DESIGN OF A MULTISTOREYED BUILDING AND

ITS FOUNDATION (Isolated footing)

May 2014

Submitted in partial fulfillment of the Degree of Bachelor of Technology

Department of Civil Engineering
Jaypee University of Information Technology,
Wakhnaghat

Table of Contents:

1. Certificate 3
2. Acknowledgement
3. Introduction

Part A - Superstructure

Overview of structural elements :

- Beam
- Column
- Slab

Loads:

- Dead load
- Live load
- Wind load

$$
\text { Part B-Sub structure } \quad 9
$$

Shallow foundation-

- Isolated footings
- Meyerhof equation

4. Construction Site 15
5. Designing Idealised soil profile 17
6. Analysing the structure via Staad Pro v8i 26
7. Calculation of Bearing capacity and RCC design 41
8. Appendix 48
9. References 64

Declaration

I hereby declare that the work entitled "Design of a multistoreyed building and its foundation (Isolated footing)" submitted to "Jaypee University of Information Technology" is a record of an original work done by me under the guidance of Dr.S.K.Jain and Mr. Lav Singh and this project work has not performed the basis for the award of any other degree or any other project of any kind.

Rupinder Kumar
Roll no. 101618

CERTIFICATE

This is to certify that the work titled "Design of a multistoreyed building and its foundation" submitted by "Rupinder Kumar" in partial fulfillment for the award of degree of B. Tech. of Jaypee University of Information Technology, Waknaghat has been carried out under my supervision. This work has not been submitted partially or wholly to any other University or Institute for the award of this or any other degree or diploma.

Signature of Supervisor \qquad Signature of Supervisor \qquad

Name of Supervisor
Name of Supervisor \qquad

Designation \qquad Designation

Date \qquad Date

Signature of Supervisor \qquad

Name of Supervisor \qquad

Designation \qquad

Date \qquad

Acknowledgement

I take this opportunity to express my profound gratitude and deep regards to my guide Dr.S. K. Jain and Mr. Lav Singh for their exemplary guidance, monitoring and constant encouragement throughout the course of this thesis. The blessing, help and guidance given by them, time to time shall carry me a long way in the journey of life on which I am about to embark.

I also take this opportunity to express a deep sense of gratitude to the Head of department (HOD) of Civil engineering Dr. Ashok Kumar Gupta for his cordial support, valuable information, guidance and opportunities that he provided throughout my degree which helped me in completing this task through various stages as well as realising my true potential through the course of time.

Signature of the student

Name of Student

Date

Literature Review:

Part A : Superstructure

- Structural Elements:

1.Beam

A beam is a structural element that is capable of withstanding load primarily by resisting bending. The bending force induced into the material of the beam as a result of the external loads, own weight, span and external reactions to these loads is called a bending moment.
Beams generally carry vertical gravitational forces but can also be used to carry horizontal loads (i.e., loads due to an earthquake or wind). The loads carried by a beam are transferred to columns, walls, or girders, which then transfer the force to adjacent structural compression members. In light frame construction the joists rest on the beam.

Types of Beams-

1. simply supported beam
2. fixed beam
3. over hanging beam
4. continuous beam
5. cantilever beam

General Shapes:

Most beams in reinforced concrete buildings have rectangular cross sections, but a more efficient cross section for a beam is an I or H section which is typically seen in steel construction. Because of the parallel axis theorem and the fact that most of the material is away from the neutral axis, the second moment of area of the beam increases, which in turn increases the stiffness.

2.Column:

Column is a structural element that transmits, through compression, the weight of the structure above to other structural elements below. In other words, a column is a compression member. The term column applies especially to a large round support with a capital and base and made of stone, or appearing to be so. A small wooden or metal support is typically called a post, and supports with a rectangular or other non-round section are usually called piers. For the purpose of wind or earthquake engineering, columns may be designed to resist lateral forces. Other compression members are often termed "columns" because of the similar stress conditions. Columns are frequently used to support beams or arches on which the upper parts of walls or ceilings rest.

3. Slab :

A slab is a common structural element of modern buildings. Horizontal slabs of steel reinforced concrete, typically between 100 and 500 millimeters thick, are most often used to construct floors and ceilings, while thinner slabs are also used for exterior paving. In many domestic and industrial buildings a thick concrete slab, supported on foundations or directly on the subsoil, is used to construct the ground floor of a building. These can either be "ground-bearing" or "suspended" slabs. In high rise buildings and skyscrapers, thinner, pre-cast concrete slabs are slung between the steel frames to form the floors and ceilings on each level.

Reinforcement design :

A one way slab needs moment resisting reinforcement only in its short-direction because the moment along long axes is so small that it can be neglected. When the ratio of the length of long direction to short direction of a slab is greater than 2 it can be considered as a one way slab.
A two way slab needs moment resisting reinforcement in both directions. If the ratio of the lengths of long and short side is less than two then movement in both direction should be considered in design.

- LOADS :

1. Dead Loads -

Dead loads are static forces that are relatively constant for an extended time. They can be in tension or compression. The term can refer to a laboratory test method or to the normal usage of a material or structure.

The dead load includes loads that are relatively constant over time, including the weight of the structure itself, and immovable fixtures such as walls, plasterboard or carpet. Roof is also a dead load. Dead loads are also known as Permanent loads.

The designer can also be relatively sure of the magnitude of dead loads as they are closely linked to density and quantity of the construction materials. These have a low variance and the designer is normally responsible for specifying these components.

2.Live Loads :

Live loads are usually unstable or moving loads. These dynamic loads may involve considerations such as impact, momentum, vibration, slosh dynamics of fluids, etc. An impact load is one whose time of application on a material is less than one-third of the natural period of vibration of that material.

