open Database Connectivity (ODBC) is a standard programming interface for

application developers and database systems providers. Before ODBC became a de facto standard

for Windows programs to interface with database systems, programmers had to use proprietary

languages for each database they wanted to connect to. Now, ODBC has made the choice of the

database system almost irrelevant from a coding perspective, which is as it should be. Application

13

developers have much more important things to worry about than the syntax that is needed to port

their program from one database to another when business needs suddenly change.

Through the ODBC Administrator in Control Panel, you can specify the particular

database that is associated with a data source that an ODBC application program is written to use.

Think of an ODBC data source as a door with a name on it. Each door will lead you to a particular

database. For example, the data source named Sales Fig.s might be a SQL Server database,

whereas the Accounts Payable data source could refer to an Access database. The physical

database referred to by a data source can reside anywhere on the LAN.

The ODBC system files are not installed on your system by Windows 95. Rather, they are

installed when you setup a separate database application, such as SQL Server Client or Visual

Basic 4.0. When the ODBC icon is installed in Control Panel, it uses a file called

ODBCINST.DLL. It is also possible to administer your ODBC data sources through a stand-alone

program called ODBCADM.EXE. There is a 16-bit and a 32-bit version of this program and each

maintains a separate list of ODBC data sources.

From a programming perspective, the beauty of ODBC is that the application can be

written to use the same set of function calls to interface with any data source, regardless of the

database vendor. The source code of the application doesn‟t change whether it talks to Oracle or

SQL Server. We only mention these two as an example. There are ODBC drivers available for

several dozen popular database systems. Even Excel spreadsheets and plain text files can be turned

into data sources. The operating system uses the Registry information written by ODBC

Administrator to determine which low-level ODBC drivers are needed to talk to the data source

(such as the interface to Oracle or SQL Server). The loading of the ODBC drivers is transparent to

the ODBC application program. In a client/server environment, the ODBC API even handles

many of the network issues for the application programmer.

The advantages of this scheme are so numerous that you are probably thinking there must

be some catch. The only disadvantage of ODBC is that it isn‟t as efficient as talking directly to the

native database interface. ODBC has had many detractors make the charge that it is too slow.

Microsoft has always claimed that the critical factor in performance is the quality of the driver

software that is used. In our humble opinion, this is true. The availability of good ODBC drivers

has improved a great deal recently. And anyway, the criticism about performance is somewhat

analogous to those who said that compilers would never match the speed of pure assembly

language. Maybe not, but the compiler (or ODBC) gives you the opportunity to write cleaner

programs, which means you finish sooner. Meanwhile, computers get faster every year.

14

JDBC

In an effort to set an independent database standard API for Java; Sun Microsystems

developed Java Database Connectivity, or JDBC. JDBC offers a generic SQL database access

mechanism that provides a consistent interface to a variety of RDBMSs. This consistent interface

is achieved through the use of “plug-in” database connectivity modules, or drivers. If a database

vendor wishes to have JDBC support, he or she must provide the driver for each platform that the

database and Java run on.

To gain a wider acceptance of JDBC, Sun based JDBC‟s framework on ODBC. As you

discovered earlier in this chapter, ODBC has widespread support on a variety of platforms. Basing

JDBC on ODBC will allow vendors to bring JDBC drivers to market much faster than developing

a completely new connectivity solution.

JDBC was announced in March of 1996. It was released for a 90 day public review that

ended June 8, 1996. Because of user input, the final JDBC v1.0 specification was released soon

after.

The remainder of this section will cover enough information about JDBC for you to know what it

is about and how to use it effectively. This is by no means a complete overview of JDBC. That

would fill an entire book.

JDBC Goals

Few software packages are designed without goals in mind. JDBC is one that, because of

its many goals, drove the development of the API. These goals, in conjunction with early reviewer

feedback, have finalized the JDBC class library into a solid framework for building database

applications in Java.

The goals that were set for JDBC are important. They will give you some insight as to why

certain classes and functionalities behave the way they do. The eight design goals for JDBC are as

follows:

1. SQL Level API

The designers felt that their main goal was to define a SQL interface for Java. Although not

the lowest database interface level possible, it is at a low enough level for higher-level tools

and APIs to be created. Conversely, it is at a high enough level for application programmers to

use it confidently. Attaining this goal allows for future tool vendors to “generate” JDBC code

and to hide many of JDBC‟s complexities from the end user.

15

2. SQL Conformance

SQL syntax varies as you move from database vendor to database vendor. In an effort to

support a wide variety of vendors, JDBC will allow any query statement to be passed through

it to the underlying database driver. This allows the connectivity module to handle non-

standard functionality in a manner that is suitable for its users.

3. JDBC must be implemental on top of common database interfaces

 The JDBC SQL API must “sit” on top of other common SQL level APIs. This goal

allows JDBC to use existing ODBC level drivers by the use of a software interface. This

interface would translate JDBC calls to ODBC and vice versa.

4. Provide a Java interface that is consistent with the rest of the Java system

Because of Java‟s acceptance in the user community thus far, the designers feel that they

should not stray from the current design of the core Java system.

5. Keep it simple

This goal probably appears in all software design goal listings. JDBC is no exception. Sun

felt that the design of JDBC should be very simple, allowing for only one method of

completing a task per mechanism. Allowing duplicate functionality only serves to confuse the

users of the API.

6. Use strong, static typing wherever possible

Strong typing allows for more error checking to be done at compile time; also, less error

appear at runtime.

7. Keep the common cases simple

Because more often than not, the usual SQL calls used by the programmer are simple

SELECT‟s, INSERT‟s, DELETE‟s and UPDATE‟s, these queries should be simple to perform with

JDBC. However, more complex SQL statements should also be possible.

Finally we decided to proceed the implementation using Java Networking.

And for dynamically updating the cache table we go for MS Access database.

Java has two things: a programming language and a platform.

Java is a high-level programming language that is all of the following

16

Simple Architecture-neutral

Object-oriented Portable

 Distributed High-performance

Interpreted multithreaded

Robust Dynamic

Secure

Java is also unusual in that each Java program is both compiled and interpreted. With a

compile you translate a Java program into an intermediate language called Java byte codes the

platform-independent code instruction is passed and run on the computer.

Compilation happens just once; interpretation occurs each time the program is

executed. The fig. illustrates how this works.

 Fig. 5: java program

You can think of Java byte codes as the machine code instructions for the Java Virtual

Machine (Java VM). Every Java interpreter, whether it‟s a Java development tool or a Web

browser that can run Java applets, is an implementation of the Java VM. The Java VM can also

be implemented in hardware.

Java

Program

Compilers

Interpreter

My Program

17

Java byte codes help make “write once, run anywhere” possible. You can compile your Java

program into byte codes on my platform that has a Java compiler. The byte codes can then be run

any implementation of the Java VM. For example, the same Java program can run Windows NT,

Solaris, and Macintosh.

 Map Visualizations

Charts showing values that relate to geographical areas. Some examples include: (a)

population density in each state of the United States, (b) income per capita for each country in

Europe, (c) life expectancy in each country of the world. The tasks in this project include:

Sourcing freely redistributable vector outlines for the countries of the world, states/provinces

in particular countries (USA in particular, but also other areas);

Creating an appropriate dataset interface (plus default implementation), a rendered, and

integrating this with the existing XYPlot class in JFreeChart;

Testing, documenting, testing some more, documenting some more.

Time Series Chart Interactivity

Implement a new (to JFreeChart) feature for interactive time series charts --- to display a

separate control that shows a small version of ALL the time series data, with a sliding "view"

rectangle that allows you to select the subset of the time series data to display in the main chart.

 Dashboards

There is currently a lot of interest in dashboard displays. Create a flexible dashboard

mechanism that supports a subset of JFreeChart chart types (dials, pies, thermometers, bars, and

lines/time series) that can be delivered easily via both Java Web Start and an applet.

 Property Editors

The property editor mechanism in JFreeChart only handles a small subset of the properties

that can be set for charts. Extend (or re implement) this mechanism to provide greater end-user

control over the appearance of the charts.

18

System Configuration

H/W System Configuration:

Processor - Pentium –III

Speed - 1.1 Ghz

RAM - 256 MB(min)

Hard Disk - 20 GB

Floppy Drive - 1.44 MB

Key Board - Standard Windows Keyboard

Mouse - Two or Three Button Mouse

Monitor - SVGA

S/W System Configuration:

Operating System : Windows95/98/2000/XP

Application Server : Tomcat5.0/6.X

Front End : HTML, Java, Jsp

Scripts : JavaScript.

Server side Script : Java Server Pages.

Database : Mysql

Database Connectivity : JDBC.C

19

CHAPTER 3: ARCHITECTURE

The design of the proposed system discusses the various requirements that will make up the

application. Installation on Windows requires WinPcap software which can be downloaded from

winPcap website. Jpcap is a set of Java classes which provide an interface and system for network

packet capture, it is required for packet capture in Java and built upon Libpcap which is a packet

capture library in C language. Java Runtime Environment (JRE) 5.0 or higher will also be required

to run this Java application. More space may be required to store the captured packets since the

required space on hard disk for installation is less than 1MB.

By conducting the requirements analysis we listed out the requirements that are useful to restate

the problem definition

 Data Flow Diagram / Use Case Diagram / Flow Diagram

The DFD is also called as bubble chart. It is a simple graphical formalism that can be used to

represent a system in terms of the input data to the system, various processing carried out on these

data, and the output data is generated by the system.

