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SUMMARY

LC3 Microcontroller is a standard microcontroller which is used in many foreign universities
for various purposes. Little Computer 3 orLC-3, is a type of computer educational
programming language, an assembly language, which 1s a type of low-level programming
language. It features a relatively simple instruction set, but can be used to write moderately
complex assembly programs. We dealt with only a small subset of the possible LC-3
instructions ie. ALU Operations (AND, NOT, ADD) and some Memory Operations.
Moreover, in this project we are going to be working exclusively with an un-pipelined
version of the LC3. The instructions of interest for this project were chosen such that each
one ends in exactly 5 clock cycles. The operation of a microcontroller is controlled by the
contents of the instruction memory. The content read out, called an instruction. is a 16 bit
value which causes the microcontroller to perform a specific function. To help perform the
function, there would be a set of memory locations used to store values that can be shared
between multiple instructions. In case of the LC3, we have 8 such locations, RO — R7 which
can be accessed for reading (using srl and sr2 say) and writing (using dr). LC3 The mam
purpose of this project is to let you start dealing with more complex designs, and become

familiar with some of the elements used within a CPU.
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1.1

CHAPTER 1

An Overview of VLSI

Introduction

The expansion of VLSI is ‘Very-Large-Scale-Integration’. Here the term ‘Integration’ refers
to the complexity of the Integrated circuitry (IC). An IC is a well-packaged electronic circuit
on asmall piece of single crystal silicon measuring few mms by fewmms, comprising active
devices, passive devices and themrinterconnections. The technology of making ICs 1s known
as ‘MICROELECTRONICS’. This is because the size of the devices will be in the range of
micro, submicrometers. The examples include basic gates to microprocessors, op-amps to
consumerelectronic ICs. There i1s so much evolution taken place in the field of
Microelectronics, that the IC industry has the expertise of fabricating an IC successfully with
more than 100 million MOS transistors as of today. ICs are classified keeping many

parameters in mind. Based on the transistors count on the IC, ICs are classified as SSI, MSI,
LST and VLSI. The minimum number of transistors on a VLSTIC is in excess of 40,000.

The concept of IC was conceived and demonstrated by JACK KILBY of TEXAS
INSTRUMENTS at Dallas of USA in the year 1958 .The silicon IC industry has not looked
back since then. A lot of evolution has taken place in the industry and VLSI is the result of
this. This technology has become the backbone of all the other

industries. We will see every other field of science and technology getting benefit out of this.
In fact the advancements that we see in other fields like IT, AUTOMOBILE or MEDICAL,
are because of VLSL This being such mmportant discipline of engineering, there is so much

interest to know more about this. This is the motivation for this course namely ‘VLSI

CIRCUITS’.



1.2 Whatis VLSI ?

1.3

VLSI is ‘Very Large Scale Integration’. It is the process of designing, verifying, fabricating
and testing of a VLSI IC or CHIP. A VLSI chip is an IC, which has transistors in excess of
40,000. MOS and MOS technology alone is used. The active devices used are CMOSFETs.
The small piece of single crystal silicon that is used to build this IC is called a ‘DIE’. The size

of this die could be 1.5cmsx1.5cms.

Complexity
Producing a VLSI chip is an extremely complex task. It has number of design and

verification steps. Then the fabrication step follows. The complexity could be best explained

by what is known as “VLSI design funnel’ as shown in the Fig.1.1.

b Super chip

Fig. 1.1 The VLSI Design funnel

To set up facilities for VLSI one needs a lot of money. Then the design starts at a highest
abstraction in designer’s mind as an initial idea. Engineers using CAD tools further expand
this i1dea. One should have good marketing information also. Then all these are dumped
inside the funnel along with a pile of sand as a raw material to get the wonderful item called

“the VLSI chip’.