Live loads, or imposed loads, are temporary, of short duration, or moving. These dynamic loads may involve considerations such as impact momentum vibration slosh dynamics of fluids, fatigue, etc.
Live loads, sometimes also referred to as probabilistic loads include all the forces that are variable within the object's normal operation cycle not including construction or environmental loads.

Roof and Floor and materials, and

1. during the life of the structure by movable objects such as planters and by people.
2. Bridge live loads are produced by vehicles traveling over the deck of the bridge.

3. Wind Loads :

The force on a structure arising from the impact of wind on it. The force on a structure arising from the impact of wind on it.

$\underline{\text { Part B : Sub structure }}$

Shallow foundations:

Shallow foundations are a type of foundation that transfers building load to the very near the surface, rather than to a subsurface layer. Shallow foundations typically have a depth to width ratio of less than 1.

Footings:

Footings (often called "spread footings" because they spread the load) are structural elements which transfer structure loads to the ground by direct areal contact. Footings can be isolated footings for point or column loads, or strip footings for wall or other long (line) loads. Footings are normally constructed from reinforced concrete cast directly onto the soil, and are typically embedded into the ground to penetrate through the zone of frost movement and/or to obtain additional bearing capacity.

Geotechnical investigation:

Geotechnical engineers perform geotechnical investigations to obtain information on the physical properties of soil and rock underlying (and sometimes adjacent to) a site to design earthworks and foundations for proposed structures, and for repair of distress to earthworks and structures caused by subsurface conditions. A geotechnical investigation will include surface exploration and subsurface exploration of a site. Sometimes, geophysical methods are used to obtain data about sites. Subsurface exploration usually involves in-situ testing (two common examples of in-situ tests are the standard penetration test and cone penetration test). In addition site investigation will often include subsurface sampling and laboratory testing of the soil
samples retrieved. The digging of test pits and trenching (particularly for locating faults and slide planes) may also be used to learn about soil conditions at depth. Large diameter borings are rarely used due to safety concerns and expense, but are sometimes used to allow a geologist or engineer to be lowered into the borehole for direct visual and manual examination of the soil and rock stratigraphy.

A variety of soil samplers exist to meet the needs of different engineering projects. The standard penetration test (SPT), which uses a thick-walled split spoon sampler, is the most common way to collect disturbed samples. Piston samplers, employing a thin-walled tube, are most commonly used for the collection of less disturbed samples. More advanced methods, such as ground freezing and the Sherbrooke block sampler, are superior, but even more expensive. Atterberg limits tests, water content measurements, and grain size analysis, for example, may be performed on disturbed samples obtained from thick walled soil samplers. Properties such as shear strength, stiffness hydraulic conductivity, and coefficient of consolidation may be significantly altered by sample disturbance. To measure these properties in the laboratory, high quality sampling is required. Common tests to measure the strength and stiffness include the triaxial shear and unconfined compression test.

Surface exploration can include geologic mapping, geophysical methods, and photogrammetry; or it can be as simple as an engineer walking around to observe the physical conditions at the site. Geologic mapping and interpretation of geomorphology is typically completed in consultation with a geologist or engineering geologist.

Geophysical exploration is also sometimes used. Geophysical techniques used for subsurface exploration include measurement of seismic waves(pressure, shear, and Rayleigh waves), surface-wave methods and/or downhole methods, and electromagnetic surveys (magnetometer, resistivity, and ground-penetrating radar).

Theoritical terms used in the design of idealised soil profile :

Liquid limit- It is the water content at which soil changes from liquid state to plastic state. At this water content, a soil sample changes from possessing no shear strength to having infinitesimal shear strength.

Plastic Limit- It is water content at which a soil changes from plastic to a semisolid state.

Plasticity Index (Ip) - It is the range of moisture content over which a soil exhibits plasticity.

$$
\text { Ip }=(\text { Liquid Limit }- \text { Plastic limit })
$$

Ip	Soil description
0	Non plastic
<7	Low plastic
$7-17$	Medium plastic
>17	Highly plastic

Consistency index - It tells us how far a soil is from its liquid state.

$$
\begin{aligned}
\mathrm{i}_{\mathrm{c}} & =(\text { Liquid Limit-Natural water content }) / \text { Plasticity Index } \\
& =\left(\mathrm{W}_{\mathrm{L}}-\mathrm{W}_{\mathrm{n}}\right) / \mathrm{I}_{\mathrm{p}}
\end{aligned}
$$

Description	Ic
Very soft	$0-0.25$
soft	$0.25-0.50$
Medium stiff	$0.50-0.75$
stiff	$0.75-1.0$

Calculation of Bearing Capacity using Meyerhoff equation:

$\mathrm{Q}_{\mathrm{u}}=C \mathrm{~N}_{\mathrm{c}} \mathrm{S}_{\mathrm{c}} \mathrm{d}_{\mathrm{c}} \mathrm{i}_{\mathrm{c}}+\mathrm{q} \mathrm{N}_{\mathrm{q}} \mathrm{S}_{\mathrm{q}} \mathrm{d}_{q} \mathrm{i}_{q}+0.5 \Upsilon \mathrm{~B} \mathrm{~N}_{r} \mathrm{~S}_{r} \mathrm{~d}_{\mathrm{r}} \mathrm{i}_{r}$
where
s - stand for empirical correction factor called the shape factor,
d- depth factor,
i- inclination factor.