Search Movie

UserLogin

Check
Yes

Unauthorized User

No

View Movie Details

View Ratting & Review

Buy Movie

Customer Ratting and Review

End Process

 Fig. 6: data flow diagram(user)

20

User

 Enter Userid and Password

UserLogin

Search Movie
Customer Ratting and Review

View Movie Details Buy Movie

View Ratting and Review

 Fig. 7: component diagram

Login

User

Search Movie

View Ratting and Review

Customer ReviewView Movie Details Buy movie

 Fig. 8: use case diagram

21

Admin

Search Movie View Movie Details View Ratting and Review Buy Movie Customer Review

 Fig. 9: activity diagram

Admin

Login View Ratting and Review Purchase MovieSearch Movie

Enter
UserName

And
Password

Customer Review

 Fig. 10: sequence diagram

22

CHAPTER 4: SYSTEM DESIGN

 4.1: MODULES:

1. Sentiment Analysis

2. Feature-Based Summarization

3. Dataset

4. Opinion-Word Identification

Modules Description

1. Sentiment Analysis

Since a document is composed of sentences and a sentence is composed of terms, it is reasonable

to determine the semantic orientation of the text from terms. As a result, the sentiment analysis

research started from the determination of the semantic orientation of the terms. Hatzivassiloglou

and McKeown employed textual conjunctions such as “fair and legitimate” or “simplistic but well-

received” to separate similarly connoted and oppositely connoted words. Esuli and Sebastiani

proposed to determine the orientation of subjective terms based on the quantitative analysis of the

glosses of such terms, i.e., the textual definitions that are given in online dictionaries. The process

is based on the assumption that terms with similar orientation tend to have “similar” glosses (i.e.,

textual definitions). Thus, synonyms and antonyms could be used to define a relation of

orientation. Esuli and Sebastiani described SENTIWORDNET, which is a lexical resource in

which each WordNet synset is associated with three numerical scores, i.e., Obj(s), Pos(s), and

Neg(s), thus describing how objective, positive, and negative the terms contained in the synset.

2. Feature-Based Summarization

In product-review summarization, people are interested in the reasons why this product is worth

buying rather than the principal meaning of the comment. Thus, feature-based summarization is

23

used in movie-review summarization. The feature-based summarization will focus on the product

features on which the customers have expressed their opinions. In addition to product features, the

summarization should include opinion information about the product; therefore, product features

and opinion words are both important in feature-based summarization. As a result, product

features and opinion-word

identification are essential in feature-based summarization.

3. Product-Feature Identification

We propose an LSA-based product-feature-identification algorithm and system can obtain a

semantically related feature set for each seed. We compared three product-feature-identification

approaches, i.e., ratting about product feature, price and delivery.

4. Opinion-Word Identification

In addition to feature identification, opinion words about the product features are important as

well. Hu and Liu extracted the opinion words by retrieving the nearby adjective of product

features. In addition to language sentence-structure characteristic, Zhuang et al. used the

dependency grammar graph to find out some relations between feature words and the

corresponding opinion words in training data. They both rely on language sentence structure to

extract opinion words; therefore, these approaches will be applicable to those language sentences

having such a characteristic.

4.2: SYSTEM STUDY

4.2.1: FEASIBILITY STUDY

The feasibility of the project is analyzed in this phase and business proposal is put forth with a

very general plan for the project and some cost estimates. During system analysis the feasibility

study of the proposed system is to be carried out. This is to ensure that the proposed system is not

a burden to the company. For feasibility analysis, some understanding of the major requirements

for the system is essential.

Three key considerations involved in the feasibility analysis are

 ECONOMICAL FEASIBILITY

 TECHNICAL FEASIBILITY

 SOCIAL FEASIBILITY

24

ECONOMICAL FEASIBILITY

This study is carried out to check the economic impact that the system will have on the

organization. The amount of fund that the company can pour into the research and development of

the system is limited. The expenditures must be justified. Thus the developed system as well

within the budget and this was achieved because most of the technologies used are freely

available. Only the customized products had to be purchased.

TECHNICAL FEASIBILITY

This study is carried out to check the technical feasibility, that is, the technical requirements of the

system. Any system developed must not have a high demand on the available technical resources.

This will lead to high demands on the available technical resources. This will lead to high

demands being placed on the client. The developed system must have a modest requirement, as

only minimal or null changes are required for implementing this system.

SOCIAL FEASIBILITY

The aspect of study is to check the level of acceptance of the system by the user. This includes the

process of training the user to use the system efficiently. The user must not feel threatened by the

system, instead must accept it as a necessity. The level of acceptance by the users solely depends

on the methods that are employed to educate the user about the system and to make him familiar

with it. His level of confidence must be raised so that he is also able to make some constructive

criticism, which is welcomed, as he is the final user of the system.

25

 CHAPTER 5: METHODOLOGY

Methodologies used :

 Fig. 11: flowchart of the program

5.1: Data collection:

The first work in this thesis is to collect huge amount of data collection of data although is not a

simple task as it may seem to anyone at first thought. For this we have to make certain assumption

and decision. Basically we have to collect two different data sets: test data, training data.

Test data Collection: One of the objective of this thesis is to analyze the sentiment of messages

posted in reaction to movie reviews, so we have to collect tweets about movies only. However , it

is not a simple task.

A corpus of around 1000 tweets about movie reviews was sampled from the test data and we

manually examined and annotated that data as positive or negative because the data which we

collected was unlabelled ,so we formed two classes as pos, neg.

Out of thousand post that have been annotated 31 posts here needed context to understand and

determine their sentiments. thus 97% of our test data did not require context to determine their

sentiments. Many a times in a time came when it was difficult to determine the sentiment, as they

seemed both positive and negative.

4. Training data:

Microblogging

site

Data collection

Preprocessing

Tokenization

stemming,

Filtering

Machine

learning

algorithms

Testing

data ,

Training

data

Input

Sample

Reviews

Output

Rating

of

reviews

26

We have chosen only subjective data for training ,no objective was collected here.

Subjective data involves positive and /or negative sentiment only. if does not consists of any

neutral tweets.

A total of 5000 subjective twitter posts were collected for corpus. One this data was collected, it

was separated into tweets that contain only negative emoticons tweets that contain only positive

emoticons and tweets that contain both emoticons.

Class Training data Test data

Negative 2000 400

Positive 3000 600

 Table 1: data collection

5.3:Supervised approaches

This is where most of time and effort was spent in our thesis under this section, different

supervised machine learning approaches were used and explained. To be able to experiment with

different machine learning algorithms and to able the identification of factors that affect our

results ,we used a three step process.

The first step is the preprocessing of the training data. The second is feature extraction and data

representation in a particular format.(semantic vsm here).

The third is the classifier training and testing phase with different machine learning algorithms .

this approaches helped in experimenting with different possibilities by varying the preprocessing

operations, feature extraction and then using the machine learning algorithms .each of this will be

explained in the following subsections.

5.3.1:Pre-processing:

 Cleaning of the data:

Since the corpus we are taking consists of syntactical features that may not be useful for machine

learning the data needs to be cleaned for further use

Tokenization: in this process , we have broken the stream of text up into words , phrases ,symbols

and then called them as token .the frequency of a particular token in the whole data set is also

counted. With that we have also taken out total no. of unique words in our data set .

27

Stemming: in this process we have reduced the inflicted words to their stem or root word. For this

we have taken in to account that stem need not to be identically same to the morphological root of

the word ; it is sufficient that a related words could map to the same stem is not itself a valid root

Stop word removal : after tokenization we are having a big list of words occurring in data sets

and mostly not all of them are useful for learning task. It is imperative to reduce the size of feature

space as far as possible. So stop word removal step will be done prior too tokenization to remove

all occurrence of these useless words like „a‟,‟ an‟, ‟the‟, ‟is‟, etc .

Filtering : during filtering process various sub tasks were done .

url :url were removed ,in order to remove the feature size during training

emoticons : all emoticons were replaced by pos and neg classes

username and hash tags : we replaced them with <un> and <ht> respectively.

Removal of repeated comments

Lower casing : all characters were lower cased to ensure that all tokens map to the corresponding

feature irrespective of casing .

Class Data After duplicate

removal

Duplicates

Positive 3000 2960 40

Negative 2000 1990 10

Total 5000 4950 50

5.3.2: Removing duplicates: duplicates were removed from all training data as they just add

Weight and nothing else .only exact duplicates were removed by us .the result of the removal of

duplicates are given in table as can be seen from the table there were duplicates present in each

class . the no. of duplicates is more in positive tweets then there are in negative tweets ,because

people have tendency to re tweet something they are very happy with the total percentage of

duplicates is 10% only.

5.3.3:Feature extraction and instance representation : the most important question in machine

learning is how to represent data both the training and test data must be represented in some or the

other way in order for a machine learning algorithm to learn and thus build a model out of it .some

of the ways in which the data can be represented could be feature based or bag of words

representation .by features based ,it is meant that some attributes which we think that they capture

the pattern of the data are selected first and the entire data set must be represented n terms of them

before it is fed to any machine learning algorithm.

28

Different features like n-gram presence or n-gram frequency ,pos tags ,syntactic features or

semantic features can be used here in this representation .

This paper explores and designs a system for movie rating and review summarization in which

semantic orientation of comments. System response time are considered. Practically, when we are

not familiar with a specific product, we ask our trusted sources to recommend one. Today, the

popularity of the Internet drives people to search for other people‟s opinions from the Internet

before purchasing a product or seeing a movie. Many websites provide user rating and

commenting services, and these reviews could reflect users‟ opinions about a product. For

example, the customer-review section in Amazon.com lists the number of reviews, the percentage

for different ratings, and comments from reviewers.

When people want to purchase books, CDs, or DVDs, these comments and ratings usually

influence their purchasing behaviors. In addition to these websites, a search engine is another

important source for people to search for other people‟s opinions. When a user enters a query into

a search engine, the search engine examines its index and provides a listing of best-matching web

pages according to its criteria, usually with a short summary containing the document‟s title and,

sometimes, parts of the text. In this paper, we collected movie reviews from Internet Blogs that do

not consist of any rating information. Sentiment analysis is performed to determine the semantic

orientation of the reviews and movie-rating score is based on the sentiment-analysis result.