1.4 Design

A state of art of VLSI IC will have tens of millions of transistors. One human mind cannot
assimilate all the information that is required to design and 1mplement such complex chip. A
design team comprising hundreds of engineers, scientists and technicians has to work on a
modern VLSI project. It is important that each member of the team has clear understanding of
his or her part of the contribution for the design. This is accomplished by means of the design
hierarchy. Any complex digital system may be broken down into gates and memory elements
by successively subdividing the system in a hierarchical manner. Highly automated and
sophisticated CAD tools are commercially available to achieve this decomposition. They take
very high-level deseriptions of system behavior and convert them into a form that ultimately
be used to specify how a chip is manufactured. A specific set of abstractions will help in
describing the digital system, which 1s targeted for a VLSI chip. These are well depicted n
the Fig.1.2 in a Y-chart. In this figure three distinct domains are marked in three directions in
the form letter Y. These domains are Behavioral, Structural and Physical. The behavioral
domain specifies what a particular system does. The structural domain specifies how entities
are connected together to effect the prescribed behavior (or function). The physical domain
finally specifies how to actually build a structure that has the required connectivity to

implement the required functionality.

BEHAVIORAL DOMAIN STRUCTURAL DOMAIN

“ircuit Abstraction level

ogic Abstraction level

Architectural Abstraction level
PHYSICAL DOMAIN

Fig. 1.2 The Y-Chart



Each design domain may be specified at a various levels of abstraction such as circuit, logic
and architectural. Concentric circles around the center indicate these levels of abstraction.

The design hierarchy is shown in the Fig.1.3 in the form of a flow.

Top desig Syst<.31~n ) Initial Concept
level specifications

:

High-level mode] | ) System design and
VHDL/VERILOG Verification

:

Logic synthesis | | :> Logic design and

l Verification
. : CMOS design and
Circuit design |:> Verification

:

Bott'om Plivsical desion Layoqt. Placement
Design level l Routing
Manufacturing —> Mas§ P deCUOI.l :
Testing. packaging
Finished —> Marketing
VLSI chip

Fig. 1.3 VLSI Design Flow

System specifications: is defined in both general and specific terms, such as functions, speed,
size, etc.
Abstract high-level model: contains information on the behavior of each block and the

interaction among the blocks in the system.



14.1

Logic synthesis: To provide the logic design of the network by specifying the primitive gates
and units needed to build each unit.

Circuit design: where transistors are used as switches and Boolean variables are treated as
vary voltage signals.

Physical design: the network is built on a tiny area on a slice of silicon.

Manufacturing: a completed design process is moved on to the manufacturing line

Hierarchical design

Top-down design

e The initial work is quite abstract and theoretical and there is no direct connection to
silicon until many steps have been completed

e Acceptable in modern digital system design

¢ Co-design with combining HW/SW is critical

¢ Similar to Cell-based Design Flow

Bottom-up design

e Starts at the silicon or circuit level and builds primitive units such as logic gates, adders,
and registers as the first steps.
e Acceptable for small projects.

e Similar to Full-custom Design Flow.

An example of a design hierarchy in Figure 1.4

e An instruction design of a microprocessor
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Fig. 1.4 A simple design flow for a microprocessor

VLSI Chip Types

At the engineering level, digital VLSI chips are classified by the approach used to implement

and build the circuit .

Full-custom Design: where every circuit is custom designed for the project

e Extremely tedious

e Time-consuming process

Application-Specific Integrated Circuits (ASICs): using an extensive suite of CAD tools

that portray the system design in terms of standard digital logic constructs.

¢ Including state diagrams, functions tables, and logic diagram

e Designer does not need any knowledge of the underlying electronics or the physic of the
silicon chip

e Major drawback is that all characteristics are set by the architectural design

Semi-custom Design: between that of a full-custom and ASICs

e Using a group of primitive predefined cells as building blocks, called cell library.



1.6

Concept

VLSI should be thought of as a single discipline that deals with the conception, design and
manufacture of complex ICs. Carver Mead 1s the gentle man who did pioneering work
towards VLSI in 1970s. He came out with the standard definition with regard to the
formation of a MOS transistor on silicon, which states that ‘“when polysilicon cuts across the
diffusion, a transistor 1s formed at the intersection’. Thus he observed that the digital IC could
be viewed as a set of geometrical patterns (polygons) on every layer that is gomg to be
integrated on the silicon surface. Thus an IC will comprise of innumerable polygons of
conducting (metal and polysilicon), semi conducting (silicon) and non-conducting (insulator
such as S102) layers at various levels of integration. Groups of patterns represent different
logic functions and these are replicated throughout the IC. Thus the complexity is broken

down using the concept of repeated patterns that were fitted together in a structured manner.