Table 4-4 Bearing-capacity factors for the Meyerhof and Hansen bearing-capacity equations
Note that N_{c} and N_{q} are same for both equations

ϕ, deg	N_{c}	N_{q}	$N_{\gamma(H)}$	N_{q} / N_{c}	$2 \tan \phi(1-\sin \phi)^{2}$	$N_{\gamma(M)}{ }^{*} V^{2}$
0	5.14	1.0	0	0.19	0	0
5	6.5	1.6	0.1	0.24	0.15	0.1
10	8.3	2.5	0.4	0.30	0.24	0.4
15	11.0	3.9	1.2	0.36	0.29	1.1
20	14.8	6.4	2.9	0.43	0.32	2.9
25	20.7	10.7	6.8	0.51	0.31	6.8
30	30.1	18.4	15.1	0.61	0.29	15.7
35	46.1	33.3	33.9	0.72	0.25	37.1
40	75.3	64.2	79.5	0.85	0.21	93.7
45	133.9	134.9	200.8	1.01	0.17	262.7
50	266.9	319.0	568.5	1.20	0.13	873.7
* $N_{\gamma(M)}=$ Meyerhof value.						

Other formulas used in the Design-

$\mathrm{P}_{\mathrm{u}}=0.4 \mathrm{fck} \mathrm{Ac}_{\mathrm{c}}+0.67 \mathrm{fy}_{\mathrm{y}} \mathrm{A}_{\mathrm{sc}}$

Where $\mathrm{Pu}=$ axial load on the member,
fck $=$ characteristic compressive strength of the concrete,
$\mathrm{Ac}=$ Area of concrete,
fy $=$ characteristic strength of the compression reinforcement, and
Asc $=$ area of longitudinal reinforcement for columns.

$\mathbf{T v}=\mathrm{Vu} / \mathrm{bd}$

Where $\mathrm{Tv}=$ Nominal shear stress
$\mathrm{Vu}=$ Shear force due to design loads
$\mathrm{d}=$ effective depth
$\mathrm{b}=$ width of the footing

Construction Site :

MATERIALS, METHODS AND METHODOLOGIES

Materials :

The detailed site investigation data has been provided. The site investigation involved geotechnical drilling, sampling and laboratory testing.

Data provided includes:

- Plan of boring
- Boring logs
- Laboratory test data
- In situ test data

Methods and Methodologies:

For the design of the superstructure, Staad-Pro is used. The design is done according to the Limit state method. The load computations is done automatically by the software.

To find the bearing capacity of soil, various properties of soil are looked into and an idealised soil profile is created. The soil profile is drawn on drawing sheets so as to better look into the soil properties.

Using the soil properties and the load data provided by staad pro is used in the RCC design.

Designing Idealised Soil profile :

Soil profile refers to the layers of soil horizon such as the top soil, subsoil and bed rock layer but from a geotechnical engineers perspective it is a much detailed illustration of different layers formed by different type of soil such as clay, silt, sand etc.

Looking into the data of bore logs given, we created three soil profiles by analyzing for various features like depth, water table, stratum description and other information. We took step by step procedure as follows:

1. Selecting the section for which we are going to make the soil profile.
2. Using a ruler to measure the distance between two consecutive bore holes along the section that we have chosen. Taking the scale given in the plan and finding the exact distance between the bore holes.

Scale for the given plan:

$$
1 \mathrm{~cm}=70.58 \mathrm{ft}=21.51 \mathrm{~m}
$$

3. Choosing an appropriate scale (both horizontal and vertical) for our drawing sheet.

Scale for our drawing sheet

- Vertical scale $1 \mathrm{~cm}=2 \mathrm{ft}$
- Horizontal scale

$$
1 \mathrm{~cm}=10 \mathrm{ft}
$$

4. Drawing the bore log data on the sheet.
5. After all data has been plotted, some rough indication of the profile will come into picture.
6. Joining all the layers having same soil type and creating lenses too. This was done for all the three sections that we have chosen.
7. When all the three sections are done, an idealized soil profile is created by comparing and averaging the values of depth in each section and ignoring all the insignificant layers like lenses and all.
8. The depth of each layer is found by arithmetically averaging all the similar layers in each section. Some of the matchless soil layers and lenses are ignored.

Soil Parameters :

The computations of soil parameters are done by drawing the graph of each parameter against depth. After the graph is drawn, the value of different soil parameters like density, liquid limit, shear strength, etc. for each layer in the idealized soil profile are found by drawing the best fit line.

Dry Unit weight vs Depth

Water content, Liquid Limit, Plastic Limit and Plasticity Index Vs Depth

Depth vs Shear strength

Computation for Cc :

Liquid Limit (x axis, \%)

Elevation (y axis, ft)

The approximate Liquid limit at the desired depth is computed by interpolation after plotting the graph between elevation and water content. Cc can then be calculated by using that water content value using formula $\mathrm{Cc}=0.009\left(\mathrm{w}_{1}-10\right)$

Idealised soil profile :

unit weights		$\mathrm{C}_{u}=60 \mathrm{KN} / \mathrm{m}^{2}$	Depth 0 m 0.3 m
17 KN/m3	Sandy Silt		
$18 \mathrm{KN} / \mathrm{m} 3$	Sandy Clay	$\mathrm{C}_{u}=40 \mathrm{KN} / \mathrm{m}^{2}$	${ }_{3.3 \mathrm{~m}}$
	∞	$<$ Water level	4.8 m
16 KN/m3	Clay	$\mathrm{C}_{u}=75 \mathrm{kN} / \mathrm{m}^{2}$	
15 KN/m3	Sandy Silt	$\mathrm{C}_{u}=45 \mathrm{kN} / \mathrm{m}^{2}$	${ }_{88} \mathrm{~m}$
16 KN/m3	Clay	$\mathrm{Cu}_{u}=75 \mathrm{kN} / \mathrm{m}^{2}$	113
	Rock Stratum		

Design of superstructure :

Dimensions :

- Cross section of the building: $60 x 60 \mathrm{~m}$
- Length of the beam: 10 m
- Height of the column: 5 m
- Plinth level: 1.5 m
- Cross section of the beam (Used in STAAD PRO) : 400x400mm
- Cross section of the column(Used in STAAD PRO): 500x500mm

Various loads acting on the superstructure :
Imposed load or Live Load : Imposed load in our case is taken on the basis of occupancy. Our building is a commercial building.