5.3.4: Stemming:

A stemming algorithm is a computational procedure which reduces all words with the same

root (or, if pre-fixes are left untouched, the same stem) to a common form, usually by stripping

each word of its derivational and inflectional suffixes. Researchers in many areas of computational

linguistics and information retrieval find this a desirable step, but for varying reasons. In

automated morphological analysis, the root of a word may be of less immediate interest than its

suffixes, which can be used as clues to grammatical structure. (See, e.g., Earland Resnikoff and

Dolby .This field has also been reported on by S. Silver and M. Lott, Machine Translation Project,

University of California, Berkeley [personal communication].) At the other extreme, what suffixes

are found may be subsidiary to the problem of removing them consistently enough to obtain sets

of exactly matching stems. Word-frequency counts using stems, for stylistic (as described by S. Y.

Sedelow [per- sonal communication]) or mathematical analysis of a body of language, often

require matched stems. (So does stemming as part of an information-retrieval sys- tem, the

specific application which motivated this pa- per.) But certain linguistic problems are common to

29

any "stem-oriented" stemming algorithm, no matter what its ultimate use. The brief description

below of the framework within which Project Interrex is planning to use a stemming algorithm

should be viewed as but one possible application for research on the morphological structure of

English and other languages. Similarly, a variety of applications are considered in evaluating the

theoretical and practical attributes of several previous algorithms. As a major part of its

information transfer experiments, Project Intrex is developing an integrated re- trieval system in

which a library user, through a remote computer terminal, can first obtain extensive information

from a central digital store about documents that are available on a specific subject, and then

obtain the full text of the documents. A prototype retrieval system is being assembled in order to

permit experimentation with its various components. The experimental system will use a specially

compiled augmented library catalogue containing information on approximately 10,000

documents in the field of materials science and engineering, including not only author, title, and

other basic data about each document but also an abstract, bibliography, and a list of subject terms

indicating the content of the document. Each subject term is a phrase of one or more English

words. A stemming algorithm will be used to maximize the usefulness of the subject terms.

In many cases, the information which is semantically significant to the user of the system is

contained in the stems of the lexical words in the subject terms, and suffixes and function words

merely enable this information to be expressed in a grammatical form. The form of the words

which the user inputs will often not correspond to that of the original words in the catalogue. To

Permit the words in the user's query to match the words in the catalogue entry's subject terms, both

query and subject terms can be stripped of the suffixes that prevent their matching. For example,

computational and computing might both be stemmed to compute.

In constructing the software needed for this particular application of stemming (or any other), we

encounter questions which are answerable only in terms of the over-all system. For instance, what

should constitute a "word" to be stemmed? In the case of Intrex, what suffixes should the

algorithm search for that are specifically 22 oriented toward terms in materials science and

engineering? These are questions of less general interest than the linguistic problems of extracting

a stem from any one word in a non-specialized vocabulary (for an example of lists of affixes taken

from terms in specific technical fields, see Dyson). The development of an efficient algorithm

should logically precede investigation of these questions, and they will not be discussed further

here. The approach to stemming taken here involves a two- phase stemming system. The first

phase, the stemming algorithm proper, retrieves the stem of a word by removing its longest

possible ending which matches one on a list stored in the computer. The second phase handles

"spelling exceptions," mostly instances in which the "same" stem varies slightly in spelling

30

according to what suffixes originally followed it. For example, absorption will be output from

phase one as absorpt, absorbing as absorb. The problem of the spelling exceptions, which in the

above example involves matching absorpt and absorb, is discussed thoroughly in Section V of this

paper. One particular solution to the problem, termed recoding, has been implemented in the

present phase two. We also plan to use the present basic algorithm as a foundation in testing out

other feasible solutions.1 This plan is appropriate because spelling-ex- ception rules can, and

probably should, be formulated independently of the stemming algorithm proper.

II. Stemming, Form, and Meaning By its computational nature, a stemming algorithm has inherent

limitations. The routine handles individual words: it has no access to information about their

gram- matical and semantic relations with one another. In fact, it is based on the assumption of

close agreement of meaning between words with the same root. This assumption, while workable

in most cases, in English represents an approximation at best. It is a better or worse approximation

depending on the intended use of the stems, the semantic vagaries of individual roots, and the

strength of the algorithm (how radically it transforms words). A stemming algorithm strong

enough to group together all words with the same root may be unsuitable for, say, word-frequency

counting. For such applications one would not wish a pair like neutron-.neutral- izer to coincide,

and one would prefer to work with a very limited list of suffixes. Where stems are used as a means

of associating related items of information, as they are in an automated library catalogue, and

where the catalogue can be interrogated in an on-line mode, it seems best to use a strong

algorithm, that is, one that will combine more words into the same group rather than fewer, thus

pro- viding more document references rather than fewer. I am indebted to Richard S. Marcus and

Peter Kugel for valuable discussion of this specific problem and of this report as a whole. After a

word in the library user's query has been stemmed and a matching stem and associated list

oriented toward terms in materials science and engineering? These are questions of less general

interest than the linguistic problems of extracting a stem from any one word in a non-specialized

vocabulary (for an example of lists of affixes taken from terms in specific technical fields, see

Dyson). The development of an efficient algorithm should logically precede investigation of these

questions, and they will not be discussed further here.

The approach to stemming taken here involves a two- phase stemming system. The first phase, the

stemming algorithm proper, retrieves the stem of a word by removing its longest possible ending

which matches one on a list stored in the computer. The second phase handles "spelling

exceptions," mostly instances in which the "same" stem varies slightly in spelling according to

what suffixes originally followed it. For example, absorption will be output from phase one as

absorpt, absorbing as absorb. The problem of the spelling exceptions, which in the above example

31

involves matching absorpt and absorb, is discussed thoroughly in Section Vof this paper. One

particular solution to the problem, termed recoding, has been implemented in the present phase

two. We also plan to use the present basic algorithm as a foundation in testing out other feasible

solutions.1

This plan is appropriate because spelling-exception rules can, and probably should, be formulated

independently of the stemming algorithm proper

II. Stemming, Form, and Meaning By its computational nature, a stemming algorithm has

inherent limitations. The routine handles individual words: it has no access to information about

their grammatical and semantic relations with one another. In fact, it is based on the assumption of

close agreement of meaning between words with the same root. This assumption, while workable

in most cases, in English rep- resents an approximation at best. It is a better or worse

approximation depending on the intended use of the stems, the semantic vagaries of individual

roots, and the strength of the algorithm (how radically it transforms words). A stemming algorithm

strong enough to group together all words with the same root may be unsuitable for, say, word-

frequency counting. For such applications one would not wish a pair like neutron-.neutralizer to

coincide, and one would prefer to work with a very limited list of suffixes.

Where stems are used as a means of associating re- lated items of information, as they are in an

automated library catalogue, and where the catalogue can be in- terrogated in an on-line mode, it

seems best to use a strong algorithm, that is, one that will combine more words into the same

group rather than fewer, thus providing more document references rather than fewer. After a word

in the library user's query has been stemmed and a matching stem and associated list of ull-word

forms has been found in the catalogue and presented to the user, he may decide to discard some of

these forms in order to inhibit searching for those full- word forms which are unrelated to his

subject.

Occasionally, the output of a stemming routine may be not only ambiguous but also "not English."

This happens when a suffix is identical to the end of some root. For instance, -ate is a noun suffix

in directorate, but simply part of a verbal root in create and appreciate. In English, situations of

this type limit the use of suf- fixes as clues to parts of speech. Sometimes grammatical information

is required for stemming, not provided by it. However, the generation of such non linguistic stems

as cre - and appreci- is not a serious problem; if the pur- pose of stemming is only to allow related

words to match, then the stems yielded by a stemming algorithm need not coincide with those

found by a linguist. The exact form of the stem is not critical if it is the same no matter what

suffixes have been removed following it, and if "mistaken" stemming does not generate an am-

32

biguity. Similarly, the ending that must be removed in order to achieve a consistent algorithm is

determined in relation to the stemming system as a whole. The ending may or may not be exactly

equivalent to some entity in English morphology, and it may be acceptable to have the computer

program remove it when a linguist would not, with no detriment to the ultimate results.

III. Types of Stemming Algorithms

Two main principles are used in the construction of a stemming algorithm: iteration and longest-

match. An algorithm based solely on one of these methods often has drawbacks which can be

offset by employing some combination of the two principles.

Iteration is usually based on the fact that suffixes are attached to stems in a "certain order, that is,

there exist order-classes of suffixes (see, e.g., Lejnieks [4]). Each order-class may or may not be

represented in any given word. The last order-class—the class that occurs at the very end of a

word—contains inflectional suffixes such as -s, -es, and-ed. Previous order-classes are

derivational.(As pointed out by J. L. Dolby [personal communication], there are several cases

known in which a derivational suffix (-ness) follows an inflectional one (-ed or -ing). This occurs

with certain nominalized adjectives derived from verbs by use of one of these two inflectional

endings, for example, relatedness, disinterestedness, willingness.) An example of the lowest order-

class in a word may be what is technically part of the root (see the -ate example above), but for the

purposes of computation it is considered part of the ending. An iterative stemming algorithm is

simply a recursive procedure, as its name implies, which removes strings in each order-class one

at a time, starting at the end of a word and working toward its beginning. No more than one match

is allowed within a single order-class, by definition. One must decide how many order-classes

there should be, which endings should occur in each, and whether or not the members of each

class should be internally ordered for scanning.