The size of the transistor has been reducing ever since the concept of IC was conceived since
1958. In 1970 Gordon Moore predicted the growth of microelectronics in terms of number of
transistors that could be fabricated on a chip. He projected that the number of transistors
would get doubled every 18 to 24 months. This has been established as ‘MOORE’S LAW".
The silicon industry is facing a tough challenge to keep the pace with the law. On the other
hand it is not possible to manufacture a functional design because of defects in the silicon
crystal structure that cannot be avoided. The larger the area of the circuit, the higher the
probability that a defect will occur. Even a single bad transistor or connection (because of the
defect) would make the chip unusable. Therefore the philosophy is to keep the overall size of

the chip small.



CHAPTER 2
LC3 Microcontroller Design Specifications

The microcontroller is a sumplified version of the original LC3 microcontroller. Specifically,

four simplifications are considered as follows:
e A smaller instruction set: the ISA vou need to implement does NOT contain the
control mstructions RTT and TRAP. All other instructions must be implemented.
¢ No off-chip memory: The instructions of the program are assumed to be in the cache.

e The programs consist of valid instructions ONLY, i.e., you do not have to perform

error checking to detect bad instructions

¢ No overflow detection is required.

2.1 Top-level module:

To begin, the top level block diagram of LC3 Microcontroller is shown in fig. 2.1

clock
—»
reset
—> cnmplete_data\
AP ) |
f Data dout .f"l
/
instrmem_rd (
et c G
Instruction/ L 3 {
Memoryﬂ d f
Interface | Data_rd
n'.’l
{ complete_instr Data_addr
[ — ﬁ |
' I_macc -y
\4— D_macc
e

Fig. 2.1 Top level block diagram of LC3 microcontroller



The inputs and outputs to this design are:
Inputs:
o clock (1 bit)
o resef (1 bit)
e complete instr or complete (1 bit) : Signal to indicate completion of read/write
e Instr_dout or dout (16 bits) : Corresponds to the instruction from the Instruction

Memory i.e. Data-Out lines from Memory.

Outputs:

¢ PC or addr (16 bits) : This corresponds to an address to the Instruction Memory

¢ instrmem_rd or rd (1 bit) : This signal enables a read from the Instruction Memory for
a fetch. 1.e. Memroy signal to indicate read or write

¢ Data_addr (16 bits) : Corresponds to the address sent to the Data Memory for reads
from it. Ignore

¢ Data_din (16 bits) : Corresponds to the values that need to be written to Data Memory
which would correspond to stores. Ignore

¢ Data_rd (1 bit) : This signal enables a read from the Data Memory. If this signal is 0
then a write to Data Memory is enabled. Ignore

¢ | macc and D_macc : These will be used in the future projects to distinguish between

Instruction and Data memory access phases. Ignore

As stated earlier, we are going to deal with only a smaller subset of the possible LC3
instructions i.e. ALU Operations (AND, NOT, ADD) and the one of the Memory operations
called LEA (Load Effective Address). The reason for the use of this subset 1s to provide an
itroduction to the signals of importance in the datapath of the LC3. Moreover, in this project
we are going to be working exclusively with an un-pipelined version of the LC3.
Additionally, the instructions of interest for this project have been chosen such that each one

ends in exactly 5 clock cycles.
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2.2

Special Signals:

The SimpleL.C3 module should be connected exactly as shown in the schematic. Note that
there is a shared read-line and a shared address-bus for the memory, which means that these
signals will be driven from two sources. In addition, note that VSR2 field (which in this
schematic 1s the least significant 16 bits of the the D_Data signal to the Execute block) goes
mto the MemAccess block as the M_Data signal. All other signals are simple inputs and

outputs.