From IS 875-part 2, we took the imposed load for commercial building as $5 \mathrm{kN} / \mathrm{m}^{2}$.
NOTE: We have not taken snow and rain load, so to compensate these loads and to accommodate processes like expansion of concrete etc. we have taken the same maximum value of imposed load even on the roof top.

Dead load: Regarding input of dead load in STAAD PRO, it can be done automatically but for the manual considerations we use the following method:

Unit weight of concrete: $25 \mathrm{kN} / \mathrm{m}^{3}$
Dead load of an element: 25 x section of element
Wind load : Wind load is applied to take in account the static and dynamic effects of wind forces on the structures. Wind load will be estimated taking in account the variation in the wind speed with time. the effect of wind on the structure is determined by the combined action of external and internal pressures acting upon it.

Wind load is calculated in accordance to the IS:875-part3.Firstly,design wind speed is calculated using the following formula:

$$
\mathrm{V}_{\mathrm{z}}=\mathrm{V}_{\mathrm{b}} * \mathrm{k}_{1} * \mathrm{k}_{2} * \mathrm{k}_{3}
$$

Where,
$\mathrm{V}_{\mathrm{z}}=$ design wind speed at any height z in m / s;
$\mathrm{k}_{1}=$ probability factor;
$\mathrm{k}_{2}=$ terrain height and structure size factor;
$\mathrm{k}_{3}=$ topography factor;
$\mathrm{V}_{\mathrm{b}}=$ basic wind speed.
Using above formula and evaluating the values of $\mathrm{k} 2, \mathrm{k} 2, \mathrm{k} 3$ and Vb , the value of design speed can be calculated. The wind pressure is given by

$$
\mathrm{P}_{\mathrm{z}}=0.6 \mathrm{~V}_{\mathrm{z}}^{2}
$$

The plan of boring given to us is from Houston, Texas. From the figure we got the average wind speed of Houston as around 8 mph which is $3.575 \mathrm{~m} / \mathrm{s}$. We took the Terrain Category as 3 and Class as C and we computed the wind intensity in excel sheet as follows:

Height (m)	K_{1}	$\mathrm{~K}_{2}$	$\mathrm{~K}_{3}$	$\mathrm{~V}_{\mathrm{b}}(\mathrm{m} / \mathrm{s})$	$\mathrm{V}_{\mathbf{z}}(\mathrm{m} / \mathrm{s})$	$\mathrm{P}_{2}(\mathrm{kN} / \mathrm{m} 2)$
10	1	0.82	1	3.575	2.932	0.0052
15	1	0.88	1	3.575	3.146	0.0059
20	1	0.91	1	3.575	3.253	0.0064
25	1	0.96	1	3.575	3.432	0.0071

Analysing the structure via Staad Pro :

Isometric view

SIDE VIEW

TOP VIEW

Dead load or self weight

Live load

$\underline{\text { Wind load }}$

Maximum relative displacements corresponding to selected beams as shown

Analysis for frame via staad pro v8i :

Reaction at supports due to loading :

跨
Modeling Postprocessing Steel Design | Concrete Desion| RAM Connection| Bridge Deck| Advanced Slab Design | Piping

	Beam	L/C	Node	$\begin{aligned} & \text { Fx } \\ & \text { kN } \end{aligned}$	$\begin{aligned} & \text { Fy } \\ & \text { kN } \end{aligned}$	$\begin{aligned} & \mathrm{Fz} \\ & \mathrm{kN} \end{aligned}$	$\begin{gathered} \mathrm{Mx} \\ \mathrm{kNm} \end{gathered}$	My kNm	Mz kNm
Max Fx	101	1 LOAD CAS	61	1824.325	-0.195	-0.195	-0.000	0.254	-0.254
Min Fx	246	2 LOAD CAS	188	-1.202	63.066	0.000	-0.940	-0.003	105.642
Max Fy	57	2 LOAD CAS	55	2.937	127.371	-0.001	-0.208	0.002	213.860
Min Fy	293	2 LOAD CAS	55	2.937	-127.371	0.001	0.208	0.002	213.860
Max Fz	20	2 LOAD CAS	2	737.172	7.983	97.546	-0.024	-38.131	5.226
Min Fz	258	2 LOAD CAS	174	737.167	-7.983	-97.546	-0.024	38.131	-5.226
Max Mx	288	2 LOAD CAS	22	2.867	61.245	0.001	1.915	-0.003	94.500
Min Mx	252	2 LOAD CAS	195	2.867	63.755	-0.001	-1.915	0.005	107.055
Max My	34	2 LOAD CAS	23	243.609	2.942	46.532	-0.006	130.973	-9.241
Min My	272	2 LOAD CAS	195	243.606	-2.937	-46.526	-0.005	-130.960	9.227
Max Mz	57	2 LOAD CAS	55	2.937	127.371	-0.001	-0.208	0.002	213.860
Min Mz	234	2 LOAD CAS	168	243.609	46.532	2.942	0.006	9.241	-130.973

Summaryof beam analysis (Both vertical and horizontal)