The longest-match principle states that within any given class of endings, if more than one ending

provides a match, the one which is longest should be removed. This principle is implemented by

scanning the endings in any class in order of decreasing length. For example, if -ion is removed

when there is also a match on -ation, provision would have to be made to remove -at, that is, for

another order-class. To avoid this extra order-class, -ation should precede -ion on the list. An

algorithm based strictly on the longest-match principle uses only one order-class. All possible

combinations of affixes are compiled and then ordered on length. If a match is not found on longer

endings, shorter ones are scanned. The obvious disadvantage to this method is that it requires

generating all possible combinations of affixes. A second disadvantage is the amount of stor- age

space the endings require.

33

The first disadvantage may also be present to a large degree when one is setting up an iterative

algorithm with as many order-classes as possible. To set up the order-classes, one must examine a

great many endings. Furthermore, it is not always obvious to which class a given string should

belong for maximum efficiency. It is also entirely possible that the occurrence of members of

some classes is context dependent (see below). In short, while an iterative algorithm requires a

shorter list of endings, it introduces a number of complications into the preparation of the list and

programming of the routine.

Some idea of the breadth of these complications is gained through consideration of another basic

attribute of a stemming algorithm: it is context free or context sensitive. Since "context" is used

here to mean any attribute of the remaining stem, "context free" implies

no qualitative or quantitative restrictions on the removal of endings. In a context-free algorithm,

the first ending in any class which achieves a match is accepted. But

 here should presumably be at least some quantitative restriction, in the sense that the remaining

stem must not be of length zero. An example of this extreme case is the matching of -ability to

ability as well as to com- putability. In fact, any useful stem usually consists of at least two letters,

and often three or four constitute a necessary minimum. The restriction on stem length varies with

the ending; how it varies can again only be determined in relation to the total system. The

algorithm developed by Professor John W. Tukey of Prince- ton University (personal

communication) associates a lower limit with each ending. Some of his limits are quite high (e.g.,

seven letters). I have been less conservative and have proposed a minimum stem length of two;

certain endings have an additional restriction in that their minimum stem length is three, four, or

five letters.

The kind of qualitative contextual restrictions that should be imposed is a somewhat open

question. In order to get the best results, certain endings should not be removed in the presence of

certain letters in the resultant stem, usually those letters that immediately pre- cede the ending.

The more desirable form of context- sensitive rule is a general one that can be applied to a number

of endings, but such rules are few. One example is "do not remove an ending that begins with -en-

,following -e." Violation of this rule would change seen to se-, a potentially ambiguous stem (cf.

sea minus -a, seize minus- ize, etc.). But a number of rules must be created for individual endings

in order to avoid certain special cases peculiar to those endings. One can go to great lengths in this

direction, with increasingly small returns. I have preferred to start by treating a number of the

more obvious exceptions in the hope that the percentage of words not accounted for will be small

enough to preclude the need to add many additional rules. An iterative stemming algorithm, that

is, one that contains more than one order-class of endings, is presumably no less complicated by

34

context-sensitive rules than a one-class algorithm, and is probably more so; exceptions associated

with the members of each class may depend on a rather complicated context. For ex- ample,

suppose there is a rule (in a non-iterative algorithm) stating that minimal stem length is five before

-ionate. The endings -ion and -ate occur separately, also, with different restrictions. In an iterative

routine, -ion and -ate would only occur as separate endings, in different order-classes; and -ion

would be restricted by the rule that its preceding context must be of length five if -ate was found

during the preceding iteration. In other words, the endings that are removed may influence the

lower-order endings that can be removed subsequently. The implications for simplicity in

programming are self-evident. In a pure longest-match algorithm, the only context that need be

considered is the prospective stem itself.

Since computer-storage space for endings was not an immediate problem, it was decided to test a

non-iterative stemming algorithm based on a one-class list of endings. That is, the intuitively

inefficient procedure of listing both singular and plural forms, and so on, has been followed in

order to minimize the number of con- text-sensitive rules necessary. Compilation of the actual

list of endings used is discussed in the next section; the algorithm is outlined in Section VI.

The author is aware of three previous major attempts to construct stemming algorithms. Tukey has

proposed a context-sensitive, partially iterative stemming algorithm whose endings are divided

into four order-classes. The first (highest-order) class contains only terminal s which, however, is

not removed after i, s, or u. The second class is recursive, the third is non-recursive and ordered on

length. The fourth class consists of remaining terminal consonants. The last three classes also have

a few members each with simple context restrictions, and all classes have limits on minimum stem

length. (The basic structure of this "tail-cropping" algorithm is not affected by its multilingual

orientation, though the endings used would obviously differ from those found in a procedure for

English only.) One of the more interesting things about the Tukey system is its structural

complexity. One class uses the longest-match principle only, while another is iterative (and thus

not a proper order-class). Presumably the object of this heterogeneous structure is to avoid the

repetitiveness of a one-class ending list in the most concise way possible. However, as stated

earlier, there is a compromise between conciseness of rules and simplicity of programming. By

contrast, the algorithm developed at Harvard University by Michael Lesk, under the direction of

Professor Gerard Salton [10], is based on an iterated search for a longest-match ending. After no

more matches can be found, terminal i, a, and e are removed, and then possibly terminal

consonants. There are apparently no con- textual restrictions of any kind. (A brief description of

the algorithm, including a useful list of 194 endings, was transmitted to us via personal

35

communication. A sample of these suffixes, and further information about the algorithm, have

more recently appeared in Salton.)

A third algorithm has been developed by James L. Dolby of R and D Consultants, Los Altos,

California (personal communication). This algorithm works in three stages, the first of which

involves a set of context- dependent transformations. Most of the cropping is done in the second

stage, a context-free, longest-match, re- cursive procedure which removes endings in any order but

is subject to the restriction of a two-syllable mini- mum stem length. In the final stage there is a

context dependent dropping of inflectional forms. The endings used were derived by algorithm

from word lists on the basis of orthographic context, and are "minimal" segments of one to four

letters in length.

IV. Compilation of a List of Endings

A one-class list of endings (concatenations of suffixes) was compiled in the following way: A

preliminary list was based on endings found in a small portion of the augmented catalogue being

developed by Project Interrex and on endings in the list used at Harvard. The preliminary list was

evaluated by applying the endings on this list to a portion of the output from Tukey's tail- cropping

routine, levels 1-3, and volumes 5-7 of the Normal and Reverse English Word List [8] (volumes 5

7 contain unbroken words sorted alphabetically when written from right to left). Since each of

these lists is organized according to ends of words, it was possible to see whether the removal of a

given ending would result in (1) two different stems matching, or (2) a stem not matching another

stem which it should match. Either of these conditions, unless it was caused by a spelling

exception or caused improper matching in only a few rare cases, necessitated the addition of new

endings, the disposing of old ones, or the addition of context- may occur, but do not always occur.

The second assumption is that these changes involve no more than two letters at the end of a stem-

-this is merely an empirical result which has not yet been contradicted. It has also been observed

that the sequences of letters that cause difficulty are often common to more than one class of

exceptions. In recoding, this means that some rules can cover more than one type of exception,

although it is not usually the case.

The crucial difference between recoding and partial matching is this: a recoding procedure is part

of the stemming algorithm while a partial-matching procedure is not. Partial matching operates on

the output from the stemming routine at the point where the stems derived from catalogue terms

are being searched for matches to the user's stemmed query. All partial matches, within certain

limits, are retrieved rather than just all perfect matches; discrepancies are resolved after retrieval,

not in the previous stemming procedure. This has the advantages of reducing stemming to the one-

step process of removing an ending and of eliminating the context specifications sometimes

36

needed in recoding. The dis- advantages, which are not so obvious, can be discussed only after a

more complete description of a partial matching procedure is given. Such a procedure starts with

an unmodified stem S1

—again, absorption is a good example. The first step is to search the list of stemmed catalogue

terms for all those which begin with S1 minus its last two letters: in this

case, all stems of any length beginning with absor, which we call S2. Of course, special provisions

will have to be made for cases in which S1 is only two or three letters long. Among those stems

returned will be absorpt and absorb. Absorbefaci, the stem of absorbefacient, may also be found.

This last item will be eliminated, probably for the better, by the next step of the procedure, which

discards all stems more than two characters longer than S1 (here, more than nine letters long). We

then have collected all stems which match absorpt within two letters in either direction. Given any

one of these, Sj, a final match is allowed between Sj and S1 if and only if either Sj = S1 or the

following conditions are satisfied:

1. The stems Sj and S1 must match at least up to two letters before the end of the longer of them.

2. If Sj and S1 are the same length and differ by one letter, this letter plus a blank must occur on a

closed list (see Appendix D) for each stem.

3. If Sj and S1 are the same length and differ by two letters, each sequence of two letters must

occur on the list.

4. If Sj and S1 differ in length by one, the last two letters of the longer, and the last of the shorter

plus a blank, must occur on the list.

5. If Sj and S1 differ in length by two, the last two letters of the longer must occur on the list. The

above rules amount essentially to examining the last two letters of stems that match up to that

point; if the stems are different lengths, all "missing letters" in the shorter are represented by

blanks. The "closed list" needed for this routine is given in Appendix D.

It may appear that an unacceptable number of "wrong" matches would result from this

procedure, since there are no restrictions on which pairs of items on the list may be used to

produce a match. There are two defenses against this view:

First, such a closed list does exist. Many partial matches will not be allowed. Of those that are

allowed erroneously, many would have been produced also by a recoding procedure, for much the

same reasons.

Second, we can make a probabilistic argument. Most of the stems used will probably be fairly

37

long—long enough so that there are unlikely to be many matches within two letters. Any Sj found

by searching with S2 stands a good chance of being related to S2, and thus

to S1.