Controller

Inputs

clock : System clock

reset : System reset

C_Control (7 bits ) : Control from decode

complete : Complete from Memory

Ouputs:

e state (4 bits) : System state

The Controller module is a finite state machine that controls the datatlow and therefore the
execution of all the instructions in the microcontroller. The state transition diagram sketch is
given below, in which the vertices represents states with the corresponding operations
described inside. The transitions are denoted by the edges. The condition of each transition is
determined by the current state and/or input signal C_Control generated by the decoder

module. The C_Control can be broken down further into 4 fields as follows.

5 4 3 2 1 0
| [
Instruction Store Memory Load
Type PC | Access Mode
| |
C_Control

11



The self-pointing edges are used for Project 2 to cope with the memory latency. Such looping
transitions only occur when the complete signal is zero, which never happens in this Project

State transitions occur and only occur at positive edges of the clock signal. When the reset
signal is high, the next-state should be the “Fetch Instruction” state

complete==0
4 \\

|@le L \J\ -

Fetch | / \
\ PC 'In\strumwon/ complete==1 |\ Decode |
i

ALU
Operations

‘ )

_ T mory Access

Memory 7cess| de==0

| Modg==1 |

\. e

N [ 7 | /e
\ *‘

‘ Load==1 | Address

\Read/z ymplelezzo

mory Access
Mode==2

Register |

\Fiky

Fig. 2.3 State transition diagram

2.3 Fetch

Inputs:
o clock (1 bit) : system clock
e teset (1 bit) : system reset

e br taken (1 bit) : signal from decoder. 1 means branch taken
o taddr (16 bits) : target address of control instructions

e state (4 bits) : system state for controller
Outputs:

e pc . npc (16 bits) : current PC and next PC 1.e pe+l

e rd (1 bit) : memory read control signal

12



Fetch module is used to generate the program counter, which contains the address of the
instruction to be fetched. The PC should be updated on the rising edge of the clock. Also, the
PC should be updated only when the system is in the “Update PC” state, as determined by the
Controller block. The signal rd should be high-impedance during the “Read Memory”,
“Write Memory”. and “Indirect Address Read” states, because the MemAccess block will
drive the shared memory bus during these cycles. In all other states, this signal should be
high. pc 1s the memory address and should be high- impedance at the same times that rd is
high-impedance. The first program instruction is located at the address 16°h3000. Therefore,
pc should be set to 16’h3000 when reset i1s high. The block diagram of Fetch module 1s

shown below

1 —
L — & »—{ > npc
0
L
0 0
1 PC
taddr o—— 1 16'h3000 — 1
reset @
br_taken
- clock
state |= Read Memory &8
state [ >— state = Write Memory &&

state != Indirect Address Read

Fig. 2.4 Fetch block

13



The relation among Fetch, Controller, and off-chip memory module is shown below.

Controller
global clock —»| clock

C_Control[5:0] [«——— from Decade
global resel —{ reset

complete -

state[3:0]
global
clock
P state[3:0] clock
global clock —{ clock rd S - rd complete
global raset — reset pef15:0] o - addi[15:0] dout[15:0]
from Execute —| br_taken npel15:0]1 din[15:0]
from Execute —=| taddr{15:0]
Y
to MemAccess
to Writeback A Dioeode
& Execute

from MemAccess

Fig. 2.5 Relation among Fetch, Controller, and off-chip memory

2.4 Execute

Inputs:

e E control (6 bits) : control signals from decode

¢ D data (48 bits) : data from decode

e npec (16 bits) : next pe from fetch

Oufputs:

¢ aluout (16 bits) : output of ALU

epcout (16 bits) : output of the address computation adder

s
Execute module performs the arithmetic and logical instructions, target PC computation, and
memory address computation. The E_Control input is an aggregate of the ALU Operation
Sel, OP 2 Sel, PC Sel 1. and PC Sel 2. The D_Data input is an aggregate of the IR, VSR1
and VSR2 signals. The block diagram is given below with the ALU . Note that overflow

checking is not being done, so the alucarry output of the ALU is ignored.