			Shear		Membrane			Bending Moment		
	Plate	L/C	$\begin{aligned} & \hline \text { SQX (local) } \\ & \mathrm{N} / \mathrm{mm} 2 \end{aligned}$	$\begin{gathered} \hline \text { SQY (local) } \\ \mathrm{N} / \mathrm{mm} 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { SX (local) } \\ \mathrm{N} / \mathrm{mm} 2 \\ \hline \end{gathered}$	SY (local)	$\begin{gathered} \hline \text { SXY (local) } \\ \text { N/mm2 } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Mx} \\ \mathrm{kNm} / \mathrm{m} \end{gathered}$	$\begin{gathered} \mathrm{My} \\ \mathrm{kNm} / \mathrm{m} \end{gathered}$	$\begin{gathered} \mathrm{Mxy} \\ \mathrm{kNm} / \mathrm{m} \end{gathered}$
Max Qx	411	2 LOAD CAS	0.005	0.001	-0.021	-0.019	0.000	1.957	0.118	-0.055
Min Qx	406	2 LOAD CAS	-0.005	0.001	-0.021	-0.019	-0.000	1.958	0.118	0.055
Max Qy	420	2 LOAD CAS	-0.001	0.005	-0.019	-0.021	-0.000	-0.118	-1.958	-0.055
Min Qy	404	2 LOAD CAS	-0.001	-0.005	-0.019	-0.021	0.000	0.118	1.957	-0.055
Max Sx	442	2 LOAD CAS	-0.001	0.001	0.009	0.009	0.000	-0.766	-0.766	-0.166
Min Sx	478	2 LOAD CAS	0.002	-0.002	-0.032	-0.032	-0.002	0.648	0.648	0.127
Max Sy	467	2 LOAD CAS	0.001	-0.001	0.009	0.009	0.000	-0.766	-0.766	-0.166
Min Sy	478	2 LOAD CAS	0.002	-0.002	-0.032	-0.032	-0.002	0.648	0.648	0.127
Max Sx	508	2 LOAD CAS	0.002	0.002	-0.032	-0.032	0.002	0.648	0.648	-0.127
Min Sx	503	2 LOAD CAS	-0.002	0.002	-0.032	-0.032	-0.002	0.648	0.648	0.127
Max Mx	412	2 LOAD CAS	-0.005	-0.000	-0.021	-0.019	-0.000	1.967	0.368	-0.011
Min Mx	431	2 LOAD CAS	0.005	0.000	-0.021	-0.019	-0.000	-1.967	-0.368	0.011
Max My	402	2 LOAD CAS	-0.000	-0.005	-0.019	-0.021	-0.000	0.368	1.966	-0.012
Min My	422	2 LOAD CAS	-0.000	0.005	-0.019	-0.021	0.000	-0.368	-1.967	-0.011
Max Mx	405	2 LOAD CAS	0.003	-0.003	-0.022	-0.022	-0.000	1.830	1.830	0.316
Min Mx	400	2 LOAD CAS	-0.003	-0.003	-0.022	-0.022	0.000	1.830	1.830	-0.315

Summary of slab analysis

Design of Beam no. 57

Bending and deflection :

Design of Slab no. 412:

Princ Stress and Disp		Comer Stresses		
Geometry	Property Constants Plate No: 412			Center Stresses
$78 \quad 79$		Physical Properties		
			Node	$\begin{gathered} \text { Thickness } \\ \mathrm{m} \end{gathered}$
-	\times		78	0.200000002
			79	0.200000002
			107	0.200000002
106	107		106	0.200000002
			Assign/	Change Property
Material Properties				
Elasticity(kN/mm2)	21.7185	Density $(\mathrm{kg} / \mathrm{m} 3)$	2402.61	45:
Poisson	0.17	Alpha	1e-005	CONCRETE
				Assign Material

Princ Stress and Disp			Comer Stresses		
Geometry		Property Constants		Center Stresses	
	Plate No: 412				
78 79 $\boxed{90}$ 106 107		Node	$\underset{~}{\mathrm{x}}$	Y m	$\begin{array}{l\|l} \mathbf{Y} & Z \\ \mathbf{n} & \mathrm{~m} \end{array}$
		78	0	11.5	20
		79	10	11.5	20
		107	10	11.5	30
		106	0	11.5	30
Edge Lengths \& Area					
	$A B$		C	D	DA
Length (m)	10	10	10		10
Area (cm2)	1000000				
Plate Spec:					

A. Calculation of Bearing Capacity using Meyerhof

 equation:$\mathrm{Qu}={ }_{c} \mathrm{~N}_{\mathrm{c}} \mathrm{S}_{\mathrm{c}} \mathrm{d}_{\mathrm{c}} \mathrm{i}_{\mathrm{c}}+\mathrm{q} \mathrm{N}_{\mathrm{q}} \mathrm{S}_{\mathrm{q}} \mathrm{d}_{\mathrm{q}} \mathrm{i}_{\mathrm{q}}+0.5 \Upsilon \mathrm{~B} \mathrm{~N}_{\mathrm{r}} \mathrm{S}_{\mathrm{r}} \mathrm{d}_{\mathrm{r}} \mathrm{i}_{\mathrm{r}}$
Here, $\varnothing=0$
(as clay deposits)
Corresponding to angle of internal friction,
$\mathrm{N}_{\mathrm{c}}=5.14, \quad \mathrm{~N}_{\mathrm{q}}=1, \quad \mathrm{~N}_{\mathrm{r}}=0$
(Table 15.2 Ranjan and Rao)