In short, while a partial-matching procedure may produce no fewer wrong matches than

recoding, it will probably produce more right ones. It is inherently more flexible than recoding

rules; all classes of exceptions do not have to be specified beforehand. Part of this flexi-bility

results from allowing S1 and Sj to differ in length by two letters in either direction. Yet this

condition also provides a built-in barrier against certain types of wrong matches, as the following

example illustrates:

Convex is recoded to convic by the rule ex → ic; convict, the stem of conviction, is recoded to

convict by the rule ct → c. This erroneous match is not allowed in partial matching, since although

condition (4) is satisfied, condition (1) is not.

Partial matching is a kind of controlled recoding; the recoding takes place only if a partial, but

not complete, match is found. The original stem is still preserved, however, providing a constant

check for violation of condition .

Using partial matching as a substitute for recoding does have one major disadvantage for a system

using disk storage, as Interrex does, and it is a potentially serious one. In some cases, the time-

consuming retrieval from the disk of a great number of partial matches, those beginning with S2,

will be necessary. These cases are most likely to occur with very short stems. The question is

whether in such instances S2 can be lengthened (made closer to S1) enough to avoid this problem

and still retrieve all acceptable matches. Empirical data are needed to answer this question, as well

as to determine whether the number of short stems used is great enough to warrant concern. Any

timing, programming, or other complications which partial matching introduces must be small

enough to be balanced out by other advantages it may offer.

VI. The Two-Phase Stemming Routine and Its Results

Several progressively more advanced versions of the Interrex stemming routine have been coded

in AED (a compiler language developed at the Electronic Systems Laboratory) [7, pp. 367-85]

and run on sample batches of words, using the MIT 7094 CTSS system. The flow chart in Fig. 1

shows the most important features of the stemming and recoding parts of the program.

38

 Fig. 12: porter‟s stemming

39

While a full evaluation of this stemming system within the Project Intrex environment will not

be possible until the augmented catalogue data base is completed, output so far indicates that the

procedures used are workable and will yield very good results with only minor changes. These

changes involve the list of endings and occasionally the recoding rules; the types of operations

performed remain the same.

To give some idea of the alterations that are needed to make the system highly effective, I

shall discuss several of the changes that have been made in the pro-gram. Fig. 2 shows the result

of stemming several groups of related words. An obvious problem was that "magnet" and

"magnesium" had the same recoded stem. This problem was easy to fix by changing recoding

rule 32 from et → es to et → es except following n.

An additional recoding rule took care of the discrepancy between meter→ meter and metric →

metr:metr

→ meter. All other changes involved the stemming procedure: -ium, -ite, and -itic were added to

the list of endings, with the stipulation that -ite be removed only in certain rather limited cases

and -itic only after t or ll; the rule governing -al- endings was changed so that they are not

removed after met-; l was added to the list of stem-final consonants to be undoubted; and the

context in which the removal of -on is allowable was broadened to include single t. The results

after these changes are shown in Fig. 3. It is expected that several more such evaluations of a

random group-sample will catch most similar difficulties still left in the program, although it is

likely that minor revisions will be required as long as the vocabulary of the data base continues

to increase.

Porter’s stemming :

The ANSI C version that heads the table below is exactly equivalent to the original BCPL

version. The BCPL version did, however, differ in three minor points from the published

algorithm and these are clearly marked in the downloadable ANSI C version. They are discussed

further below.

This ANSI C version may be regarded as definitive, in that it now acts as a better definition of

the algorithm than the original published paper.

40

Over the years, I have received many encoding from other workers, and they are also presented

below. I have a reasonable confidence that all these versions are correctly encoded.

language author affiliation received

notes

ANSI C me

ANSI

C thread

safe

Me

java Me

Perl Me

Perl Daniel van

Balen

 Oct 1999

slightly

faster?

python Vivake

Gupta

 Jan 2001

Csharp André

Hazelwood

The Official Web Guide Sep 2001

Csharp .NE

T

compliant

Leif

Azzopardi

Univerity of Paisley,

Scotland

Nov 2002

http://tartarus.org/~martin/PorterStemmer/c.txt
mailto:martin@tartarus.org
http://tartarus.org/~martin/PorterStemmer/c_thread_safe.txt
http://tartarus.org/~martin/PorterStemmer/c_thread_safe.txt
http://tartarus.org/~martin/PorterStemmer/java.txt
http://tartarus.org/~martin/PorterStemmer/perl.txt
http://www.ldc.usb.ve/~vdaniel/porter.pm
http://tartarus.org/~martin/PorterStemmer/python.txt
mailto:vivake@omniscia.org
mailto:vivake@omniscia.org
http://tartarus.org/~martin/PorterStemmer/csharp.txt
mailto:ahazelwood@mindspring.com
mailto:ahazelwood@mindspring.com
http://tartarus.org/~martin/PorterStemmer/csharp2.txt
mailto:azzo-ci0@wpmail.paisley.ac.uk
mailto:azzo-ci0@wpmail.paisley.ac.uk

41

Common

Lisp

Steven M.

Haflich

Franz Inc Mar 2002

Ruby Ray Pereda www.raypereda.com Jan 2003

github link

Visual

Basic VB6

Navonil

Mustafee

Brunel University Apr 2003

Delphi Jo Rabin Apr 2004

Javascript „Andargor‟ www.andargor.com Jul 2004

substantial

revisions

by

Christophe

r

McKenzie

(See „Links‟

below.)

Visual Basic

VB7; .NET

compliant

Christos

Attikos

University of Piraeus,

Greece

Jan 2005

php Richard Heyes

www.phpguru.org Feb 2005

Prolog Philip

Brooks

University of Georgia Oct 2005

Haskell Dmitry

Antonyuk

 Nov 2005

T-SQL Keith Lubell www.atelierdevitraux.com

May 2006

matlab Juan Carlos California Pacific Medical Sep 2006

http://tartarus.org/~martin/PorterStemmer/commonlisp.txt
http://tartarus.org/~martin/PorterStemmer/commonlisp.txt
mailto:smh@franz.com
mailto:smh@franz.com
http://www.franz.com/
http://www.raypereda.com/
https://github.com/raypereda/stemmify
http://tartarus.org/~martin/PorterStemmer/vb.txt
http://tartarus.org/~martin/PorterStemmer/vb.txt
mailto:Navonil.Mustafee@brunel.ac.uk
mailto:Navonil.Mustafee@brunel.ac.uk
http://tartarus.org/~martin/PorterStemmer/delphi.txt
mailto:jo.rabin@btclick.com
http://tartarus.org/~martin/PorterStemmer/js.txt
http://www.andargor.com/
mailto:cmckenzie@iizuu.com
mailto:cmckenzie@iizuu.com
mailto:cmckenzie@iizuu.com
http://tartarus.org/~martin/PorterStemmer/vbnet.txt
mailto:christos.attikos@gmail.com
mailto:christos.attikos@gmail.com
http://tartarus.org/~martin/PorterStemmer/php.txt
http://www.phpguru.org/
http://tartarus.org/~martin/PorterStemmer/prolog.txt
mailto:philip.brooks@gmail.com
mailto:philip.brooks@gmail.com
http://tartarus.org/~martin/PorterStemmer/haskell.txt
mailto:lomeo@mail.ru
mailto:lomeo@mail.ru
http://tartarus.org/~martin/PorterStemmer/tsql.txt
mailto:klubell@atelierdevitraux.com
http://www.atelierdevitraux.com/
http://tartarus.org/~martin/PorterStemmer/matlab.txt
mailto:LopezJC@cpmcri.org
http://www.cpmc.org/professionals/research/

42

Lopez Center Research Institute

Tcl Aris

Theodorakos

NCSR Demokritos Nov 2006

D Daniel

Truemper

Humboldt-Universitaet zu

Berlin

May 2007

erlang

(1) erlang

(2)

Alden Dima National Institute of

Standards and Technology,

Gaithersburg, MD USA

Sep 2007

REBOL Dale K

Brearcliffe

 Apr 2009

Scala Ken

Faulkner

 May 2009

sas Antoine St-

Pierre

Business Researchers, Inc Apr 2010

plugin vim

script

Mitchell

Bowden

 May 2010

github link

node.js Jed Parsons jedparsons.com May 2011

github link

Google Go

Alex

Gonopolskiy

 Oct 2011

github link

awk Gregory

Grefenstette

3ds.com/exalead Jul 2012

clojure Yushi Wang Mar 2013

bitbucket

link

http://tartarus.org/~martin/PorterStemmer/tcl.txt
mailto:artheo@iit.demokritos.gr
mailto:artheo@iit.demokritos.gr
http://www.demokritos.gr/index_muk.asp
http://tartarus.org/~martin/PorterStemmer/d.txt
mailto:Daniel-ps@hence22.org
mailto:Daniel-ps@hence22.org
http://tartarus.org/~martin/PorterStemmer/porter.erl
http://tartarus.org/~martin/PorterStemmer/porter.erl
http://tartarus.org/~martin/PorterStemmer/conditions.erl
http://tartarus.org/~martin/PorterStemmer/conditions.erl
mailto:alden.dima@nist.gov
http://tartarus.org/~martin/PorterStemmer/rebol.txt
mailto:daleb@digital-bear.com
mailto:daleb@digital-bear.com
http://tartarus.org/~martin/PorterStemmer/scala.txt
mailto:ken.faulkner@gmail.com
mailto:ken.faulkner@gmail.com
http://tartarus.org/~martin/PorterStemmer/sas.txt
http://www.businessresearchers.com/
http://tartarus.org/~martin/PorterStemmer/vim.txt
http://tartarus.org/~martin/PorterStemmer/vim.txt
mailto:mitchellbowden@gmail.com
mailto:mitchellbowden@gmail.com
http://github.com/msbmsb/porter-stem.vim
mailto:jedp@jedparsons.com
http://jedparsons.com/
https://github.com/jedp/porter-stemmer
mailto:agonopol@gmail.com
mailto:agonopol@gmail.com
https://github.com/agonopol/go-stem
http://tartarus.org/~martin/PorterStemmer/awk.txt
mailto:gregory.grefenstette@3ds.com
mailto:gregory.grefenstette@3ds.com
http://www.3ds.com/products/exalead
https://bitbucket.org/m00nlight/clojure-stemmer
mailto:dot.wangyushi@gmail.com

43

Rust Do Nhat

Minh

Nanyang Technological

University

Aug 2013

github link

vala Serge Hulne Sep 2013

All these encodings of the algorithm can be used free of charge for any purpose. Questions about

the algorithms should be directed to their authors, and not to Martin Porter (except when he is the

author).