14



ALU Operation Sel

f

alu_control
VSRY O——aluint aluout — aluout

ALU
[\ aluin2  alucarry
VSR2 [

il

47 2 " 16 15 0
IR VSR1 VSR2
D Data
0P 28l
5 4 3 2 1 0
PC Seld T T
ALU FC |OP2
Operation Sel | C 3T | 5qi2 | sl
| |
extension E Control
imm5 —
offseth ——
IR O—— IR offsetd ———
offsetil ——
trapvectd | 0 — + poout
npe C—
VER1 i
0
PC Sel2

Fig. 2.6 Execute Block

2.5 MemAccess

Inputs :

e state (4 bits) : System State from Controller

e M Control (1 bit) : control signal to indicate address from dout

e M Data ( 16 bits ) : Data for store operations
e M Addr (16 bits ) : Address for load/store operations

e dout ( 16 bits ) : Data — out lines from memory

15




Outputs :
e addr (16 bits ) : Address lines to memory
e din (16 bits ) : Data-in lines to memory

e rd (1 bit ) : Memory signal to indicate read or write

The MemAccess block is the master of the shared memory bus during the Read
Memory, Write Memory, and Read Indirect Address states. Tt should setup the

memory bus lines as follows:

* Read Memory — rd should be 1 and din doesn’t matter. addr should be set to either
M_Addr or dout, depending on M_Control. addr should be set to dout in this state
only if the opcode shows an LDI operation.

+  Write Memory — rd should be 0 and din should be M_Data. addr should be set to
either M_Addr or dout, depending on M_Control. addr should be set to dout in this
state only if the opcode shows an STT operation.

* Read Indirect Address - rd should be 1 and din doesn’t matter. addr should be set to
M_Addr.

The memout signal should always pass the value of dout through to the Writeback block.

2.6 Writeback

Inputs :

¢ aluout, memout, pcout, npc (16 bits ) : Possible data to store
¢ W _Control ( 2 bits) : control signal to choose what will be written
Outputs:

e Dr in (16 bits ) : data that will be stored in the register-file

The Writeback block should set the DR_in lines to the value to be written into the register-

file. This value is selected from the following four choices:

¢ aluout — The output of the ALU in the Execute block

¢ pcout — The computed memory address output of the Execute block

16



¢ npc — The next value of the program counter from the Fetch block

¢ memout — The value read from memory, from the MemAccess block

The W _Control signal will be used to select between these possibilities. The schematic is

shown below.

aluout[15:0] —=
pcout[15:0] —=|
npc[15:0] — |
memout[15:0] —f=

—p DR_in[15:0]

W_Control[1:0]

Fig. 2.7 W_Control Signal

2.7 Decode

Inputs :

e clock ( 1 bit) : Global system clock
e state (4 bits) : System State from Controller
e dout ( 16 bits ) : Data — out lines from memory

¢ DR _in ( 16 bits ) : Data to be written to the Register file
Outputs :

¢ M Control (1 bit) : MemAccess control line

e W_Control (2 bits ) : Writeback control lines

e C_Control (6 bits ) : Controller control lines

¢ E Control ( 6 bits ) : Execute control lines

e D Data ( 48 bits ) : Data for Execute and MemAccess blocks

e F Control ( 1 bit) : Fetch control line

The Decode block contains the logic illustrated in the schematic below. It contfains an

instruction register (IR) that stores the current instruction during the Decode state. It contains

17



a program status register (PSR) that stores the status of the last value written to the register
file (positive, negative, or zero) and is update only on the Update Register File state. Lastly, it
contains a register file that can read two locations on one cycle and write to one location in

the same cycle. However, the register file writes only during the Update Register File state.

Based on the contents of IR and PSR, the decode block generates all of the control signals for
the other blocks (C_Control. M_Control, W_Control. E Control. and F_Control) as well as
the source and destination addresses in the register file (srl, sr2, and dr). Note, however, that
the “mstruction type” field of the C_Control signal must be valid during the Decode state and
will therefore not be valid if this field is computed from the contents of IR. Therefore, the
“mmstruction type” field is computed from the memory output, which makes it valid during the

Decode state (but not necessarily the states after Decode).