Finding Cohesion (weighed) :
(Cu) weighed $=(60 \times 3)+(40 \times 3)+(75 \times 4.5)$
7.8
$\left(\mathrm{C}_{\mathrm{u}}\right)_{\text {weighed }}=60.96 \mathrm{KN} / \mathrm{m}^{2}$
$q=(17 \times 0.3)+(18 \times 1.5)=32.1 \mathrm{KN} / \mathrm{m}^{2}$
$\mathrm{S}_{\mathrm{c}}=1+0.2 \mathrm{~B} / \mathrm{L} \tan ^{2}(45+\varnothing / 2)$
(From Table 15.3 Ranjan And Rao)
As it is a square footing, $s_{c}=1.2$
Similarly, values of other factors are-
$\mathrm{d}_{\mathrm{c}}=1.2, \mathrm{~S}_{\mathrm{q}}=1, \mathrm{~d}_{\mathrm{q}}=1, \mathrm{i}_{\mathrm{q}}=1$
$\mathrm{i}_{\mathrm{c}}=(1-\alpha / 90)^{2}=1 \quad$ as $\alpha=0$
Putting all these values in Meyerhof equation, we get
$q_{u}=((60.96)(5.14)(1.2)(1.2)(1))+(32.1 \times 1 \times 1 \times 1)$
$\mathrm{qu}=483.3 \mathrm{KN} / \mathrm{m}^{2}$
After applying a factor of safety, $q_{u}=483.3 / 1.5=322.2 \mathrm{KN} / \mathrm{m}^{2}$

$$
q_{u}=322.2 \mathrm{KN} / \mathrm{m}^{2}
$$

B. Choosing the size of footing :

We take the column with maximum load which is 4284.52 KN which can be approximately taken as 4300 KN (obtained from Staad Pro)

Allowing for 10% self weight of the soil, total load is $=4300 \times 1.1=4730 \mathrm{KN}$
Therefore, 4730/ $\mathrm{qu}_{\mathrm{u}}=4730 / 322.2=14.68$
Or $B^{2}=14.68$
Or $\mathrm{B}=3.83 \mathrm{~m}$ which can be taken as 4 m
Therefore, providing a footing area of $4 \times 4 \mathrm{~m}$
Net upward pressure in soil $=4300 / 16=268.75<322.2$
Therefore, SAFE

C(i). Depth from Bending moment consideration:

$(4000-500) / 2=1750 \mathrm{~mm}$
Maximum Bending Moment $=\left(268.75 \times 10^{3}\right) \times 4 \times 1.75 \times(1.75 / 2)$

$$
=1646093.75 \mathrm{Nm}
$$

1750 mm

Critical section for Bending moment

Factored moment, $\mathrm{Mu}=1.5 \times \mathrm{M}$

$$
\begin{aligned}
& \mathrm{Mu}=1.5 \times 1646093.75 \\
& \mathrm{Mu}=2469140.625 \mathrm{Nm}
\end{aligned}
$$

Equating $\mathrm{M}_{\mathrm{u}, \text { limiting }}$ to M_{u}, we get
$0.138 \mathrm{f}_{\mathrm{ck}} \mathrm{bd}^{2}=0.138 \times 20 \times 500 \times \mathrm{d}^{2}=2469140.625 \times 10^{3}$

$$
\mathrm{d}=(1789232.337)^{0.5}=1337.62 \mathrm{~mm} \quad \text { which can be taken as } \mathrm{d}=1338 \mathrm{~mm}
$$

Providing 12mm dia bars at a clear cover of 60 mm
Effective cover to upper layer of bars $=60+12+6=78 \mathrm{~mm}$
Overall depth required $=1338+78=1416 \mathrm{~mm}$
The depth is increased by 30% to limit the shear stresses. Therefore,
$1.3 \times 1416=1840.8 \mathrm{~mm}$
Therefore, providing an overall depth of 1850 mm

Actual effective depth, $\mathrm{d}=1850-78=1778 \mathrm{~mm}$

(ii.) Depth from punching load consideration :

Punching load $=$ column load - reaction on column area

$$
\begin{aligned}
& =4300000-\left(\left(268.75 \times 10^{3}\right) \times(0.5)^{2}\right) \\
& =4232812.5 \mathrm{~N}
\end{aligned}
$$

Factored punching load $=1.5 \times 4232812.5$

$$
=6349218.75 \mathrm{~N}
$$

Design punching shear stress for M 20 concrete $=1.8 \mathrm{~N} / \mathrm{mm}^{2}$
Equating punching shear resistance to the punching load, we get $4 \times 500 \times \mathrm{D} \times 1.8=6349218.75$
$\mathrm{D}=1763.67 \mathrm{~mm}$

Therefore, from (1.) and (2.), we have

Providing overall depth $=1770 \mathrm{~mm}$

Actual Effective depth, $\mathrm{d}=1770-78=1692 \mathrm{~mm}$
Now, $\mathrm{M}_{\mathrm{u}} / \mathrm{bd}^{2}=(2469140.625 \times 1000) /\left((1692)^{2} \times 500\right)=1.725$
Therefore, $\%$ of steel required, $P_{t}=50\left(1-\left(1-4.6 M_{u} / f_{c k} b d^{2}\right)^{0.5}\right) /\left(f_{y} / f_{c k}\right)$

$$
\begin{aligned}
& P_{t}=50\left(1-(1-4.6 \times 1.725 / 20)^{0.5}\right) /(415 / 20) \\
& P_{t}=0.538 \%
\end{aligned}
$$

$\mathrm{A}_{\mathrm{st}}=(0.538 \times 500 \times 1692) / 100=4551.48 \mathrm{~mm}^{2}$
No. of bars $=(4551.48) /\left((\pi / 4) \times 15^{2}\right)=25.76 \quad(15 \mathrm{~mm}$ dia bars $)$
Therefore, Providing 26 bars of 15 mm dia

D. Check for shear :

(i.) Check for one- way shear :

The critical section for one-way shear is considered at a distance equal to the effective depth from the face of the column. Let the depth of the footing at the edges be reduced to 500 mm