To test the programs out, here is a sample vocabulary (0.19 megabytes), and the

corresponding output.

Email any comments, suggestions, queries

Points of difference from the published algorithm

There is an extra rule in Step 2,

(m>0) logi → log

So archaeology is equated with archaeological etc.

The Step 2 rule

(m>0) abli → able

is replaced by

(m>0) bli → ble

So possibly is equated with possible etc.

The algorithm leaves alone strings of length 1 or 2. In any case a string of length 1 will be

unchanged if passed through the algorithm, but strings of length 2 might lose a final s, so as goes

to a andis to i.

These differences may have been present in the program from which the published algorithm

derived. But at such a great distance from the original publication it is now difficult to say.

It must be emphasised that these differences are very small indeed compared to the variations

that have been observed in other encodings of the algorithm.

Status

http://github.com/mrordinaire/rust-stem
mailto:m@minhdo.org
mailto:m@minhdo.org
http://www.ntu.edu.sg/Pages/index.aspx
http://www.ntu.edu.sg/Pages/index.aspx
http://tartarus.org/~martin/PorterStemmer/vala.txt
mailto:serge.hulne@gmail.com
http://tartarus.org/~martin/PorterStemmer/voc.txt
http://tartarus.org/~martin/PorterStemmer/output.txt
mailto:martin@tartarus.org

44

The Porter stemmer should be regarded as „frozen‟, that is, strictly defined, and not amenable to

further modification. As a stemmer, it is slightly inferior to the

Snowball English or Porter2stemmer, which derives from it, and which is subjected to

occasional improvements. For practical work, therefore, the new Snowball stemmer is

recommended. The Porter stemmer is appropriate to IR research work involving stemming where

the experiments need to be exactly repeatable.

Common errors

Historically, the following shortcomings have been found in other encodings of the stemming

algorithm.

The algorithm clearly explains that when a set of rules of the type

(condition)S1 → S2

are presented together, only one rule is applied, the one with the longest matching suffix S1 for

the given word. This is true whether the rule succeeds or fails (i.e. whether or

not S2 replaces S1). Despite this, the rules are sometimes simply applied in turn until either one

of them succeeds or the list runs out.

This leads to small errors in various places, for example in the Step 4 rules

(m>1)ement →

(m>1)ment →

(m>1)ent →

to remove final ement, ment and ent.

Properly, argument stems to argument. The longest matching suffix is -ment. Then stem argu-

 has measure m equal to 1 and so -ment will not be removed. End of Step 4. But if the three rules

are applied in turn, then for suffix -ent the stem argum- has measure m equal to 2, and -ent gets

removed.

The more delicate rules are liable to misinterpretation. (Perhaps greater care was required in

explaining them.) So

((m>1) and (*s or *t))ion

is taken to mean

(m>1)(s or t)ion

The former means that taking off -ion leaves a stem with measure greater than 1 ending -s or -t;

the latter means that taking off -sion or -tion leaves a stem of measure greater than 1. A similar

confusion tends to arise in interpreting rule 5b, to reduce final double L to single L.

Occasionally cruder errors have been seen

It is interesting that although the published paper explains how to do the tests on the

strings S1 by a program switch on the last or last but one letter, many encodings fail to use this

technique, making them much slower than they need be.

http://snowball.tartarus.org/algorithms/english/stemmer.html

45

Table 3: Word clusters and stems

Cluster no. Word Stem Cluster no. Word Stem

 create creat

trabajan

traba

 creates creat

2 trabajar

traba

1

creating creat (Spanish)

trabajado

traba

(English) created creat

trabajador

traba

 creation creat

3

dificil dific

 creative creat (Portuguese) dificilmente dific

Now, let us compare our stemmer empirically with an established linguistic stemmer, say

Porter‟s stemmer . We select English as our testing language as outputs of Porter‟s algorithm can

be easily extracted at Snowball project . We take sample of 100 random English words and apply

Porter‟s Snowball framework and our procedure over them. The results are reported in Table 3.2.

Identical stems generated by either algorithm are shown in bold. Four POS, Noun, Adjective,

Verb and Adverb were taken into account. We select Newspaper search area in COCA.

To compare the stemming results of Snowball (Porter) stemmer and our N-gram stemmer, we

employed direct evaluation method. Like the comparison made by Chris D. Paise , using length

truncation as a baseline, we employed Levenshtein distance as a base measure. The distance is

the number of deletions, insertions, or substitutions required to transform the source string into

the target string. The Levenshtein distance therefore, represents by how many units a word has

been stripped by a stemmer. For our sample of the 100 words, these distances are shown in Table

3.2, LDSnow and LDN-gram for Snowball stems and our N-gram stems respectively.

46

Table 4: Random Words and their stems

S. No. Word Snowball stem N-gram stem LDSnow

LDN-

gram

1 Parsons Parson Parson 1 1

2 Dilution Dilut Dilut 3 3

3 Agreement Agreement Agree 0 4

4 Passion Passion Passion 0 0

5 Cutter Cutter Cutter 0 0

6 Refill Refill Refil 0 1

7 Museums Museum Museum 1 1

8 Stallion Stallion Stallion 0 0

9 Braid Braid Brai 0 1

10 Fleet Fleet Flee 0 1

11 Midwife Midwif Midwife 1 0

12 Haze Haze Haze 0 0

13 Prophet Prophet Prophe 0 1

14 Vacancy Vacanc Vacanc 1 1

15 Ninety Nineti Ninet 1 1

16 Menace Menac Menac 1 1

17 Laceration Lacer Lacerat 5 3

18 Training Train Train 3 3

19 Librarian Librarian Librar 0 3

20 Ordaining Ordain Ordain 3 3

21 Mainstream Mainstream Mainst 0 4

22 Bloodier Bloodier Blood 0 3

23 Abject Abject Abject 0 0

24 Substitute Substitut Substitut 1 1

25 Overseas Oversea Overseas 1 0

47

26 Freehand Freehand Freehan 0 1

27 Despotic Despot Despoti 2 1

28 Predicted Predict Predic 2 3

29 Lyric Lyric Lyric 0 0

30 Eleventh Eleventh Eleven 0 2

31 Admonishing Admonish Admoni 3 5

32 Quiet Quiet Quiet 0 0

33 Macabre Macabr Maca 1 3

34 Unloaded Unload Unload 2 2

35 Quizzical Quizzic Quizzi 2 3

36 Alto Alto Alto 0 0

37 Undeveloped Undevelop Undevelo 2 3

38 Casual Casual Casual 0 0

39 Recognized Recogn Recogni 4 3

40 Devastating Devast Devastat 5 3

41 Abused Abus Abuse 2 1

42 Abusing Abus Abusing 3 0

43 Admired Admir Admire 2 1

44 Admiring Admir Admir 3 3

45 Believed Believ Belie 2 3

46 Believing Believ Belie 3 4

47 Borrowed Borrow Borrow 2 2

48 Borrowing Borrow Borrow 3 3

49 Carried Carri Carrie 2 1

50 Carrying Carri Carry 3 3

51 Consulted Consult Consult 2 2

52 Consulting Consult Consult 3 3

53 Deceived Deceiv Deceive 2 1

54 Deceiving Deceiv Deceiv 3 3

55 Decorated Décor Décor 4 4

48

56 Decorating Décor Décor 5 5

57 Employed Employ Employ 2 2

58 Employing Employ Employ 3 3

59 Explained Explain Explain 2 2

60 Explaining Explain Explain 3 3

61 Finished Finish Finish 2 2

62 Finishing Finish Finish 3 3

63 Forbidden Forbidden Forbid 0 3

64 Forbidding Forbid Forbid 4 4

65 Gathered Gather Gather 2 2

66 Gathering Gather Gather 3 3

67 Improved Improv Improv 2 2

68 Improving Improv Improv 3 3

69 Laughed Laugh Laugh 2 2

70 Laughing Laugh Laugh 3 3

71 Listened Listen Listen 2 2

72 Listening Listen Listen 3 3

73 Mended Mend Mende 2 1

74 Mending Mend Mending 3 0

75 Nipped Nip Nippe 3 1

76 Nipping Nip Nipp 4 3

77 Plucked Pluck Pluck 2 2

78 Plucking Pluck Pluck 3 3

79 Preached Preach Preach 2 2

80 Preaching Preach Preach 3 3

81 Enormously Enorm Enorm 5 5

82 Monthly Month Month 2 2

83 Solemnly Solemn Solemn 2 2

84 Abnormally Abnorm Abnormal 4 2

85 Diligently Dilig Diligen 5 3

86 Jubilantly Jubil Jubil 5 5

49

87 Frightfully Fright Fright 5 5

88 Swiftly Swift Swift 2 2

89 Miserable Miser Miser 4 4

90 Thankfully Thank Thankful 5 2

91 Blissfully Bliss Blissful 5 2

92 Reluctantly Reluct Reluctan 5 3

93 Viciously Vicious Vicious 2 2

94 Wonderfully Wonder Wonder 5 5

95 Hopelessly Hopeless Hopeless 2 2

96 Briskly Brisk Briskly 2 0

97 Delightfully Delight Delight 5 5

98 Anxiously Anxious Anxious 2 2

99 Obnoxiously Obnoxi Obnoxious 5 2

100 Inwardly Inward Inward 2 2

We hypothesize that if our stemmer is as efficient as that of Porter‟s, then the distributions of

Levenshtein distances between a word and its stripped stem tend to be same. For a given word,

we have two treatments in hand, Porter‟s algorithm and our N-gram procedure. Thus for a given

word, we have a pair of LDs. For comparison, we set the null hypothesis H0 that no differences

exist between the two stemmers.