instruction T;D‘é‘\ B
decode logic _/
— +—» C_Control[5:0]
[30]
dout[15:0) / \
state[3.0] _— = > \————  M_Control
— ::"Decodve/’—b en/\ I; Main ———® W_Control[1:0]
~— i decode —» E_Control[5:0]
P Y | ™ | o o
_’*‘\Regsler il §/n—r- en \ -
. g |
= [47:32]
/PSR i pdate\ SV V, ¥
N e RegFle
— ¢— D_Dataf47:0]
L sr1[2:0]
[31:16]
- 512[20] VSR1[15:0] =
| 4r2-0] VSR2[15:0] ——
DR_IN[15:0] DR_in[15:0]
\J. en A
. —Update
sl ™\_Regiter Fie'_/

Fig. 2.8 Decode Block

The RegFile block inside the Decode block can be conceptually thought of as the schematic

below. In the schematic, the outputs of eight 16-bit registers fan-out to two 8-to-1 MUXes,

18



which are used to determine the VSR1 and VSR2 signals, depending on the srl and sr2
select lines. The DR_in input fans-out to the data-inputs of all eight registers. Each register
has an enable input that determines if it will load the input value. and these enable inputs are
connected to a 1- to-8 decoder that passes the master enable signal to one register,

depending on the dr input.

DR_in[15:0] sri[2:0]
—» &N RO[16:0] ———
—(cn  R1[160] o
en ——p g . . VSRA1[15:0]
—(en  R716:0] >
dr[2:0] -
—
VSR2{15.0]
B
sr2[2:0]

Fig. 2.9 Schematic of 8 16-bit registers

You may want to implement the RegFile with a memory. rather than eight individual
registers. The code will be much simpler and easy to understand. However, the waveform
capture formats typically don’t store the values in memories. If you want to view the
contents of your register file in a waveform viewer, you may want to have a set of eight
assign statements, such as the following:

assign RO=mem[0];

assign R1=mem[1];

This approach will not affect your synthesis results. You should still get 16<8=128 flip-flops

when synthesizing.
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CHAPTER 3

Implementation and Results
3.1 Fetch Block

3.1.1 Implementation

pcout(15:0) addr(15:0)
state(3:0)

clock npc(15:0)

F_Control

reset

Fig. 3.1 Fetch Block Implementation

3.1.2 Results
Input data :

initial
begin
pcout = 16'h4000;
F Control=0;
end

nitial
begin
reset=1:
#10 reset = 0;
#100 reset = 1;
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#20 reset = 0;
end

initial
clock=0:

always
#5 clock = ~ clock:

mitial
begin
state = 40001,
#10 state = 4'b1010;
#30 state = 4'b1010;
#55 state = 4'b0111;

end

=T SR R RN O SR W AR PR

WTs v

Ul
[c3v)

Lagi 1

(ERHE LRI L R U R T - A

Axan g oo enumEn AAFHREhang[14¢% 2AXXIQ & P[0 [ [
Now:
20976 ns |UDUUUU‘ﬂns‘ |u.oni:n1s‘ | IWTMS\ ‘ lo.nm‘mda‘ | |0.000054ns| | uium
Mrd t
ER A T G D D R A R a7 R A E
Agansy  tn (o) e X me9 ) mw ) m K mw § mm ) w10
Yoo 1 ]| | L[] L[
BRsepn 7 1 ¥ 10
M reset b |
MF ool 0
B Roont150) 19384 16384

Fig.3.2 Fetch Block Output
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3.2 Decode Block

3.2.1 Implementation

Fig. 3.3 Decode Block Implementation

3.2.2 Results

Input data :

initial
clock =0
always
#5 clock = ~clock;
nitial
begin
state = 4'b0010;
VSRI = 16'h2345;
VSR2 = 16'h5698:;
#25 dout = 16'h9637;
DR_in=16"h9783:
#15 state = 4b1001:
#10 state = 40010:
dout = 16'h5785;
end
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)
ec_lcdv)

1| I Desi

'

tieranchy - st

Now:

21.2833 ns
¥l @ sr112.0] §
BRszy 5
1 G a2 3
5 @ W_Control[1:... 2800
M _Contral 0