Therefore, Overall depth at the critical section, $\mathrm{D}^{1}=1770-(((1770-500) / 1750) \times 1692)$

$$
\mathrm{D}^{1}=542.09 \mathrm{~mm}
$$

Effective depth at the critical section, $\mathrm{d}^{1}=542.09-78=464.09 \mathrm{~mm}$
Shear force at the critical section $=\left(268.75 \times 10^{3}\right) \times 4 \times 1$

$$
=1075000 \mathrm{~N}
$$

Factored shear, $\mathrm{V}_{\mathrm{u}}=1.5 \times 1075000=1612500 \mathrm{~N}$
Width of the footing at the top at this critical section, $b^{1}=b+2 d$

$$
\begin{aligned}
& =500+(2 \times 1692) \\
& =3884 \mathrm{~mm}
\end{aligned}
$$

Nominal shear stress at this section, $\Gamma_{v}=V_{u} / b^{1} d^{1}=((1612500) / 3884 \times 1692)$

$$
\Gamma_{\mathrm{v}}=0.245 \mathrm{~N} / \mathrm{mm}^{2}
$$

Area of steel provided $=(\pi / 4) \times 15^{2} \times 26=4594.58 \mathrm{~mm}^{2}$
$\%$ of steel provided $=((4594.58) /(3884 \times 1692)) \times 100=0.07 \%$
Corresponding $\Gamma_{\mathrm{c}}=0.28 \mathrm{~N} / \mathrm{mm}^{2} \quad($ IS 456 :2000)
Therefore, $\Gamma_{\mathrm{v}}<\Gamma_{\mathrm{c}}$

SAFE

(ii.) Check for two way shear :

The critical section for two way shear is taken at the periphery surrounding the column at a distance of half the effective depth from the face of the column.

Overall depth of the footing at a distance $\mathrm{d} / 2=1692 / 2=846 \mathrm{~mm}$ from the column face.

$$
\begin{aligned}
& =1770-(((1770-500) / 1750) \times 846) \\
& =1156.05 \mathrm{~mm}
\end{aligned}
$$

Effective depth at this section , $\mathrm{d}^{1}=1156.05-78=1078.05 \mathrm{~mm}$
Critical perimeter, $b^{1}=4(500+1692)=8768 \mathrm{~mm}$
Shear force at this critical section, $\mathrm{V}=\left(268.75 \times 10^{3}\right)\left(4^{2}-2.192^{2}\right)$

$$
\mathrm{V}=3008692.8 \mathrm{~N}
$$

Factored shear, $\mathrm{V}_{\mathrm{u}}=1.5 \times 3008692.8$

$$
\mathrm{V}_{\mathrm{u}}=4513039.2
$$

Nominal shear stress, $\Gamma_{\mathrm{v}}=(4513039.2) /(8768 \times 1078.05)=0.47745 \mathrm{~N} / \mathrm{mm}^{2}$
$\beta_{c}=($ Shorter side of column section $) /($ longer side of column section $)=500 / 500=1$
$\mathrm{K}_{\mathrm{s}}=0.5+\beta_{\mathrm{c}}=0.5+1=1.5$
But K_{s} should not be greater than 1
Therefore, $\mathrm{K}_{\mathrm{s}}=1$
Permissible design shear strength, $\Gamma_{\mathrm{c}}=\mathrm{K}_{\mathrm{s}} \times 0.25\left(\mathrm{f}_{\mathrm{ck}}\right)^{0.5}$

$$
\begin{aligned}
& =1 \times 0.25 \times(20)^{0.5} \\
& =1.12 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

As $\Gamma_{\mathrm{c}}>\Gamma_{\mathrm{v}}$, therefore $\boldsymbol{O K}$

Appendix:
Data available in form of Borehole logs

LOG OF BORING NO. 1
EXXON COMPUTING CENTER
hOUSTON, TEXAS
plate A-ta

Water First Noticed：N／A
Completion Depth：40．0＇
Type：Wet Rotary

Depth to Water：15．6＇
Caved Depth： 28.6°
Date：August 10， 1001
Backiill：Bentonite Granules

			Location：N 5620 ；E 5249 Suri El． 100.5 Note：Location and Elevation Relative to Temporary Benchmarks Shown on Plate I STRATUMDESCRIPTION			号	号号				
			SANDYSILT，gray								
			SANDY CLAY，stiff，tan and gray	97.5							
											1.2 P
					16	33	13	201		112	
			－with ferrous nodules at 4								1.3 P
			－with calcareous nodules at 6^{\prime}								
			－very stiff below T								1.8 P
			－with sand pockets below 8 ＇		15					116	250
											1.69
				89.5							
			CLAY，very stiff，red and gray －with sand pockets to 16^{\prime}	11.0							
											2.4 P
					26					98	2.8 Q
			－with siltstone nodules at 18 ＇								
			－wher sitstone nocules at 18								2.4 P
					29	73	n	47			
			－with stt pockets below 3								2.5 P
				73.5							
				27.0							
			seams								
		$50 / 1.5$		$\frac{71.0}{205}$							3.9 P
			CLAY，very stiff，red and gray，slickensided －with siltstone nodules to 33^{\prime}	29.5							
											3.6 P
				63.5							
				370							
			ILTMSAND，very deme，red，mie								
		80／6									
				－ 40.0							

Water First Noticed: N/A
Completion Depth: 40.0
Type: Wet Rotary
Depth to Water: 15.9°
Date: August $\bar{\delta}, 1991$
Caved Depti: 20.1
Yyp. Wer
Date: August 9, 1991
Logger: T. Mireles

Backfill: Bentonite Granules

LOG OF BORING NO. 3
EXXON COMPUTING CENTER
HOUSTON, TEXAS
PLATE A-3

PLATE A-4

Watet First Noticed: N/A
Complecion Depth: $30.5^{\circ} \quad$ Date: August 10,1991
Type: Wet Rotary