Because the two sets of measures can be considered as two measures associated to the same

sample, we decide to employ a statistical test for paired samples. In particular, a nonparametric

statistical test, the Wilcoxon signed-rank test is employed by us, since there was no evidence

about the distribution of these distances. The Wilcoxon test is based on two paired series (xi, yi)

of N observed values, one series for each out of the observed variables X, Y to be compared. The

absolute differences di=abs (xi-yi) and sign (di) of differences are to be computed next. Then the

absolute values are ranked, discarding zeros. If Nr is the reduced sample size, the final test

statistic is , which is approximated by a Normal

50

variable for large N.

4. Experimental Results:

On conducting the Wilcoxon test over our sample data, we get the p value of 0.54. As p>0.05,

fail to reject the null hypothesis H0. Thus, we have strong evidence that our N-gram Stemmer is

not inferior to Porter‟s Stemmer.

Naïve bayes classifier :

A Bayes classifier is a simple probabilistic classifier based on applying Bayes'

theorem (from Bayesian statistics) with strong (naive) independence assumptions. A more

descriptive term for the underlying probability model would be "independentfeature model".

In simple terms, a naive Bayes classifier assumes that the presence (or absence) of a particular

feature of a class is unrelated to the presence (or absence) of any other feature. For example, a

fruit may be considered to be an apple if it is red, round, and about 4" in diameter. Even if these

features depend on each other or upon the existence of the other features, a naive Bayes classifier

considers all of these properties to independently contribute to the probability that this fruit is an

apple.

Depending on the precise nature of the probability model, naive Bayes classifiers can be trained

very efficiently in a supervised learning setting. In many practical applications, parameter

estimation for naive Bayes models uses the method ofmaximum likelihood; in other words, one

can work with the naive Bayes model without believing in Bayesian probability or using any

Bayesian methods.

In spite of their naive design and apparently over-simplified assumptions, naive Bayes classifiers

have worked quite well in many complex real-world situations. In 2004, analysis of the Bayesian

classification problem has shown that there are some theoretical reasons for the apparently

unreasonable efficacy of naive Bayes classifiers.
[1]

 Still, a comprehensive comparison with other

classification methods in 2006 showed that Bayes classification is outperformed by more current

approaches, such as boosted trees or random forests.
[2]

An advantage of the naive Bayes classifier is that it requires a small amount of training data to

estimate the parameters (means and variances of the variables) necessary for classification.

Because independent variables are assumed, only the variances of the variables for each class

need to be determined and not the entirecovariance matix.

http://www.wikipedia.org/wiki/Classifier_(mathematics)
http://www.wikipedia.org/wiki/Bayes%27_theorem
http://www.wikipedia.org/wiki/Bayes%27_theorem
http://www.wikipedia.org/wiki/Bayesian_statistics
http://www.wikipedia.org/wiki/Statistical_independence
http://www.wikipedia.org/wiki/Statistical_independence
http://www.wikipedia.org/wiki/Supervised_learning
http://www.wikipedia.org/wiki/Maximum_likelihood
http://www.wikipedia.org/wiki/Bayesian_probability
http://www.wikipedia.org/wiki/Efficacy
http://en.wikipedia.org/wiki/Naive_Bayes_classifier#cite_note-0
http://www.wikipedia.org/wiki/Boosted_trees
http://www.wikipedia.org/wiki/Random_forests
http://en.wikipedia.org/wiki/Naive_Bayes_classifier#cite_note-1

51

RESULTS:

Home page

Admin Page

Upload Movie Details

52

User Page

Search Movie

View Movie Details

53

View Rating and Review Summ

Purchase Movie

54

Customer Review

Best Seller

55

Recent History

56

Conclusions:

We endeavored to modify a statistical stemming technique and came up with one whose results

are comparable with a well known linguistic stemmer. Our N-gram stemmer is capable to deal

any language for which N-gram corpus frequencies are available. As a language neutral approach

is always preferable over a technique in which a linguistic knowledge or analysis is prerequisite,

our results seem to be very exciting and promising.

It is really very important ant to identify the factors that improve the performances as well

.factors that affect performance are the choice of training data, attribute or feature selection,

representation of instances ,and the choice of the algorithm used. A decision to make equal

number of each class that is positive and negative was being made to avoid biasing of classifier

in favor of any particular class.

Attribute selection effected the accuracy that we can get from the classifier .too few attributes

can cause the under fitting and too many attributes causing over fitting.

Under fitting s a situation in which the classifier is not biased enough to make prediction on

some unseen instances. Over fitting is a situation where the train model is highly fitted to the

training data that it basically fails while predicting new instances successfully. Thus it s good to

find a balance between too few and too many attributes .unfortunately, there seems to be no as

such simple way of finding ths balanced number of attributes except by trail and error.

The other factors that affected the performance is the representation of instances .this basically

includes whether to use presence /absence or count/frequency.it also includes whether to convert

count into tf-idf so that terms importance is taken into account. Thae best result for multinomial

naïve bayes can be obtained using this presence. Finally, the choice of machine learning

algorithm for the task also affected the performance. Multinomial naïve bayes was found to

outperform others in the task of sentiment analysis /classification task.

Future Work

It is not possible to develop a system that meets all the requirements of the user. User requirements

keep changing as the system is being used. Some of the future enhancements that can be done to this

system are:

• As the technology emerges, it is possible to upgrade the system that can be adaptable to desired

environment.

57

Refrences :

1. Zhiyuan Chen, Arjun Mukherjee, Bing Liu, Meichun Hsu, Malu Castellanos, and

Riddhiman Ghosh. Exploiting Domain Knowledge in Aspect Extraction. Proceedings of

Conference on Empirical Methods in Natural Language Processing (EMNLP-2013),

October 18-21, 2013, Seattle, USA.

2. Arjun Mukherjee, Vivek Venkataraman, Bing Liu, and Sharon Meraz. Public Dialogue:

Analysis of Tolerance in Online Discussions. Proceedings of The 51st Annual Meeting of

the Association for Computational Linguistics (ACL-2013), August 4-9, 2013, Sofia,

Bulgaria.

3. Arjun Mukherjee, Bing Liu. Discovering User Interactions in Ideological

Discussions. Proceedings of The 51st Annual Meeting of the Association for

Computational Linguistics (ACL-2013), August 4-9, 2013, Sofia, Bulgaria.

4. Jianfeng Si, Arjun Mukherjee, Bing Liu, Qing Li, Huayi Li, and Xiaotie Deng. Exploiting

Topic based Twitter Sentiment for Stock Prediction. Proceedings of The 51st Annual

Meeting of the Association for Computational Linguistics (ACL-2013, short paper),

August 4-9, 2013, Sofia, Bulgaria.

5. Zhiyuan Chen, Bing Liu, Meichun Hsu, Malu Castellanos, and Riddhiman

Ghosh. Identifying Intention Posts in Discussion Forums. Proceedings of The 2013

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies (NAACL-HLT-2013), June 9-15, 2013,

Atlanta, USA.

6. Bing Liu. Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers, May

2012.

7. Arjun Mukherjee and Bing Liu. Modeling Review Comments. Proceedings of 50th

Annual Meeting of Association for Computational Linguistics (ACL-2012), July 8-14,

2012, Jeju, Republic of Korea.

8. Arjun Mukherjee and Bing Liu. Aspect Extraction through Semi-Supervised

Modeling. Proceedings of 50th Annual Meeting of Association for Computational

Linguistics (ACL-2012), July 8-14, 2012, Jeju, Republic of Korea.

9. Arjun Mukherjee and Bing Liu. Mining Contentions from Discussions and

Debates. Proceedings of SIGKDD International Conference on Knowledge Discovery

and Data Mining (KDD-2012), Aug. 12-16, 2012, Beijing, China.

10. Lei Zhang and Bing Liu. "Extracting Resource Terms for Sentiment

Analysis," Proceedings of the 5th International Joint Conference on Natural Language

Processing (IJCNLP-2011), November 8-13, 2011, Chiang Mai, Thailand.

11. Zhongwu Zhai, Bing Liu, Lei Zhang, Hua Xu, Peifa Jia. Identifying Evaluative Opinions

in Online Discussions. Proceedings of AAAI-2011, San Francisco, USA, August 7-11,

2011.