[ é{ D_Data[47.0] 48h578523455698

MF_Contral 0
[ a{ E_Control[€:0] €'0010000
¢ @ C_Control[5:0] §'0000000

A clock 0
W@ shalei30]  £60010
B dout15:0)  16heTes
G VSRS 16h2348
) G VSR2[15.0]  16h5A08
[ @ DR_n[150]  16he7a

1 b A

¢, Design Summary ﬂ st decthr | dec_chngr Ede:_\c]v = Simulation

3.3 Execute Block

3.3.1 Implementation

0.000000 1 0000015 0000032 ns 0000048 0.000054 ns 0000080
Yy oy T \ Y Y N
{ nx i 0 4 §

( 3 Y 5

¢ Iy b 3

{ 7o ¥ 2000

\ ) |

{ A TO0N23455648 e 4963723455698 ¥ ABhE7T8523455698

\ ! |

{ B b 5100000 §010000

{ oo X B00I000
o o = e =
¢ 40010 1 abo1 450010

{ 150K X 16h3537 i 16N5785

{ 1602345

{ 1575698

{ 13RO P 16ha783

]

Fig.3.4 Decode Block Output

D_Data(47:0)
E_Control(5:0)

npc(15:0)

aluout(15:0)

pcout(15:0)

Fig. 3.5 Execute Block Implementation
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3.3.2 Results

Input data :

begin
npe = 16'h7849:;
D Data =48Nh963723455698;
E Control = 6'b000110;
#20 D Data = 48'h578523455698;
E _Control =6'b010111;
end
Now:
100 s 0.000000 ns 0.000019 | naanlnas nsl 0000057 N Dﬂﬂﬁlc?E-nsl | 0.0000¢
© @ aluouf150]  16H0000001000000000 ( f6bOTFHOOTIOTHOT ) — 18000000 1000000000
B G poadll150) 1647849 { 1572345 i 1507849
B @lnpdtsn 1517849 { 1607849
W B0 Daialé7D] ABNITIIEE698  ( 4OBAT2AEEGNE ) 48n578523455688
0 G E_Contol&:0] Go010111 ST Eo0701M

£sig

Fig.3.6 Execute Block Output

3.4 Writeback Block

3.4.1 Implementation

aluout(15:0) DR in{15:0) m—

dout(15:0)
i npc(15:0)
pcout(15.0)

— W_Control(1:0)

Fig. 3.7 Wrieback Block Implementation
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3.4.2 Results

Input data :

i Desg

begin

end

Now:
100 ns
) & DR_in[15.]
A g aluouf150)

A G _Contol .

A g el 150)
0 G dout50]
g proutf15:0]

W_Control = 2'b00;
aluout = 16'h0000;

dout = 16'h0000;

pcout = 16'h0000;

npe = 16'h0000;

#15 aluout = 16'h2467;

dout = 16'h8463;

peout = 16'h6403;

npc = 16'h6371;

#20 W_Control = 2'b01;
#25 W_Control = 2'b10:;

0000000 15 | 0000019 |u.uuuu3a s | 0000057 0000076 s 0000093
1003463 ¢ !enmc!o X ‘ wslmavl i — as-nim l i 1B‘h6403| l |
6467 1m0 ¥ 162467 |
o 200 I 20t 1 0 |
W67 18000 & 169371 |
Eh8463 (1600000 X 16hB463 |
w5403 {100 ¥ 1615403 |

Fig.3.8 Writeback Block Output
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3.5 Controller

3.5.1 Implementation

C_Control

clock
complete

reset

'L Design Summary | [v]sti_con tby | [v]con lc3v m con. e 3ngr|

Nesion Ohiects of Pmnerties
Fig. 3.9 Controller Block Implementation

3.5.2 Results

Input data :

Initial
clock = 0;
initial
begin
reset=1:
# 10 reset =0,
# 70 reset=1;
end
always
#5 clock = ~clock
initial
begin
C_Control = 6'bxxxxxx;
complete = 1;
end
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zRX oo - 2o KA 5 D0h &K & o TR BT P 00
|43 %m0 [k o0t A A FEEERD ARG T2 XED o S b 2|0 e 5]