Logger: T. Mireles
5

		$\begin{aligned} & \frac{\pi}{4} \\ & \frac{1}{ㅁ} \\ & \text { in } \\ & \text { in } \\ & \frac{0}{0} \\ & \frac{1}{4} \end{aligned}$	Location: N 5402 ; E 5380 Suri El, 100.7 Note: Location and Elevation Relative to Temporary Beachmarks Shown on Plate I STRATUM DESCRIPTION				$\left\lvert\, \begin{aligned} & 0 \\ & 6 \\ & 0 \\ & \frac{1}{2} \\ & \frac{1}{2} \\ & \hline \end{aligned}\right.$	$\left.\begin{array}{\|c\|} 6 \\ 60 \\ 0 \\ 4 \times \\ 6 \\ 4 \\ 50 \\ 2 \\ 2 \end{array} \right\rvert\,$			
			SAND Y Silt lighi gray - very stiff sandy cisy to 0.5	99.2							
			SANDY CLAY , verystiff, gray, with sand	1.5							$2.7+$ P
			pockets								
					13						3.9 P
			- tan and gray, below 6^{*}								3.3 P
					14					117	4.60
			- with ferrous nodutes at 8								30 P
				85.7							2.2 P
			CLAY, very stif, red and gray, slickensided	15.0							
			- with calcareous nodules below $18{ }^{*}$		33					89	0.8** Q
											2.2 P
			SILTY CLAY, stiff, red and gray	225							
			SuT cua, sim, red and gay								
											1.2F
				74.7							
				26.0							
			- with sandstone seams below 27								
											3.3 ?
			CLAY very stiff, red and gray silickensided	$-\frac{29.5}{70.2}$							
				30.2							
			* Failed on a slickensided plane								

LOG OF BORING NO. 6
EXXON COMPUTING CENIER
PLATE A-6

Water First Noticed: N/A.
Completion Depth: $30,0^{\circ}$ Date: August 10, 1991
Type: Wet Rotary

Depth to Water: 4.8
Caved Depth: 9.8
Date: August 12, 1991
Backatl: Beatonite Granules

LOG OF BORING NO. 7
EXXON COMPUTING GENTER
HOUSTON, TEXÁS
plate A-7

Water First Noticed: N/A
Completion Depth: 39.0
Type: Wet Rotary

Date: August 9,1991
Logger: T. Mireles

Depth to Water: $14,9^{\prime}$
Caved Depth: 33.6^{\prime}
Date: August 12, 1991
Backfili: Bentonite Granules

PLATE A-8

Water First Noticed：N／A
Completion Depth： 39.0^{\prime}
Completion Depth：
Type：Wet Rotary
Logger：T．Mireles

Date：August 1， 1091

上
亳
点

『

Note：Location and Elevation Relative to Temporary Benchmarks Shown on Plate 1

STRATUM DESCRIPTION
Depth to Water： 15.9^{3}
Caved Depth：31．1＇
Date：August 12， 1991
Backfill：Bentonite Granules

LOG OF BORING NO． 9
EXXON COMPUTING CENTER
HOUSTON，TEXAS
PLATE A－9

Water First Noticed: N/A
Completion Depth: 32.0'
Type: Wet Rotary
Logger: T. Mireles

Date: August 9, 1991

Depth to Water: 7.8'
Caved Depth: 12.4^{3}
Date: August 10, 1991
Backfill: Bentonite Granules

Water First Noticed: N/A Compietion Depth: 29.5 Type: Wet Rotary Logger: T. Mireles

Depth to Water: 14.3
Caved Depth: 19.1^{\prime}
Date: August 12, 1991
Backfil: Bentonite Granules

IOG OF EORING NO. 11
EXXON COMPUTING CENTER

Water First Noticed：N／A
Compietion Depth：31．0＇
Type：Wet Rotary
Loger：T．Mireles

Depth to Water： 14.9
Caved Depth： 18.4^{\prime}
Date：August 10， 1991
Backfill：Bentonite Granules

		Location：N 5777 ；E 5371 Surf El．101．1＇ Note：Location and Elevation Relative to Temporary Benchmarks Shown on Plate 1 STRATUM DESCRIPTION			号号	号				
		SANDYSILT，gray								
		－very stiff sandy clay fill to 0．5，	99.6							
		SAMDYCLAY，stiff，tan and gray，with sand	1.5							1.3 P
		pockets and calcareous nodules		14					119	2.8 U
		－very stiff， $\mathbf{4}^{\prime}$ to $\mathbf{6}^{\prime}$								3.9 P
		－stiff，with ferrous nodules below ${ }^{\prime}$		20						1.6 P
			93.1							
		CLAY，stiff，tan and gray，with sand pockets	8.0							1.2 P
		and calcareous nodules		18.					108	1.2 Q
			90.1							
		SILTY CLAY，stiff，tan and gray，with sit	11.0							
										1.8 P
			86.1							
		CLAY，very stiff，red and gray，sickensided，	15.0							
										3.6 P
										3.9 P
		－silty sand layer， 27 to 27.5								
		SANDSTONE，red，with silt seams	27.5							
			$\begin{array}{r} 29.5 \\ -70.1 \end{array}$							
		pockets and siltstone nodules	$-70.1 \mid$							3.7 P
			31.0							

LOG OF DORING NO． 17

Water First Noticed: -
Completion Depth: 50.0°
Cone. Dry Auger to 10 , Wet Rotary below 10 Logger: T. Mireles

Depth to Water: Caved Depth: --
Date: -
Backfil: Bentonite Granules

References:

- IS 456:2000 (For RCC design)
- IS 6403:1981 (For designing isolated footing)
- 'Basic and Applied Soil Mechanics’ by Ranjan and Rao
- 'Design of Reinforced Concrete structures' by S Ramamrutham
- 'Foundation design, Principles and practices' by Donald P. Coduto.