12. Lei Zhang and Bing Liu. "Identifying Noun Product Features that Imply Opinions." ACL-

2011 (short paper), Portland, Oregon, USA, June 19-24, 2011.

http://www.cs.uic.edu/~liub/publications/EMNLP-2013-Aspects.pdf
http://www.cs.uic.edu/~liub/publications/ACL-2013-Arjun-Tolerance.pdf
http://www.cs.uic.edu/~liub/publications/ACL-2013-Arjun-Tolerance.pdf
http://www.cs.uic.edu/~liub/publications/ACL-2013-Arjun-Pair-Interactions.pdf
http://www.cs.uic.edu/~liub/publications/ACL-2013-Arjun-Pair-Interactions.pdf
http://www.cs.uic.edu/~liub/publications/ACL-2013-Jianfeng-stock-short.pdf
http://www.cs.uic.edu/~liub/publications/ACL-2013-Jianfeng-stock-short.pdf
http://www.cs.uic.edu/~liub/publications/NAACL-2013-Zhiyuan-Intention.pdf
http://www.cs.uic.edu/~liub/FBS/SentimentAnalysis-and-OpinionMining.pdf
http://www.cs.uic.edu/~liub/publications/ACL-2012-comments-modeling.pdf
http://www.cs.uic.edu/~liub/publications/ACL-2012-aspect-extraction.pdf
http://www.cs.uic.edu/~liub/publications/ACL-2012-aspect-extraction.pdf
http://www.cs.uic.edu/~liub/publications/KDD-2012-contentions.pdf
http://www.cs.uic.edu/~liub/publications/KDD-2012-contentions.pdf
http://www.cs.uic.edu/~liub/publications/AAAI_CameraVersion.pdf
http://www.cs.uic.edu/~liub/publications/AAAI_CameraVersion.pdf
http://www.cs.uic.edu/~liub/publications/ACL-2011-short-noun-opinion.pdf

58

13. Guang Qiu, Bing Liu, Jiajun Bu and Chun Chen. "Opinion Word Expansion and Target

Extraction through Double Propagation." Computational Linguistics, March 2011, Vol.

37, No. 1: 9.27.

14. Zhongwu Zhai, Bing Liu, Hua Xu, Peifa Jia. "Constrained LDA for Grouping Product

Features in Opinion Mining." Proceedings of PAKDD-2011, Shenzhen, China, 2011.

(Best Paper Award)

15. Lei Zhang and Bing Liu. "Entity Set Expansion in Opinion Documents." Proceedings of

the ACM Conference on Hypertext and Hypermedia (HT-2011), Eindhoven, Netherlands,

June 6-9, 2011.

16. Zhongwu Zhai, Bing Liu, Hua Xu and Peifa Jia. "Clustering Product Features for

Opinion Mining." Proceedings of Fourth ACM International Conference on Web Search

and Data Mining (WSDM-2011), Feb. 9-12, 2011, Hong Kong, China.

17. Arjun Mukherjee and Bing Liu. "Improving Gender Classification of Blog

Authors." Proceedings of Conference on Empirical Methods in Natural Language

Processing (EMNLP-10). Oct. 9-11, 2010, MIT, Massachusetts, USA.

18. Xiaowen Ding and Bing Liu. "Resolving Object and Attribute Coreference in Opinion

Mining." Proceedings of the 23rd International Conference on Computational

Linguistics (COLING-2010), August 23-27, Beijing, China.

19. Zhongwu Zhai, Bing Liu, Hua Xu and Peifa Jia. "Grouping Product Features Using

Semi-Supervised Learning with Soft-Constraints" Proceedings of the 23rd International

Conference on Computational Linguistics (COLING-2010), August 23-27, Beijing,

China.

20. Lei Zhang and Bing Liu. "Extracting and Ranking Product Features in Opinion

Documents." Proceedings of the 23rd International Conference on Computational

Linguistics (COLING-2010), August 23-27, Beijing, China.

21. Bing Liu. "Sentiment Analysis: A Multifaceted Problem." Invited paper, IEEE Intelligent

Systems, 25(3), 2010, pp. 76-80.

22. Bing Liu. "Sentiment Analysis and Subjectivity." Invited Chapter for the Handbook of

Natural Language Processing, Second Edition. March, 2010.

23. Ramanathan Narayanan, Bing Liu and Alok Choudhary. "Sentiment Analysis of

Conditional Sentences." Proceedings of Conference on Empirical Methods in Natural

Language Processing (EMNLP-09). August 6-7, 2009. Singapore.

24. Guang Qiu, Bing Liu, Jiajun Bu and Chun Chen. "Expanding Domain Sentiment Lexicon

through Double Propagation." Proceedings of the 21st International Joint Conference on

Artificial Intelligence (IJCAI-09), Pasadena, California, USA, July 11-17, 2009.

25. Xiaowen Ding, Bing Liu and Lei Zhang. "Entity Discovery and Assignment for Opinion

Mining Applications," Proceedings of ACM SIGKDD Interntaional Conference on

Knowledge Disocvery and Data Mining (KDD-09, industrial track), June 28-July 1,

2009, Paris.

26. Bing Liu. "Opinion Mining." Invited contribution to Encyclopedia of Database Systems,

2008.

27. Murthy Ganapathibhotla and Bing Liu. "Mining Opinions in Comparative

Sentences." Proceedings of the 22nd International Conference on Computational

Linguistics (Coling-2008), Manchester, 18-22 August, 2008.

28. Xiaowen Ding, Bing Liu and Philip S. Yu. "A Holistic Lexicon-Based Appraoch to

Opinion Mining." Proceedings of First ACM International Conference on Web Search

http://www.mitpressjournals.org/doi/pdf/10.1162/coli_a_00034
http://www.mitpressjournals.org/doi/pdf/10.1162/coli_a_00034
http://www.cs.uic.edu/~liub/publications/PAKDD-2011.pdf
http://www.cs.uic.edu/~liub/publications/PAKDD-2011.pdf
http://www.cs.uic.edu/~liub/publications/wsdm-2011-final.pdf
http://www.cs.uic.edu/~liub/publications/wsdm-2011-final.pdf
http://www.cs.uic.edu/~liub/publications/EMNLP-2010-blog-gender.pdf
http://www.cs.uic.edu/~liub/publications/EMNLP-2010-blog-gender.pdf
http://www.cs.uic.edu/~liub/publications/coling-2010-final-Ding.pdf
http://www.cs.uic.edu/~liub/publications/coling-2010-final-Ding.pdf
http://www.cs.uic.edu/~liub/publications/coling_2010_final_Zhai.pdf
http://www.cs.uic.edu/~liub/publications/coling_2010_final_Zhai.pdf
http://www.cs.uic.edu/~liub/publications/coling-2010-final_Zhang.pdf
http://www.cs.uic.edu/~liub/publications/coling-2010-final_Zhang.pdf
http://www.cs.uic.edu/~liub/FBS/IEEE-Intell-Sentiment-Analysis.pdf
http://www.cs.uic.edu/~liub/FBS/NLP-handbook-sentiment-analysis.pdf
http://www.cs.uic.edu/~liub/FBS/EMNLP-camera-ready.pdf
http://www.cs.uic.edu/~liub/FBS/EMNLP-camera-ready.pdf
http://www.cs.uic.edu/~liub/FBS/IJCAI-09-Qiu-camera-ready.pdf
http://www.cs.uic.edu/~liub/FBS/IJCAI-09-Qiu-camera-ready.pdf
http://www.cs.uic.edu/~liub/FBS/KDD2009_entity-final.pdf
http://www.cs.uic.edu/~liub/FBS/KDD2009_entity-final.pdf
http://www.cs.uic.edu/~liub/FBS/opinion-mining.pdf
http://www.cs.uic.edu/~liub/FBS/Coling-2008-camera-ready.pdf
http://www.cs.uic.edu/~liub/FBS/Coling-2008-camera-ready.pdf
http://www.cs.uic.edu/~liub/FBS/opinion-mining-final-WSDM.pdf
http://www.cs.uic.edu/~liub/FBS/opinion-mining-final-WSDM.pdf

59

and Data Mining (WSDM-2008), Feb 11-12, 2008, Stanford University, Stanford,

California, USA.

29. Xiaowen Ding and Bing Liu. "The Utility of Linguistic Rules in Opinion

Mining." SIGIR-2007 (poster paper), 23-27 July 2007, Amsterdam.

30. Nitin Jindal and Bing Liu. "Identifying Comparative Sentences in Text

Documents" Proceedings of the 29th Annual International ACM SIGIR Conference on

Research & Development on Information Retrieval (SIGIR-06), Seattle 2006.

31. Nitin Jindal and Bing Liu. "Mining Comprative Sentences and Relations." Proceedings of

21st National Conference on Artificial Intellgience (AAAI-2006), July 16.20, 2006,

Boston, Massachusetts, USA.

32. Bing Liu, Minqing Hu and Junsheng Cheng. "Opinion Observer: Analyzing and

Comparing Opinions on the Web"Proceedings of the 14th international World Wide Web

conference (WWW-2005), May 10-14, 2005, in Chiba, Japan.

33. Minqing Hu and Bing Liu. "Mining Opinion Features in Customer

Reviews." Proceedings of Nineteeth National Conference on Artificial Intellgience

(AAAI-2004), San Jose, USA, July 2004.

34. Minqing Hu and Bing Liu. "Mining and summarizing customer reviews." Proceedings of

the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining

(KDD-2004, full paper), Seattle, Washington, USA, Aug 22-25, 2004.

http://www.cs.uic.edu/~liub/publications/depOpinion-2007.pdf
http://www.cs.uic.edu/~liub/publications/depOpinion-2007.pdf
http://www.cs.uic.edu/~liub/publications/sigir06-comp.pdf
http://www.cs.uic.edu/~liub/publications/sigir06-comp.pdf
http://www.cs.uic.edu/~liub/publications/aaai06-comp-relation.pdf
http://www.cs.uic.edu/~liub/publications/www05-p536.pdf
http://www.cs.uic.edu/~liub/publications/www05-p536.pdf
http://www.cs.uic.edu/~liub/publications/aaai04-featureExtract.pdf
http://www.cs.uic.edu/~liub/publications/aaai04-featureExtract.pdf
http://www.cs.uic.edu/~liub/publications/kdd04-revSummary.pdf

 60