Now:
10.3876 ns
= B stats[3:0] 1
2N statef3) [1}
N statelz) 0
) siztel1) [1}
1
1
a

9.uuuuau|ns
1

2 2 8

2 st=tefo]
Bl complete
M clock
M resal T |
T B c_contaisn] &R0 AR

TEie '
G Procscece e Sm Hisnerhy s

i, Cesign Sy | [Dmiiembo | [Feontcty | Gemtcing |l Smion

4t 1inc-26 filc nome 1c3/ot1_con_th.v

=| Carack Ermom [\, Waminge | i ndn Flea Wiaw by Catezon Viaw by Mama anele -l con |
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Fig.3.10 Controller Block Output

3.6 Register File

3.6.1 Implementation

I Deagn Summary | [v]reg st thv | []reg lcdw

Fig. 3.11 Register File Implementation
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3.6.2 Results

Input data :
initial
clock=0:
always
#5 clock = ~ clock;
nitial
begin
reset=1:
#30 reset = 0:
end

initial
begin
state = 411001,
DR _in = 16'h2457;
#40 srl = 3'b100;

sr2 = 3'b101;
dr= 3bl11;
#15sr1 =3'b110;
sr2=3Dbl111;
dr=3'Db011;
#20 sr1 =3'b011;
sr2 =3'b101;
dr= 3'b000;

end

YREX/ve R AN XA RA R 0D & K&k

HEreE8usss ¢ 00

ZAadaa08 Bt GRER|AAGHARL ang [ 4CY A2 REIQ . &0 2[00 e [

o | Now:

== 169758 ns |u.oounTn ns | I 0.000025 I ‘ lu.oouuslu ns I I 0.000075 ‘ 0 ‘unomu ns I ‘ o.oomlzs
[ g VER1[15:0] 9303 ¢ BRI N 0 \ 9303

T B EK VerR2150 0 ¢ B0 b 0 hi{ 0303 \ T

gy || Hlleeck | ] L o e g
[ &K sr1fz0] i ¢ IhK 5 4 ¥ [ \ ]
[ g sr2j2:0] 5 InK 4 5 ¥ 7 i G
12 G, drl2:0] [ K T 3 Y T

brar | e | © B stateBo 9 B

| Mreset 0 |

e | g oronnse 9303 ( 0

Fig.3.12 Register File Output
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3.7 Mem Access Block

3.7.1 Implementation

dout(15:0) addr(15:0)
! pcout(15:0)

=e state(3:0) din(15:0)

VSR2(15:0)

M_Control

Fig. 3.13 Mem Access Block Implementation

3.7.2 Results

Input data :
begin

state = 4'b0110;
M_Control = 1'b0;
pecout = 16'h7846;
dout = 16'h8648;
VSR2 =16'h8536;
#25 state = 41000;
M_Control = 1'bI;

end
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Now:

100ns ‘cu.umaa s u.oo|uc19 0.000033 s 0 un‘nnsv 0 =JUDTTE ns 0.000085
| [ - [ [ - [ [
e Ty T R T 1h000K ) 4102
Ml rd 0 |
o | | B B adat1se] 34378 0 1 U
M connl 1 |
Bgstaten] 8 { 6 ¥ 8
B doulis0) 4378 34376
Lo | B Bpeoutise) 307900 NI
| mieaE a0 102

Fig.3.14 MemAccess Block Output
3.8 Top level

3.8.1 Implementation

dout(15:0) addr(15:0)

clock
din(15:0)
complete

reset

Desion Summare | [t 23 by | [/ SimplelC¥nar!

Fig. 3.15 Top level Implementation
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Fig. 3.16 LC3 Schematic Implementation
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CONCLUSION

I have successfully implemented the wvarious blocks of LC3 Microcontroller and every
mstruction completes within 5 clock cvcles. I have written the testbenches for each of the
blocks of LC3 microcontroller and the results have been verified. T have completed a design

mvolving separate control and datapath with multiple modules and includes most of the

elements to be used in the CPU.

FUTURE WORK

In future.i will progress towards a fully pipelined version of LC3 Microcontroller and with a

complete set of instructions.
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